ModelDoc: Auto-generated, Auto-regenerated Wiki-Based
Database Documentation

Jim Steinberger
College of Engineering
University of Michigan

.. Ann Arbor, MI, USA
jsteinbe@eecs.umich.edu

ABSTRACT

Software developers often find databases difficult to work
with because they are not documented properly. When doc-
umentation does exist, it is often inaccurate, out-of-date,
and/or unclear. In this paper, we present ModelDoc — an
extension on MediaWiki — as a new approach to document-
ing databases and, potentially, other aspects of an applica-
tion. ModelDoc will auto-generate documentation from a
live data source, and it then continually auto-regenerates
that documentation as the data source changes. The docu-
mentation is consistent and kept up-to-date, but also exists
along the standard wiki functionality, allowing collaboration
throughout the evolution of the database.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
wiki, database, database schema evolution, documentation,
auto-generated documentation

1. INTRODUCTION

The problem of software documentation is well-known but
rarely explored. Documentation is often missing, or when
it does exist, it is out-of-date, incomplete, and/or simply
inaccurate. There are countless reasons for this lack of
documentation—an absence of technical writers on a team,
a perception that documentation is optional and only to be
done during “free time”, the intractability of documenting a
large legacy system, etc. — but they can usually be summed
up as: documentation is not easy to write and maintain.
Even when documentation is created initially, as the project
changes it falls out of date, making it harder to change the
project further, often leading to project stagnation or failure
[12] [15].

Collaborative documentation is also increasingly important.
Contemporary software projects are almost never individual
endeavors. Projects often have large teams of developers
working on them, and these developers have different per-
spectives and sets of knowledge. Further, teams are increas-
ingly inter-disciplinary. The project that inspired ModelDoc
was made up of developers, mechanical, electrical, and struc-
tural engineers, so it cannot be properly understood without
specialized descriptions from all these players.

Atul Prakash
College of Engineering
University of Michigan
Ann Arbor, MI, USA
aprakash@eecs.umich.edu

The challenge of maintaining documentation throughout the
evolution of a project compounds these challenges. Software
is constantly updated and changed, and the documentation
needs to be updated to reflect these changes. Outdated doc-
umentation is often worse than a lack of documentation, as
bad assumptions about the behavior of code can result in
more wasted time than when a developer is forced to derive
code’s behavior from the code itself.

Databases are particularly difficult to document well. While
it is generally easy to generate documentation from source
code, there is little analogous tool-support for databases.
The tools that do exist require human attention to man-
age and maintain, and the generated documentation is not
easily collaborated over and consequently lacks perspective.
The hampered utility of these documents, coupled with the
challenges of a small group of people trying to manually keep
this documentation updated — often leads to documentation-
stagnation.

Here we present ModelDoc, a MediaWiki ([4]) extension that
provides a wiki-based approach to documenting database
schemas. The benefits of collaborative documentation via a
wiki are well-known, but a development team cannot simply
install a wiki and expect documentation to suddenly become
easy to maintain. ModelDoc is an attempt to address many
of the obstacles between development teams and quality doc-
umentation by integrating the classic benefits of creating
documentation with a wiki (easy collaboration, versioning,
etc.) with auto-generated and auto-synched content.

At the time of this writing, ModelDoc queries metadata
from a live database to generate structured wiki pages from
that metadata. This design choice is partly due to ease-of-
implementation, but it should be noted that today’s gigan-
tic, web-accessible databases are expected to be online 24/7,
and there are many attempts to reorganize databases while
keeping them online [14] [11]. Regardless, ModelDoc can
readily be extended to use SQL files, ORM mapping-files,
XML files, and perhaps even source code.

2. GOALS/ CONTRIBUTIONS

ModelDoc seeks to achieve mutual consistency between a
database and its documentation. When someone makes a
change to a project’s database, the corresponding documen-
tation should be updated in a useful way. Further, people
interested in that documentation should be notified of the
update so they may investigate/affirm it. The author of a

bit of documentation should be identifiable, and the version-
history for documentation should be explorable. Generated
data should be clearly presented, and relationships to other
data/entities should be clear.

Some of these goals — e.g. versioning, authorship — are ac-
complished by the underlying wiki. ModelDoc’s contribu-
tion is its bridging of the benefits wikis have provided static
documentation to the dynamic needs of software projects.

An important side-goal has been to provide a platform for
future extensions. As implied by the Future Work section,
there are multiple promising ways in which this approach
could be extended to address other documentation chal-
lenges in software development.

3. RELATED WORK

As far as we know, this is the first attempt to utilize a wiki
to document a database system.

Industry tools for database documentation have generally
taken the approach of having users manually creating and
laying out an ER diagram; such is the approach of tools
like Microsoft Visio and Omnigroup’s Omnigraffle. There is
some industry support for the auto-generation and regen-
eration of database documentation: Visio has some support
for keeping an ER diagram in synch with a database’s meta-
data, and SchemaSpy will generate a series of graphical and
textual documents based on this metadata. However, these
auto-generated diagrams rarely capture the right visual or-
ganization that makes such diagrams useful.

There are also tools for auto-generating documentation for
non-database work, such as the *Doc family of tools for doc-
umenting source code (JavaDoc, PHPDoc, JSDoc, Doxygen,
etc). These tools generally, however, produce read-only doc-
umentation. JavaDoc, for example, generates HTML files;
once generated there can be little collaboration and discus-
sion on whether the business domain has been successfully
modeled.

There has been work at creating algorithms for summarizing
complex schemas [17] [16], but as with the *Doc tools, this
is a read-only view of the schema. These approaches are
helpful for querying complex systems, but they assume their
users correctly understand what the fields and entities truly
mean; there still needs to be collaborative documentation
and agreement on the semantics of a system, and how/why
they have evolved over time.

Algorithms have also been explored for “redocumentation”
[13], creating new/different documentation for/from a sys-
tem, as well as attempts to automate this process [9].

Temporal informatics, the study of how information changes
over time (e.g. on the web [7]), is certainly relevant, but has
not yet been applied specifically to software documentation,
and the obstacles and issues surrounding documentation’s
evolution over time.

4. MODELDOC

ModelDoc extends MediaWiki’s existing functionality through

MediaWiki’s standard extension framework. ModelDoc cur-

rently works with Postgres databases, but features an ex-
tension API for interfacing with other entity-relational data
sources, and potentially non-relational database data sources
as well.

4.1 Overview

ModelDoc is MediaWiki extension, built using PHP5 and
deployed into an existing MediaWiki installation using the
standard procedure. Unlike wikis that encourage more open
collaboration, though, a ModelDoc-enabled wiki for a pro-
prietary project will likely involve stronger security consid-
erations.

Database metadata is obtained via live database connec-
tions. A single ModelDoc installation can work with an
arbitrary number of databases — the configuration for these
connections is stored in a special ModelDoc wiki page (see
Special Pages).

Members of a project use the wiki in the standard way, col-
laborating through the creation and updating of wiki pages.
All the standard wiki-functionality is maintained and en-
couraged: version-history for pages, using the “discussion”
pages for meta-documentation of a page, “watching” pages
to be notified when they are updated, etc.

ModelDoc extends MediaWiki, however, with special tags
that users can use when creating documentation. For exam-
ple, by adding an “entity-list” tag to a page, and specifying a
data source (see Tags section), when later viewing that page,
ModelDoc will query the data source and generate a list of
the tables in that database. Further, each entry in this list
will be a link to a ModelDoc-generated page containing the
table’s metadata (columns, constraints, etc.) and documen-
tation.

For each of these entity-pages, ModelDoc also creates a cor-
responding HISTORY page containing — in XML format —
the last-seen set of metadata for the table. This metadata
is compared to the live data every time the tag generates
content; ModelDoc compares this information to see what
has been added and what is missing, and appends these
changes to the respective pages. Thus, when viewing an
entity-page, the user sees not only the current information
for the database table, but also an auto-generated history
of how that table has evolved over time. These sections are
editable, the project members can (and are encouraged to —
see the Special Pages section for “ModelDoc::To Document”
) update/replace these sections with documentation that is
more comprehensive and user-friendly.

4.2 Data Sources

In ModelDoc, a data source represents a resource that con-
tributes information about the model of an application — cur-
rently Postgres and MySQL databases, but potentially data
sources ranging from other relational databases to XML files
to annotated source code to other wiki pages. ModelDoc
queries metadata from data sources for information about
the entities, and then monitors the data sources for changes
to those entities.

Each data source may contribute its own set of entities.
Currently, data sources are considered independent of each

other, and it is further assumed that a database table rep-
resents a single database entity. A possible extension is to
follow the example of object-relational mappers and provide
a way to map an entity to multiple database tables, or a
database table to multiple entities.

For example, consider a “Person” entity. In a properly-
normalized database, chances are that the information that
constitutes a “Person” will be spread out over multiple ta-
bles, such as an “Address” table. ModelDoc currently re-
quires that these be considered separate entities in the doc-
umentation.

4.3 Versioning

For each entity, ModelDoc automatically generates a com-
panion read-only page that maintains the entity’s history.
This companion page maintains XML-based metadata on
the entity.

Whenever an entity is viewed, the metadata from its version
page is compared to the current information from the data
source itself. If there are differences between the two, the
version-page is updated to reflect the current state of the
model.

Because ModelDoc is based on MediaWiki, the architec-
ture natively supports a publish-subscribe mechanism when
pages are updated. That is, when a page is updated, a
list of people “watching” that page can optionally be e-
mailed about the change. The relevant developers, then,
can be auto-subscribed to the version-page for the entities
they work with, and whenever a change is detected, those
developers may be e-mailed about the change and there-
fore encouraged to offer a human-readable description of the
change.

Inventory Database

DBA
AN
—
Uger / Server

Tester

Figure 1: Overview of a sample ModelDoc system.

4.4 Plugin Architecture

ModelDoc features a plugin architecture to allow for easy
extension. To utilize a new data source, for example, one
need only create a new implementation of the data source
API and plug that in.

The immediate use case for this is getting ModelDoc to work
with databases that are not currently supported (e.g. Mi-
crosoft SQL Server). There is no standard way of access-
ing metadata in database management systems, and so each

Page EIJ
Generator | T T TTTTTTTTTTTTTTTTTToTTIoTq > Inventory Database
N <<monitors>>
Server \\ Supplies

<<creates and updates>>

Y

] ModelDoc::DataSource("inventory")
] ModelDoc::DataSource("inventory")::Entity("Supplies")
] ModelDoc::DataSource("inventory")::Entity("Supplies")::HISTORY

Figure 2:
component.

The role of ModelDoc’s page-manager

DBMS requires an adapter in ModelDoc in order to present
a consistent interface.

However, this plugin architecture may also be used to create
abstractions on top of data sources. For example, as previ-
ously discussed, an application may not have a simple “table
= entity” design. The components of a Person entity, for ex-
ample, may be normalized over several tables. In turn, these
tables may not be located in the same data source. Perhaps
some components are in a Postgres database, while other
components are in a MySQL database located elsewhere.
A custom data source coupled with some metadata could
provide a way to relate datasources together and document
distributed entities.

4.5 Usage
4.5.1 Tags

Here is a rundown of the user-facing tags that ModelDoc
provides. These tags can be added to any wiki page and
will be generated with the appropriate dynamic content.

<entity-info datasourcename=*"’ entityname=*"" />
Generates a table in the wiki-page that contains the database
table’s metadata, including not-null constraints and i con-
taining

ModelDoc::DataSource("postgres2")::Entity("supplier")

ot | [hitory

Table: supplier

Position Name Type Length NotNull Has Dofault
1 suppliemo text El t f

2 suppliemame. text El t f

3 suppliercity text 4 t f
Constraints

Constraint Type Column Table Field
supplier_pkey PRIMARY KEY suppliemo

2200_31349_1_not_null CHECK

2200313492 not_null CHECK

2200_31349_3_not_null CHECK

History
Documentation [edit)

Document the table here.

Figure 3: A generated entity-info page.

<entity-list datasourcename=*"" /> Generates a table
containing links to the entity-info page for each table in the

specified data source, as well as a link to the page document-
ing the data source itself (which also contains this table).

page | [Gmcussin | [edi | [y
Editing ModelDoc::DataSource("postgres2")
Warning: You are not logged in. Your IP address will be recorded in this page's edit history.

52 @A i

<entity-list

DataSource("postgres2"):

Document the datasource here.

Figure 4: A generated entity-list (data source) page.
ModelDoc::DataSource("postgres2")

Data Source: postgres2
Table Table Table

part supplier supplierpart
HISTORY

Documentation

Figure 5: The source of a generated entity-list (data
source) page.

<datasource-info datasourcename=“" /> Generates
metadata on the specified data source

<datasource-list /> Generates a list of links to the datasource-

info pages for all the registered data sources.

4.6 Special Pages
ModelDoc::Configuration This wiki-page contains XML
specifying the data sources the wiki should be connected to.

page || discussion edit | [history

Editing ModelDoc::Configuration

Warning: You are not logged in. Your IP address will be recorded in this page's edit history.

B2 |ab/@A |~ | JvaliRig]—|

<modeldoc>
<dataSources>
<dataSource type="postgres" name="postgres2" host="localhost"
username="username" password="password" database="test_database" />
</dataSources>
</modeldoc>

Figure 6: Example of the XML-based configuration
page.

ModelDoc::To Document This page maintains a “todo”-
list for developers. While we cannot automatically judge
whether a change has been properly been documented, we
can track whether the page for a table has been documented
since the table was last updated. We currently only track
whether the page has been updated at all, but this could
be extended to further require that a certain type of user
(e.g. the database administrator), or a set of users (e.g.
the DBA as well as the UI designer and test writer) have
viewed /updated the content. This serves to help avoid docu-
mentation becoming stale because a developer changed code
while forgetting to look at the accompanying comments.

ModelDoc::DataSource(“[name]”) This page provides
links to all the entities found in that data source. This is
also where users would provide documentation of the data
source itself.

If changes to the data source are detected, an automated
and editable description of the change is appended to this
page (and any designated users are notified by e-mail).

A corresponding ModelDoc::. .. ::HISTORY page is cre-
ated along with this page that contains an XML description
of the last-seen metadata for the data source, including its
list of tables. This is the baseline that ModelDoc compares
the live database metadata to in order to detect changes.

ModelDoc::DataSource. .. ::Entity... This page dis-
plays the table’s metadata, and provides a place for users
to document the table.

If changes to the table’s metadata are detected (e.g. an
added/removed column, a changed constraint, etc.), an au-
tomated and editable description of the change is appended
to this page (and any designated users are notified by e-
mail).

As above, a corresponding ModelDoc::. .. ::HISTORY
page stores the last-seen version of the table’s metadata.

5. EVALUATION

The performance overhead of using ModelDoc, examined in
the next section, cannot be ignored, though much of that
overhead are a consequence of implementation details that
should be straightforward to overcome. We also evaluate the
utility of ModelDoc by looking at defined database refactor-
ings and how ModelDoc would document them.

5.1 Performance

ModelDoc degrades the performance of a wiki in two pri-
mary ways: the disabling of wiki-caching and the overhead of
determining if a table has been updated (and if so, updating
the relevant pages). Both of these issues can be mitigated.

By default, MediaWiki uses an aggressive caching strategy.
Once a page has been created/edited, the page is maintained
in a cache for subsequent reads. This makes sense for the
classical wiki-approach, wherein users edit static content.
ModelDoc, however, currently requires that caching be dis-
abled, so that the content that a dynamic tag generates
is not cached. For example, every time an entity-page is
viewed, the corresponding table in the database is examined
and, if it has been updated, the page is updated to reflect
this. If MediaWiki were allowed to cache this, the displayed
data could fall out of synch with the underlying database.

The algorithm for comparing table-metadata can add sub-
stantially to the loading-time of a page. The worst-case
is the very first time a page is viewed that contains an
“entity-list” tag for a data source. In this initial case, the
info/history pages for all the database tables are created.
Against a ModelDoc installation on a MacbookPro (2.8 GHz
Intel Core 2 Duo, 4 GB 1067 MHz DDR3), using a database
with 96 tables with an average of 7.3 columns and 2.8 con-
straints per table, this initial process took an average of 4.08
minutes. Fortunately, this only happens the first time, and
this should be done when ModelDoc is first installed by the
administrator.

Thereafter, viewing an “entity-list” page took an average of
33.36 seconds. The difference is that wiki pages are not of-
ten being created/edited at that point — the bottleneck is
primarily the database connections for retrieving the cur-
rent metadata, and retrieving the previously-cached meta-

data XML for the table from its respective HISTORY wiki
page.

Viewing an “entity-info” page — and therefore refreshing the
version-information for only a single table, rather than for
all of them — took an average of 5.6 seconds.

We are in the process of moving this work into a background
process that will almost entirely mitigate these issues. For
many projects, a page being a maximum of an hour, or even
a day, outdated should be sufficient, especially if the time-
of-last-update is clearly displayed on the page. Further, it
would then be a minor implementation detail to allow privi-
leged users to kick off the versioning-process manually at any
time, so they could guarantee current data when necessary.

5.2 Usage

We can use refactorings from [8] to both illustrate where
ModelDoc currently stands and where it can go with regard
to where it can be used in a database’s evolution.

Any refactoring that reduces to the addition/drop of a table,
column, or constraint, are currently detected by ModelDoc.

The renaming of a table, for example, will be tracked by
ModelDoc, but it will be reflected as a table-deletion and a
table-addition. Similarly, “moving” a column from one table
to another will look like a column-removal and a column-
addition.

Table 1 and Table 2 enumerate through the refactorings in
[8], indicating whether a refactoring will be indicated in
a reasonably straightforward way (indicated with v/, e.g.
“Drop Column”), the refactoring will be indirectly and/or
poorly captured (indicated with *| e.g. “Merge Columns”,

since this could ambiguously appear as either a column deletion-

and-addition, or simply a deletion), or the refactoring will
(essentially, at least) not be detected at all by ModelDoc.

As indicated, while ModelDoc documents structural changes
well, it does not capture refactorings that deal with the
data itself, such as new semantics or data-formats. Fur-
ther, ModelDoc does not detect refactorings that are made
up of both column and table changes, such as the “Re-
place Type Code With Property Flags” refactoring, which
entails replacing a single “code”type column with multi-
ple boolean columns, e.g. replacing an “AddressType” col-
umn with “isHomeAddress”, “isWorkAddress”, etc. columns.
ModelDoc also clearly needs to be extended to monitor stored
procedures.

6. FUTURE WORK

6.1 Database Visualization

ModelDoc, being wiki-based, offers a web-flavored view of
an application’s model. To see how two entities are inter-
related, users can examine the hyperlinks between the two.
This can offer a very limited window, however, when an
application’s entity-relationships make up a complex graph.

ModelDoc may be extended to incorporate better ways to
understand and work with the data. For example, graph-
visualization software, such as Graphviz [2] or SchemaSpy

Table 1: Structural Refactorings
Refactoring Detected
Drop Column
Drop Table
Drop View
Introduce Calculated Column
Introduce Surrogate Key
Merge Columns
Merge Tables
Move Column
Rename Column
Rename Table
Rename View
Replace LOB With Table
Replace Column
Replace 1-to-Many With Assoc. Thl
Replace Surrogate Key With Natural Key
Split Column
Split Table

R N N N N R NENEN

Table 2: Data Quality Refactorings
Refactoring Detected
Add Lookup Table *
Apply Standard Codes
Apply Standard Type
Consolidate Key Strategy
Drop Column Constraint
Drop Default Value
Drop Non-Nullable Constraint
Introduce Column Constraint
Introduce Common Format
Introduce Default Value
Make Column Non-Nullable
Move Data
Replace Type Code With Property Flags *

AN NI

[5], could be incorporated to better-indicate where an entity
fits in the larger scheme.

6.2 Heterogeneous Databases

While, at the time of this writing, a single ModelDoc instal-
lation can support multiple databases, there is no automatic
inter-linking between the documentation generated between
those databases. An obvious challenge is that since these
data sources are created separately, the relationship between
the data in each cannot easily be inferred. There has been
some work on auto-generating a user-friendly visualization
of heterogeneous database systems like this [10].

6.3 Inferring ModelDoc Semantics From User

Documentation
To achieve mutual-consistency between the human docu-
mentation and the database metadata, ModelDoc could be
extended to infer, for example, that a user is referring to a
given entity even on a non-ModelDoc page. If that entity
is updated, ModelDoc could then notify the user that this
other documentation may also need to be updated.

6.3.1 Higher-Level Model Descriptions

Table 3: Referential Integrity Refactorings
Refactoring Detected
Add Foreign Key Constraint

Add Trigger For Calculated Column
Drop Foreign Key Constraint
Introduce Cascading Delete
Introduce Hard Delete

Introduce Soft Delete

Introduce Trigger For History

NN

* *

Table 4: Architectural Refactorings
Refactoring Detected
Add CRUD Methods
Add Mirror Table
Add Read Method
Encapsulate Table With View *
Introduce Calculation Method
Introduce Index v
Introduce Read-Only Table
Migrate Method From Database
Migrate Method To Database
Replace Method(s) With View
Replace View With Method(s)
Use Official Data Source

The model of an application is rarely exclusively contained
in the database schema. Most applications contain an object
model that abstracts on top of the data model. For example,
as previously discussed, in a database a Person entity and
its associated Address may be normalized into two tables.
In the object-oriented application, however, this relationship
would take the form of a Person object composed with an
Address object.

While a DBA may be more interested in the database-view
of the model, the application developers (and perhaps the
end-users as well) could stand to benefit more from docu-
mentation at the object-abstraction level.

ModelDoc should be extended to document models at the
source code level, similar to Doxygen and JavaDoc solutions
— in fact, these other approaches could likely simply be in-
tegrated. By further incorporating version-control and IDE

page || discussion odt | [history

ModelDoc::DataSource("postgres2")::Entity("part")

Table: part

Position Name Type Length Not Null Has Default

1 partno text -1 t f

2 color text -1 f f

3 weight int4 4 f f
Constraints

Constraint Type Column Table Field
part_pkey PRIMARY KEY partno

2200_31357_1_not_null CHECK

History

Documentation edit]
Document the table here.

Changes (February 10, 2010, 9:53 pm): [edit)

Deleted Fields: partcity

Figure 7: The entity-info page after a dropped col-
umn is detected

Table 5: Transformations
Refactoring Detected
Insert Data
Introduce New Column v
Introduce New Table v
Introduce View v
Update Data

Changes (February 10, 2010, 9:53 pm): [edit)
Deleted Fields: partcity
Changes (February 10, 2010, 9:57 pm): [edit)

Deleted Fields: weight
Added Fields: partweight

Figure 8: The result of a column-rename

support, this could become a very powerful tool for docu-
menting source code.

See the “Architectural Refactorings” table for further mo-
tivation for extending support for taking the higher-level
application layers into account: some refactorings involve
corresponding changes at multiple levels, and it should be
possible to clearly document these changes.

6.4 Semantic Structure

Currently, the data in the pages created by ModelDoc are
semi-structured. If ModelDoc were extended to work with
heterogeneous data sources, and also to document multiple
levels of abstraction, we would be providing a common semi-
structure to all these sources. This could allow for semantic
querying of this data, similar to other semantic querying
approaches such as that of WolframAlpha [6].

6.5 Ability to Mutate Data Sources

There is little current tool-support for performing database
refactoring [8]. Instead of documenting in a read-only way,
ModelDoc could be used to allow mutation of the under-
lying data sources, including carrying out complex refactor-
ings. This would allow ModelDoc to know for sure that such
refactorings were intended — a column-rename, for example,
would no longer be seen as a column-deletion and column-
addition.s

7. COMPARISON TO SOURCE CODE DOC-
UMENTATION GENERATION

Documentation generators such as Doxygen [1] and JavaDoc
[3] consume the static-structure of source code along with
annotated comments, and produce human-readable output
in the form of HTML or PDF.

Relational databases could be extended to allow more meta-
documentation to be stored along with the existing meta-
data. Column names, for example, are often not self-describing.
These comments could be used for tooling similar to above
generators.

On the other hand, source code documentation generators
could be extended to create/update a mini-wiki so that its
documentation could be collaboratively documented.

8.

CONCLUSIONS

Motivated by the widespread lack of quality documentation,
and the consequences of that lack, we presented ModelDoc.
Combining the collaborative documentation capabilities of
MediaWiki with custom extensions, ModelDoc continuously
maintains a baseline level of documentation that is guaran-
teed to be in synch with the database in use.

9.

ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the gener-
ous support offered by the U.S. Department of Commerce,
National Institute of Science and Technology (NIST) Tech-
nology Innovation Program (TIP) under Cooperative Agree-
ment Number 7T0NANB9H9008.

10.

[1]
2]

[10]

[11]

[12]

REFERENCES
Doxygen. http://www.stack.nl/ dimitri/doxygen/.
Graphviz.
http://www.graphviz.org/Documentation.php/.
Javadoc. http://java.sun.com/j2se/javadoc/.
Mediawiki.
http://www.mediawiki.org/wiki/MediaWiki/.
Schemaspy. http://schemaspy.sourceforge.net/.
Wolframalpha. http://www.wolframalpha.com/.
E. Adar, M. Dontcheva, J. Fogarty, and D. S. Weld.
Zoetrope: interacting with the ephemeral web. In
UIST ’08: Proceedings of the 21st annual ACM
symposium on User interface software and technology,
pages 239-248, New York, NY, USA, 2008. ACM.
S. W. Ambler and P. J. Sadalage. Refactoring
Databases: FEvolutionary Database Design.
Addison-Wesley Professional, 2006.
N. Anquetil, K. M. Oliveira, A. G. dos Santos, P. C.
da Silva jr, L. C. de Araujo jr, and S. D. Vieira. A tool
to automate re-documentation. In In Forum of the
CAISE, Conference on Advanced Information Systems
Engineering (CAiSE?05), page 15, 2005.
T. Catarci, G. Santucci, and J. Cardiff. Graphical
interaction with heterogeneous databases. The VLDB
Journal, 6(2):097-120, 1997.
C. Curino, H. J. Moon, and C. Zaniolo. Automating
database schema evolution in information system
upgrades. In HotSWUp ’09: Proceedings of the Second
International Workshop on Hot Topics in Software
Upgrades, pages 1-5, New York, NY, USA, 2009.
ACM.
S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira.
A study of the documentation essential to software
maintenance. In SIGDOC ’05: Proceedings of the 23rd
annual international conference on Design of
communication, pages 68-75, New York, NY, USA,
2005. ACM.
V. Rajlich. Incremental redocumentation using the
web. Software, IEEFE, 17(5):102 —106, sep/oct 2000.
G. H. Sockut and B. R. Iyer. Online reorganization of
databases. ACM Comput. Surv., 41(3):1-136, 2009.
M. Sousa and H. Moreira. A survey on the software
maintenance process. pages 265 —274, nov 1998.
X. Yang, C. M. Procopiuc, and D. Srivastava.
Summarizing relational databases. Proc. VLDB
Endow., 2(1):634-645, 2009.

[17] C. Yu and H. V. Jagadish. Schema summarization. In
VLDB ’06: Proceedings of the 32nd international
conference on Very large data bases, pages 319-330.
VLDB Endowment, 2006.

