Implementation Experience with Building an Object-Oriented View
Management System™

Harumi A. Kuno and Elke A. Rundensteiner
Dept. of Elect. Engineering and Computer Science
Software Systems Research Laboratory
The University of Michigan, 1301 Beal Avenue
Ann Arbor, MI 48109-2122
e-mail: kuno@eecs.umich.edu, rundenst@eecs.umich.edu
fax: (313) 763-1503
phone: (313) 936-2971

August, 1993

Although views have been found to be important mechanisms for database systems, currently no commer-
cially available OODBMS supports view management tools. There are many challenging problems related
to view management that must be addressed in the context of object-oriented models: what features are
required to support a view system, how to provide updatable views, and how to utilize the complexity of
the object-oriented data model for view definition (such as behavioral customization, view hierarchy manip-
ulation, and incorporating virtual classes into a consistent global schema). We solve all of these problems
in our implementation of the MultiView view management system, which supports updatable views on top
of the GemStone OODBMS. The resulting system preserves the functionality of the underlying commercial
OODBMS while adding view mechanisms and the features needed to support the view system. Our imple-
mentation is general purpose — we provide generic classes defined in Smalltalk that can easily be ported to
other OODBMS systems.

Keywords: Schema Integration, Meta Schema, View Definition, Data Independence, Object-Oriented
Databases, GemStone, Smalltalk.

*This work was supported in part by the NSF RIA grant #IRI-9309076 and the University of Michigan Faculty Award
Program. We are also grateful for support from the 1993 NASA Graduate Student Researchers Program.

1 Introduction

In relational systems, a view is traditionally defined to be a named, persistent query, i.e., a virtual relation.
Relational conceptual schemata are concerned with tables as distinct units (in that tables are independent
and related only by means of foreign keys); hence it is trivial to incorporate a virtual table into the global
conceptual schema in a relational system by simply adding the new table to the set of existing tables. !

Object-oriented schemata are made up of classes arranged in a generalization and decomposition hier-
archy. An object-oriented view schema functions as a virtual database, and corresponds to an inheritance
hierarchy of multiple classes, both actual and virtual, that contain objects of interest to a particular user.
Users create virtual classes, which are integrated into a single consistent global schema from which users
can select both base and virtual classes to participate in specific view schemata. View schemata and virtual
classes provide logical data independence, and offer a means by which data and behavior can be repartitioned,
restructured in format, and customized to meet the needs of a particular application.

Object-oriented view technology offers fundamental mechanisms for addressing many important tasks,
such as customized tool interfacing to OODBs, interoperability of databases, security (for example by as-
sociating access control lists with customized view schemata), and transparent schema evolution. The
development of powerful view mechanisms thus represents an important research area.

Creating views in an object-oriented model is not a simple transfer of the relational view solution to
the object-oriented model. There are many challenging problems that need to be addressed in the context
of this new technology. We must, for instance, re-evaluate how to overcome the view update problem of
the relational view mechanism, how to utilize the complexity of the object-oriented data model for view
definition (such as behavioral customization, object generation, view hierarchy manipulation, integrating
base and virtual classes into a consistent global schema while preserving inheritance semantics). We also
have to answer fundamental questions, such as what properties are required from an OODB for the support
a view management system.

We present solutions to all these issues in the design of MultiView, a view management system which
supports the definition of virtual classes through user queries. We have demonstrated the practicality of the
MultiView approach by implementing the system on top of the GemStone OODBMS using the Smalltalk-
like OPAL programming environment. Qur system preserves the functionality of the underlying commercial
OODBMS while adding view mechanisms and the features needed to support the view system.

While several proposals of object-oriented views have been given in the literature in recent years [3, 9,
10, 17, 21, 22], the large majority of them have not yet been implemented. Furthermore, we are not aware
of any commercial OODB currently supporting such general purpose view capabilities as those offered by
MultiView . The main purpose of this paper thus is to demonstrate the implementation of an actual view
management prototype, and to describe its salient features. We expect that this will aid other researchers
who wish to construct view systems using object-oriented technology. Multi: View is unique in that it auto-
matically organizes both base and virtual classes into a single comprehensive global schema graph from which
object-oriented views — virtual, possibly restructured, subschema graphs — can be specified in a consistent
manner [13]. MultiView supports to promotion of method code to the upmost, possibly virtual class, and
thus provides for the true (upwards) inheritance of methods for both base and virtual classes.

In this paper, we describe the design and implementation of the Mult:View prototype system which has
been realized using GemStone 2. In particular, we outline its three-layered architecture, its system classes,
its view query language, and its user interface. This work validates the MultiView view methodology we
introduced elsewhere [13], and also results in general observations about the basic functionalities required
from an OODB system for building and supporting a view manager. We anticipate that these experiences
will prove useful to other researchers developing object-oriented view support.

The remainder of this paper is organized as follows. In Section 2, we introduce basic object-oriented
concepts we use throughout this paper. In Section 3, we outline the MultiView approach. In Section 4, we
review our system objectives and discuss the decisions we made regarding MultiView’s data model. Section 5
presents the implementation of the MultiView prototype using GemStone, describing meta-classes, required
data structures, and interfaces. We detail an example application using the MultiView system in Section 6,
compare MultiView to related work in Section 7, and conclude with Section 8.

I Note that although “conceptual schema integration” is sometimes called “view integration” in the relational model, by
“view integration” we mean the syntactic integration of the virtual table into the actual global schema in the database rather
than the DBMS-independent semantic task of resolving external views of the data during schema design.

2GemStone is the commercial OODB product of Servio Corporation.

2 Terminology

2.1 Objects, Classes, and Types

An object instance (or short, object) represents an entity. Anything with distinct existence in objective or
conceptual reality can be represented as an object. Each object consists of state (the instance variables
or attributes of the object) and behavior (the methods, or messages, to which the object can respond).
Each object has a unique system-generated value-independent object identifier, which makes it possible to
distinguish between equality and identity, to share sub-objects among complex objects, and to perform
updates on common sub-objects.

Methods represent operations that an object can perform. A method consists of a selector, which is the
name by which the method is invoked, and a block of code specifying the behavior of the method. In the
MultiView model, two methods are considered to be equivalent if they share the same behavior — that is, if
their behavior is specified by the same block of code.

A type is the library of methods and instance variables available to a given object. In MultiView, a class
is composed of both a type and an eztent (set of all the object instances with that type). Every object
possesses at least one type, and is thus an instance of at least one class. In addition, MultiView supports
the concepts of both local extent (the collection of all instances of the class itself) and global extent (the
collection of the instances of the class itself and all its subclasses).

2.2 Base Classes, Virtual Classes, and View Schemata

In order to distinguish between the different meanings associated with the term “view”, we use the following
terminology throughout this paper. Classes derived via an object-oriented query are referred to as wvirtual
classes (as opposed to base classes). The classes on which the derivation for a virtual class is based are called
its source classes (they can be both base or virtual classes). The schema integrating all base and all virtual
classes is called the global schema. A schema containing a select subset of both base and virtual classes,
specified by a user or application, is called a view schema. Although MultiView distinguishes between the base
classes that contain actual object instances and the virtual classes that contain dynamically computed virtual
object instances (computed based on a class derivation query), it organizes them into a single unified global
inheritance hierarchy. The original base schema (composed of only the original base classes) is maintained
as a special view schema containing all base classes.

2.3 Subsumption

In the MultiView model, we use the term “subclass” to mean that one class completely subsumes the other.
That is, a subclass inherits the complete type description (behavior) of its superclass(es), i.e., all of the
methods and attributes contained in the type of the super class must be included in the type of the subclass.
Furthermore, a subclass’s extent is a strict subset of the extent of its superclass — each instance of the
subclass is considered to also be an instance of the superclass. Thus in each context where an instance of
the superclass is required, an instance of the subclass is also permitted. 3

The MultiView model differs from GemStone’s regarding the issue of method identification. Determina-
tion of subsumption is a problematic issue which depends on whether classes are positioned explicitly through
user interaction or automatically by the OODBMS application. In systems with single inheritance and those
in which classes are explicitly positioned by the user, selectors (method names) can serve alone to register
the pedigree of any method. That is to say, a class’s behavior can be interpreted to be the list of selectors
to which it can respond. For example, some languages (including Smalltalk and language derivatives of
Smalltalk) identify methods by their selectors [19]. When an object receives a message whose selector does
not match the selector of any of the methods belonging to the receiver’s class, then the system searches the
methods belonging to that class’s superclasses, looking for an appropriate selector. Multi View preserves this
inheritance protocol, even for virtual classes.

If, however, classes are defined by users but automatically positioned by the system, then it is important
that the positioning algorithm be deterministic and independent of the history of the class’s creation. For
example, as illustrated in Figure 1, the user must be able to recognize that neither class 1 nor class 2, each

3 Alternative definitions of the “subclass” relationship exist, for example, in [10] and [5].

with a method named foo, is related to class 3, which also possesses a method named foo. This would
clearly be a problem for an automatic classifier that used only selectors for determining subsumption, since
both class 1 and class 2 would appear to subsume the other. In addition, if a virtual class, such as class 4
in Figure la, were to be created by intersecting classes 2 and 3, the new class would inherit foo from both
classes, necessitating that at least one of the foo methods be renamed. Despite the renaming, the origins of
each foo method must be clearly discernable.

Mapping
srcClass: Class3
7~ |oldName: foo
newName: foo
basedOn: Class3

Mapping

srcClass: Classl
oldName: foo
newName: foo
basedOn: Classl

Mapping
srcClass: Classl
oldName: foo
newName: fool
.. |basedOn: Class2

Mapping
srcClass: Classl
oldName: foo N
newName: foo A _
basedOn: Classl Mapping
srcClass: Class3
oldName: foo
newName: foo2
basedOn: Class3

’ (b) Determining method identity by code origin.

Figure 1: Methods with identical names are not necessarily related.

In its present incarnation, MultiView identifies methods by implementation (code block) rather than
interface (selector name), with the exception that the positions of base classes relative to each other in the
global class hierarchy are set explicitly by the user. For example, in Figure 1b, each method is identified
by a structure which maps the method to its origins. In addition, because the classification of new virtual
classes can lead to the insertion of virtual classes above original base classes, the code blocks associated with
a method may be moved upwards in order to preserve the commonly used method for method resolution of
downwards inheritance. This solves the performance problem faced by the approach proposed by Abiteboul
et al (discussed later), which requires an upwards and downwards search for inheritance. For example, a
hide class is a superclass of its source class, but obviously “inherits” its properties form the source class. We
would thus have to perform downwards method resolution fo r the hide class.

This basic principle of subsumption using code blocks leads to the following class hierarchy structure:
if two classes C7 and C5 share some common property then they must ultimately have inherited it from
the same superclass. There must exist a lowest common superclass (LCS) in the class lattice for which this
common property is defined. If not, these two properties could, for example, coincidentally share the same
selector but correspond to distinct behavior. It is clearly not computable whether or not two methods with
different code blocks model the same behavior.

3 The Multi:View Approach

In this section, we outline MultiView, our approach for supporting multiple view schemata in OODBs [14].
MultiView breaks view specification into four subtasks, illustrated in Figures 2 through 4:

1. the derivation of virtual classes via an object-oriented query;

2. the integration of the virtual classes with existing classes into a single consistent global schema graph,
maintaining relationships between base and virtual classes [13];

3. the selection of both base and virtual classes from the augmented global schema to participate in
named view schemata; and

4. the construction of arbitrarily complex view schemata composed of these selected classes [13].

The separation of the view design process into a number of well-defined tasks has several advantages.
First, it simplifies view specification, since each of the tasks can be solved independently from the others.
Second, it increases the level of support by allowing for the automation of some of the tasks. The current

implementation of MultiView supports all four tasks, as further described below. Tasks 2 and 4 have been
successfully automated so that they are carried out automatically when users execute tasks 1 and 3 using
the specification language provided by MultiView.

3.1 Virtual Class Generation

The first task of MultiView supports the virtual customization of existing classes by deriving new classes
with a modified type description and/or extent. This effectively controls the visibility of data and the access
privileges to property functions. For this first prototype, we restrict the query language used for virtual
class derivation to be an object-preserving algebra (i.e., queries do not generate objects that require new
identifiers) [17]. Virtual classes in MultiView are thus automatically updatable [14] [17]. See Section 5.3 for
a description of the object algebra operators.

Class Customization
(Task 1)

name
birthday
birthday

’
name /7 . .
birthday ’ universityMember universitylD
’

/
/
. ityMemb name ,' name name
universi ember .
Y birthday I/ employee) birthday birthday
universitylD / universitylD universitylD

/ / salary oPA
name II
birthda / RUN
employee) o8 birthday / UN- name
universitylD universityld 7 GSM hideVC: #agelessStudent
/ age

universityID
salary GPA , from: #student lessStudent o y|
’ hide:#(#(#birthday)).

/
, %

Base Schema

name

Figure 2: Derivation of virtual classes via a query.

Figure 2 illustrates this first task. The left half shows the original base schema, consisting of the original
person, universityMember, employee, and student classes. The right half shows the hide query a user would
type in if he or she wished to create a new class to hide the age attribute from the student class. The
MultiView system uses the query to calculate the type of the agelessStudent virtual class. The virtual class
now corresponds to a typical base class, except that its extent is computed rather than stored.

3.2 Classification

The second task — the creation of a consistent global schema — ensures the explicit capture of all class
relationships between stored and derived classes in terms of type inheritance and subset relationships (rather
than only between base classes as is typically done in object-oriented databases). MultiView integrates new
classes by explicitly determining the subsumption relationships between the new virtual class and all other
classes in the global schema, as opposed to the partial classification that would result from the examination
of the query and the source class alone. This integration is vital for the consistent derivation of semantically
correct view schemata, avoids the cost of recomputing these relations upon every request for class relationship
information and/or query processing, and is useful for sharing (inheriting) property functions and object
instances consistently among classes without unnecessary duplication. Figure 3 illustrates the result of
integrating the agelessStudent class into the global schema. If virtual classes were not integrated with the
base classes in the global schema, then a view schema would correspond to a collection of possibly ‘unrelated’
classes rather than a generalization schema graph. Automatic classification streamlines view creation by
reducing the fourth subtask, the problem of determining the class generalization hierarchy for each of the
view schemata, to a simple and efficient graph-theoretic algorithm [13], and more importantly, prevents the
introduction of inconsistencies into the global schema.

Note that our approach of providing for the integration of virtual classes (derived using object-oriented
queries) into a single unified global schema is distinct from others found in the literature. Existing approaches
in the literature either: (1) require the user to specify explicitly the relationship between a virtual class and

Class Integration

into Global Schema 1\

(Task 2)

name
birthday
T name

. X birthday
universityMember universitylD

name
agelessStudent) universitylD
name GPA
birthday /

name

name
universitylD

.\.

employee universitylD

|
salary @ birthday
universitylD

GPA

Figure 3: Integration of virtual and existing classes into a single consistent global schema.

existing base classes [22]; or (2) relate a virtual class only with its direct source class via a subclass/superclass
relationship [17]; or (3) simply relate a virtual class with its source class via a derived-from relationship [3],
(4) or with the root of the schema [9, 11].

The first approach is vulnerable to potential consistency problems, since the users might introduce an
inconsistency in the schema graph by inserting is-a arcs between two classes not related by a subclass
relationship. A solution of verifying the correctness of the relationship in essence would have to provide
a capability similar to the automatic classification approach advocated in our system, namely, a means of
automatically computing the subsumes relationships between pairs of classes. The second approach is prone
to misrepresenting the subclass relationships normally represented in a class hierarchy, in particular, because
a derived class may not be is-a related to its immediate source class. It would at best result in a partial, hence
less informative, classification of class extents. The third approach ignores the issue of determining subclass
relationships by introducing a parallel derived-from relationship hierarchy, which is not very informative in
terms of relating different classes and their type descriptions. Note that in all other approaches given above,
one would of course also maintain this derived-from relationship by keeping the class derivation query (which
will be used to recompute the population of the virtual class, whenever needed). Finally, the last approach
completely ignores the issue of classification, thus resulting in a flat class structure.

3.2.1 Classification Problems and Solutions

Two potential problems which could result during the automatic integration of new virtual classes into an
existent class hierarchy are the inheritance mismatch problem in the type hierarchy and the problem of
integrating is-a incompatible subset and subtype hierarchies into a single class hierarchy. These problems
and their solutions are described in more detail in [13] and [14].

Inheritance mismatch is a problem of the type hierarchy which occurs when a new virtual class is created
for which there is no existent correct place in the global hierarchy, as illustrated in the bottom half of Figure 2.
The agelessStudent class cannot be placed directly above any existing classes in the hierarchy because there is
no class whose type is a strict subtype of the agelessStudent type. Similarly, the agelessStudent class cannot
be placed directly below any existent class because there is no class whose type is a strict supertype of the
agelessStudent type. The is-a incompatibility problem results when the subtype and subset relationships
between two or more classes conflict. For example, when a virtual class’s extent may prescribe a place lower
in the corresponding set hierarchy than its place in the corresponding type hierarchy, neither can be classified
as a direct superclass nor a direct subclass of the other.

Our solution to both problems is to insert additional intermediate classes into the global class hierarchy, as
shown in Figure 3. The addition of intermediate classes ensures that a unique, complete, and semantically-
correct global schema can be calculated for any configuration of base and virtual classes. This strategy
for integrating newly generated classes into the global schema guarantees the closure of the resulting class
hierarchy. As described earlier, if two classes C; and Cy share some common property then they both must

have inherited if from some lowest common superclass (LCS) in the class lattice for which this common
property is defined. [13] presents an efficient algorithm for creating a minimal, yet sufficient, set of these
intermediate classes. This approach supports true upwards inheritance of method code for both base and
virtual classes. This avoids the following two problems: (1) code inherited by virtual classes does not have to
be duplicated, which would cause possible maintenance and storage problems, and (2) the relatively simple
upwards inheritance strategy does not have to be replaced by a complicated upwards and downwards one.
In this paper we validate this method by describing a successful implementation of this approach using
GemStone.

3.3 View Schema Generation

name
universityMember birthday
university|D
name
universitylD
GPA

name

@ birthday
universityID

GPA

name
name agelessStudent
universityMember) birthday g universitylD
universitle/,r GPA
name

@ birthday
universitylD

GPA

View Class Selection (Task 3) View Schema Generation (Task 4)

Figure 4: Construction of view schemata.

The third and fourth tasks of the MultiView approach are the selection of classes (both base and virtual)
from the augmented global schema (illustrated in the left half of Figure 4) and the construction of view
schemata composed of these selected classes (illustrated in the right half of Figure 4). MultiView uses the
augmented global schema graph (generated in task two) for the selection of both base and virtual classes and
for arranging these classes in a consistent class hierarchy, called a view schema. View schemata represent
the virtual restructuring of the is-a hierarchy, allowing users to hide and/or highlight classes.

Virtual classes in MultiView are completely defined by a class derivation query from which both the type
description and the extent of the virtual class are derived. All subclass relationships are calculated a priori
for each pair of classes. The result of this evaluation is reflected in the global schema, hence a valid view
schema can be derived from a global schema by simply exploiting the syntactic graph structure of the global
schema rather than by requiring the semantic comparison of class specifications for each pair of classes.

We do not support the further modification of this virtual class specification due to its inclusion in a view
schema; rather a virtual class will look the same, and exhibit the same behavior, in any of the view schemata
in which it is included. This feature of Multi View is a significant difference to other approaches. For instance,
in [12], the specification of a virtual class (both type and extent) has to be dynamically recomputed for each
view schema it is inserted in, since for example the addition of an is-a relationship may add new inherited
attributes to the virtual type.

In MultiView a view schema is instead defined simply by collecting all virtual classes that are to be made
available to a particular user into one schema. While this selection of classes for a particular view (which
could be either virtual and base classes) is done explicitly by the user, the generation of view relationships
among the set of selected classes of a view schema is automated in the current version of our system.

Given this approach, is-a relationships between completely defined (virtual or base) classes are restricted
by the subset and subtype relationships of the classes as defined in Section 4. That is, because inserting
arbitrary is-a relationships between classes in a view schema may result in an incorrect schema in terms of
property inheritance and subset relationships, rather than requiring the manual insertion of view is-a arcs
by the view definer, we have developed algorithms that automatically augment the set of selected classes
with their generalization relationships to generate a valid view schema.

Automatic view generation offers numerous advantages, some of which are listed below:

e It simplifies the view specification process for the users by automating tedious tasks.

o It guarantees the consistency of the view schema (i.e., correctness of view query processing).

e It prevents the introduction of redundant subclass relationships into the view (and thus supports a
cleaner model of application domains).

e It may reduce execution times for query processing on the view.

o It assures the completeness of the view semantics by guaranteeing the presence of all required subclass
relationships (providing maximal information to the user of the view about the class relationships).

The view generation problem can be reformulated as a graph-theoretic problem where we are given a
global schema GS = (V,E) and assume that a subset of classes VV C V of GS has been selected (marked)
to belong to the view schema VS. The algorithm then determines a set VE of is-a edges among classes in
VVsuch that VS = (VV,VE)is a valid view schema [14]. We can apply standard graph algorithms to solve
the view generation problem as we proposed elsewhere in [16].

4 View Management Modeling Requirements

The MultiView data model is similar to the OPAL model used by GemStone, and is fully object-oriented,
supporting classes, class methods, object instances, object identifiers, complete encapsulation*, and many
other features [19]. However, MultiView adapts GemStone’s native data model to concur more closely
with the ODMG data model [2] and to incorporate features necessary for the support of updatable views.
The ODMG data model distinguishes between class and type, it advises that each class should maintain
knowledge of its own extent (the set of objects belonging to the class), and it provides a model for class and
type subsumption. MultiView adopts all of these recommendations. In addition, Mult: View also extends the
GemStone data model to incorporate features necessary for the support of updatable views, such as dynamic
reclassification, multiple inheritance, multiple class membership, and multiple type instantiation [17].

We are designing a view management system with the overall goal that the view schemata function as
virtual databases, which influenced our modeling choices for which features the underlying object-oriented
system must provide:

whether to support single or multiple inheritance

whether to support multiple type instantiation

whether to support multiple class membership

how to define the relationship between a class, its type, and its extent

whether to separate class and type hierarchies or to support a single global class hierarchy
whether to support integration of virtual classes as first-class citizens into the schema graph
whether or not to support dynamic modification of the class hierarchy

whether to support automatic or manual placement of a class within a given class hierarchy
how to determine method equivalence and identity

The support of a view manager requires particular choices for some of these data model questions. In
particular, we also have specific sub-objectives:

Users must be able to create updatable virtual classes using queries.

Virtual and base classes must be integrated into a single consistent global schema.
Users must be able to specify view schemata.

As many routine tasks as possible must be automated.

Because some virtual classes (such as those formed by intersection queries) require the inheritance of
properties from more than one class, we need multiple inheritance in order to allow a type to inherit properties
directly from any number of supertypes. Because we want objects to be able to possess both virtual and base
types, we must support multiple type instantiation and multiple class membership. Because virtual classes

4Instance variables (or attributes) cannot be directly manipulated by other classes or methods, but rather must always
be accessed using access specific methods defined by the source class. GemStone provides a system-function that lets you
automatically generate the typical access functions to get and set the values of instance variables. Thus, when we compare
types and classes, we consider the methods of a class to include the access methods for attributes associated with its type
description (as opposed to comparing attributes).

derive both their types and extents from base classes via queries, we must define the concept of class to
incorporate both type and extent. Because we want virtual classes to inherit properties just like base classes,
we must integrate them into a single global generalization hierarchy. However, because we want to be able
to derive virtual classes over the lifetime of the database, we must be able to reclassify classes dynamically.
Furthermore, objects must be able to dynamically take on new types and new class membership. Because
we would like a deterministic classification algorithm, we need a definition for subsumption that applies to
both base and virtual classes. Finally, as discussed in Section 2, our need for a deterministic positioning
algorithm affected our technique for method-identification in the context of our datamodel.

5 Implementation of the MultiView Prototype

Ideally, we would have liked to implement MultiView on top of an object-oriented system that supports the
key properties listed above. However, most available systems do not support the majority of these features.
We chose to use Servio Corporation’s GemStone OODBMS rather than to implement Mult: View from scratch
because it provides a rich object-oriented data model with supporting tools. Despite the differences between
the GemStone and MultiView data models, GemStone offers key features which were extremely useful in
the implementation of MultiView. Besides the typical database functionalities, such as persistence, database
programming language support, and composite objects, GemStone features include:

e GemStone provides automatic, system-maintained object identity.

e GemStone treats everything in the system, including code blocks and classes, as objects.

e GemStone offers a number of programming language interfaces, such as C, C++, and Smalltalk, which
facilitate the development and integration of a graphic interface.

e GemStone permits access to the source code for most methods, whether system or user defined.

As discussed in Section 4, the Mult:View data model differs from GemStone’s in a number of fundamental
ways. Our implementation had to reconcile the differences between the properties needed to support a view
system and GemStone’s data model, which are summarized below:

e GemStone does not maintain explicit extents to collect all instances of a type, which is needed for the
specification of select virtual classes.

e GemStone does not support multiple type instantiation, which is a required characteristic for view
support if a given object is to possess both the base class’s type and the virtual class’s type.

e GemStone does not support multiple class membership for objects, which is necessary if an object is
to be considered to be an instance of both a select virtual class and the source base class.

o GemStone does not support multiple class inheritance, which is needed because some classes, such as
those defined by intersection queries, inherit methods from multiple superclasses.

e Schema evolution in GemStone is severely restricted for classes with instances, which would prevent
the classification of virtual and base classes into a single global schema.

In the following section, we describe the architecture we have designed and built on top of GemStone
in order to implement MultiView. This implementation approach successfully addresses the data model
differences discussed above.

5.1 MultzView Class Architecture

The Mult: Viewsystem can be integrated with Smalltalk-based systems by adding the set of generic Multi View
system classes at the user level. Because we must keep track of both virtual and base classes, along with
maintaining extent and type information, Multi View represents database objects using three disjoint levels
of constructs illustrated in Figure 5:

o The meta-schema classes of MultiView are used to hold information about the classes in the global
and view schemata and the relationships between the classes (top level).

e The schema objects — the global schema, the view schemata, and the classes contained in the user-visible
schemata of MultiView— are each represented by an instance of some meta-schema class (middle level).
Each class knows about its superclass/subclass relationships through the subs and supers instance
variables of its metaclass instance.

e Finally, the object instances of MultiView (the base as well as the virtual objects) are maintained at
the bottom data level underlying the meta-schema and schema classes.

In GemStone terminology, Mult:View metaclasses are implemented as GemStone classes, Mult: View user-
defined classes are represented by GemStone object instances (with the base classes also captured in parallel
by GemStone classes), and the MultiView object instances are implemented by GemStone object instances.

GlobalSch M.
L === | ViewSchemaManager
name L
K4 = ~rootClasses o name
h allViewSchemas # ootVSelasses= =~~~ ==>| ViewSchemaClass
\ name
\ — user .
Seo-”m TN password subs
‘, supers
equivs
MultiViewClass GlobalClass
name
subs
supers
equivs Defimiti Moo
typeDefm — = = = =} = — - | TypeDefinition | Mapping |
extentBasedOn = =1 methodsMap = =|= = — = = | srcClass
predicate \ oldName
query ; newName
/ basedOn
‘ N‘E
is-a 1
]
isa /| Hij i
IntermediateClass] HideViewClass
)
14 A
\
= ~=>[BaseClass \
4
7 oot : Meta-Schema
re ! |
presented
by instance of # / ,’ Classes
1
! I,
———- .: —e— = Y e T e
1

[}
represented

)
A

SLo__(Person)M /by instance of
represented ! birthday L,

by instance of y 4
NS name Schema
\ - universitylD
A Classes
BN
Y . ™\ extentBasedon
\ LT -
\ name
Student | birthday
A universitylD
————e————— e o e e o e o o e o o e o
% is-instance
| is-instance is-instance Data Level
O O Objects
Mary Joe Margaret

Figure 5: MultiView System Architecture.

For example, in Figure 5, the student class is a class in the example application schema (illustrated in
the middle section of the figure). It is represented in the MultiView system by an instance of the BaseClass
meta-schema class. This meta-schema instance also has associated with it the instances belonging to the
extent of the student class. Similarly, the agelessStudent schema class (formed by a hide query) is represented
by an instance of HideViewClass meta-schema class. The agelessStudent class’s extent is based upon the
student class, and thus the extentBasedOn instance variable of the agelessStudent class points to the student
class.

There are three basic types of classes in the MultiView system:

1. All meta-classes that represent application classes, such as HideViewClass and BaseClass, are sub-
classes of the MultiViewClass class.

2. The GlobalSchemaManager and ViewSchemaManager classes provide an interface to the view manage-
ment system.

3. Attributes of classes, such as their types, methods, and predicates, are represented by instances of
component classes such as the TypeDefinition, Mapping, and Predicate classes.

5.1.1 The MultiViewClass Meta-Class

Since we need to explicitly collect the extents for classes in a view system, every class that participates in
the global schema is represented internally by an instance of some subclass of the meta-schema class Multi-
ViewClass. The subclasses of MultiViewClass such as BaseClass, ViewClass, and HideViewClass, represent
the various types of classes, namely, either base or virtual classes,

Object subclass: #MultiViewClass
instVarNames: #(#typeDef
#extentBasedOn
#query

#predicate #extendedPredicate
#subs #supers #equivs)

classVars: #()
inDictionary: UserGlobals
constraints: #[#[#typeDef, TypeDefinition],

#[#extentBasedOn, Array],

#[#query, String],

#[#predicate, PredicateSet],

#[#extendedPredicate, PredicateSet] J].

TypeDe finition is a set of methods to which objects belonging to the class can respond. ExtentBasedOn
is the set of classes on which the MultiViewClass is based °. For example, in Figure 5, the extent of the
agelessStudent class is based on the student class, since the former has been derived from the latter using a
hide query. Query is a stored copy of the query defining the virtual class. For example, as shown in Figure 6,
the agelessStudent class could have been created using a query to hide the birthday method from the student
class. Predicate is a collection of the predicates originally defining the extent of the virtual class in the query.
The ExtendedPredicate is the set of all predicates that affect the extent (i.e., the EatendedPredicate is the
union of the predicate set of the class and all the predicates of the classes from which the class is derived). We
incorporate extent directly within class definition in MultiView (as is done in numerous other approaches, [6]
and is necessary for the extent of virtual classes to be calculated). Base classes are hence represented by
a subclass of MultiViewClass with the added instance variable of Exztent containing the set of instances
belonging to the class. MultiView defines a create method to replace new, so that when a new object is
created in MultiView, it is automatically added to its base class’s extent. Note that the extent of a virtual
class is computed at the time of reference rather than stored.

MultiViewClass
name: agelessStudent ’_____'[y_p_e_D_eI _______
subs: Student Mapping
supers: Person srcClass: Student

RUN equivs: oldName: ID number
universityMember subclass: #Student

instvarNames: #(#GPA). typeDef: newName: D number
inDictionary: UserGlobals. extentBasedOn: Student basedOn: Student
% predicate: :
quey: hideVC: Mapping

RUN

GSM hideVC: #agelessStudent
from: #Student
hide: #(#(#birthday)).

srcClass: Person
oldName: name
newName: name
basedOn: Student

%

Figure 6: Type Definition of the agelessStudent class.

5These mappings correspond to the derived-from relationships between virtual and source classes, forming a derived-from
class hierarchy orthogonal to the generalization hierarchy, which can also be found in other view approaches ([3]).

10

5.1.2 TypeDefinition and MethodMapping classes

In Section 4, we described type definition as the set of methods available to members of a particular class.
However, because Multi View uses the underlying GemStone database as a “black box” on which to implement
a view management system, and also because (as explained in Section 4) in the case of virtual classes
MultiView identifies methods by their implementation rather than selector, methods are represented by
method mapping structures within the type description.

Object subclass: #TypeDefinition
instVarNames: #(#MethodMapSet)
Object subclass: #MethodMapping
instVarNames: #(#srcClass #oldName #newName #basedOn)
classVars: #()
inDictionary: UserGlobals
constraints: #[1]

The MultiViewClass subclasses use instances of the meta-class Mapping to represent the relationships be-
tween methods of base and virtual classes for the type definition of each database class. In the first prototype
implementation, each instance of the Mapping class provides one-to-one mappings between methods and their
origins. Each mapping keeps track of the GemStone class where the source code for the method/attribute
is based (srcClass), the selector (name) of the method/attribute in the GemStone class where it is defined
(oldName), the current selector of the method/attribute in the virtual class (newName), and a reference to
the class from which the method came (basedOn). As virtual classes are created, the mappings “daisy-chain”
through the inheritance graph to ensure that the methods are associated with correct code blocks. Figure 6
illustrates the internal type description of the agelessStudent class from Figure 5. Note that each method of
the class is represented by an instance of the Mapping class.

As discussed earlier, in orer to avoid this overhead of “daisy-chaining” and to support true dynamic
method resolution, we are now augmenting our system to actually move code blocks upwards.

5.1.3 GlobalSchemaManager and ViewSchemaManager classes

Access to all classes that make up a particular database is maintained by a single instance of the meta-
class GlobalSchemaManager (Figure 5, top). The GlobalSchemaManager type has instance variables to
store information about the classes contained in the global schema, including a pointer to the root of the
database, and pointers to all of the view schemata formed upon the database.

Object subclass: #GlobalSchemaManager
instVarNames: #(#name #allVSM #roots)
classVars: #()
inDictionary: UserGlobals
constraints: #[#[#name, Symbol] 1].

Object subclass: #ViewSchemaManager
instVarNames: #(#name #allVSC #user #password)
classVars: #()
inDictionary: UserGlobals
constraints: #[#[#name, Symbol]].

Each view schema, or user-selected subschema graph, is represented by a single instance of the meta-class
ViewSchemaManager. An instance of the meta-class ViewSchemaClass is created to represent every class
that participates in a particular view schema. Besides pointing to the view schema classes, the ViewSchema-
Manager meta-class also maintains a list of users who are permitted to access, add, and remove the classes
associated with a given view schema, and a password to restrict who can delete the view schema.

11

5.2 MultiView System Methods

The various methods used for the specification, creation, classification, and manipulation of virtual and
base classes can be divided into four groups: (1) those that treat the schema as a whole are associated
with the GlobalSchemaManager class, (2) those that deal specifically with classes on an individual basis are
associated with the MultiViewClass class and its subclasses, (3) those used to specify and manipulate view
sub-schemata formed from the global schema belong to the ViewSchemaManager class, and (4) those used
for data-definition and data-manipulation at the object instance level. These last correspond to all regular
OPAL methods provided by the GemStone system.

For example, the GlobalSchemaManager type includes system methods to manipulate classes within a
database and user-interface methods that provide a front-end to system methods, allowing users to add,
define, and access both base and virtual database classes, process user queries, and place a new class within
the global schema. On the other hand, the MultiViewClass is responsible for the methods used to determine
the subsumption relationship between one class and another via the comparison of predicates and types.

5.8 The MultiView User Interface

Below, we describe the chief methods that form the user interface to MultiView (summarized in Figure 7):

5.3.1 Initialization and Base Class Operators

The user initializes an instance of the GlobalSchemaManager class to start up the MultiView interface to
GemStone. All new base and virtual classes are initialized and added to the database using the Glob-
alSchemaManager instance, as are instances of base classes. Note that because the base classes are created
using OPAL (and GemStone’s OPAL supports only single inheritance), they cannot be originally declared
as a subclass of multiple classes.

createGSM: — creates an instance of the GlobalSchemaManager meta class.

baseVC: — initializes and adds a base class to the GSM as an instance of the BaseClass meta class.
addBVClInstance: —adds an instance to the extent of the corresponding base class.

removeBV ClInstance: — removes an instance from the corresponding base class.

getVC: — retrieves a class based on its name symbol.

do: — iteration interface for a class’s extent.

extent — returns the extent of a class.

5.3.2 View Schema Operators

Users can create any number of individualized view schemata by creating view schema managers and adding
base and virtual classes to them. Each view schema has its own access control list, which regulates which
other GemStone users are allowed to manipulate the schema.

createVSM:password — creates a new instance of ViewSchemaManager and stores the password.
removeVSM:password — allows users who know the appropriate password to remove an instance of
ViewSchemaManager from the global schema.
addVSC:to: adds an instance of ViewSchemaClass representing a class from the global schema to the spec-
ified ViewSchemaManager instance. Only users who are in the access control list of the ViewSchema-
Manager instance are able to execute this method.
removeVSC:from: removes a class from the specified ViewSchemaManager instance. Only users who are
in the access control list of the ViewSchemaManager instance are able to execute this method.
adduser:to:password: adds a new userld to the access control list.
removeuser:to:password: removes a userld from the access control list.

5.3.3 Virtual Class Operators

The following operators are used to create virtual classes. Currently all view operators are object-preserving,
but we are in the process of investigating the issues involved with the support of object-generating operators.

12

Virtual Class Methods

Global Schema Methods

selectVC:from:where:

selectVC: aMVclass
from: aSymbol
where: predicate

hideVC:from:with:

hideVC: aSymbol
from: aMVclass
hide: list of methods

diffVC:of:minus:

diffvC: aSymbol
of: aMVclass
minus: aMVclass

intersectVC:from:and:

intersectVC: aSymbol
from: aMVclass
and: aMVclass

refineVC:from:add: codeblock:

refineVC: aSymbol
from: aMVclass
add: aSymbol
codeblock: aBlock

unionVC:from:and:

unionVC: aSymbol
from: aMVclass
and: aMVclass

createGSM:
createGSM: GSM Symbol
baseVC:

baseVC: aSymbol

traverse

traverse

getVC:
getvVC: aSymbol

removeBClnstance:
removeBVClnstance: BClnstnace

Comparision Methods

MVeclass Methods

classCompare:

classCompare: aMVclass

typeDef Methods

typeCompare:

typeCompare: aTypeDef

predicate Methods

predCompare:

predCompare: aPredicate

addBClnstance:

addBV Clnstance: BClnstance

dropBVC:

dropBVC: aSymbol

View Schema Methods

createVSM :password:
createV SM: VSM Symbol
password: apasswd

removeV SM:password:
removeVSM:l VSM Symbol

password: apasswd
addVSC:to:

addVSC: avsc

to: VSM Symbol

removeVSC:from:
removeVSC: avSC

from: VSM Symbol

adduser:to:password:

adduser: auser
to: VSM Symbol
password: apasswd

removeuser :from: passwor d
removeuser: guger

from: VSM Symbol
password: apasswd
computeVSM:

computeVSM: \ySMm Symbol

Figure 7: MultiView User Interface

13

select VC:from:where: — creates an instance of SelectViewClass. A virtual class formed by a select query
has a type definition that refers directly to the type definition of the origin class. In addition, it
maintains a structured list of the predicates used to determine the class’s extent. The format of the
selection is a single free variable GemStone block, i.e. a conjunctive collection of predicates of the
form: (<single method> <comparator> <value>).

hideVC:from:hide: — creates an instance of Hide ViewClass. The hide clause is an array of methods to be
excluded from the new class. The members of the hide clause array take the form of a one symbol
array for method exclusion. For example, in order to hide the methods x and z, one would use the
following hide clause #((#z) (#z)) .

refineVC:from:add:codeblock: — creates an instance of Refine ViewClass, which adds a new method (as
opposed to instance variable) indicated in the specified block of code to the ViewClass. The new
method must be defined in terms of existing methods.

intersect VC:from:and: — creates an instance of Intersect ViewClass. An intersect view’s type definition is
the union of the types of the two origin classes, and the new class’s extent is the intersection of the
extents of the origin classes.

diff VC:of:minus: — creates an instance of Difference ViewClass. A virtual class formed from a difference
query has a type definition that points directly to the type definition of the first origin class, and the
new class’s extent is the extent of the first origin class minus the extent of the second origin class.

listClasses — returns all of the classes in the global schema in depth-first search order, listing each class’s
subclasses and superclasses.

5.4 Discussion

Despite the difference in data models, the experience of working with GemStone was a positive one because
of features such as GemStone’s support for object identity and the way in which GemStone treats everything
in the system as an object. Although it may have been preferable to have completely integrated Multi View
and GemStone source code into a seamlessly unified system, MultiView has been implemented on top of
GemStone’s OPAL in such a way as to preserve the functionality of GemStone. Until commercial systems
begin to support full view management capabilities, portable view management systems such as Multi View
offer a realistic and practical alternative.

As a consequence of supplying the properties needed to support a view management system, MultiView
extends the GemStone data model to support multiple type instantiation, multiple class membership, and
multiple inheritance. Because MultiView supports automatic classification of virtual and base classes into
view and global schemata, Multi View adds dynamic reclassification to GemStone. Mult: View also maintains
explicit extent for classes to collect all instances of types. Note that MultiView users can still apply all
relevant GemStone functions to objects within Multi View.

The current system allows users to create and delete virtual classes; to create, define, manipulate, and
delete individualized view schemata; and to update both base and virtual object instances. Although the
current authorization implementation provides rudimentary authentication security (associating a password
and access control list with each view schema), because authentication was not the focus of our project, the
authorization mechanisms are not very robust.

Finally, because some virtual classes (such as those formed by hide queries) are the superclasses of the
classes on which they are defined, we support the transfer of method code blocks. This reorganization allows
the projected methods to belong to the virtual superclass and be inherited by the base subclasses; i.e., the
regular downwards inheritance scheme is preserved.

6 A Demonstration Application

Figure 8 illustrates the view creation process in MultiView, using a few queries from an example that
has been successfully run on the system. The left side of each section of the figure depicts a graphic
representation of the global and view schemata, while the right hand side contains a boxed partial transcript
of the corresponding MultiView session. Figure 8.a portrays the original global schema, to which the user
has added the base classes person, universityMember, employee, and student. Figure 8.b shows the global
schema after the user has created the virtual class agelessStudent by hiding the birthday method from the
student class. Note that two intermediate classes needed to be formed in order to integrate the agelessStudent
class. This also resulted in code movement; for instance, the name method is now defined in the IClass?2 so

14

that it can be inherited by the universityMember class as well as by the new virtual class, agelessStudent.
Due to the method and extent mapping described earlier, the resulting global schema is closed — new virtual
classes can be specified against the agelessStudent class, and updates made to instances of the agelessStudent
class will propagate back to the original objects. At any point during this process, the user is free to create
any number of view schemata from the global schema. Figure 8.c shows the commands the user would type
to create and populate a view schema showing only the student-related classes.

Now, suppose that a user applied the following command (in this case invoking the name: update method)
to the agelessStudent class.

(GSM getVC: #agelessStudent) do:
[:aStudent |
((aStudent universityID) = ’5555555’) ifTrue:
[aStudent name: ’Gordon Bemnet’]. 1].

In Opal syntax, this applies an update operation to the virtual class agelessStudent, changing the name
of the agelessStudent with the universitylD of ‘5555555’ to the new name ‘Gordon Bennet.” Figure 6 shows
the type definition of the agelessStudent class, from which the Mapping for the name: method is retrieved.
The association is then made to the code block for the name: method, and the update is performed upon
the original object. In this example (see Figure 8.c), the update will be performed on the base objects in
the Student class, e.g., on e3, e4, or e5.

7 Related Work

In recent years, a number of other researchers have written papers on object-oriented views. Below, we
describe the relationship of some of this work to our approach based on the comparison table in Figure 9.
The rows of the table refer to the different view approaches being compared, generally listing the first view-
related paper by the respective first authors. The first row is our MultiView approach [13] [14] [16] [15]; row
two corresponds to the view approach proposed by Abiteboul and Bonner [1]; row three represents Bertino’s
view mechanism [3]; row four covers the Polyview system developed by Gilbert and Bic [8]; row five refers
to Heiler and Zdonik’s FUGUE model [9]; row six refers to Shilling and Sweeney’s three step approach [20];
row seven represents the COCOON project by Scholl, Schek, Laasch, and Tresch [18] [17]; and row eight
corresponds to the schema virtualization work done by Tanaka, Yoshikawa, and Ishihara [22].

The columns of Figure 9 represent the following criteria for comparing view management systems:

e The terms object preserving (along with value generating and object generating), as used by [18], refer
to the closure property of query models — whether queries result in a collection of objects identical to the
original database objects, a set of data values abstracted from the database objects, or a collection of
newly created objects. It is an unresolved issue at this point whether object generating view definition
languages can automatically solve the view update problem.

o Unlike relational databases, in which most views are not updatable [7], object-oriented views are
potentially updatable. Two reasons why object-oriented systems potentially permit updatable views are
that objects have unique, system-generated object identifiers, and class-specific methods are associated
with each object. For example, because the COCOON system [18] [17] is object preserving, operations
performed upon objects in views automatically take effect upon the actual objects on which the virtual
objects are based, and similarly, updates on base objects are reflected in views. This column indicates
whether or not the system offers updatable views.

e Some systems (such as [8] and [20]) associate multiple protocols (interfaces) with each class rather than
having objects belong to multiple (possibly virtual) classes. We call this alternative to the traditional
multiple inheritance data model multiple protocols. Such an approach would require considerable
extensions to the typical object model, and as indicated in the final column, no implementation of
this approach has been attempted. This column shows whether or not the system features multiple
protocols.

o MultiView is one of several systems advocating the integration of virtual classes into a global schema.
However, in most other systems, such as [22], the integration is manual, rather than automatic. Other
approaches do not generate a global schema, but instead import individual classes into various view
class hierarchies [1], or support only partial classification [17] [3] [9] [11] (as discussed in Section 3).

15

@

RUN

ViewableObject subclass: #person
instVarNames: #(#name #birthday)
inDictionary: UserGlobals.

Base Schema

name %
birthday RUN
person compilingAccessingMethodsFor: #(#name #birthday).

%
name

birthday I Comment: universityMember, employee, and
universitylD | student classes have been defined earlier.

universityMember

name

RUN
\ name GSM baseVC: person; baseVC: universityMember;
birthday birthday baseVC: | - baseVC: student
empIOyee universitylD universitylD asevtL: employee; basevt.: student.

%

salary GPA

Class Customization

RUN
name GSM hideVC: #agelessStudent
universityID from: #student
hide: #(#(#birthday)).
T %
name
universityMember birthday
universitylD
name
agelessStudent) universitylD
name GPA
birthday
universitylD name
salary birthday
universitylD
GPA
(c) View Schema Generation
RUN

GSM createVSM: #Studentinfo password: #hello.

RUN
GSM addVSC: #agelessStudent to: #Studentinfo
%
name RUN
name ;)
birthday agelessStudent)universitylD GSM addVSC: #student to: #Studentinfo
GPA %

universitylD

RUN

- . GSM addVSC: #universityMember to: #Studentinfo
extent of UniversityMember class name %

@ birthday

universitylD

GPA
e3
ed e5

extent of Student class

Figure 8: Example Session

object view multiple ;/riizuarlla;:;s;?z iﬂreerg:sﬂce upwards closure underlying implementation

preserving |updatability | protocols globgal schema for view sch)(/ama :r?vla(:ﬁggocnocd)fe ?:re\fiigv';g ;b;:z status
MultiView '92 | = yes yes* no yes, automatic yes, automatic yes yes GemStone* yes
Abiteboul '91 no yes* no ne yes, partial classify no no 02 planned
Bertino'92 | optional | ©optional no no no no no unknown unknown
Gilbert '91 yes yes yes yes (implicit) not applicable no no (si(r:r:J;Itigpiqc) no
Heiler '90 no yes* no no no (indicated as issue) no yes Fugue Model unknown
Scholl '91 yes yes** no partial yes no no COCOON yes
Shilling ’89 yes limited yes no hierarchy not applicable no no custom no
Tanaka '88 no not clear no yes, manual yes, manual no no Smalltalk partial?

GemsStone* -- extended

yes* -- user -supplied methods yes** -- generic operators

Figure 9: Related Work

The entries in this column indicate the degree to which virtual classes are integrated into the global
schema.

o MultiView is the only system of those listed which features the upwards relocation of method code. In
this context, the virtual classes are integrated into the global hierarchy and participate in the same
inheritance scheme as the base classes; including dynamic upwards-resolution.

e Unlike relational views, which are queries resulting in virtual tables, object-oriented views can be
thought of as collections of virtual classes, with each virtual class having its own set of methods defined.
Whether or not these collections are composed into view schemata supporting their own inheritance
hierarchy is an open issue. For example, [9] consider views to be simple collections of virtual classes,
while others consider the views to be sub-schema graphs.

e Those systems that support the definition of view schemata in addition to virtual class creation should
provide view schema closure checking to ensure that classes referenced by the classes participating in
the view schema are visible with respect to the view.

e The term underlying object model indicates the system on which each view system is based. Some of
these systems are based upon existing or commercial systems, while others are designed from scratch.
For example, Scholl et al [18] have developed their own system, COCOON, while Tanaka et al [22]
base their object model upon Smalltalk.

o As far as we know, no commercial system provides a general view management system for their object-
oriented database system, and most of the systems proposed in academia have not yet been imple-
mented. The final column indicates the tmplementation status of the various systems, so far as we
could gather from the published literature.

We can compare the various approaches by classifying them into those that focus on view formation
via a query language, through user-manipulation of the object schema graph, and by supporting multiple
protocols. Most previous work regarding view systems for OODBs focuses on view formation to the exclusion
of view incorporation. In fact, most researchers have focused on how query languages can be used to support
the definition of virtual classes [9, 17, 22, 1, 14, 3]. In their discussion of FUGUE, Heiler and Zdonik
[9] propose that the query language of FUGUE can be used for the specification of object-oriented virtual
classes. They do not investigate either the issues of classification nor the re-use of methods. On the contrary,
they require the view definer to manually enter the methods to be associated with a newly derived class,
rather than deriving them automatically whenever possible, as done in our system. Abiteboul and Bonner
[1] mention the integration of select classes into a view schema, but choose to enable selective upward versus
downwards inheritance rather than creating intermediate classes and propagating methods upwards. To the
best of our knowledge, an implementation of their approach using the O2 system is planned, but is still in
progress.

Scholl and Schek’s [18] work on views comes closest to our work; they have also developed a prototype
of their approach [17]. They suggest use of an object-preserving subset of their algebra to define virtual
classes and thus achieve updatable views. However, they do not address the classification of virtual classes
into a global schema or the automatic generation of complete view schemata.

17

Others define view schemata through the manipulation of the object schema graph rather than solely
by query languages. Tanaka et al. [22] propose that view schemata be defined by manually manipulating
the edges in the global schema graph. [10] also uses DAG rearrangement for view schema definition. Such
DAG manipulation approaches must deal with the issues of (1) possibly introducing inconsistencies into the
view schema due to human error and of (2) unintentionally modifying the semantics of a virtual class due
to side effects of graph manipulation. For example, in [12], the addition of an is-a relationship may add
new inherited attributes to the virtual type, so the specification of a virtual class (both type and extent) is
dynamically recomputed for each view schema in which it is inserted.

There are also some proposals on supporting multiple protocols (interfaces) for each class [8, 20]; such
an approach would require however considerable extensions to the typical object model. To the best of
our knowledge, no implementation of this approach has been attempted as of now. A comparison of this
multiple protocol approach versus derived classes using a query language would be an important contribution
to future object-oriented view research.

8 Contributions and Future Work

In this paper, we have described the implementation issues we faced when building a prototype of the Multi-
View object-oriented view management system using commercially available OODB technology. MultiView
system classes extend GemStone’s Opal model to include multiple inheritance, multiple type instantiation,
multiple class membership, dynamic type changes, and explicit mappings between virtual and base methods.
We discuss the impact of inheritance models on the implementation of classification. We also describe the
various system metaclasses used in the implementation and the methods associated with them, and present
the current user interface of the MultiView prototype. A unique feature of MultiViewis that it automatically
integrates newly derived virtual classes into a consistent global class hierarchy, thus simplifying the task of
deriving complete customized view schema graphs to the simple selection of virtual classes.

The system as described in this report is functional. Note that the example described in Section 6 has
been successfully run through the Multi View prototype. Much of the implementation code is general-purpose,
so that it can be easily extended to serve as a view manager on top of another OODB. We are currently
evaluating our prototype system using more extensive example applications.

The system is currently functioning as a test bed for the exploration of various issues, such as view
materialization, view usage, etc. This prototype of MultiView was carried out with an eye towards simplicity
and functionality rather than efficiency. A future version could examine various methods of optimizing view
creation and classification, perhaps by pre-calculating intermediate classes or by optimizing queries. We
also want to further examine the issues involved with implementing the system using object-splitting, with
adding constraints to virtual classes (for example, constraining the insertion of objects into a virtual class),
and with the calculation of query subsumption.

9 Acknowledgements

We thank Douglas Lee Moore, Trent Jaeger, and Alexandre Eichenberger, who helped design the meta-
architecture and implement an early prototype of the current MultiView implementation; and also to Chris
Ma, who helped implement the view schema generator.

References

[1] S. Abiteboul and A. Bonner. Objects and views. SIGMOD, pages 238-247, 1991.

[2] T. Atwood, R. Cattell, J. Duhl, G. Ferran, and D. Wade. The odmg object model. Journal of Object
Oriented Programming, pages 64-69, June 1993.

[3] E. Bertino. A view mechanism for object-oriented databases. In 3rd International Conference on
Extending Database Technology, pages 136-151, March 1992.

[4] R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-based description lan-
guages. In American Association for Artificial Intelligence Conference, pages 34-37, 1984.

18

[5]

L. Cardelli. A semantics of multiple inheritance. In Semantics of Data Types — Lecture Notes in
Computer Science, 173, pages 51-67. Springer, 1984.

R. G. G. Cattell. Object Data Management: Object-Oriented and Extended Relational Database Systems.
Addison-Wesley Publishing Company, Inc., January 1992.

C. J. Date. An Introduction to Database Systems, volume 1. Addison-Wesley Systems Programming
Series, Reading, Massachusetts, 1990.

J. P. Gilbert. Supporting user views. Computer Standards and Interfaces, 13:293-296, 1991.

S. Heiler and S. B. Zdonik. Object views: Extending the vision. IEEE Data Engineering Conference,
February 1990.

H. J. Kim. Issues in Object Oriented Database Systems. PhD thesis, University of Texas at Austin,
May 1988.

W. Kim. A model of queries in object-oriented databases. In Proceedings of the International Conference
on Very Large Databases, pages 423-432, August 1989.

M. M. A. Morsi, S. B. Navathe, and H. J. Kim. A schema management and prototyping interface for
an object-oriented database environment. In F. Van Assche, B. Moulin, and C. Rolland, editors, Object
Oriented Approach in Information Systems, pages 157-180. Elsevier Science Publishers B. V. (North
Holland), 1991.

E. A. Rundensteiner. A class integration algorithm and its application for supporting consistent object
views. Technical Report 92-50, University of California, Irvine, May 1992.

E. A. Rundensteiner. Multiview: A methodology for supporting multiple views in object-oriented

databases. In 18th VLDB Conference, 1992.

E. A. Rundensteiner. Design tool integration using object-oriented database views. In IEEE Int. Conf.
on Computer-Aided Design, November 1993.

E. A. Rundensteiner. Tools for view generation in oodbs. In ACM 2nd Int. Conf on Information and
Knowledge Management (CIKM’93), November 1993.

M. H. Scholl, C. Laasch, and M. Tresch. Updatable views in object-oriented databases. In Proceedings
of the Second DOOD Conference, December 1991.

M. H. Scholl and H. J. Schek. Survey of the cocoon project. Objektbanken fur Ezperten, October 1992.
Servio Corporation. Programming in OPAL, version 2.5 edition, August 1991.

J. Shilling and P. Sweeney. Three steps to views: Extending the object-oriented paradigm. In OOPSLA,
pages 353 — 361, October 1989.

L. A. Stein and S. B. Zdonik. Clovers: The dynamic behavior of types and instances. Technical Report
(CS-89-42, Brown University, November 1989.

K. Tanaka, M. Yoshikawa, and K. Ishihara. Schema virtualization in object-oriented databases. Inter-
national Conference on Data Engineering, February 1988.

19

