
HydraVM: Low-Cost, Transparent High Availability for Virt ual Machines

Kai-Yuan Hou∗, Mustafa Uysal†, Arif Merchant‡, Kang G. Shin∗ and Sharad Singhal§

∗Department of Eletrical Engineering and Computer Science
University of Michigan, Ann Arbor, Mighican

{karenhou,kgshin}@eecs.umich.edu
†VMware Inc.

muysal@vmware.com
‡Google Inc.

arif.merchant@acm.org
§HP Labs

sharad.singhal@hp.com

Abstract—Existing approaches to providing high availability
(HA) for virtualized environments require a backup VM for
every primary running VM. These approaches are expensive
in memory because the backup VM requires the same amount
of memory as the primary, even though it is normally passive.
In this paper, we propose a storage-based, memory-efficient
HA solution for VMs, called HydraVM, that eliminates the
passive memory reservations for backups. HydraVM maintains
a complete, recent image of each protected VM in shared
storage using an incremental checkpointing technique. Upon
failure of a primary VM, a backup can be promptly restored
on any server with available memory. Our evaluation results
have shown that HydraVM provides protection for VMs at a
low overhead, and can restore a failed VM within 1.6 seconds
without excessive use of memory resource in a virtualized
environment.

Keywords-Virtualization; High Availability; VM Checkpoint-
ing; VM Restore; Shared Storage;

Submission Category:Regular paper
Word Count: 9345 words
Declaration: The material has been cleared through all

authors’ affiliations.

I. I NTRODUCTION

Virtualization is widely used in contemporary IT infras-
tructures for it enables flexible partition and dynamic alloca-
tion of physical computing resources. In a virtualized envi-
ronment, multiple virtual machines (VMs) are consolidated
on a physical server to reduce deployment and management
costs. However, when a physical server failure occurs, for
example, due to unexpected power loss or hardware faults,
all the VMs running on that server suffer service outages.
Providing high availability (HA) for VMs to survive failures
of their physical hosts is therefore a crucial task.

Automatically restarting the VMs affected by a physical
host failure in other healthy hosts (e.g., [1]) is usually not
enough. Users of the VMs notice disruption of services, as
they may need to wait more than 10 seconds for a failed
VM to reboot and become available for use again. The
applications that were running in the VM before its failure

may not resume execution from where they left off when
the VM restarts from its disk image. Human intervention is
usually needed as applications arestatelessif not specially
designed and instrumented.

A stateful approach is required to reduce application
downtime and lost work from physical host failures. Tra-
ditional state-machine replication [2] and primary-backup
replication [3] approaches add complexities to building
highly available applications. Virtualization assists toreduce
this complexity by providing HA support at the infrastruc-
ture level for any application running in a VM. The current
state-of-the-art HA solution for VMs [4] is to provide, for
each primary VM, a backup VM in a different physical host.
The backup VM is normally passive (not operating). It acts
as a receptacle of the primary VM’s state changes, and can
quickly take over execution from the primary’s most recent
state when the primary fails. The cost of this approach is
high, because the backup VM reserves as much memory as
the primary, and this memory space cannot be used by other
VMs even though the backup is inactive until a fail-over
is required. The reservation of backup memory degrades
resource efficiency in a virtualized environment, offsetting
some of the benefits gained through consolidation.

In this paper, we propose astorage-based, memory-
efficientapproach, calledHydraVM, to providing high avail-
ability support for virtualized environments. Our primary
design objective is to protect VMs from failures of their
physical hostswithoutany idle backup memory reservations.
Instead of creating backup VMs to keep track of the primary
VM state, we maintain a fail-over image that contains a
complete, recent memory checkpoint of the primary VM in
a networked, shared storage, which is commonly available
in a virtualized environment. In the event of primary failure,
a spare host is provisioned, and we restore the failed VM
based on its fail-over image and a consistent disk state, and
activate the VM promptly to take over execution.

The storage-based HydraVM approach has several bene-
fits. It uses inexpensive shared storage for maintaining VM



fail-over images in place of expensive DRAM, reducing
the hardware costs for providing HA support. It frees up
the memory reserved by idle backup VMs for better usage,
improving resource efficiency in a virtualized environment.
Spare memory can be replenished to existing VMs for
enhancing performances, or used to host additional VMs and
upgrade system throughputs. Since HydraVM maintains the
fail-over image in a shared storage instead of a dedicated
backup machine, in case of a failure, the affected VM may
be recovered on any physical host that has access to the
storage. This allocation flexibility allows fail-over to any
host that currently has available memory capacity, which is
critical given the highly variable utilization of hosts in a
virtualized environment.

The remainder of this paper is organized as follows.
The next section provides an overview of HydraVM, and
describes the rationale of its design. Section III and IV
details the protection and recovery mechanisms of HydraVM
against failures. Our experimental results are presented and
analyzed in Section V. Section VI summarizes related work.
We discuss future directions and conclude the paper in
Section VII.

II. D ESIGN RATIONALE AND OVERVIEW OF HYDRAVM

A. Motivation and Objectives

The design of HydraVM is motivated by two key observa-
tions. First, existing approaches [4], [5] for providing high
availability to VMs maintain a backup for each (primary)
VM to quickly take over when a failure occurs. The backup
VM consumes as much main memory as the primary, even
though it stays passive for most of time. This idle reservation
effectively doublesthe memory requirement of each VM
without providing any additional productivity in the normal
course of operation.

Our second observation is that it is difficult to either
take advantages of or adjust the idle reservation of backup
memory. Current platform virtualization technologies, such
as Xen and VMware ESX, either do not support or do not
prefer machine-wide paging to “schedule” physical page
frames across hosted VMs, because a meta-level page re-
placement policy can introduce performance anomalies due
to unintended interactions with the memory management
systems in the guest VMs [6]. As a result, once a memory
area is reserved (although not actively used) by a backup
VM, it cannot be utilized by other running VMs. The
backup VM could possibly be “paged out” when remaining
idle [7]. However, it needs to be swapped in very frequently
to synchronize with the primary execution state, creating
a non-trivial overhead. The popular memory ballooning
technique [6] used for run-time management of VM memory
allocations is not helpful for shrinking backup memory
reservation either, because the backup VM is not operational
and hence cannot exercise its balloon driver.

Our primary design goal is therefore toeliminatethe idle
reservation of backup memory, and our approach is to “main-
tain” backup VMs in a stable storage instead. HydraVM
maintains in a networked, shared storage a fail-over image
for each protected (primary) VM, based on which a backup
VM can be quickly restored and activated to take over
when the primary fails. The shared storage for storing VM
fail-over images is fail-independent to the physical servers
hosting VMs. Such a shared storage accessible to every VM
server host is usually provided in a virtualized environment
to facilitate management of VMs via, for example, a storage
area network (SAN) or cluster filesystem, and built with
storage-level redundancy mechanisms which can be lever-
aged to guarantee reliability for the fail-over images.

Besides eliminating unnecessary memory reservations,
HydraVM must also satisfy several other properties to be
practically useful. It should provide protection for VMs
against failures of physical servers at low overheads to be
deployable in real-world systems. In the event of a host
failure, fail-over of the affected VMs must occur quickly,
and the amount of completed work lost due to the failure
should be reasonably small.

B. System Overview

HydraVM has two operating modes,protection and re-
covery. Figure 1 illustrates the operation of HydraVM.

A primary VM runs in a host that may fail. During
the normal execution of the primary, HydraVM operates in
the protection mode. Protection for the primary VM begins
when HydraVM takes an initial full checkpoint of the VM,
which contains the complete VM execution state. The full
checkpoint is taken only once at the beginning. The complete
VM memory state captured is stored as the VM fail-over
image in the VM checkpoint store, while a VM disk state
consistent with the memory state in the image being kept
in the VM disk server, which hosts the virtual disks of
the primary VM. VM checkpoint store and VM disk server
can be one or separate storage servers in the shared storage
system of a virtualized environment.

As the primary VM operates, HydraVM keeps track of the
execution state of the primary by taking VM checkpoints pe-
riodically, so that in case there is a failure, the primary can be
transparently recovered from a recent state. HydraVM takes
checkpoints of the primary VMincrementally(Section??).
It doesn’t have to send the full VM memory image everytime
the VM state is captured, but only changes to the primary
state since the last checkpoint taken, to be consolidated in
the fail-over image in the VM checkpoint store. HydraVM
also implements acopy-on-write (CoW) technique (Sec-
tion III-B) to minimize the performance disruptions to the
primary VM from continuous checkpointing.

Once a failure of the primary host is detected, HydraVM
switches to the recovery mode and reacts to the failure. A
restoration host with sufficient available memory is selected



���������	
�

�	����� ����������

hacp

��
�	�����	
�

�	����� ��
�	����

���������
hart

odpf

���������	
�

���������	�����	��

��
�	�����	
�

�����������


��� 	!������"�

����������	��


harcv

#������������"�

$����������"�


�����
�����!��

��������� ���
�

Figure 1. HydraVM overview.

and provisioned, either from the stand-by nodes, or from the
surviving nodes, in which the failed primary VM is restored
based on the fail-over image in the VM checkpoint store
and a consistent persistent state in the VM disk server. To
perform fail-over quickly, HydraVM implementsslim VM
restore (Section IV-A) to load the minimum information
needed from the fail-over image, instantiate the backup VM,
and immediately activate the VM to take over execution from
the most recent state recorded before the primary failure.
The VM memory contents not loaded during fail-over are
provided to the VMon-demandwhen the VM accesses them
(Section IV-B).

HydraVM maintains fail-over images on stable storage,
eliminating the memory reservations made by idle backup
VMs. In order to limit the amount of completed work lost
upon failure, frequent VM checkpoints need to be taken,
which requires the time to store each incremental checkpoint
to be short. We propose to use a solid state device (SSD),
such as a flash drive, to hold the VM fail-over images. SSDs
are cheaper than DRAM, and faster than hard disks. They
provide much better performance than mechanical drives, for
both sequential and random I/Os [8]. By holding fail-over
images on a SSD, the average time required to consolidate
incremental checkpoints can be significantly reduced, and as
a result, checkpoints of a protected VM can be taken more
frequently, achieving greater protection of the VM.

While we propose deployment of a SSD-enabled check-
point store to further improve system performance, Hy-
draVM is not confined to systems that have SSDs available.
In Section V, we evaluate HydraVM on both a disk and a
SSD-based checkpoint store and demonstrate the feasibility
of our approach. Although a SSD-based system enables
checkpoints of a primary VM to be taken more frequently,

we point out that not all applications require a very high
checkpointing frequency. Users of the applications that need
to be checkpointed extremely frequently (and yet, do not
have a checkpointing mechanism built-in) may be willing
to accept the cost of existing approaches that maintain a
designated backup VM in memory [4], [9], [5], [10]. Hy-
draVM complements existing HA approaches by providing
a memory-efficient solution to providing VM protection
against host failures that is practically useful and deployable
in real-world virtualized environments.

We built a prototype HydraVM system on the Xen hy-
pervisor [11]. HydraVM implements its VM protection and
recovery mechanisms for high availability as Xen manage-
ment commands (hacp and hart) to be invoked via the
xm user interface. These commands can be used by HA
provisioning agents to initiate the protection for a primary
VM and the restoration of a backup VM in case the primary
fails. In the next two sections, we provide details of the
design and implementation of the HydraVM protection and
recovery mechanisms.

III. H YDRAVM PROTECTION

HydraVM tracks changesto the VM state by taking
incremental checkpoints. A checkpointing daemon, called
hacp, runs in the privileged management VM (Domain
0 in Xen’s terminology) in the primary host, as shown in
Figure 1. It takes incremental checkpoints of the primary
VM periodically and sends the checkpoint data over the
network to the VM checkpoint store. A receiver daemon,
harcv, runs in the checkpoint store and receives check-
points from the primary periodically. It merges all of the VM
state changes included in each checkpoint and maintains a
correct and consistent fail-over image for the primary VM.



A. Incremental Checkpointing to Storage

HydraVM implements incremental VM checkpointing
similar to that proposed in Remus [4] and Kemari [9]. Unlike
these approaches, HydraVM stores the checkpoints taken in
a shared storage rather than in server memory. Thehacp
checkpointing daemon takes an initial full snapshot of the
primary VM and stores the VM image in the VM checkpoint
store as a regular file. This image file has approximately
the same size as the amount of memory configured for the
primary VM. It stores all memory pages of the primary VM
sequentially in their order, along with the virtual CPU state,
and contains information describing the configuration of the
primary VM, for example, its resource usage and virtual
device state.

As the primary VM executes, HydraVM tracks the
changes of its memory and virtual CPU state by a series
of incremental checkpoints. To create an incremental check-
point, thehacp checkpointing daemon temporarily pauses
the primary VM, while it identifies the changed state and
copies them to a buffer. We leverage theshadow page tables
support [12] provided by the Xen hypervisor to identify
the state that has changed since the last checkpoint taken.
Shadow page tables are turned on for the primary inlog-
dirty mode. In this mode, the hypervisor maintains a private
(shadow) copy of the guest page tables in the primary and
uses page protection (marking all VM memory read-only)
to track writes to the primary’s memory. After the memory
pages that are dirtied since the last checkpoint are identified,
they are copied to a buffer along with the changed CPU state,
and the primary VM is un-paused and can resume execution.

While the primary VM continues its execution, thehacp
daemon transmits the buffer containing the changed state
to the harcv receiver daemon running in the VM check-
point store. Theharcv daemon receives each incremental
checkpoint in its entirety, and can either store the checkpoint
as an individual patch file to be merged with the VM fail-
over image during the activation of a bakcup VM, or update
the VM image to contain the most recent page contents
included in the incoming checkpoint. HydraVM uses the
latter approach, since merging a series of checkpoint patch
files involves reading them from disk and committing their
contents to various locations in the fail-over image, and
is a time-consuming process. If the merging is performed
when restoration of a backup VM is required, the fail-
over time would be unacceptably long. In HydraVM, the
hacrv daemon updates the fail-over image with the set of
dirtied memory pages and changed CPU states contained
in a checkpoint as it is received, and commits all changes
to the storage media to guarantee durability. It then sends
an acknowledgement back to thehacp daemon confirming
the completion of this checkpoint. Note that the set of state
changes captured in one incremental checkpoint is applied
to the fail-over image in its entirety; changes to the image

are not made until the entire incremental checkpoint has
arrived at the checkpoint store to ensure that a correct and
consistent image of the primary VM is available for fail-over
in the shared storage at all times.

B. Copy-on-Write Checkpointing

The primary VM is paused for taking each incremental
checkpoint to ensure that a consistent set of memory and
CPU state changes are captured together in one checkpoint.
While the primary VM is paused, thehacp daemon first
identifies the set of memory pages dirtied since the last
checkpoint, gains access to these dirtied VM pages, and
then copies the contents of the dirty pages to a separate
buffer. The dirty pages need to be copied in order to isolate
their contents from the primary VM while thehacp daemon
transmits them to the shared storage in parallel with primary
execution. Otherwise, if the primary VM modifies a dirty
page beforehacp is able to send the page out, by the time
the page is transmitted, its contents have changed from what
was captured in the checkpoint, and this may corrupt the
consistency of the checkpoint.

Pausing the primary VM for every incremental checkpoint
interrupts its normal execution, and hence, it is critical for
the duration of these interruptions to be minimized. It takes
a non-trivial amount of time forhacp to gain access to
all dirtied VM pages in an incremental checkpoint. Multiple
hypercalls are needed to ask the hypervisor to map batches
of dirty pages belonging to the primary VM for the daemon.
We enhance the implementation by requesting access to
the entire primary memory space once at the beginning of
protection of the VM, so thathacp need not map regions
of the primary’s memory repeatedly everytime when the
primary is paused.

Copying the contents of the dirty pages also significantly
increases the VM pause time. In fact, not every dirty page
in a checkpoint needs to be duplicated. If a dirty page is
not modified by the resumed primary execution, its content
remains consistent with the checkpoint captured and the
hacp daemon can transmit the page directly without making
a copy. When the primary VM touches a dirty page, it does
not create any problem if the primary’s modification happens
afterhacp sent the page to the shared storage. The content
of a dirty page needs to be duplicated only if the page has
not been transmitted to the checkpoint store and is about to
be modified by the primary. HydraVM implements Copy-
on-Write (CoW) checkpoints to copy these pages only.

CoW checkpointing is implemented by maintaining a
bitmap which indicates the memory pages to be duplicated
before modifying them. While the primary VM is paused,
we mark the bits in the CoW bitmap for all dirty pages
included in the checkpoint captured, and resume primary
execution without copying the dirty page content. While the
primary VM is running, if a page marked in the CoW bitmap
is detected to be modified, we duplicate its content to a



separate buffer before allowing the modification. Thehacp
daemon is notified, so that it may send the copied page, not
the modified page being used by the primary VM, to the
checkpoint store. For all other dirty pages,hacp transmits
the VM pages directly. CoW checkpointing reduces the VM
pause time by not copying page content while the VM is
paused. It also reduces page duplication costs, as pages are
copied only for a subset of the dirty pages included in each
incremental checkpoint.

HydraVM focuses on tracking VM memory state in a
storage-based fail-over image that can be used to recover the
protected VM in case a failure occurs. For correct recovery,a
VM disk state consistent with the fail-over memory image is
needed. To meet this requirement, our system currently hosts
VM virtual disks in LVM [13] logical volumes and uses the
the snapshot capability of LVM to capture the VM disk state
at the time of an incremental checkpoint. LVM snapshots are
instant and incur a minimum overhead since it uses a CoW
technique for disk blocks to record only changes made to a
logical volume after a snapshot is created.

IV. H YDRAVM RECOVERY

When a primary failure is detected, a restoration host with
sufficient memory is provisioned. A VM restore agent, called
hart as shown in Figure 1, is invoked to quickly bring
up the failed VM in the restoration host based on its fail-
over image in the checkpoint store. The restored VM starts
operation immediately after being created, while its memory
space is only partially populated during the fail-over. As
the VM executes, it sends requests for the missing memory
contents to a memory page fetching daemon, calledodpf,
which then provides the pages needed from the fail-over
image.

A. Slim VM Restore

To quickly bring up a backup VM is especially challeng-
ing for HydraVM, because in our approach, VM fail-over
image is not kept in server memory, but on a networked,
stable storage. As a result, we must quickly load the fail-over
image into memory in the restoration host and activate the
backup VM. However, it is impractical to delay the execution
of the VM until the complete VM image is loaded, as this
can take an unacceptable length of time—20 to 40 seconds
in our experiments with 1-2GB VM images. We perform
a “slim” VM restore that loads only the minimum amount
of information from the VM image required to instantiate
the backup VM, and then resumes the execution of the VM
immediately, without waiting for its memory contents to be
fully populated.

In the event of a fail-over, thehart agent first loads the
configuration information from the fail-over image in the
VM checkpoint store. The configuration of the VM describes
its allocated resources and virtual devices, and is used by the
VM restore agent to create a VM container with sufficient

memory to host the backup VM, establish a communication
channel between the backup VM and the hypervisor, and
properly connect virtual devices to the backup VM. A few
memory pages that are shared between the VM and the
hypervisor are loaded subsequently. These pages contain
important information about the VM, for example, running
virtual CPU, wall-clock time, and some architecture-specific
information, and are critical to starting VM execution.

The memory space of the backup VM is then initialized
with all page table pages of the VM. Page tables in the
primary VM before its failure contain references to the
physical memory frame in the primary host. When check-
pointing a page table page in the primary during protection,
all such references are translated topseudo-physical frame
numbers[14], which are host-independent indices to the
contiguous memory space as seen by the VM. When the
hart agent loads a page table page from the VM image,
it walks through the page table entries, assigns physical
memory frames in the restoration host for the VM pages, and
updates the references to point to the allocated memory in
the restoration host. Finally, the virtual CPU state is loaded,
and the backup VM is switched on for execution.

B. Fetching VM Pages On-demand

Immediately after the VM resumes execution, its memory
space is only partially populated. Only a minimum number
of VM pages (those loaded during slim VM restore) are in-
place in the VM memory space and ready for use; no data
pages of the VM are loaded from the fail-over image.

As the backup VM executes and accesses its memory
pages, valid contents must be supplied for the execution to
proceed. In HydraVM, memory references of the backup
VM are intercepted by the hypervisor. If a memory page
accessed by the restored VM is not yet present in the VM’s
memory space, a page fetch request is sent to theodpf
fetching daemon, which loads the contents of the requested
memory page from the VM image in the VM checkpoint
store into proper location in the restored VM’s memory
space; hence, execution of the backup VM can proceed.

Memory references made by the restored VM can be
intercepted in different ways. One approach is to mark all
the resident pages in the backup VM asnot-presentin
their page table entries while loading page tables during
the slim VM restore. As a result, a page fault exception is
forced and trapped into the hypervisor whenever the backup
accesses a page. However, this approach requires significant
changes to the guest OS kernel. Instead, we leverage Xen’s
support of shadow page tables to detect memory accesses
from the backup VM. Since the “shadow” copy of the guest
page tables maintained by the hypervisor is initially empty
and to be filled in as guest pages are accessed, faults on
shadow page tables can be used as indicators of VM memory
references.



Before finishing the slim VM restore, thehart restore
agent enables shadow page tables for the restored VM, and
the VM is un-paused to resume execution. At this time,
the odpf fetching daemon is ready to service page fetch
requests from the VM. When a page that is not yet present
in the VM’s memory space is accessed, the VM is paused
and a page fetch request is issued to the fetching daemon,
specifying the index of the requested page. Once the fetching
daemon finishes loading the page contents, the backup VM is
un-paused and continues executing. By fetching VM pages
on demand, no unnecessary pages are brought in for the
backup VM, reducing the number of I/Os needed. Although
backup VM’s execution is inevitably interrupted by page
fetches, the frequency of such interruptions is significantly
reduced once the working set of the VM is brought in.

V. EVALUATION

We built a prototype of HydraVM on the Xen 3.3.2
hypervisor. In this section, we evaluate the effectiveness
and efficiency of our system. Our evaluation focused on the
following two key questions:

• What type of VM protection does HydraVM provide
without any idle memory reservations, and what are
the associated operational overheads?

• When a machine failure is detected, how quickly does
HydraVM bring a failed VM back alive, and how is the
operation of the restored VM affected by the fail-over
performed?

Next, we describe the test environment and the workloads
used in our experiments. We then present the experimental
results and our analysis.

A. Testbed, Methodology, and Workloads

All of our experiments were run on a set of HP Proliant
BL465c blades, each equipped with two dual-core AMD
Opteron 2.2 GHz processors, 4 GB RAM, two Gigabit
Ethernet cards, and two 146 GB SAS 10K rpm hard disks.
We set up our testbed as illustrated in Figure 1, one blade
for each host. All four blades in our testbed are in the same
LAN.

The VM under test runs in the primary host while being
protected by HydraVM, and uses one dedicated network
interface in the host (eth0). The virtual disks of the pro-
tected (primary) VM are hosted in the VM disk server under
LVM, and mounted in the primary host via NFS. Thehacp
checkpointing daemon runs in Domain 0, takes periodic
checkpoints of the primary VM at different checkpointing
frequencies, and sends the checkpoint content to the VM
checkpoint store via the other network interface in the
primary host (eth1).

In the event of the primary host failure, the failed primary
VM is brought up in the restoration host based on the fail-
over image in the VM checkpoint store, and a consistent
version of its disk state in the VM disk server. In our

experiments, we forcefully stop the primary VM to emulate
the occurrence of a primary failure. The restored VM
continues operation in the restoration host with its memory
contents being provided on-demand by theodpf memory
page fetching daemon. The restored VM and page fetching
daemon uses separate network interfaces in the restoration
host.

We installed an Intel 80 GB X25M Mainstream SATA
II MLC SSD in the VM checkpoint store to understand
the behavior of the HydraVM system using a disk and a
SSD-based checkpoint store. Note that in all experiments
VM virtual disks were hosted in the VM disk server on a
hard drive. Unless otherwise stated, the VM under test was
configured with 512 MB of memory, one virtual CPU, and
one virtual NIC. The VM is pinned to use one physical
processor in its hosting machine, while Domain 0, in which
HydraVM executes its protection and recovery tools, is
pinned to use the other one.

We ran two workloads, respectively, in the VM under
test for our evaluation. We compiled a linux kernel source
tree (version 2.6.22.7) using the default configuration and
the bzImagetarget. Kernel compilation exercises the virtual
memory system, disk, and processor of the VM. We also
ran a video transcoding workload using ffmpeg [15], which
is an open-source project that provides a set of libraries and
programs for streaming and converting multimedia contents.
In our experiments, we used ffmpeg to convert a series of
MPEG2 videos to AVI format. The total amount of video
data being converted was 2.3 GB.

B. Storage-based VM Protection

HydraVM stores the fail-over image and periodic VM
checkpoints in stable storage. We first evaluate the VM
protection provided by HydraVM based on two types of
storage devices, a hard drive and a SSD. We ran the two
workloads in the primary VM, respectively. Checkpoints
of the primary VM were taken periodically throughout the
execution of the workloads, and we varied the time between
successive checkpoints.

Table I summarizes the average size of the incremental
checkpoints taken during the execution of the workloads,
as well as the average time required to apply all dirty pages
contained in a checkpoint to the fail-over image and commit
the changes to the storage media under different checkpoint-
ing frequencies. When configured to take checkpoints every
10 seconds, HydraVM pauses the primary VM and starts
a new checkpoint 10 seconds after the VM was paused
when the previous checkpoint started. Video transcoding
touches twice as many memory pages compared to kernel
compilation in the 10-second checkpointing intervals, but
it does not require a proportionally longer time to commit
the checkpoints. This is because video transcoding touches
memory mostly sequentially, resulting in series of sequential
writes when updating the fail-over image, which can be



Kernel Compilation
Configured Checkpointing FrequenciesEvery 10 sec Every 5 sec Every 2 sec

Checkpoint Storage HD SSD HD SSD HD SSD
Checkpoint Size (MB) 46.1 46.3 40.8 40.5 40.2 36.7

Checkpoint Commit Time (sec) 5.0 3.2 4.6 2.9 4.6 2.7
Actual Checkpoint Frequencies (sec) 10.0 10.0 5.2 5.0 5.0 3.0

Video Transcoding
Configured Checkpointing FrequenciesEvery 10 sec Every 5 sec Every 2 sec

Checkpoint Storage HD SSD HD SSD HD SSD
Checkpoint Size (MB) 92.4 91.9 58.4 51.7 40.5 26.6

Checkpoint Commit Time (sec) 6.1 4.3 4.6 2.9 3.5 1.7
Actual Checkpoint Frequencies (sec) 10.0 10.0 5.8 5.0 3.9 2.2

Table I
THE AVERAGE SIZES OF INDIVIDUAL INCREMENTAL CHECKPOINTS ANDAVERAGE TIME REQUIRED TO COMMIT EACH CHECKPOINT TO THEVM

CHECKPOINT STORAGE BASED ON A HARD DISK(HD) OR A FLASH DEVICE (SSD).

performed more efficiently. For both workloads, it takes
a shorter amount of time to commit checkpoints to a
fail-over image hosted on a SSD than a hard drive, and
each checkpoint finishes committing within the configured
checkpointing interval.

A checkpoint can contain a larger amount of data than
can be completely written to storage before the configured
checkpointing interval ends. In this case, the next checkpoint
is not started until the previous one has committed to storage
fully, in order to ensure the consistency of the VM fail-
over image at all time. This delay of successive checkpoints
creates discrepancies between theconfigured and actual
checkpointing frequencies. For example, when HydraVM is
configured to take checkpoints every 5 seconds and uses
a disk-based checkpoint store, some of the checkpoints
were not able to finish committing within the 5-second
interval, and the time elapsed between consecutive check-
points are measured to be longer, as indicated by the actual
checkpointing frequency in Table I. The configured every 5
seconds frequency was achieved on a SSD-based checkpoint
store for both workloads, as I/Os are more efficient on a
SSD. When configured to take checkpoints every 2 seconds,
successive checkpoints are delayed even on a SSD-based
system. However, the delays are shorter when using a SSD,
and hence the smaller checkpoints generated during the
shorter actual checkpointing intervals compared to the case
of using a hard drive.

C. Overheads of VM Protection

When being protected, the primary VM is paused period-
ically for each incremental checkpoint to be taken, resulting
in constant disruptions to VM operation. The checkpoint
data are transferred to the checkpoint store when the primary
resumes running, interfering with primary’s normal opera-
tion. We therefore evaluate the costs of VM protection using
VM pause time and workload overhead as two important
metrics.

Figure 2. The average VM pause times for the kernel compilation workload
resulted from different checkpointing techniques under different configured
checkpointing frequencies.

We first present a detailed evaluation of VM pause time
using the kernel compilation workload as an example. The
total height of each bar in Figure 2 represents the average
time during which the primary VM is paused for an incre-
mental checkpoint to be taken (also indicated by the numbers
above each bar.) We distinguish two major components of
the VM pause time, the time for thehacp checkpointing
daemon to gain access to the set of dirtied VM pages
that composes the checkpoint (”Map VM Pages”), and the
time to copy the contents of those pages to a buffer to be
transferred after the VM resumes execution (”Copy Data”).

We compare the basic incremental checkpointing tech-
nique and the two enhancements of requesting access to the
entire primary memory when the VM protection start and
CoW checkpoints (described in Section III-B.) Mapping the
entire primary VM at the beginning reduces the average VM



(a) Kernel Compilation (b) Video Transcoding

Figure 3. The protection overheads on workload execution and the corresponding levels of protection the workload gainsusing the basic and CoW
checkpointing techniques under different configured checkpointing frequencies.

pause time by 41% to 46% for the evaluated checkpointing
frequencies, and together with CoW checkpointing, achieves
a 92% of reduction on VM pause time.

For the first two checkpointing techniques, the VM pause
times are largely in proportional to the checkpointing inter-
vals; the larger an interval is, the more memory pages are
dirtied during the interval and the longer it takes to map and
copy those dirty pages, and hence the longer the VM pause
time. When configured to take checkpoints every 2 seconds,
the pause times observed on a disk and SSD-based system
are different because the times actually elapsed between
consecutive checkpoints are longer when using a hard drive,
as discussed in Section??, resulting in more memory pages
getting dirtied, and hence the longer pause time. When using
the CoW technique, the VM pause times are flat across the
checkpointing frequencies evaluated, since we only mark a
bit per dirtied VM page in the CoW bitmap while the VM
is paused, without actually mapping and copying any pages.

We evaluate the workload overheads by comparing the
workload execution time measured in a periodically check-
pointed VM with the baseline execution time in a VM
that is not protected/checkpointed. Figure 3(a) and 3(b)
show the results for kernel compilation and video transcod-
ing, respectively. Our experiments compare the basic and
CoW (included the enhancement of mapping the entire VM
memory) techniques on a disk and a SSD-based system.
The results show that it does not incur an undue overhead
on workloads even when HydraVM is configured to take
checkpoints as frequently as every 2 seconds. In all evaluated
cases, kernel compilation runs less than 13% slower, and it
takes no more than 4% longer time for video transcoding to
finish.

When checkpoints are taken every 10 seconds, workloads
incur similar overheads on a disk and a SSD-based sys-
tem. When using CoW checkpointing, overheads for kernel

compilation are lowered, slightly for kernel compilation,and
more for video transcoding. CoW checkpointing duplicates
only 48% of the checkpointed pages the basic technique
copies throughout the execution of kernel compilation, and
no more than 17% of the pages for video transcoding.

To further understand the workload overheads in different
cases, let us consider the correspondinglevel of protection
the workload gains. The primary VM may receive greater
protection by being checkpointed more frequently, resulting
in less loss of completed work in the event of a fail-over.
In the baseline case when no checkpoints are taken, the
primary gains 0% of protection. Let effective checkpointing
per second be 100% of protection the primary may receive.
The level of protection can be computed by dividing the
total number of checkpoints actually taken by the workload
execution time. For example, when configured to take check-
points every 2 seconds for kernel compilation on a hard
drive-based system, a total of 75 checkpoints were taken
throughout the 392 seconds of workload execution. The level
of protection for this experiment case is 75/392 = 19%.

Looking at the level of protection the VM actually re-
ceived helps us understand the seemingly counter-intuitive
situation when a SSD-based system incurs higher workload
overheads than a hard drive. Since checkpoint committing
is faster on a SSD, more checkpoints are taken throughout
the workload execution, and hence the higher degree of pro-
tection achieved. Consequently, the primary VM is paused
more frequently, and larger total amount of checkpoint data
are transferred while the workload is running, resulting ina
larger overhead.

In summary, experimental results show that protection
overheads depend upon the workload characteristics, and
are largely in proportional the actual level of protection
the primary VM receives. In all our experiments, thehacp
daemon uses less than 7% of CPU.



Figure 4. The average fail-over time required to bring up a failed primary
VM in which a kernel compilation and video transcoding workload has
completed 50% of its execution.

D. Restoration of a Failed VM

HydraVM quickly restores a backup VM from the fail-
over image upon detection of a primary failure performing
a slim VM restore. This section evaluates the effectiveness
of this mechanism. We run the two workloads in the
primary VM, respectively. The primary was checkpointed
periodically. After completing about 50% of each work-
load (executing 200 seconds for kernel compilation and
110 seconds for video transcoding) and finishing the last
incremental checkpoint in this time period, we forcefully
stop the primary VM, and launch the slim VM restore to
bring up a backup VM in the restoration host.

Both workloads resumed execution correctly in the re-
stored VM from the most recent checkpointed state in the
VM checkpoint store after a brief pause, during which fail-
over is performed. Figure 4 shows our measurements of
the fail-over time required. The numbers shown are average
results over three experimental runs. The results demonstrate
that HydraVM is capable of restoring a failed VM very
promptly within 1.6 seconds of time, which is usually
acceptable to human users.

We observe that restoring a VM from a SSD-hosted fail-
over image does not show significant performance improve-
ments. Therefore, we further break the fail-over time into
three major components, and find that our implementation
of slim VM restore is efficient and only composes about
one-third of fail-over time. Over 60% of time are spent by
the recycled Xen code to create VM container and await for
virtual devices reconnecting to the restored VM.

Page table pages form the majority of VM data being
loaded from storage during slim VM restore. In our experi-
ments, an average of 1033 and 1135 page table pages (about

Kernel Compilation
Checkpoint Storage HD SSD

Memory Contents Fetched (MB) 128
Workload Overhead (%) 8 8

Video Transcoding
Checkpoint Storage HD SSD

Memory Contents Fetched (MB) 454
Workload Overhead (%) 11 11

Table II
THE OVERHEAD INCURRED WHILE FINISHING THE LAST50%OF

EXECUTION FOR KERNEL COMPILATION AND VIDEO TRANSCODING

BECAUSE OF FETCHINGVM PAGES ON-DEMAND AND THE AMOUNT OF

MEMORY DATA FETCHED.

4 MB of data out of the 512 MB VM memory space) are
loaded during restore. They are loaded more quickly on SSD
by an average of 0.04 seconds for the two workloads. Due to
the small amount of data being loaded from storage and the
small percentage of influence storage devices have on total
fail-over time, a hard drive and a SSD-based shared storage
performs almost equally well on failed VM restoration.

E. Operation of a Restored VM

Immediately after restored, the missing memory pages
are fetched from the fail-over image on the shared storage
when needed. To understand the impacts of fetching memory
contents on-demand, we compare the time required to finish
executing the last 50% of the workloads described in the
previous subsection with the remainder execution time mea-
sured in a VM the memory space of which is fully populated.

The workload overheads are summarized in Table II. The
results show that fetching memory pages on-demand as the
VM executes does not introduce a prohibitive overhead,
and therefore, this mechanism is practically deployable to
enable slim VM restore, switching on a restored backup VM
immediately after loading only critical information from the
fail-over image, minimizing the fail-over time required.

Our experimental results do not show performance ben-
efits when fetching from a fail-over image hosted on a
SSD-based shared storage. This is surprising, since we
expected that on-demand fetching of memory pages would
generate many small random reads from the fail-over image,
which are much faster on SSDs. To further understand the
VM page fetching behavior, we conducted a separate set
of experiments. We execute the entire kernel compilation
workload in a VM brought up by slim restore. As the
workload executes, we record the indexes (pseudo-physical
frame numbers) of the memory pages requested by the VM.
In addition, we record using theblktrace [16] tool the I/O
activities that actually happen on the storage device in the
shared storage to service the VM page fetching requests
from the fail-over image.

Figure 5(b) shows the pattern of VM page requests This
page fetching pattern repeats throughout the execution of



���������

���������

���������

���������

���	
�����
������

���������

���������

���������

���������

� ��� ��� ��� ���

����
����

(a) The I/O activities servicing the page fetch
requests.

������

������

������

������

���	
�������

�

�����

������

������

���������	

(b) The page fetching pattern that repeats for the
entire benchmark.

������

������	�
��	

������

������

������

������

������	�
��	

�

�����

������

������

������

���������	

������

������

������

������

���������	

(c) A zoomed-in view of the page fetching pattern.

Figure 5. The pattern of the page fetches requested by the backup VM recorded for the kernel compilation benchmark and a zoomed-in view of the
pattern.

kernel compilation. (The complete pattern not shown for
clarity.) As can be observed in the zoomed-in view of this
pattern, illustrated in Figure 5(c), page accesses made by the
VM show substantial spatial locality. Most of the requests
fetch the VM page next to the one fetched in the previous
request, which only requires reading an adjacent block in
the VM fail-over image on the shared storage.

Figure 5(a) shows the I/O activities on the block device
servicing the recorded page fetch requests for the entire
execution of the kernel compilation benchmark. The disk
access pattern also shows substantial spatial locality. Al-
though over 30,000 4K memory pages were requested by
the backup VM during the compilation process (about 128
MB of memory contents loaded, as reported in Table II),
only about 3,000 I/O requests were sent to the block device
in the shared storage, as reported by blktrace. Each bubble
in Figure 5(a) represents an I/O request recorded, and the
size of the bubble represents the size of the request. We
found that instead of a series of 4K block reads, many of
the I/O activities fetched 512 disk sectors (256 KB of data,
64 4K blocks) in one request, as shown by the large bubbles
in the figure. This observation leads to our finding that
optimizations built in the filesystem (e.g. file prefetching) are
effective in improving hard drive performance to support the
demand page fetching mechanism in HydraVM, bridging the
performance gap between mechanical disks and flash storage
devices.

F. A Comparative Perspective

We conclude our evaluation by comparing HydraVM with
alternative HA solutions for VMs.

Popular hypervisors usually provide the functionalities
to create complete VM checkpoints as regular files on
persistent storage, and start a VM from its image file. These
can be used as the simplest techniques to provide high
availability. For example, on a Xen platform, “VM save”
takes a full checkpoint of a VM. When a failure occurs,
“VM restore” can be used to load the checkpoint from disk

���� ���� ����

���� ���	
��

����

���� ���� ����

�����

�����������������������������	���������
��	���������
 ������
��	����������������������

!��	
��������������������������������!��	
������������������������������!��	
��

Figure 6. A comparative perspective on the overall contribution of
HydraVM.

and creates a backup VM to take over. The first set of bars
in Figure 6 shows that it can take as long as 35 seconds
to takeeach full checkpoint of a 1G VM and send it to a
shared storage, and up to 20 seconds to bring such a VM
back to operation from the checkpointed image using the
VM save and restore approach.

Although VM save/restore does not reserve memory for
the backup until a fail-over is required, the long time delays
makes it practically unuseful. Instead of saving complete
VM state, incremental checkpointing captures only the
changed state from the last checkpoint. The “save” bar of
the second group shows that the time during which the VM
is interrupted because of checkpointing is greatly reduced
to milli-second scale. The amount of data that needs to be
transferred for each checkpoint is reduced from the entire
VM (1 GB) to several MB of dirty pages, depending on
the workloads running in the VM. HydraVM maintains
the complete VM image in a shared storage, while other
incremental checkpointing approaches, such as Remus and



Kemari, reserve in another host as much memory as the
primary to store the VM image.

Interruption of the primary VM is reduced further using
CoW checkpointing, as shown in the third group of the
figure. However, a 20-second fail-over time, resulted from
loading the entire VM image for restore, is prohibitively
expensive. The last set of the bars in the figure shows
that by integrating slim VM restore and fetching memory
pages on-demand as the VM executes, the fail-over time is
significantly reduced. The results in this group differentiate
HydraVM from other similar approaches: without reserving
additional memory, HydraVM take continuous checkpoints
to protect a VM with minimal interruption of the VM,
and restores a VM within 1.6 seconds in the event of a
failure, achieving the goals of low-overhead checkpointing
and responsive fail-over.

VI. RELATED WORK

To the best of our knowledge, this is the first attempt
to provide high availability in virtualized environments that
takes into account both recovering a VM from its recent
execution state and reducing the computing resources com-
mitted to the protection of the VM. Our approach focused
on elimination of the passive reservation of main memory
for the backup VMs set up for high availability.

Hypervisor vendors offer high-availability solutions that
rely on restarting the failed VM in another node [1]. Unlike
HydraVM, these solutions simply reboot the failed VM from
its disk image. Although they do not require additional
resources until a failure occurs, they do not recover the ap-
plication state, and take significantly longer than HydraVM
to perform a fail-over.

Various other hypervisor-based approaches have been
proposed to keep track of VM execution state and perform
a stateful fail-over, minimizing the work lost in the event
of a failure. Bressoud and Schneider [5] proposed lock-step
execution of a backup VM. In their approach, a hypervisor
intercepts the instructions and interrupts executed on the
primary VM, and sends them for a lock-step replay on
the backup VM. VMware Fault-Tolerance [10] has recently
been offered as a commercial product based on a similar
idea of letting two VMs execute an identical sequence of
instructions so that one may take over the other if it fails.
These approaches require the participating VMs to have
identical memory configurations to execute alongside, and
therefore, are not resource-efficient.

Remus [4] and Kemari [9] continuously take incremental
checkpoints of a protected VM to record its execution state.
Remus checkpoints the primary VM at fixed, sub-second
intervals, while Kemari takes a checkpoint whenever the
primary VM is about to interact with external devices,
such as disk and network interfaces. These approaches
maintain a backup VM in RAM and keep the backup VM
synchronized with its primary VM by continuously updating

the backup VM image kept in memory with the incremental
checkpoints taken at the primary. Throughout the protected
execution of the primary, additional memory is reserved for
its backup VM, even though the backup is normally passive
(not operating). Our approach adapts a periodic, incremental
checkpointing technique that is most similar to Remus’.
However, we trade off main memory with shared storage
to store the backup VM image, resulting in better cost- and
resource-efficiency.

The concept of copy-on-write checkpoints was also dis-
cussed in Remus, and we are aware of multiple imple-
mentations of this well-known systems technique. Colpet
al. developed VM Snapshots [17] which provides a set of
API’s for fast snapshoting of a VM. Different from our
approach, their implementation uses FUSE (Filesystem in
Userspace) [18] driver support, and involves modifications
to the guest kernel. Sunet al. [19] also implemented copy-
on-write for lightweight VM checkpointing. However, their
system currently focuses on taking complete snapshots of a
VM, instead of incremental checkpoints, which are required
in the context of VM high availability.

Our approach to rapid VM fail-over using on-demand
fetching of memory pages draws on the work on post-
copy-based VM migration [20] and SnowFlock [21]. Post-
copy VM migration is an alternative approach to live VM
migration [12]. Without copying the entire VM image over
to the target node, it resumes VM execution at the target
right after shipping the processor state from the source VM,
and as the VM runs in the target node, memory pages
are fetched/pushed from the source VM to populate the
memory space of the target VM. SnowFlock is a system that
implements “VM fork” similar to “process fork”. SnowFlock
creates VM replicas (child VMs) rapidly by shipping a
condensed (parent) VM image, called aVM descriptor,
to the target hosts and instantiating multiple child VMs
based on the descriptor. As the child VMs execute, they
fetch memory contents from the parent VM on-demand. Our
approach applies a similar concept to address a completely
different problem in the context of high VM availability;
we load minimum VM state from the fail-over VM image
in the shared storage into server memory to quickly restore
a backup VM, minimizing the fail-over time required, and,
similarly, supply memory pages for the backup VM on-
demand.

Our approach is very effective in reducing the excessive
cost of computing resources committed to providing high
VM availability. While other memory-saving techniques
such as compression [22], differencing [23], and page
caching can be used to reduce the memory pressure caused
by the creation of backup VMs, none of these techniques
will completely eliminate it.



VII. C ONCLUSIONS

In this paper, we proposed HydraVM, a storage-based,
memory-efficient way of achieving high availability in vir-
tualized environments. Unlike current VM fail-over ap-
proaches, which require twice the memory the VM uses, our
approach requires minimal extra memory. HydraVM stores
VM fail-over images in a shared storage, and can promptly
restore a failed VM on any host that has access to the shared
storage, which allows any host with available capacity to be
used as the backup.

We adapt a continuous, incremental checkpointing tech-
nique to track the state of the protected VMs and keep their
fail-over images in the shared storage recent. We implement
copy-on-write checkpoints to further reduce the checkpoint-
ing overhead. Our experimental evaluation demonstrates the
effectiveness of the proposed techniques. In the event of a
fail-over, our slim VM restore mechanism brings a backup
VM back to operation within 1.6 seconds, by loading only
the critical VM state data from the VM image kept in the
shared storage. Execution of the backup VM is resumed
promptly, and proceeds by fetching memory contents from
the VM image as needed. Experimental results also show
that our methods do not introduce excessive overhead on
the protected primary VM during normal execution, or on
the backup VM after restored. Using HydraVM, a VM can
be restored quickly enough to meet the requirements of most
users and applications at a minimal cost in resources.

REFERENCES

[1] “VMware Inc. VMware high availabiltiy (HA),”
http://www.vmware.com/products/vi/vc/ha.html, 2007.

[2] F. Schneider, “Implementing fault-tolerant services using the
state machine approach: a tutorial,”ACM Computing Surveys,
vol. 22, no. 4, pp. 299–319, Dec. 1990.

[3] N. Budhiraja, K. Marzullo, F.B.Schneider, and S. Toueg,“The
primary-backup approach,” 1993.

[4] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchisonson,
and A. Warfield, “Remus: High-availability via asynchronous
virtual machine replication,” inProceedings of the 5th con-
ference on Symposium on Networked Systems Design and
Implementation (NSDI), Apr. 2008, pp. 161–174.

[5] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault
tolerance,”ACM Transactions on Computer Systems, vol. 14,
no. 1, pp. 80–107, 1996.

[6] C. A. Waldspurger, “Memory resource management in
VMware ESX server,” inProceedings of the 5th Symposium
on Operating Systems Design and Implementation (OSDI),
Dec. 2002, pp. 181–194.

[7] A. Burtsev, M. Hibler, and J. Lepreau, “Aggressive server
consolidation through pageable virtual machines,” inProceed-
ings of the 8th Symposium on Operating Systems Design and
Implementation (Poster Session), 2008.

[8] M. Saxena and M. M. Swift, “FlashVM: Virtual memory
management on flash,” inUSENIX Annual Technical Con-
ference, Jun. 2010.

[9] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari:
Virtual machine synchronization for fault tolerance,” inPro-
ceedings of the USENIX Annual Technical Conference 2008
(Poster Session), Jun. 2008.

[10] “VMware Inc. VMware fault tolerance (FT),”
http://www.vmware.com/products/fault-tolerance/, 2008.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP), Oct. 2003.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machine,” inProceedings of the 3rd conference on
Symposium on Networked Systems Design and Implementa-
tion (NSDI), May 2005.

[13] “LVM2 resource page.” http://sourceware.org/lvm2/.

[14] D. Chisnall, The Definite Guide to the Xen Hypervisor.
Prentice Hall Press, 2007.

[15] “FFmpeg,” http://www.ffmpeg.org/, Retrieved September
2010.

[16] A. D. Brunelle, “blktrace user guide,”
http://www.cse.unsw.edu.au/ aaronc/iosched/doc/blktrace.html,
2007, retrieved September 2010.

[17] P. Colp, C. Matthews, B. Aiello, and A. Warfield, “Vm
snapshots,” inXen Summit, Feb. 2009.

[18] “FUSE filesystem in userspace,” http://fuse.sourceforge.net/,
Retrieved September 2010.

[19] M. H. S. D. M. Blough, “Fast, lightweight virtual machine
checkpointing,” Georgia Institute of Technology, Tech. Rep.
GIT-CERCS-10-05, 2010.

[20] M. Hines and K. Gopalan, “Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic
self-ballooning,” inProceedings of ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments
(VEE), Mar. 2009.

[21] H. A. Lagar-Cavilla, J. A. Whitney, A. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno, and
M. Satyanarayanan, “SnowFlock: Rapid virtual machine
cloning for cloud computing,” in Proceedings of the
ACMSIGOPS/EuroSys European Conference on Computer
Sysmtems 2009, Apr. 2009.

[22] M. Ekman and P. Stenstrom, “A robust main-memory com-
pression scheme,” inProceedings of the 32nd International
Symposium on Computer Architecture (ISCA), May 2005.

[23] D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren,
G. Varghese, G. Voelker, and A. Vahdat, “Difference engine:
Harnessing memory redundancy in virtual machines,” inPro-
ceedings of the 8th Symposium on Operating Systems Design
and Implementation (OSDI), Dec. 2008, pp. 309–322.


