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Abstract

 

As the decrease in processor cycle time continues to outpace the decrease in
memory cycle time, even moderately sized on-chip caches may require several
cycles of access time in the near future. This means that time is lost, even on a
cache hit, if independent instructions cannot be scheduled after a read from
memory. A novel hardware device is proposed that keeps track of the history of
load instructions and predicts their targets before they are computed by the
instruction pipeline. This allows the saving of several processor cycles. The
storage required to implement such a device is quite large, but as the latency
required to read from the first level cache grows, a moderate performance
improvement is seen.
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1.0  Introduction

 

As processor speeds increase to higher and higher levels, the need for a fast memory sys-
tem becomes more pronounced. In the past, a small, fast first-level cache was adequate to
match the memory speed to the processor cycle time[3]. These caches could be accessed
in a single cycle to prevent memory from being a bottleneck, except in the case of a cache
miss. Unfortunately, the moderately sized on-chip caches of current high-performance
microprocessors have multiple-clock-cycle access times. The MIPS R4000 also has an on-
board 8 KB data cache and three cycles of load latency[13]. If the delay slots of load
instructions on this machine cannot be filled with instructions that do not depend on the
load, cycles will be wasted as the CPU waits for the memory system, even on a cache hit.

For an instruction cache, this latency can be effectively hidden through architectural solu-
tions such as a buffer into which future instructions can be prefetched. Much time has
been invested in researching the various techniques of instruction prefetching[6]. Highly
accurate branch prediction schemes, both static and dynamic, have been developed to
make this process effective[7, 20, 12, 16].

A large latency in accessing the data cache presents a more difficult problem. Write buff-
ers can eliminate the bottleneck in storing data to the memory system[6], but the loading
of data cannot be effectively buffered in this way because the results are desired immedi-
ately. One method of hiding the memory latency of a load instruction is to pipeline the
cache, thus allowing the issue of a memory instruction every cycle, and properly schedule
the instructions to hide the load latencies. This method is used in polycyclic vector sched-
uling[19] for the inner loops of scientific code. Its use is explored for more general pro-
grams in[14].

Sohi and Hsu describe a hardware method of eliminating some of the memory latency by
constructing an intermediate memory between the processor and the first level of the
memory hierarchy[18]. This memory acts as a back-up register file. Data can be moved
between the memory hierarchy and the intermediate memory and between the register file
and the intermediate memory. These moves must be explicitly coded into the program
being executed, and so this memory is dubbed a ‘‘programmable cache.’’

These techniques for hiding the load latency can be considered static methods, because
they depend on the compiler’s or the programmer’s ability to properly schedule the code
before it is executed and, unless some profiling techniques are used, they do not use run-
time information in their decision making processes. 

This paper proposes a dynamic technique for hiding the delays caused by a slow primary
cache. It is a small cache memory loosely based on the concept of a branch target buffer,
so it will be called a 

 

load target buffer

 

.

A branch target buffer is a small cache that is accessed by the memory address of the cur-
rent instruction being fetched[12]. The buffer contains the addresses of branch instruc-
tions, their predicted targets, and some kind of state machine that uses past results to
predict which branches will be taken on the next execution. Because this buffer is
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accessed during the instruction fetch stage, the predicted result of a branch instruction that
lies in the buffer is available after a single cycle of delay, instead of being available further
down the pipe when the branch is actually executed. This allows immediate fetching of the
next instruction in the dynamic instruction stream.

A load target buffer performs the same function for instructions that read from memory.
During the instruction fetch pipeline stage, the address of the instruction that is being
fetched is used to access the LTB. Each entry of the LTB contains an address, which is the
predicted target of that load instruction. A load command is immediately issued to the
memory system. By the time the results of the load are needed, two or three stages down
the pipe, the results of the speculative load have returned from the memory system. The
predicted target address and the real target are compared, and if they match, the load
latency has been successfully hidden.

This system works well for branch target buffers because, except for indirect branches,
branch instructions all have a single target. Load instructions can have a single target but
many of them use a register to allow indexed access to memory. This necessitates a more
complicated scheme for determining the next target of a load. To allow better target pre-
diction, the following information can be added to each entry in the load target buffer:

 

•

 

The address of the previous load target.

 

•

 

The ‘‘stride’’ of the load instruction, which is the difference between the two previous 
targets

 

•

 

Some status bits to allow better prediction schemes.

The address of the previous load target allows the buffer to make a realistic prediction for
the next load target, even when the current guess is incorrect. The stride field allows the
buffer to make good predictions when the load instruction is used to scan an array in a reg-
ular fashion. The status bits allow extra information to be included in the buffer, such as
putting an ‘‘inertia’’ onto the stride to lessen the effects of anomalous changes in the load
target. This inertial effect is similar to the use of two or more bits in branch prediction in a
branch target buffer[20,12].

For this scheme to effectively hide the load latency, it must be able to correctly predict a
high percentage of the load targets. Alternatively, this could be combined with one of the
static methods of solving the problem. Code scheduling will be able to hide slow memory
part of the time, and those loads that cannot be effectively rescheduled will be marked for
storage in the load target buffer.

At least two other papers have proposed methods that issue memory loads early in order to
hide the latency. J.K. Illife describes a ‘‘forward looking’’ architecture that immediately
issues a memory load whenever a potential address is formed instead of waiting for an
actual load instruction to be encountered in the instruction stream[9]. A potential address
is created through the normal machine instructions that have a destination register. In
Illife’ s machine, registers are tagged. When a value is stored in an address register, a
potential address is formed, and the machine issues a load to that address.
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Sohi and Davidson describe the Structured Memory Access architecture, or SMA. This
machine has an address processing unit that can accept a pattern in memory and issue
loads to all addresses in the pattern before the values are actually used[17]. This feature
works well to exploit the natural regularity of memory accesses to structures like vectors
and multidimensional arrays.

 

2.0  Operation of the LTB

 

Like a branch target buffer, the load target buffer is accessed at the beginning of the
instruction fetch cycle. The address of the desired entry is obtained by performing some
hashing operation on the address of the instruction being fetched. In its simplest form, this
will involve removing the higher order bits of the address.

Throughout this paper, the assumption will be made that the LTB is attached to the MIPS
R2000/R3000 instruction pipeline[11]. This architecture was chosen because of its simple-
ness and generality. All of the descriptions and results can be generalized without too
much difficulty. Figure 1 shows this pipeline and how data flows from it to the LTB and
the memory system.

The LTB is indexed with the instruction address during the instruction fetch stage of the
pipe. If a valid entry exists in the buffer under this address, the buffer immediately issues a
data fetch to the memory system using the predicted target field of this entry. This data
fetch should be initiated by the end of the instruction fetch cycle. Further down the pipe-
line the actual target is generated. In the MIPS pipeline, this takes place at the end of the
Execute stage, two cycles later. This actual target is compared to the prediction. If the pre-
diction is incorrect, the predicted load must be squashed and a new one issued, and time is
neither saved nor lost. If the prediction is correct, the number of cycles between the
instruction fetch stage and the stage that generates the actual target have been saved. In the
case of the MIPS, this is two cycles. So a total of three cycles of latency can be tolerated
without slowing down the pipe with load delay slots.

If the system has been implemented with an instruction prefetch buffer, the LTB can be
exercised with addresses in the prefetch buffer before they ever reach the pipeline. Doing
this allows predicted targets to be sent to the memory system at an even earlier time,
enabling the system to tolerate even more cycles of load latency. Unfortunately, without
perfect branch prediction, some of the load instructions in the prefetch buffer might not
actually be executed. Because current branch prediction methods are so accurate, this
paper will assume perfect branch prediction.

While these comparisons are being made, the entry in the load target buffer must be
updated. The new stride is calculated by a subtraction: 

 

new stride = actual target - previous target

 

If the inertial prediction scheme is used, the buffer is updated with the new stride only if
the inertia bit is set. The new prediction is computed as follows:
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new prediction = actual target + new stride

 

Finally, the

 

 previous target

 

 field is updated with the 

 

actual target

 

.

This is explained in more detail in Section 3.0, where a layout of the fields of an LTB can
be found.

If the above computations can be computed in one cycle, the buffer can be updated at the
end of the MEM cycle. This allows a particular entry to be accessed every four cycles.
This is the limit, in the MIPS architecture, of a practical loop. Certain pathological cases
can reduce the loop size (See Table 1). The non-pathological loop scans through an array
for the first non-zero element. Loops of this kind are especially common in the string han-
dling libraries. 

The pathological loop can cause a particular load instruction to be executed every two
cycles. This particular sequence of instructions could either be forbidden by the compiler
or could freeze the pipeline. The former solution seems quite practical as it involves no
extra hardware and the loop is so pathological as to be unlikely in real code. In the bench-
marks used in this paper, the tightest loops issued a load every four cycles. Section 4.2
shows that these four-cycle loops and other small loops occur quite rarely.

This functional description assumes a latency in the first level data cache of only three
cycles and successfully hides the latency of that cache. If the latency is longer, the load
target buffer could be accessed using some queue of prefetched instructions maintained by
the processor. This would increase the cache latency that could be hidden, but would
degrade the performance of the buffer by causing it to issue data fetches for load instruc-
tions that would not have been executed. This performance degradation varies inversely
with instruction prefetch accuracy.

 

TABLE 1. Small Loops

Non-Pathological Small Loop Pathological Small Loop

 

label: lb t0,0(a0) label: bne r3,zero,label

nop ld r3,0(r3)

bne t0,zero,label

addi a0,a0,1
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FIGURE 1. Data Flow in the Load Target Buffer

 

3.0  Prediction Strategies

 

As with branch target buffers, the choice of a prediction strategy has a great effect on the
accuracy of the buffer. The more information that the buffer stores, the more likely a cor-
rect prediction becomes. Unfortunately, extra information makes the buffer larger and
therefore slower. Some trade-off between speed and accuracy must be found.

This paper considers two different prediction algorithms. The first simply uses informa-
tion provided by the previous and the current executions of the load instruction to predict
the next target. The buffer computes a ‘‘stride’’, which is the difference between these two
targets, and adds the stride to the current target to get the prediction.
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This algorithm is similar to using a single bit of prediction information in a branch target
buffer. If there is an anomalous stride, the buffer will predict the wrong target twice
instead of once. One misprediction will be caused by the anomaly itself. A second will be
caused by the incorrect stride that is used to make the following guess. 

This situation can be tolerated with the addition of an ‘‘inertia’’ bit to the buffer. With the
addition of this bit, the new algorithm requires the actual stride to change in two consecu-
tive accesses for the stride field in the buffer to be reset. On the first stride change, the
inertia bit is set to one, but the stride field remains the same. On the second stride change,
the inertia bit is reset, and the stride field is changed to the new stride. The effects of this
can be seen in Table 2 and Table 3.

As the tables demonstrate, the simple prediction strategy ‘‘warms up’’ more quickly. After
only two misses, hits begin to take place. Unfortunately, if the loop which contains the
load is re-executed, there are two misses in the load target buffer. The first miss is caused
by the resetting of the target to the beginning of the targets to which the instruction points.
The second miss occurs because the stride becomes erroneous when the large jump in the
target takes place.

The inertial strategy takes longer to warm up. Two misses are required for the stride to
change, so three misses are required for the buffer to correctly find the pattern of the load
instruction. But when the loop is re-executed, the resistance to changes in stride decreases
the number of misses to one. Although the miss that occurs when the target is reset to its
original value is inevitable, the buffer avoids a second miss by keeping the stride a con-
stant and setting the inertia bit. The figure shows that the loop must be executed at least
three times for the inertial method to have any benefit. 

 

TABLE 2. Non-Inertial Prediction

Actual
Load Target LTB Prediction

LTB Previous 
Target LTB Stride Miss

 

100 - - - miss

104 100 100 0 miss

108 108 104 4

10c 10c 108 4

110 110 10c 4

114 114 110 4

100 118 114 4 miss

104 0f2 100 ffff fff2 miss

108 108 104 4

10c 10c 108 4

110 110 10c 4

114 114 110 4

100 118 114 4 miss

104 0f2 100 ffff fff2 miss

108 108 104 4
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4.0  Experiments

 

4.1  Prediction ratio

 

The first interesting statistic is the rate at which load target buffers of differing sizes and
prediction strategies can correctly predict the target address of a load. Because no predic-
tion can be made if information for a particular load is not in the buffer, a larger LTB
increases this ‘‘prediction ratio’’ by decreasing the number of dimensional conflicts. Natu-
rally, a better prediction strategy will give better performance.

Figure 2 and Figure 3 show the prediction ratios for load target buffers of varying sizes for
several benchmarks in the SPEC suite. These buffers are all direct mapped. They were
simulated using a software package called RCM that was written by Tom Conte at the
University of Illinois[4]. This package uses the inclusion property to simulate all cache
sizes and associativities for a given line size in a single pass. Since a load target buffer has
a fixed line size of one entry, this works quite quickly. This package was modified to sim-
ulate the contents of the cache in addition to the normal simulation of the address stream.

The figures reveal some important facts. First, the prediction ratio is very good, close to
100 percent, for matrix 500, no matter which strategy is used. This result should not cause
great surprise since this benchmark merely performs several elementary operations on two

 

TABLE 3. Inertial Prediction

Actual
Load Target LTB Prediction

LTB Previous 
Target

LTB 
Stride Inertia Miss

 

100 - - - 0 miss

104 100 100 0 0 miss

108 104 104 0 1 miss

10c 10c 108 4 0

110 110 10c 4 0

114 114 110 4 0

100 118 114 4 0 miss

104 104 100 4 1

108 108 104 4 0

10c 10c 108 4 0

110 110 10c 4 0

114 114 110 4 0

100 118 114 4 0 miss

104 104 100 4 1

108 108 104 4 0
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large matrices. These matrix operations have very regular, and therefore very predictable,
data access patterns. For spice2g6, on the other hand, the best approach is use the inertial
prediction strategy which gets around 61 percent accuracy. Nroff, espresso, and doduc
seem to give ‘‘typical’’ results of around 70 to 80 percent. 

The figures also show that an inertial strategy performs better than a non-inertial one. For
matrix 500, nroff, and spice, the inertial strategy makes a minimal improvement. The iner-
tial strategy gives doduc and espresso five and ten percent boosts, respectively. This defi-
nitely argues for the use of an inertia bit. Experiments were run that set the inertia bit to
one instead of zero at the beginning of the simulation. The reasoning behind this strategy
was that this would allow the buffer to ‘‘warm up’’ to the correct stride more quickly.
Some of the results got better, and some worse, but none by more than a tenth of a percent.

The ‘‘knee’’ of the graph is around 1K entries. A buffer of this size would have most of the
prediction power of any larger buffer. This is too large. 1K entries translates into 9K bytes
since each entry requires four bytes for each address that is stored, and about one byte for
the stride and inertia. Figure 4 shows that increasing the set associativity has little effect
on the prediction ratio for a given LTB size, thus ruling out increasing the set size as a
method of decreasing the LTB size. This graph is for espresso, and all of the benchmarks
revealed that the associativity of the LTB has little effect on its performance.

 

4.2  Small gaps

 

The second set of experiments involved the concern with the ability to update the buffer in
time for the next issue of the load instruction currently being predicted. Table 4 gives the
number of times a single load instruction is re-executed in the dynamic instruction stream
after a very small number of cycles. The distance in the instruction trace between two exe-
cutions of a single static instruction is called the ‘‘gap’’. In the discussion above, it is
assumed that all of the necessary arithmetic operations can be performed in a single cycle.
This allows the buffer to be exercised on a single load instruction every four cycles. This
rate of update is acceptable for all of the benchmarks and, as was speculated above, will
probably serve for all practical programs. 

On the other hand, it may not be advisable to dedicate a fast adder, which could be quite
large and expensive, to the load target buffer. Furthermore, if the instruction pipeline is
long or the LTB is indexed in an instruction prefetch buffer, the actual target will be gener-
ated more than four cycles after the LTB produces a prediction. These situations will
decrease the frequency at which a particular load target in the buffer can be updated. If
there is a small gap between two executions of a single load instruction, the LTB may not
be updated with the actual target of the first execution when it is called upon to make a
prediction for the second execution.

This causes two problems. First, it affects the validity of the simulation, which assumes
that the LTB can always be updated with the actual target before it needs to make the next
prediction. Second, in a real system these small gaps need to be handled in some way and
cannot be “assumed” away. The small gaps could be handled by assuming that the pre-
dicted target is correct, and updating the LTB with that value. If the predicted target turns
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out to be incorrect, some cleanup would need to be done. Another option would be to stall
the pipeline until the LTB can be updated with the actual target. Both of these degrade per-
formance, and the second option has the added difficulty of adding pipeline stalls.

Table 4 also gives the number of times gaps of slightly larger values occur. As the mini-
mum gap that can be handled increases, the utility of the buffer decreases, since less and
less load targets can be put into the LTB and effectively updated. Fortunately, as the table
reveals, these small gaps occur quite rarely, and so performance will not be affected too
much.

 

TABLE 4. Small Gaps

Gap Size matrix 500 doduc espresso nroff spice

 

1-3 0 0 0 0 0

4 0 16 1883 16 1892

5 0 764 11,254 1193 11,064

6 124,390 1626 97,973 2873 1485

7 2 18 136,825 438,545 11,608

8 874,496 14 466,887 757,498 141,757

9 2509 5027 550,663 366 618,403

10 121,899 646,928 343,503 5263 21,802

11 0 3985 1,558,694 0 936,752

12 126,247 3385 1.029,232 2543 244,860

13 7 7671 881,640 190 2,116,011

14 446 6175 481,074 435,085 1,460,258

15 116 116 297,734 6740 226,626

16 1,126,130 26 709,516 741,696 7,753,396

 

All Gaps 49,166,626 9,574,879 23,663,246 19,088,025 88,515,490

Gaps <= 8

 

998,888 2438 714,882 1,200,125 167,806

 

(percent)

 

2.032% 0.025% 3.021% 6.287% 0.190%

 

Gaps <= 16

 

2,376,242 675,751 6,562,878 2,392,008 13,545,914

 

(percent)

 

4.833 7.058% 27.73% 12.53% 15.30%
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FIGURE 2.  Prediction Ratio with Non-Inertial Algorithm

FIGURE 3. Prediction Ratio with Inertial Algorithm
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FIGURE 4. Prediction ratio vs LTB size for espresso for various set associativities.

 

4.3  Reducing the Buffer Size

 

4.3.1  The Problem

 

As mentioned in Section 4.1, a buffer size of 1K entries may be too large to get the short
access time that is needed to quickly read and update the data in the LTB. Some strategy
must be used to reduce the size of the buffer while still maintaining a high degree of pre-
dictive accuracy. One method might be to increase the set-associativity of the cache. In the
experiments of the previous sections, a direct-mapped LTB was assumed. Unfortunately,
the extra hardware required to give a set associative cache can slow down the access time.
Because RCM uses a one-pass algorithm to simulate the LTB, it automatically gives
results for all set-associativities. These results reveal a small shift in the location of the
knee, and thus a small improvement in LTB size for the “reasonable” set sizes of 2 and 4
entries.

Another approach is follow the lead of Olukotun and Mudge in [14]and try to find those
load instructions which can be rescheduled so that, if the cache is properly pipelined, their
latencies are partially or completely hidden. Implementation of this approach would
require two changes to the LTB system.

First, the compiler would have to be augmented to detect those loads which could have
their latencies completely hidden through instruction rescheduling. These loads would be
marked somehow to indicate that they will not have their targets stored in the LTB. This
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could be done by having two types of load opcodes, bufferable and non-bufferable. Unfor-
tunately, this would require a change in the instruction set architecture if it were to be
implemented in an existing machine, thus introducing incompatibilities. Second, the LTB
would have to be modified so that it ignores load instructions which are marked in this
manner.

 

4.3.2  Simulation

 

Determining the effectiveness of this solution requires a more involved simulation. For
different load latency times, different load instructions will have their latencies success-
fully hidden through instruction rescheduling. Furthermore, the penalty incurred by
misses in the LTB will dif fer for loads that have their latencies only partially hidden in the
rescheduling phase. 

Because of these factors, the prediction ratio is no longer a good measure of the effective-
ness of an LTB of a particular size. Instead, the effect of LTB size on the system CPI will
be determined. The “knee” of the graph of CPI versus LTB size determines a good size for
the LTB.

The simulation proceeds in two phases. In the first phase, the trace is scanned and all load
instructions are examined. If a load instruction to a particular register is followed too
closely by a use of that register, then a multi-cycle first level cache latency can cause a
pipeline stall. To avoid this, the simulator percolates the load up the instruction stream
until data dependencies prevent further motion. If the load can be moved far enough away
from the use, the stall cycles will have been successfully eliminated through rescheduling.
If not, the simulator records the address of the load instruction for the second phase of the
simulation. This first phase corresponds to a compilation phase in which loads which can-
not be well scheduled are marked by the compiler for insertion into the LTB. Only load
instructions are moved; the simulation does not try to reschedule the instructions that
cause the dependencies with the load instruction. 

In the second phase, the simulator performs the same process of rescheduling load instruc-
tions and trying to hide their latencies through clever instruction scheduling. Whenever a
load instruction is found which was marked by the first phase of the simulation, it is fed
into the LTB. If the LTB successfully predicts the target of that load, the number of cycles
that are saved is recorded.

Several assumptions are made in the rescheduling phase. They are that:

1. Load instructions can be moved through branch instructions.

2. There are no branch delay slots and branch prediction is perfect.

3. All instructions, except perhaps loads, are executed in a single cycle.

4. The window of instruction motion is 3n instructions, where n is the number of cycles of 
latency to the first level cache.

5. Once an instruction is moved, no other instruction can be moved above it in the instruc-
tion stream.
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The first assumption is perhaps the most bold. It was made for two reasons. First, the
MIPS is a uniprocessor machine with fairly simple scheduling for structures like loops,
which receive a lot of attention in scientific machines. In a compiler for a scientific
machine, techniques such as polycyclic vector scheduling and loop unrolling allow code
motion which effectively moves instructions through branches. Second, in future
machines, speculative execution of instructions may allow true rescheduling of code
across branch instructions to enable compilation techniques such as trace and superblock
scheduling[8].

The second assumption also has two justifications. It is desirable to isolate the effects of
the load instructions without having the factors of branch prediction accuracy and pipeline
depth in the design space. This required the elimination of all other variables besides load
latency and LTB size. Furthermore, the state of the art in branch prediction allows almost
perfect prediction, as was mentioned in the introduction[20]. Imperfect branch prediction
could decrease performance because the instruction addresses used to index the LTB may
never be executed if the resolution of a previous branch instruction squashes them. Extra
predicted targets could then be sent to the memory system. Additionally, if the LTB is
indexed from an instruction prefetch buffer, and the pipeline is refilled after a mispredicted
branch without going through that buffer, either the LTB would not be indexed, decreasing
performance, or an extra data path into the LTB would have to be built.

In a pipelined RISC machine, having each instruction require a single cycle of execution is
a reasonable assumption. Even though the total latency of an instruction can be long, pipe-
lining allows a result to be produced during every cycle.

Keeping the window of instruction motion to a limited number of instructions is done due
to time considerations. To scan the entire trace for the earliest allowable time of execution
of a load instruction would be impractical for the traces used, which were tens to hundreds
of millions of instructions long. A window size of three times the load latency allowed
successful motion of three dependent load instructions, as long as other data dependencies
did not prevent motion. This seemed like a reasonable figure. No experiments were done
to see the effect of changing the window size on the success of code motion. A more
appropriate forum for that type of discussion would be a paper on the practical aspects of
code rescheduling.

The last assumption is simply a heuristic. Occasionally, a load instruction will be moved
and have all of its latency hidden through rescheduling. The simulator then tries to move a
second load instruction. If it is allowed to take the place of the first load instruction, the
simulator may decide that it has all of its latency hidden as well. A problem arises because
the motion of the second load into the place occupied by the first load instruction would
have forced the first instruction to move 

 

downward

 

 in the instruction stream. This down-
ward motion may expose some of the latency that was previously hidden. To intelligently
make this decision would be quite a programming chore, and is beyond the scope of this
paper.

In[14], the authors determine how much load latency can be hidden through the introduc-
tion of pipelining in the first level cache. In doing so, they determine which load instruc-
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tions can be rescheduled to hide this latency. They do this by examining each load
instruction in turn, and deciding whether data dependencies prevent the code motion
required to achieve this goal. They do not attempt to determine the interactions between
the loads which are moved. 

These interactions may be significant. First, loads may be forced downwards in the
instruction stream, as was described above. If this effect is not considered, one could pro-
duce optimistic results about the success of code rescheduling. Also, if the compiler
decides that a load cannot have its latency hidden through code motion, and then a second
load instruction is moved into a delay slot of the first instruction, the first instruction will
have one more cycle of its latency hidden. If a simulation does not consider this, it will
give conservative results.

Table 5 shows that the method of Olukotun et.al. was very close to the simulation tech-
nique of this paper, which takes these interactions into account. In the cases where there is
significant difference, Olukotun was slightly conservative. One should note that in
Table 5, and all tables in this section, a CPI of one would indicate that each load instruc-
tion had an effective latency of one cycle.

In summary, the effect of the simulation is to produce an optimal schedule within the pro-
gramming constraints listed above. The load instructions which have latencies that cannot
be hidden through this scheduling process are placed in the LTB which tries to give an
early prediction of their targets, thus hiding their latency in hardware.

 

4.3.3  Results

 

When examining the results given in this section, one should remember that a CPI of 1.0
indicates that all load latencies were successfully hidden, either through scheduling or the
action of the LTB. Table 6 shows the actual CPI that is achieved for each program after
rescheduling. A figure for the CPI before rescheduling makes little sense because even the
most rudimentary compiler would try to fill in some of the delay slots with independent
instructions that immediately follow the load

 

TABLE 5. CPI given by two different simulation methods.

Load 
Latency Method doduc

matrix 
500 espresso nroff spice

 

2 cycles Golden 1.022 1.0006 1.013 1.020 1.035

Olukotun 1.023 1.0006 1.020 1.020 1.036

3 cycles Golden 1.087 1.0025 1.064 1.049 1.106

Olukotun 1.102 1.0033 1.078 1.051 1.128

5 cycles Golden 1.264 1.0119 1.282 1.123 1.288

Olukotun 1.310 1.0143 1.283 1.159 1.340

8 Cycles Golden 1.624 1.387 1.756 1.308 1.722

Olukotun 1.745 1.418 1.759 1.387 1.786
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The table reveals that when there are only two cycles of latency to the first level cache, an
LTB can, at the most, cause a 0.02 to 0.035 CPI improvement. Figure 5 reveals that this is
indeed the case. For most of the benchmarks, the LTB provides around a 1 percent
improvement in CPI. Because matrix 500 has most of its latency hidden through resched-
uling, the LTB has almost no effect on it. Doduc shows increasingly better performance as
the LTB size is increased, but even in this case 1024 entries are required for a meager 0.02
CPI gain in performance.

When the cache latency is increased to 3 cycles, the benefits of an LTB become slightly
more pronounced. Once again., matrix 500 requires nothing but rescheduling to achieve a
CPI very close to 1. Espresso, nroff, and spice see an improvement of 0.015 to 0.045 CPI,
and the curve is quite level as the LTB size increases. This seems to indicates that if an
LTB was included in such a machine, it could be rather small, around 32 entries, and still
get most of the available performance increase. Once again, doduc wants a rather large
LTB size in order to capture most of its performance potential. With 1024 entries, almost
all of the 0.087 CPI performance degradation due to load latency is recaptured. Unfortu-
nately, this is probably too large of an LTB to be practical.

For a 5 cycle cache latency, the LTB becomes more of a practical solution. Figure 7 shows
that an improvement in CPI of about 8 percent is available for an LTB with 64 to 128
entries for doduc, nroff, and spice. Espresso has a performance improvement of 0.15 to
0.18 CPI in this range. The “knee” of the graph for these programs, except for doduc, is
around this size. Once again, doduc shows only a little sign that the slope is decreasing as
the LTB size increases. 

Figure 8 shows similarly shaped curves, but the improvement is larger, from 0.10 to 0.50
CPI. It is interesting to note that for 8 cycles of load latency, matrix 500 shows improve-
ment through the use of an LTB, but requires only 32 LTB entries to capture almost all of
this performance gain. This probably results from the tight loop structure of the bench-
mark. One the cache latency exceeds the number of cycles in the loop, an LTB is needed,
but it need not be large since there is a very high degree of spatial and temporal locality in
a tight loop.

 

TABLE 6. Base CPI with rescheduling

load latency doduc matrix 500 espresso nroff spice

 

2 1.022 1.0006 1.013 1.020 1.035

3 1.087 1.0025 1.064 1.049 1.106

5 1.264 1.0119 1.282 1.123 1.288

8 1.624 1.387 1.756 1.308 1.722
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5.0  Conclusion and Future Work

 

5.1  Conclusion

 

When is an LTB useful? When the first level cache latency is only two or three cycles, a
good schedule combined with a pipelined cache should be able to hide most of the load
latency. The inclusion of an LTB for a 2 to 3 percent CPI decrease is probably not worth it.

When the latency increases to 5 cycles, a moderately sized LTB can give a significant
boost in performance, around 10 percent for most of the benchmarks. An even larger boost
is seen when the latency increases to 8 cycles.

It is not clear that all of my assumptions hold when the load latency is as large as 8 cycles.
The small gaps discussed in Section 4.2 have a minimal effect for smaller latencies, but
when the latency increases to 8 cycles, nroff has 6 percent of the gaps smaller than the
latency. Because the LTB needs to be updated with the correct target in the event of a miss,
if a particular LTB location is exercised more rapidly than the amount of latency it hides, it
could cause stalls while it updates itself or mispredicts load targets. Furthermore, as the
LTB is exercised earlier in the pipeline, or even in the instruction prefetch buffer, in order
to hide larger latencies, branch prediction has more of an effect on prediction accuracy.

Finally, when a machine has such a large latency to the first level cache, even more aggres-
sive scheduling techniques might be used. These techniques could use register renaming
to eliminate dependencies, thus increasing the amount of code motion that is allowed.
Superblock scheduling is one example of such a method[8].

The use of a load target buffer seems to have a narrow window of opportunity. The latency
to the first level of the memory hierarchy must be long enough to make scheduling diffi-
cult yet short enough to let a “quick fix” like the LTB hide it in many cases. In most
machines, however, support for aggresive code rescheduling seems to be a more effective
solution.

 

5.2  Future Work

 

While this research was being performed, an article by Ivan Sklenar appeared in 

 

Computer
Architecture News

 

 that had some relevance to this work[15]. This article suggests using
hardware similar to the LTB to perform prefetches into the data cache, thus enabling more
sophisticated prefetching strategies than fetching sequential lines. This would be benefi-
cial when a scalar processor accesses a vector data structure with a stride longer than the
cache line length. Although Sklenar’s paper presents a strategy, it does not give results.

Jean-Loup Baer and Tien-Fu Chen have published architectural studies which examine the
use of a table to predict the strides of load instructions. This information can then be given
to a more intelligent prefetch unit. They show that using this method of prefetching can
drastically eliminate compulsory cache misses and cache pollution due to naive prefetch-
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ing methods [1][2]. Fu, Patel, and Janssens at the University of Illinois have done similar
work and achieved promising results [5].

All of these studies suggest that the stride information be used to prefetch data directly
into the data cache. None of them try to use the cache conflict eliminating devices called
stream buffers and victim caches which are proposed by Jouppi [10]. It would be interest-
ing to see how a combination of these techniques would interact.
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FIGURE 5. CPI Improvement vs LTB Size (2 cycles of latency)

FIGURE 6. CPI Improvement vs LTB Size (3 cycles of latency)
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FIGURE 7. CPI Improvement vs LTB Size (5 cycles of latency)

FIGURE 8. CPI Improvement vs LTB Size (8 cycles of latency)
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