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Abstract Online networks occupy an increasingly larger
position in how we acquire information, how we com-
municate with one another, and how we disseminate in-
formation. Frequently, small sets of vertices dominate
various graph and statistical properties of these net-
works and, because of this, they are relevant for struc-
tural analysis and efficient algorithms and engineering.
For the web overall, and specifically for social linking
in blogs and instant messaging, we provide a princi-
pled, rigorous study of the properties, the construction,
and the utilization of subsets of special vertices in large
online networks. We show that graph synopses defined
by the importance of vertices provide small, relatively
accurate portraits, independent of the importance mea-
sure, of the important vertices in the underlying larger
graphs. Furthermore, they can be computed relatively
efficiently in real-world networks.
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In addition, we study the stability of these graph
synopses over time and trace their development in sev-
eral large dynamic data sets. We show that important
vertices are more likely to have longer active life spans
than unimportant ones and that the graph synopses
consisting of important vertices remain stable over long
periods of time after a short period of initial growth.

Keywords E.1 Data Structures, Graphs and net-
works, G2.2 Graph Theory, Graph algorithms, E.4
Coding and information theory, Data compaction and
compression.

1 Introduction

Networks play a crucial role in how we acquire informa-
tion, how we convey information to one another, and
how we interact with other people. On the World Wide
Web, we do this through generating and linking con-
tent. To study the flow of information, to optimize en-
gineering systems, to design efficient algorithms [5,15,
16], and to investigate social structure and interaction,
we study the statistical and graph properties of entire
networks, including such features as degree distribu-
tions, connectivity, diameter, clustering properties, and
evolution of such networks [3,6]. For a variety of on-
line networks, small subsets of vertices dominate vari-
ous graph and statistical properties. Frequently, these
smaller subsets or graph synopses are easier to study
and to understand. One might be interested in whether
relationships among predominant vertices might be in-
ferred from a small set of vertices. We might also study
the “communication” among the most influential polit-
ical blogs [2] and determine whether information flows
directly among them or through intermediate blogs. De-
spite these examples, there is little principled study of
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the properties, the construction, and the utilization of
subsets of special vertices or edges in large real net-
works. Such a study is challenging because it is hard
to define precisely what is meant by a small version of
the graph. Also, it is difficult to evaluate the quality of
a compressed graph and we have myriad definitions of
important vertices.

We would like a simple, principled approach to graph
synopsis for a number of reasons. First, there are a
number of online networks in which a synopsis of the
graph is sufficient to capture the relevant information
we seek. For example, rather than continuously track-
ing millions of blogs, one may use occasional snapshots
of the blogosphere to construct a subgraph of the most
“important blogs” according to a desired measure, and
crawl, query, and analyze this smaller synopsis. The
synopsis will allow us to capture predominant features
of the important blogs and, due to its small size, can be
stored much more efficiently and even distributed and
replicated amongst a number of resource-constrained
computers which themselves can execute queries on the
content and links.

To build a principled approach to graph synopsis,
we start with the definition of predominant vertices
and define a precise construction of a graph synopsis
from these. Typically, the subset of vertices which cap-
ture the graph features are those which are “impor-
tant.” Furthermore, the importance of these vertices
is highly skewed—only few of them are of great im-
portance and the majority are less important. These
vertices and subgraphs have been studied extensively
in online networks [37,8], but not with the idea of us-
ing them for graph synopses. Following much of this
work, we choose four standard definitions of impor-
tance: degree, betweenness, closeness and PageRank.
We demonstrate empirically for a number of represen-
tative online networks that these subsets of vertices do
not depend highly on the choice of importance measure.
Next, we show that it is possible to glean accurate in-
formation about the communication, relationship, and
flow of information on the original graph and among the
top vertices simply from a subgraph constructed from
the important vertices. Furthermore, these properties
are consistent, regardless of the importance measure we
use. Finally, we analyze the evolution of the subgraph
induced by the important vertices in several data sets
that incorporate temporal information. We show that
these synopses are persistent over time and consist of
more dynamic vertices than the remaining unimportant
vertices1

1 Part of this work originally appeared in [33]. In this work,
we include the work from the original conference proceedings but

also present three additional contributions. First, we investigate

Rather than compressing the entire graph, other
work has examined the utility of sampling a subset of
vertices, and examining whether the resulting subgraph
mirrors the original large graph in aggregate properties
such as average path length, degree distribution, and
clustering [19,17,4]. Sampling may be used when it is
impossible to access the entire network; e.g. when one
is crawling online data, or when the graph is too large
to efficiently measure in its entirety. Sampling methods
include node, edge, and random-walk based sampling.
Other approaches include mining a subgraph for visu-
alization of the original graph [11,36], placing sensors
to detect information flow [21], constructing a synopsis
by projecting queries [18], and quantifying the extent
to which important vertices hold online social networks
together [25].

However, all of the previous work has focused on
keeping or representing the properties of the original
networks; i.e. studying the entire networks. We study
the more fundamental properties of the subgraphs of
important vertices themselves. For example, if we iden-
tify a set of important web pages, where importance
may be measured in terms on indegree or PageRank,
we are not asking whether this set of web pages is a
good representation of the structure of the entire web
graph. Likely it is not a good representation. Rather,
we are asking how those important web pages relate
to one another: Do they form a connected component?
How far removed are they from each other when one
must navigate through other important pages? Is their
relative importance preserved in the subgraph? These
questions have not been studied previously because the
focus has been on relating the subgraph properties to
the properties of the entire original network. Instead,
we consider the relationship between these important
vertices to be of interest in and of itself..

Previous work has examined the evolution of large-
scale networks, noting phenomena such as densifica-
tion [20]. Compression has also been studied in the con-
text of an evolving online social network [7]. However,
the question posed focused on the compressibility for
each individual time slice, rather than asking whether
the synopsis constructed in one time slice remains sta-
ble in subsequent time slices.

We give a clear, precise definition of the algorith-
mic problem of vertex-importance graph synopsis in sec-
tion 2 and discuss the computational hardness of this

the time dependent properties of the graph synopses and how

subgraphs of important vertices change over time using several
additional data sets. Second, we examine the robustness of the

difference importance measures with respect to a particular in-

stance of an anomalous hub in one of our data sets. Third, we
derive NP-hardness and NP-completeness results for the graph

compression problem.
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problem in section 4. We show in sections 3 and 4
that most online networks are far from the worst-case
graph; they exhibit features (e.g., power-law degree dis-
tribution, short average diameter, and high clustering)
that allow us to efficiently compute a graph synopsis.
Moreover, we tie properties of the subgraphs to mea-
sures, such as assortativity, of the original networks.
We match the empirical observations to analytical re-
sults in section 5. Finally, in section 6, we examine the
time dependent properties of the subgraphs, their per-
sistency and evolution.

2 Preliminaries

2.1 Importance measures

The definitions of importance or prominence on vertices
vary significantly depending on the specific network and
application. Most such measures describe the topologi-
cal location of the vertices. We choose four of the most
commonly used measures in various applications as our
objects of study: degree, betweenness, closeness, PageR-
ank.

Let the graph G(V,E) have |V | = n vertices, the
four importance values defined on vertices vi are listed
below:

1. Degree D(vi): a measure of how many vertices in
G are connected to vi directly. If G is a undirected
graph, then D(vi) is the number of undirected edges
incident to vi; if G is a directed graph, then D(vi) is
the sum of indegree and outdegree of vi, where in-
degree is a count of the number of directed edges to
the vertex, and outdegree is the number of directed
edges from that vertex to others. Degree reflects a
local property of the vertices in the graph.

2. Betweenness B(vi): a measure of how many pairs
of vertices go through vi in order to connect through
shortest paths in G:

B(vi) =
∑
j<k

gjk(vi)/gjk

where gjk is the number of shortest paths linking
vertices j and k; and gjk(vi) is subset of those paths
that contain vertex vi. For a directed graph G, the
shortest paths are directed shortest paths. Between-
ness reflects a global property of the vertices in the
graph.

3. Closeness C(vi): a measure of the distances from
all other vertices in G to vertex vi:

C(vi) =

∑
j 6=i

d(vi, vj)

−1

where d(vi, vj) is the distance between vj and vi.
Intuitively, closeness means that vertices that are in
the “middle” of the network are important. For a
directed graph G, the closeness of a vertex could be
computed in three ways: all directed paths to the
vertex, all directed paths from the vertex, and all
paths regardless of direction. Here we use this third
version, effectively treating the graph as undirected.

4. PageRank: a variant of the Eigenvector central-
ity measure and assigns greater importance to ver-
tices that are themselves neighbors of important ver-
tices [29].

2.2 Description of network data sets

We chose our network data sets to be representative of
web and online social network data for which one might
be interested in examining the properties of important
vertices and their graph synopsis. We complement the
empirical data sets with analysis of Erdös-Renyi (ER)
random graphs, in order to discern interesting features
in real world graphs from patterns that may arise by
chance. For directed and undirected graphs, we measure
the properties of the directed or undirected versions
respectively, restricting ourselves to the largest weakly
connected component.
Erdös-Renyi random graph. An Erdös-Renyi ran-
dom graph is a prototypical random graph with each
pair of vertices having an equal probability p of being
joined by an edge. In our model, we set the number
of vertices |V | = 10000 and choose p = 1

1000 , so the
average degree is 〈d〉 = p× |V | = 10.
Budyzoo data set. The first real-world network we
consider is derived from the website buddyzoo.com. The
system, no longer active, allowed users to submit their
AOL Instant Messenger (AIM) buddy lists to compare
with others. By treating each registered user as a node
and their Buddy List as a series of edges to other nodes,
a graph is formed. Our anonymized snapshot of the data
from 2004 includes 140,181 registered users [14]. In this
paper, we keep only reciprocal ties (74.7% of the total
edges), producing an undirected graph.
TREC. The second real-world graph considered is a
network of blog connections, the TREC (Text REtrieval
Conference) Blog-Track 2006 data set [24]. It is a crawl
of 100,649 RSS and Atom feeds collected over 11 weeks,
from December 6, 2005 to February 21, 2006. In our ex-
periments, we removed duplicate feeds and feeds with-
out a homepage or permalinks. We also removed over
300 Technorati tags, which appear to be blogs, but are
in fact automatically generated from tagged posts, and
so are not true indicators of social linking. The TREC
data set contains hyperlinks of various forms, including
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Erdös-Renyi BuddyZoo TREC Web Honda-tech

Vertices 10,000 135,131 29,690 152,171 45,718

Edges 49,935 803,200 195,940 1,686,541 459,243

ASP 4.26 5.96 3.72 3.48 3.72

Directed False False True True False

Table 1 The average shortest path (ASP) and other characteristics of the largest components of the graphs.

blogrolls, comments, trackbacks, etc. There are 198,141
blog-to-blog hyperlinks in total, and 33,385 blogs hav-
ing at least one such link.
Web graph data set. The web graph data set was
collected in 1998 by Alexa2 and has previously been
analyzed as part of the “Web in a box” project at the
Xerox Palo Alto Research Center [1]. Since the snapshot
was collected such a long time ago, it contains only 50
million pages and 259,794 websites. This “small” size
allows us to comprehensively analyze the web graph.
We construct a directed graph where Site A has a di-
rected edge to site B if any of the pages within A point
to any page within site B.

Due to the similarity of results for the recent blog
data sets and the decade old website-level data set, we
expect our results to be applicable to larger, more cur-
rent webcrawls.

The above datasets lack time-resolution. However,
most, if not all, large-scale networks are highly dy-
namic, and an important question is how VIGS per-
form as a network grows through the addition of nodes
and edges. We therefore supplement the above analyses
with two time-resolved data sets:
Honda-tech. To study the evolution over time of the
important vertices in a large graph, we use the Honda-
tech data set which is an online forum for Honda cus-
tomers to provide and exchange information and re-
sources3. It has 86,000 threads and about 45,000 users
from 2001 to 2008. We consider as vertices in our net-
work construction individual users. Because users reply
to posts in the forum, we have explicit relationships
amongst them and we consider these as ties or edges.
In order to see the dynamics of this social network, we
divide the data set into 30 time snapshots. Every snap-
shot has a time window of approximately 3 months.
Over the entire period encompassed by the crawl there
are 45,718 users and 459,243 undirected edges. 99.26%
of these users are situated in the largest connected com-
ponent and the average shortest path length separating
them is 3.72. While we performed analysis on several
other evolving data sets from fora data, their results are

2 www.alexa.com
3 www.honda-tech.com

not substantially different from those of Honda-tech, so
we do not include them. We also note that this data
set is studied extensively in [35] which the interested
reader can consult for more information.

Second Life transaction graph. Second Life is
an online virtual world with hundreds of thousands of
active users. Although the environment is created by
the company Linden Lab, much of the content, from
buildings to landscaping to clothing to entertainment
and music is created by the users themselves. The users
trade objects and services using Linden, a virtual world
currency that has an exchange rate with the US dollar.
Such activity can be profitable, with 150M USD in user-
to-user transactions taking place in the third quarter of
2009 [23]. We limit ourselves to the set of 1,490,159
users who were in the seller role at least once from July
2007 to April 2009. We also only consider transactions
that were gifts or object transfers, omitting membership
dues, data upload fees, classified ads., etc. This data is
a specific subset of all the economic activity that takes
place in SL.

3 Important vertices

In this section, we examine the graph synopsis consist-
ing of important vertices in the network. First, we de-
scribe some properties of the entire networks. Second,
we analyze the subgraphs induced by important ver-
tices. Finally, we compare some properties of the impor-
tant vertices in the subgraphs and the entire networks.

3.1 Network properties and important vertices

Degree distributions. We plot the cumulative degree
distributions of three real online networks in Figure 1.
We treat the Web and TREC networks as directed graphs
and plot the distributions of their in-degrees and out-
degrees. We treat BuddyZoo as an undirected graph.
By fitting the distributions of in-degree of Web and
TREC with power-law distributions, we get their power-
law exponents, which are 2.47 and 2.16 respectively.
Moreover, we can see that the degree distribution of
BuddyZoo has a very sharp drop off at the tail, which
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is observed in many social networks, e.g. co-authorship
networks [26]. This places blog links, a form of social
linking, somewhere between navigational/informational
general linking on the Web and the reciprocal, commu-
nicative linking of a social network. The distributions
of out-degree of Web and TREC show mild deviations
from power laws, consistent with other web measure-
ments [32] and might be due to the limitation of the
data sampling [34].
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Fig. 1 The degree distributions of online networks of BuddyZoo

data, TREC blog data and Web data.

Correlation of importance values of different mea-
sures. Before examining the important vertices in the
networks, we look at the relationships of importance
measures in different networks. Table 2 shows that all
of the importance measures are positively correlated in
all four networks. The two undirected graphs, Erdös-
Renyi and BuddyZoo, have more highly correlated im-
portance measures. Perhaps the directed edges of the
other graphs add complexity to centrality measures.
Furthermore, we see that for all of the networks, de-
gree, betweenness and PageRank have higher correla-
tion than closeness. Thus, we see that there are various
ways of defining importance in the networks and the
most central vertices according to different centrality
measures share overlap significantly.

Correlation Erdös-Renyi BuddyZoo TREC Web

Deg, Bet 0.9920 0.8137 0.7872 0.6178

Deg, Clo 0.9474 0.7849 0.3835 0.7869

Deg, PR 0.9952 0.9486 0.7058 0.5175

Bet, Clo 0.9673 0.7541 0.3120 0.4709

Bet, PR 0.9823 0.8439 0.7439 0.6757

Clo, PR 0.9154 0.6418 0.1086 0.3253

Table 2 Spearman correlations between importance measures of

vertices. All the p-values of the correlations are < 0.0001.

Assortativity. The concept of assortativity or assor-
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Fig. 2 The slopes of the distributions of 〈k〉neigh show the as-
sortativities.

tative mixing is defined as the preference of the ver-
tices in a network to have edges with others that are
similar. Here, we will focus on similarity with regard
to centrality. We choose to measure the average value
〈k〉 of the neighbors of vertices of importance value k,
i.e. 〈k〉neigh(k) =

∑
k′ k
′P (k′|k), where k is determined

by each of the four different importance measures [31].
From the change of 〈k〉neigh(k) as k increases, we de-
duce the network’s assortativity for this particular val-
uation. When the overall slope of 〈k〉neigh(k) is positive,
the network is assortative; if the overall slope is nega-
tive, then it is disassortative. Otherwise, the network is
neutral (e.g. the assortativity of degree of Erdös-Renyi
random graphs).

In Figure 2, we can see that all four networks are
consistently assortative with regard to the closeness im-
portance measure. This confirms our intuition. Because
closeness reflects the average distance of a vertex to all
others in the graph, a neighbor of a vertex with high
closeness is at most one additional step removed, and
hence must also have high closeness. The other three
importance measures consistently show that the Erdös-
Renyi random graph is a neutral graph, that BuddyZoo,
similar to other social networks[27], is assortative, and
that the Web and TREC blog networks are mildly dis-
assortative. We’ll see in Section 5 that this result does
not mean that important blogs avoid linking to other
important blogs. Rather, there is such a large skew in
the degree distribution, that in order for a high degree
vertex to link to such a large number of others, it must
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form edges to many of the more abundant low degree
vertices.

3.2 Important vertices in their subgraphs

In this section, we discuss important vertices and the
subgraphs induced by these vertices. Such analysis helps
us to discover the information hidden behind the impor-
tant vertices in the real online networks, and how we
can utilize them for graph synopsis. We do not fix a spe-
cific threshold for inclusion of important vertices in the
subgraph, as this may vary by application. Rather, in
our study what occurs as we allow the absolute number
of important vertices, m, to vary, as long as m << n,
where n is the number of vertices in the original net-
work.

BZ - Deg BZ - Bet BZ - Clo BZ - PR

ER - Deg TREC - Deg Web - Deg

Fig. 3 In the top row are subgraphs induced by the top 100

important vertices of BuddyZoo for all four importance measures,
while in the bottom row are subgraphs induced by the 100 highest

degree vertices in the other three networks.

Figure 3 shows the subgraphs induced by the four
importance measures in BuddyZoo and the highest de-
gree vertices in the other three networks. We observe
that these subgraphs can be markedly different for dif-
ferent measures of importance, even within the same
graph, in spite of high correlation in importance mea-
sures among vertices. They may also vary significantly
between graphs, even for the same importance measure.
There are several explanations of this behavior. Given
the high assortativity of the closeness measure, we are
unsurprised to find that individuals of high closeness
are closely connected in the BuddyZoo graph. Buddy-
zoo also has individuals of high degree, but there were
limits imposed on the number of contacts one has both
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Fig. 4 The sizes of largest connected component of the sub-
networks of important vertices in an Erdös-Renyi random graph

and three real online networks.

by AOL and individuals’ own bandwidth, and so the
largest connected component among high degree ver-
tices does not contain all such vertices. On the other
hand, the highest degree vertices in both the blog and
web data sets have such high degree that they tend to
form a single connected component.
Connectivity. The first question we address is whether
the connectivity of important vertices depends on other,
less important, vertices or whether they are already
well connected through one another. In the Erdös-Renyi
random graph, the size of the largest connected com-
ponent is given by the solution x to the equation

x = 1− e−〈k〉x

where 〈k〉 is the average degree of the graph. The so-
lution to this equation, shown as a dotted red line in
Figure 4(a), represents the change in size of the largest
connected component of the subgraphs induced by pick-
ing vertices randomly from the Erdös-Renyi random
graph. When we choose vertices according to impor-
tance instead, the subgraphs have significantly better
connectivities, with the largest connected component
occupying 96.5% of the subgraph once the subgraph
contains over 15% of all vertices in the graph (i.e., 1,500
important vertices vs. 10,000 total vertices).

Moreover, from Figure 4, we see that the important
vertices are even more highly connected in the real net-
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works. For BuddyZoo, more than 95% of the important
vertices of highest degree, betweenness or closeness are
in the largest connected component when they com-
prise just 1% percent of all vertices in the network (i.e.,
1,500 important vertices vs. 135,131 total vertices). In
addition, more than 95% of the 10,000 highest PageR-
ank vertices are in the largest connected component.
For both of the two directed networks, the TREC blog
network and the network of websites, the most impor-
tant vertices are very well connected (> 99.5%) even
when their numbers are very small (< 0.05% of all the
vertices in the networks). Note that this very high level
of connectivity is in spite of the dissortative nature of
the TREC and website networks with respect to degree,
betweenness and PageRank, where important vertices
tend to connect to less central vertices. We can rec-
oncile the two by observing that the important vertices
are already interconnected, so the negative assortativity
comes from highly connected vertices being connected
to lower degree vertices simply because they already
have so many connections and there is only a small
percentage of vertices of similarly high degree [30].
Density. The previous observations tell us that the
connectedness of important vertices is high even when
we omit all other vertices in the original graph and even
when they comprise a very small fraction of the en-
tire network. Next, we examine just how dense their
connections are. In Figure 5, we show the relationships
between the number of edges incident on important ver-
tices and the number of important vertices.

Figure 5 (a) shows that for an Erdös-Renyi graph,
the important vertices according to all four measures
have a higher average degree in the subgraph than ran-
domly chosen vertices (red dashed line), but this aver-
age degree is lower than the average degree in the com-
plete graph (black dashed line). The average degree of
the graph reaches a maximum when all of the vertices
in the graph are included. Moreover, from the direction
of the curves, we can see that the number of edges e
increases super-linearly with the number of important
vertices n, i.e. Θ(n) < e < Θ(n2).

However, Figures 5(c) and (d) reveal the opposite
behavior for networks with highly skewed degree dis-
tributions (TREC and Web). The curves of each net-
work do not overlap as much, and the average degree of
the important vertices in the subgraph is higher than
the average degree in the original network. This indi-
cates that rather than being sparser, as was the case
for the Erdös-Renyi subgraphs, the subgraphs of im-
portant vertices in real world online networks are ac-
tually denser. Finally, for the BuddyZoo network (Fig-
ure 5 (b)), which is assortative, but not power-law in
degree, we see a mix of trends. Subgraphs of vertices
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Fig. 5 The growth of numbers of edges between important ver-
tices. The slope of the black dash line in each plot is the ratio

of the number of edges vs. the number of vertices in the entire

network.

with high betweenness and PageRank tend to be a bit
sparser than the complete network, but the most im-
portant vertices according to degree and closeness are
more densely connected (this is also apparent in the
visualizations in Figure 3).

In examining these real online networks, we see that
although the densities of connection among important
vertices vary considerably in different networks with dif-
ferent importance measures, in general, they are signif-
icantly denser than for subgraphs of randomly chosen
vertices in the Erdös-Renyi random graph.

3.3 Original vs. subgraph properties

Distance. In Section 3.2 we saw that even without any
additional vertices from the original graph, the sub-
graphs of important vertices in the three online net-
works are already well connected. Next we examine the
second property that we want to preserve for our graph
synopsis problem: the average shortest paths (ASP) be-
tween reachable pairs of important vertices.

Figure 6 shows the comparison curves of ASPs of im-
portant vertices in their induced subgraphs and in the
original networks. In the Erdös-Renyi random graph,
the ASP between important vertices utilizing the en-
tire graph is on average shorter than the ASP between
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Fig. 6 The ASP of: all vertices in the entire networks (black
dashed line), important vertices in the the subgraphs (solid

points), important vertices in the entire networks (hollow points).

all pairs of vertices (the dotted baseline). But when the
ASP uses only routes in the induced subgraph there are
significantly more hops between important vertices on
average, which indicates that in random networks they
are not closely connected, and their shortest paths route
through non-important vertices. Nevertheless, subgraphs
of important vertices in ER graphs have slightly shorter
ASPs than subgraphs of randomly selected vertices.

In contrast to the Erdös-Renyi random graph, all
three real online networks consistently show that the
ASPs between important vertices are much shorter than
the average shortest paths of the entire network; and
almost all of them are increasing as more vertices are
added in by lowering the importance threshold. What
is more, by comparing the ASPs of important vertices
in the original graphs and in the subgraphs, we see that
their values are extremely close in most cases, especially
for the TREC and Web data, e.g. the solid and hollow
purple points (ASP of vertices of highest closeness) are
almost exactly overlapped. This indicates that impor-
tant blogs are most efficiently connected through other
important blogs.
Relative importance. In addition to the connected-
ness of important vertices, we are also interested in
their relative ranking: if we only keep the important
vertices and the edges among them, how would the ver-
tices rank in the new subgraph with the same impor-

tance measure? In order to answer this question, we
generate subgraphs of different sizes for all networks.
We then compute the importance of the vertices in the
subgraphs according to the same importance measure
used to select them. Finally, we compute the Pearson
correlation of the importance values of those vertices in
the original graph and in the subgraph.
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Fig. 7 Pearson correlations of importance values of vertices in
subgraphs and original graphs. The black dashed lines are the

base lines starting from 0 when the number of vertices is 0; and

ending at 1 when all the vertices in the networks are included.

Figure 7 shows that the correlations are all much
higher for the real-world online networks than the Erdös-
Renyi random graph, and that this is especially true for
the Web and TREC data. The high correlations of the
online networks tell us that the ranking of importance
in the subgraphs of important vertices is highly con-
sistent with their ranking in the original graphs. This
suggests that, e.g. it may not be necessary to crawl all
blogs to get an accurate ranking of the most important
blogs. Rather, the links among the top blogs themselves
may already provide fairly close approximate rankings.

There is a clear anomaly, however, in the correla-
tions of importance values for closeness for the TREC
dataset, as visible in figure 7(c). Figure 5 also exhibits
an anomaly in the density of closeness-induced sub-
graphs. There is an odd dip or jump in the figures near
the 8000 vertices mark. A closer examination of the
TREC graph reveals the culprit: a single vertex with
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connections to 99% of the first 7961 high-closeness ver-
tices. We found that this particular vertex was a blog
serving as an aggregator of content on other blogs. Its
indiscriminate linking caused it to connect not just to
blogs worthy of linking, but also to many new, private,
and spam blogs. A large number of the vertices con-
nected to this high-degree vertex obtain high closeness
through this connection, since they are at most distance
2 from any other node linked to the aggregator. How-
ever, they do not necessarily have many other connec-
tions, which is reflected in the graph synopsis as well.

To understand this behavior we examined the num-
ber of edges in the subgraph as the closeness importance
threshold is lowered and more vertices are added to the
synopsis. We replot the TREC curve from Figure 5 in
Figure 8 and highlight 4 different regions correspond-
ing to 4 groups of nodes that are successively incorpo-
rated. Nodes in group 1 between about 1 and 2000 are
connected to the aggregator and to many other high-
closeness nodes as well. Therefore as we include more
of them in the subgraph, we are also capturing more of
a dense, central region in the original network. These
connections lessen in group 2 until we reach group 3 in
the 6000-7000 range, nodes with only one connection
(to the aggregator) are being added. Suddenly, nodes
with no connection to the aggregator are added again,
and the number of edges between important vertices
resumes its rapid increase in group 4, since now close-
ness once again reflects a higher degree of connectivity
in general, and not just to the central aggregator.

Fig. 8 The number of edges between important vertices as a

function of the number of important vertices included in the sub-
graph for the TREC data set and the closeness measure only. The
different regions in number of important vertices are highlighted.

The aggregator’s presence is notable in other graph
properties as well. In Figure 6(c) we see the average

shortest path as a function of the number of impor-
tant vertices in the synopsis (for four different impor-
tance measures). Observe that for the closeness mea-
sure, the average shortest path stabilizes at 2, as most
nodes beyond the first few thousand have no connec-
tions to other important vertices, but may reach any
directly through the aggregator. The ASP length begins
increasing as nodes not connected to the aggregator are
added.

The correlation between importance in the subgraph
versus in the full graph is also affected. Blogs connected
to the aggregator have their closeness score inflated,
until better-connected blogs are added past the 7961
mark. The aggregator serves as a bridge for its connec-
tions, giving them a very short (2 hops) path to many
other nodes. This inflates their closeness score dramati-
cally. On the other hand, it does nothing for the degree
score, as this is only one link. A node’s gain in PageR-
ank from its connection to the aggregator is diluted by
the aggregator’s high degree. While the aggregator it-
self will have a high betweenness score, it confers none
of this to its neighbors, as any node may be used to
pass through the aggregator.

The above discussion of the effect of a single ag-
gregator vertex on VIGS using a specific importance
measure illustrates how vertex importance synopses can
call attention to key features of the network, as well as
a demonstration of the benefit of using multiple mea-
sures of importance to capture a robust and meaningful
subgraph.

3.4 Summary

After studying the important vertices and their induced
subgraphs, we can make two overall observations about
the four networks: (i) Different importance measures
yield subgraphs of varying density and topology as is
evident in Figure 3. (ii) However, in spite of these dif-
ferences, “important vertices” in the online networks
have some properties that agree with each other, which
are essential for the graph synopsis we are looking at:
they connect to each other more directly than average;
their distances to each other are closer than random
vertices; and their relative ranks are positively corre-
lated to their importance ranks in the original networks.
Thus, we know that in the real online networks, in con-
trast to random graph model, the subgraphs induced
by the important vertices tend to preserve information
about the relationships among important vertices, and
we can use the subgraphs to study the properties of
important vertices in the original graphs.
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4 Compression with guarantees

While retaining only the important vertices may be suf-
ficient to capture most of the relationships among them
in real-world networks, in general we have no guarantee
that these induced subgraphs preserve any properties at
all (whether of the important vertices or of the origi-
nal graph). We cannot even guarantee the most basic
property of connectivity of the important vertices. In
this section, we rigorously define the graph compres-
sion problem, analyze the computational complexity of
two heuristic algorithms, and discuss the trade-offs of
these approaches.

4.1 Hardness of compression with guarantees

We define the Basic Graph Compression Problem

as follows: In a connected unweighted graph G(V,E),
every vertex is assigned an importance value. Taking
the original graph G(V,E) and the set of vertices S with
largest importance values as inputs, find the minimal
set of additional vertices ν, which form a connected
subgraph G′(V ′, E′), where V ′ = S + ν and V ′ ⊆ V ,
E′ ⊆ E.

We recall the Network Steiner Tree Problem

which is NP-complete [10]. Let G = (V,E, d) be a graph
with nonnegative edge lengths d : E → R+ and let S be
a set of distinguished vertices. A Steiner tree is a tree
which spans all members of S, and possible with addi-
tional vertices in V . The problem asks for a minimum
cost Steiner tree Tmin, where the cost of a set of edges is
the sum of lengths of its elements. A heuristic method,
theMinimal Spanning Tree algorithm gives solutions to
this problem with approximation ratio 2 [12].

Theorem 1 Basic Graph Compression is NP-hard.

Proof We prove that Basic Graph Compression is
NP-hard by proving that Network Steiner Tree

Problem is polynomial-time Turing-reducible to it.
Assume that η(g = (Ṽ , Ẽ, d̃), s̃) is an instance of

the Network Steiner Problem. First, we transform the
domain of d̃ from nonnegative real numbers to non-
negative integers by multiplying them by a fixed con-
stant value so that they are all in the new domain
d̃′ : Ẽ → Z∗.

Then we convert the weighted graph g into a un-
weighted graph g′ by replacing every edge eω ∈ Ẽ whose
weight is ω ∈ Z∗ with a chain of ω − 1 vertices and
ω unweighted edges. The first and last edges on this
chain are connected with the vertices initially incident
on eω. After this transformation, we get an unweighted
graph g′(Ṽ ′, Ẽ′), where |Ṽ ′| = |Ṽ | +

∑
|Ẽ|(ω − 1) and

|Ẽ′| =
∑
|Ẽ| ω.

Now we have a unweighted graph g′ = (Ṽ ′, Ẽ′), and
we will prove that the set of vertices ν ⊆ Ṽ is the
solution of η if and only if the corresponding set of
vertices after transformation is the solution of the graph
compression problem τ(g′ = (Ṽ ′, Ẽ′), s̃).

Assume that ν0 is the set of additional vertices which
is the solution for η; i.e. the Steiner tree of instance η
is the minimum spanning tree with the set of vertices
s + ν0, and the set of edges E0 whose sum of weights
is w0. After transforming g to the unweighted graph g′,
this Steiner tree is transformed to another tree t′ with
the set of vertices s+ν0+α, where |α| = w0−|E0|. Thus,
the number of total vertices in tree t′ is |s+ ν0 + α| =
|s + ν0| + w0 − |E0|. Moreover, it is easy to see that
|s + ν0| = |E0| + 1, so |s + ν0 + α| = w0 − 1. Since
we know that w0 is the weight of the Steiner tree of
η, we know the minimum number of additional vertices
added to the tree t′. Thus, this is the solution to our
graph compression problem τ .

It is similar to prove that if a tree is not the Steiner
tree of the problem η, then it is also not the solution
tree to the corresponding graph compression problem.

Thus, we have proved that the the basic version of
graph compression problem is NP-hard.

Corollary 1 Basic Graph Compression is NP-complete.

Proof Using a similar proof to that above, it is easy
to prove that the basic version of graph compression
problem is polynomially time Turing-reducible to the
Steiner Tree Problem, which is NP-complete.

4.2 Heuristic algorithms

There are, however, several heuristic algorithms that
guarantee the preservation of some properties of the
important vertices in the original graph. We detail the
KeepOne and the KeepAll algorithms [11] next, and
note the similar web projection method [18].
KeepOne. Let K1 be the set of important vertices, the
goal is to find the minimal set K2 such that there is a
tree induced by K1∪K2. The approximation algorithm
is first to build a minimum spanning tree on the com-
plete graph on K1 where an edge (u, v) has weight equal
to the length of a shortest path from u to v. The set
K2 consists of any additional vertices along any “path”
edge in the minimum spanning tree. The result is the
graph induced by the vertices K1 ∪K2.

The KeepOne algorithm guarantees the connec-
tivity of the compressed graph, has the same set of
additional vertices as the projection method in [18],
and only introduces more edges, which means it may
have better diameter preservation than the projection
method.
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Unfortunately, retaining only connectivity may pro-
vide a distorted view of the original graph. We see in
Figure 9 an example of a graph on n vertices in which
the distance of the original vertices a and b is 3 but
in the compressed graph built by KeepOne, their dis-
tance is n− 3. The ratio of the distances is n−3

3 which
we can make arbitrarily large by increasing the number
of vertices n. That is, KeepOne retains connectivity
but may drastically distort the distance between some
pairs of important vertices. To ameliorate this problem,
one can use the KeepAll algorithm [11] which keeps
vertices that lie along a shortest path between any two
vertices in K1.

a

b

Fig. 9 The distance of important vertices a and b in the orig-

inal graph is 3 and n − 3 in the compressed graph obtained by

KeepOne. The ratio of distances can be made arbitrarily large
as limn→∞

n−3
3

=∞.

4.3 Empirical evaluation and trade-offs

While Figure 9 shows that the worst case distance preser-
vation of KeepOne may be arbitrarily bad, real-world
networks are far from the worst case. Furthermore, the
KeepOne and KeepAll algorithms illustrate that there
are some tradeoffs we may make in compressing real-
world graphs—we can maintain distances at the cost
of keeping a few additional vertices. To explore these
empirical tradeoffs, we apply both the KeepOne and
KeepAll algorithms to three networks. Table 3 shows
these results. Since the results with the Web data are
very similar to TREC, we do not list them here for con-
ciseness. From the table, we can see that if we insist on
preserving the pairwise shortest paths of all important
vertices, we must include many more additional vertices
(thus increasing the size of our synopsis). Furthermore,
we must do so even though the average pairwise short-
est paths in the subgraph of just the important ver-
tices is already close to that of the original graph. Note
that we increase the size of the synopsis by fewer than
100 additional vertices when we preserve connectivity
(with KeepOne), but we need over 3000 additional
vertices when we also insist on preserving distances.
In short, while the problem of preserving connectiv-

ity in graph compression is NP-complete, heuristic al-
gorithms such as KeepOne can preserve connectivity
with a lower cost, while preserving the distances de-
mands quite more. In this sense, we can also see that
the short pairwise shortest paths of important vertices
in their subgraphs and their original graphs is a spe-
cial and important property of the online networks we
study.

5 Analytical Discussions

In this section we present the expected density of sub-
graphs of random graphs with varying degree distribu-
tions, in order to contrast these expected values with
the empirically observed measurements. We limit our-
selves to vertex degree as the sole importance measure
and assume that the graphs are random aside from the
degree distribution, which we specify. We then obtain
the density of the subgraph by deriving the probabil-
ity that an edge in the original graph lies between two
vertices in the subgraph.

First, we find the degree ki of the least important
vertex among the set of top i most important vertices.
We do so by calculating the expected number of vertices
of degree at least ki in a network with n = |V | vertices.
Furthermore, we assume that the expected number is
actually equal to i so that

i = n · P (ki).

Because we are given the ccdf P (k) explicitly for Erdös-
Renyi and power law random graphs, we can solve the
previous equation for ki and, after doing so, we find the
probability that an edge is incident to a single impor-
tant vertex, e→ Vi, given by

P(e→ Vi) =
1
|E|

∫ n

ki

k · p(k) dk

where p(k) is the pdf of the degree distribution. Using
independence of the edges, we find that the number
of edges within the subgraph of important vertices is
simply

|Ei| = |E| · P(e→ Vi)2.

5.1 Erdös-Renyi graphs

In an Erdös-Renyi random graph, the degrees are dis-
tributed according a Poisson distribution where the prob-
ability of a vertex having degree larger than the mean
decreases exponentially. As a result, even when select-
ing the highest degree nodes, their degree will be within
an order of magnitude of the average degree z = 〈k〉 of
the network.
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Subgraph Add vts LC Avg PSP Subgraph Add vts LC Avg PSP Subgraph Add vts LC Avg PSP

Erdös-Renyi BuddyZoo TREC

Sub-Deg100 0 NA NA Sub-Deg100 0 0.58 NA Sub-Deg100 0 1 1.636

KO-Deg100 80 1 14.526 KO-Deg100 33 1 9.440 KO-Deg100 0 1 1.636

KA-Deg100 3222 1 3.649 KA-Deg100 2199 1 3.233 KA-Deg100 34 1 1.609

Sub-Bet100 0 NA NA Sub-Bet100 0 0.55 NA Sub-Bet100 0 1 2.085

KO-Bet100 68 1 15.497 KO-Bet100 35 1 16.087 KO-Bet100 0 1 2.085

100 3185 1 3.633 KA-Bet100 2376 1 3.171 KA-Bet100 216 1 1.994

Sub-Clo100 0 NA NA Sub-Clo100 0 0.99 2.599 Sub-Clo100 0 1 1.716

KO-Clo100 62 1 11.474 KO-Clo100 1 1 2.624 KO-Clo100 0 1 1.716

KA-Clo100 3000 1 3.604 KA-Clo100 531 1 2.324 KA-Clo100 0 1 1.716

Sub-PR100 0 NA NA Sub-PR100 0 0.12 NA Sub-PR100 0 1 1.298

KO-PR100 87 1 15.404 KO-PR100 75 1 11.517 KO-PR100 0 1 1.298

KA-PR100 3338 1 3.672 KA-PR100 3978 1 3.880 KA-PR100 36 1 1.294

Table 3 Comparison of the properties of subgraphs generated by different methods with important vertices in Erdös-Renyi random

graph, BuddyZoo and TREC. Sub-ImportanceMeasure100 is the subgraph induced by top 100 important vertices only; KO- is the subgraph

generated by KeepOne; KA- is the subgraph generated by KeepAll. LC is the fraction of important vertices in the large component
of the subgraph. Avg PSP is the average pairwise shortest path length in the subgraph.

In Figure 10, we show the number of edges in the
subgraph of an Erdös-Renyi graph, using the normal
distribution with mean z and standard deviation σ =√
z/n ∗ (1− z/n), is

i =
1
2

(
1 + erf

(ki − z
σ
√

2

))
.

We see that when the number of important vertices is
small, the degree within the subgraph is lower than the
degree of the original graph. Using well known prop-
erties of Erdös-Renyi graphs, we expect that when the
average subgraph degree is 1, a giant component will
emerge in the subgraph, and further, when the average
degree is log(n), the subgraph will be path connected.
This is consistent with the set of connectivity and den-
sity measurements on simulated Erdös-Renyi graphs in
Section 3.2.

5.2 Power law graphs

We expect different behavior in power law graphs, where
high degree vertices are so well connected, that they
will naturally connect not only to a large portion of the
network, but to one another as well. For example, in
a power-law graph with exponent α and no cutoff on
the degree4, one vertex on average is expected to have
degree N1/(α−1) [28]. For α = 2, this means that one

4 a cutoff may be imposed such that P (k) ∼ k−α for k <

max(k) and 0 otherwise
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Fig. 10 The number of edges between important vertices, where

importance is measured by degree, in three networks: 1) power

law network with α = 2.2, n = 1000, 2) Erdös-Renyi graph with
the same average degree, and 3) power-law graph with the same

exponent but a cutoff at k = 100. Two dotted lines show what the
number of edges would be if the average degree in the subgraph
were equal to the average degree in the original network.

expects one node to be connected to majority of the
other nodes.

In selecting high degree nodes in a power law graph,
we are selecting nodes that are likely to be connected to
each other by virtue of the fact that so many edges are
incident on them. The number of vertices with degree
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ki or greater is given by

i = n P (k ≥ ki) =
n

kα−1
i

Solving for ki, we have that the degree of the ith most
important vertex is ki = (ni )

1
α−1 . Next, we want to find

out what proportion of the edges are incident on the i
most important vertices. For this we have

Pe(i) = P (e ∈ ei) =

∫ n
ki
kp(k)dk∫ n

1
kp(k)dk

(1)

=
k2−α
i − n2−α

1− n2−α =
(ni )

2−α
α−1 − n2−α

1− n2−α (2)

Figure 10 shows that the average degree in the sub-
graphs of important vertices is actually higher than in
the original graph. We repeat the analysis using a de-
gree distribution cutoff max(k) that is lower than the
total number of nodes n. This cutoff not only disallows
very high degree vertices, but also lowers the average
degree in the original subgraph. When the cutoff is in-
troduced, the subgraph still maintains a higher average
degree than the original graph, but the difference is less
pronounced.

Note the similarity with Figure 5, showing the num-
ber of edges in the subgraph for the TREC and Web
data sets, both of which are power law in nature (al-
though directed). In both the analytical and empiri-
cal subgraphs, the average degree is higher than it is
for the entire graph. We should mention that for expo-
nents α ∼ 2 and very small i, Equation 2 would yield
a higher average degree than there are important ver-
tices to connect to. This is in fact a known property of
random power law graphs, where simply fixing the de-
gree of a vertex and allowing it to satisfy this degree by
forming edges at random would create a non-vanishing
frequency of multiple edges between highly connected
vertices. If one disallows multiple edges, the networks
become mildly disassortative, consistent with our em-
pirical observations.

6 Time dependence

In this section, we analyze how stable and how active
vertex important synopsis are in an evolving social net-
work. We first analyze VIGS in the evolving Honda-tech
online forum and then perform the same set of analyses
for the Second Life data set. In the Honda-tech data
set, each user is a vertex. If there is ever a reply from
user i to user j, then there is an edge between vertices
i and j. We consider the reply relationship to be sym-
metric in the sense that it shows that two users share
some common interests or conflicting opinions [13]. The

social networks constructed from this data set are undi-
rected, simple graphs (i.e. both self edges and multiple
edges are removed).

When a user first posts, we count that as the initial
appearance of a new vertex. A vertex is active (after its
initial period) if edges are added to it in the subsequent
periods; i.e., if the user replies or is replied to by an-
other user during those time periods. A vertex may be
inactive for some time after its initial appearance before
additional edges are added. Note that with this defini-
tion of activity, vertices and edges only appear, they
never disappear. Vertices can become inactive with no
edge updates. A vertex can still gain new edges even if
the user stops posting to the forum, if her posts keep
getting new replies from other users. We segment the
data into 30 time periods over the eight years of data,
thus every time period spans approximately 2.8 months.

We observe first that the number of vertices in the
graph grows exponentially and that before the tenth
time period, there are not many vertices from which
to build an important subset; only after the tenth pe-
riod are there over 1000 vertices. See Figure 11 for the
growth in time of the graph as a whole. (See also [35] for
more information.) For most of the analysis below, we
begin after the fifteenth time period in order to have a
large enough graph from which to extract an important
subgraph.

2 5 10 20

50
10

0
20

0
50

0
20

00
50

00
20

00
0

Time

N
um

be
r 

of
 v

er
tic

es

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

● Vertices
alpha = 2.71, R^2 = 1.00

Fig. 11 The number of vertices in Honda-tech grows exponen-
tially over time. Only after 10 time periods do we have enough
vertices (over 1,000) from which we can extract an important
subset.

In the Second Life data set, each user is a ver-
tex and there is an edge between vertices i and j if
a transaction takes place between the two users. We
consider the transaction relationship to be symmetric
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and omit the transaction amount for this analysis. Like
the Honda-tech social network, the social network con-
structed from this data set is simple, undirected, and
unweighted. We use the same definition of active vertex.
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Fig. 12 The number of vertices in SL grows exponentially over
time. While this growth is slower than that of the Honda-tech

data set, there are considerably more vertices initially.

6.1 Persistency of important vertices

The previous analysis suggests that in a static graph
important vertices are better connected than the other
vertices and that their induced subgraphs preserve prop-
erties of the important vertices themselves. We do not
know if these properties are persistent over time, or
whether these features are simply an artifact of exam-
ining a large social network at a single point in time.
To examine the persistency of the important vertices in
the Honda forum data set over time and how this com-
pares with the unimportant vertices, we select N = 300
and 1000 vertices with the highest importance values
at time i and denote this set IVi (we begin with the
20th time period). By comparing the set of important
vertices at time i and the set of all vertices that are im-
portant up to time i, we get the blue persistency curves
shown in Figure 13:

|IVi|
|
⋃i
k=1 IVi|

Contrast these blue curves with the red curves that
show the fraction of all important vertices up to time i

in the set of all vertices that are added to the network
up to time i:

|
⋃i
k=1 IVi|

|
⋃i
k=1 Vi|

The curves in the figure show that while the set of im-
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Fig. 13 The blue persistency curves show the fraction of the

set of important vertices at time i in the set of all vertices that
are important up to time i. The red persistency curves show the

fraction of all important vertices up to time i in the set of all

vertices that are added to the network up to time i.

portant vertices stabilizes over time, in part because the
entire history of a vertex is used to measure its cumula-
tive importance at time i, these important vertices still
constitute a very small fraction of the entire graph. We
further varied the importance measure used to select
important vertices, and the results show that the per-
sistence of important vertices displays similar behavior
across the four different measures. THe results for the
Second Life data set are similar.

6.2 Evolution of important vertices

Because vertices do not disappear from the graph, we
measure their lifespan by counting the number of time
periods after their initial appearance where they con-
tinue to receive edge updates. When we choose the top
10% vertices with highest degrees as important vertices
and begin measuring the importance values at time step
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15, we find that the average staying time for important
vertices is 10.661 time periods and the average stay-
ing time for unimportant vertices is 8.950 time periods.
The difference is significant (p−value < 0.05); impor-
tant vertices have a longer active time spans than unim-
portant ones. Similar results hold for other importance
measures. We also notice the U-shape distributions of
the staying time lengths of both important and unim-
portant vertices, shown in Figure 14. A vertex is likely
to remain active for just an additional 0, 1 or 2 time
periods because most of the users never come back af-
ter being active for short time. On the other hand, the
high probability at several of the longest staying time
lengths is due to the limitation of the time window of
the data set. Vertices that are observed as active at
the last time step, or next to last time step, are likely
to have remained active after the observation period.
We believe the U-shape is more reflective of the users’
posts receiving subsequent replies, rather than a user
themselves either posting only during a very brief time
period, or throughout. Because many of the threads on
the Honda forum remain active for years, as users dis-
cuss car troubles for cars of a given vintage, a vertex
may stay “alive” for years, even without posting, if their
early posts prompted long lasting discussion.
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Fig. 14 The distributions of staying time length of important
vertices versus unimportant vertices at time step 15. The impor-
tant vertices are the top 10% vertices with highest degree at time
step 15.

A second evolutionary feature of important vertices
we examine is the rate of edge updates after the ver-
tex’ initial appearance—once a vertex appears, how fre-
quently do we see edge updates for important versus
unimportant vertices and how long after their initial
appearance do we see many edge updates. Figure 16

0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Staying time length

P
ro
ba
bl
ity

Top 10% important vertices
Unimportant vertices

Fig. 15 The distributions of staying time length of important

vertices for Second Life, also at time step 15. The important

vertices are the top 10% with highest degree at this time.

shows the frequency of edge updates for (degree) im-
portant and unimportant vertices. The importance is
measured at the last time step and we take the top
10% vertices with highest degrees as important vertices.
We note that the important vertices are more likely to
have continuous edge updates than unimportant ver-
tices. Thus, not only are the important vertices more
stable, and active for longer time periods, but they ac-
quire edges at a higher rate. This implies that by ob-
serving important vertices over time, we are capturing
more of the activity in the graph than if we were to pick
just a random subset of vertices to follow.

7 Related Work

In this section, we examine the graph sampling problem
and the rich-club phenomenon. Both of them have some
similarities with our problem: the former also stud-
ies how to get “good” subgraphs given large massive
networks; and the later focuses on the set of “impor-
tant vertices”. However, they are still different from
our problem in various aspects. In graph sampling, one
aims to devise a sampling method, e.g. random ver-
tex or edge selection, snowball sampling, the sketching-
based sampling [22] etc., in order to be able to in-
fer the properties of the original graph from the much
smaller sampled graph [17,19]. In contrast, our work
constructs subgraphs of predetermined important ver-
tices, not for the purpose of deducing properties of the
original graph, but in order to infer the underlying re-
lationships amongst the important vertices themselves.
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rum data. The important vertices are the top 10% vertices with
highest degree at the last time step.
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Fig. 17 The distribution of time gap between edge updates of

important vertices versus unimportant vertices for the Second
Life transaction data set.

In the “rich-club phenomenon”,vertices with high
degree tend to connect together tightly , which is true
for many social and other types of real networks [37,
8]. While previous work on the rich-club phenomenon
has aimed to determine whether the number of edges
between high degree vertices based purely on degree
is higher than what one would expect at random, our
study extends to other centrality measures, and de-
scribes essential properties of the subgraphs themselves,
such as connectivity, shortest paths, and preserving rank
orderings of importance. A related analysis of highly

interconnected sub-structures in networks is that of k-
cores, subgraphs of vertices where each vertex has at
least k connections within the subgraph [9]. An inter-
esting direction for future work would be to repeat our
analysis of the properties of the subgraph and origi-
nal graph, using k-core membership as the importance
measure for vertex selection.

8 Conclusion

In this paper, we propose a new approach to analyzing
and studying large online networks, vertex-importance
graph synopsis. Given a set of important vertices, we
extract a much smaller subgraph from the original net-
work, containing those important vertices. We attempt
to place this process on a rigorous footing and show that
even simple versions of the graph compression problem
are hard (but that there are reasonable heuristic algo-
rithms that can be computed relatively efficiently on
real-world networks). Unlike previous methods which
evaluated the fidelity of the “graph abstract,” this ap-
proach utilizes the subsets of important vertices and
edges and the information they could provide in large
networks. These observations suggest future work in us-
ing graph synopses for information retrieval and infor-
mation flow detection.

From our empirical analysis of three real online net-
works, we find a number of interesting properties. The
important vertices are much more closely and densely
connected to each other. They also have significantly
shorter pairwise paths, which do not heavily depend on
the rest of vertices in the networks, (i.e. their pairwise
shortest paths in the subgraphs induced by themselves
are close to those in the original graphs).Their relative
ranks are almost all highly correlated to their ranks in
the original networks. Finally, important vertices are
also more persistent over time, and they acquire new
edges at a higher rate.

Although our experiments show that the properties
of vertices of different importance measures in different
networks do vary in some ways, the observations stated
above are consistent no matter the type of networks (ei-
ther social or technological), and regardless of the im-
portance measure we choose. Thus, we may use vertex-
importance graph synopses as small but accurate repre-
sentatives of the important vertices in the larger graph
(and, sometimes, of the larger graph itself). Further-
more, the real online networks are relatively easy to
compress while preserving important graph properties
(they do not exhibit the worst-case behavior of our the-
oretical analysis).

In addition to empirical studies, we use analytical
discussions to show how these properties of important
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vertices in online networks differ from random graph
models. What is more, we also use heuristic algorithms
to measure the complexities and trade-offs of requiring
some properties of the real networks to be guaranteed
in the compressed graphs.
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