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Abstract

Point-to-point networks provide a natural platform for distributed systems due to their high
bandwidth, scalability, and the potential for exploiting communication locality. Managing
these networks, however, is complicated by the disparate quality-of-service requirements of
distributed applications. Since the various routing and switching schemes are best-suited
for different classes of traffic, the network adapter should be able to dynamically tailor them
according to the current need. In this paper, we present and evaluate SPIDER (Scalable
Point-to-point Interface DrivER), a network adapter that supports a variety of routing
and switching schemes, and includes means for dynamically selecting between them. By
exercising low-level control over each network link, SPIDER exploits concurrency amongst
the links to reduce both packet latency and intrusion on the protocol software. We evaluate
a mesh of SPIDERs through cycle-level simulations over a range of routing and switching
schemes. We also demonstrate how this architecture can dynamically partition network
bandwidth to meet the performance requirements of disparate traffic classes.

1 Introduction

Distributed systems have emerged as scalable, cost-effective platforms for applications with
widely-varying characteristics and resource requirements. The advent of faster networks has
enabled distributed systems to employ mechanisms previously applied only to tightly-coupled
parallel machines, including system-wide shared memory [1] and a finer grain of computa-
tion [2]. Scalable application performance in such environments depends largely on the pro-
vision of concurrent low-latency and high-bandwidth communication. Network designs em-
ploying shared buses or token rings, for example, can effectively interconnect a small number
of computing nodes, but the serialization of medium access limits performance in larger con-
figurations. Alternatively, a network of interconnected switches [3-5] can enable concurrent
communication between nodes, delivering scalable performance at increased cost.
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Partially-connected point-to-point topologies such as meshes [6-8] offer an effective way to
interconnect the nodes of a distributed system. Besides providing a higher degree of concur-
rent communication, they permit incremental scaling of the network, and hence the aggregate
communication bandwidth, while maintaining the connectivity of existing nodes. In point-
to-point networks each node must manage several input and output links, providing routing
and switching services for every incoming packet. Exploiting the available network bandwidth
requires effective, fine-grain management of this concurrency at the physical links. Manag-
ing this concurrency entirely in software would consume substantial processing and memory
resources while incurring large packet delays.

With network bandwidth increasing faster than processor and memory bandwidth, han-
dling low-level communication protocols in software is increasingly burdening the communi-
cation subsystem. By migrating frequent and time-consuming communication functions into
hardware, both parallel and distributed systems can effectively utilize the available network
bandwidth. Since many tightly-coupled parallel machines support a fixed set of communication
policies, they implement internode communication in dedicated hardware routers [9-13]. In
contrast, distributed systems typically support a wide range of communication protocols. Since
the network adapter defines the communication primitives available to the protocol software,
flexible support for network 1/O necessitates a careful division of functionality between the
adapter and the controlling processor (network host) [14]. The overhead of host-adapter inter-
action can limit the amount of useful concurrency between the software and hardware portions
of the protocol stack. Single-port network adapters either facilitate flexibility through simple
designs [15—18], or restrict flexibility, and hence improve performance, by supporting specific
communication protocols and resource management strategies [19,20].

This paper proposes architectural support for managing communication in point-to-point
distributed systems. In particular, we present flexible, integrated hardware for routing and
switching which supports, but does not dictate, higher-level host policies. Section 2 discusses
the influence of routing and switching techniques on both host resource consumption and
packet latency. Section 3 describes the architecture and basic operation of SPIDER, the
Scalable Point-to-point Interface DrivER, that provides flexible hardware support for routing
and switching in point-to-point distributed systems [21]. Section 4 addresses how SPIDER
insulates the software from low-level protocol processing without precluding host control over
network policies. By simulating a mesh of SPIDERs at the cycle level, Section 5 evaluates
how different routing and switching schemes affect packet latency and consumption of host
resources. Section 6 concludes the paper.

2 Motivation

Distributed systems employ a variety of communication paradigms, such as remote proce-
dure call and connection-oriented data transfer, that affect the quantity and frequency of
communication between nodes. In addition, emerging distributed applications require com-
munication services with strict quality-of-service requirements, such as latency or bandwidth
guarantees [22,23]; this necessitates the coexistence of guaranteed and best-effort traffic. For
point-to-point networks, these traffic patterns and classes affect the suitability of particular
routing and switching schemes. Effective mixing of different traffic patterns mandates flexible
selection of routing and switching schemes as well as mechanisms for controlling the interaction
between the traflic classes.



The switching scheme dictates how packets flow through intermediate nodes. Traditional
packet swilching requires an arriving packet to buffer completely before transmission to a
subsequent node can begin. This consumes processing and memory resources at each inter-
mediate node. In contrast, cut-through switching schemes, such as virtual cut-through [24]
and wormhole [9], attempt to directly forward the incoming packet to an idle output link. If
the packet encounters a busy outgoing link, virtual cut-through switching stores the packet,
consuming memory and processing resources at the intermediate node. On the other hand, a
blocked wormhole packet stalls in the network, effectively dilating its length until the outgoing
link becomes free. Although wormhole switching completely insulates the host from in-transit
packets, it increases contention for network bandwidth.

While the switching scheme determines what resources are used at intermediate nodes,
the routing algorithm determines which nodes a packet visits en route to its destination.
Static routing generates a single, deterministic path between each source and destination node,
whereas adaptive routing schemes can incorporate network conditions into the routing decision.
By considering multiple outgoing links, adaptive algorithms can increase the likelihood of cut-
through at intermediate nodes. Most static routing algorithms generate only minimum-hop
routes between the source and destination nodes; in contrast, some adaptive schemes consider
nonminimal toutes in the hope of circumventing network congestion or faulty links. While
adaptive algorithms can reduce the end-to-end latency for individual packets, the destination
host may incur increased overhead due to out-of-order packet arrival. This may also complicate
the flow control and error control for software protocols providing reliable and/or in-order
message delivery.

Each routing and switching scheme is best suited for certain classes of traffic with par-
ticular characteristics and quality-of-service requirements. Although cut-through switching
techniques can improve average packet latency, they limit the ability of intermediate nodes to
influence the allocation of buffer and network resources. By buflering packets at each inter-
mediate node, packet switching facilitates resource scheduling to provide delay or bandwidth
guarantees [25]. Likewise, static routing ensures that a packet utilizes buffer and link resources
at predetermined nodes and links along its route. Adaptive routing algorithms, on the other
hand, select intermediate nodes and links dynamically, complicating reservation of buffer and
link bandwidth. Guaranteed traffic can, therefore, employ packet switching and static routing
for high predictability, while best-effort traffic exploits cut-through switching and adaptive
routing for low-latency communication.

While it is possible to implement routing and switching entirely in software, the sheer com-
plexity of managing multiple links can easily overwhelm a conventional processor. Implement-
ing routing and switching entirely in hardware, as in many parallel machines, exploits network
concurrency but limits host influence over network policies. Flexible hardware support, cou-
pled with rich interface semantics, can provide efficient, fine-grain control over low-level routing
and switching. The next section presents a hybrid approach that pushes software control as
close to the links as possible, allowing the host to tailor the routing and switching schemes to
current network conditions and control the interaction between different classes of traffic.

3 SPIDER

SPIDER, a network adapter for point-to-point distributed systems, exploits concurrency be-
tween the physical links, while enabling host control over communication policies. The device
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Figure 1: SPIDER

offloads low-level routing and switching from the software protocols running on the controlling
host processor. User applications may run on this host or on another processor that uses the
host, coupled with SPIDER, as a dedicated communication engine.

The adapter, shown in Figure 1, implements programmable routing and switching schemes
for best-effort traffic, while facilitating host control over scheduling and resource allocation
for guaranteed communication. Designed to reside on the host processor’s private memory
bus, SPIDER has direct access to the host memory and provides the host with a memory-
mapped control interface. The adapter coordinates bidirectional communication with up to six
neighboring nodes, with two virtual channels [26] on each unidirectional link. Using SPIDER,
one can construct point-to-point distributed systems with a variety of topologies, including
rings, meshes, and irregular configurations.

3.1 Architecture

Virtual channels are the unit of resource allocation and scheduling throughout SPIDER.
The channel abstraction transcends the multiple protocol layers in the device, allowing host
operations at its control interface to influence low-level routing and switching operations at
the links. Many parallel machines utilize virtual channels to provide routing flexibility with
wormhole switching [26-28]. By exporting this abstraction to the host, virtual channels
can also facilitate separate management of traffic classes on distinct virtual networks. The
programmable routing controller (PRC), a custom integrated circuit,’ exploits concurrency
amongst the virtual channels and provides fair, fine-grain arbitration at the memory and net-
work interfaces [29]. The twelve PRC TXs provide low-level control of packet transmission
while the twelve microprogrammable PRC RXs coordinate packet reception, as well as low-
level routing and switching for in-transit packets.

The PRC TXs and PRC RXs implement the low-level drivers controlling the actual trans-
mitter and receiver devices. The network interface (NI) performs the media access and flow

! The PRC is a 187-pin ASIC designed in a 0.8um process using Cascade’s Epoch silicon compiler. The

chip has a die size of 511 by 529 mils, and operates at a clock speed of 27.8 MHz on the network interface. The
control interface operates off the host’s bus clock, while the memory interface is asynchronous.



control on six pairs of AMD TAXI chips [30], insulating the PRC from dependence on a par-
ticular communication medium. The NI TX and NI RX control units perform the necessary
interleaving of virtual channels to and from the physical links, on a byte-by-byte basis. The
TAXI chips control the physical links, providing a low-cost communication fabric of either
fiber-optic or twisted-pair interconnect. Each TAXI TX-RX pair forms a bidirectional link to
an adjacent node. A TAXI TX accepts injected data from two NI TXs and each TAXI RX de-
livers data to two NI RXs providing the pair of virtual channels for each physical, unidirectional
link.

SPIDER treats outbound virtual channels (NI TXs) as individually reservable resources,
allowing the device to support a variety of routing and switching schemes through flexible
control over channel allocation policies. The reservation status unit handles requests from
the PRC RXs and PRC TXs to reserve or relinquish the NI TXs, providing low-level support
for both connection-oriented and connectionless transfer on each virtual channel. An arriving
packet can invoke a variety of policies for selecting and reserving outbound channels. Upon
receiving the header bytes from the incoming channel, the PRC RX decides whether to buffer,
stall, forward, or drop the packet, based on its microcode? and the packet’s routing header. A
PRC RX can respond to network congestion by basing its routing decision on the reservation
status of the outgoing virtual channels. By reserving multiple NI TXs, a PRC RX can also
direct an incoming packet to several output links simultaneously, allowing SPIDER to support
efficient broadcast algorithms [31].

The host can influence operation in the PRC RX through notification FIFOs, addressable
as part of SPIDER’s control interface. These FIFOs provide bidirectional information exchange
between a PRC RX and the host. The host controls channel reservations for any packet stored
in the host memory by assigning the packet to a particular PRC TX. The host transmits a
packet by feeding this PRC TX with page tags that each include the address of an outgoing
page and the number of words on the page. Likewise, the host provides each PRC RX with
pointers to free pages in the memory, for use by arriving packets. The control interface also
allows the host read access to an event queue that logs page-level activities on each channel.

3.2 Basic Operation

Figure 2 shows how a message from a user application moves through the host and SPIDER
on various nodes, in terms of the OSI reference model. While the host is responsible for the
presentation, session, and transport layers, SPIDER handles the data link and physical layers,
as well as part of the network layer. To illustrate the interaction between the host, SPIDER,
and the network, consider how a message travels through the OSI layers during transmission
from the source node, cut-through at an intermediate node, and reception at the destination
node.

Transmission: When an application requests the host to transmit a message to another
node, the host disassembles the message into multiple packetls, where a packet consists of one
or more (possibly non-contiguous) pages. Using the control interface, the host then instructs
the appropriate PRC TX to transmit these pages. After reserving the NI TX, the PRC TX
fetches the data from each page. Data is initially retrieved from the host memory in cache
lines, and converted to words as the packet travels from the memory interface to the PRC
TX. During this transfer to the PRC TX, the PRC transparently accumulates a 32-bit cyclic

2 Bach PRC RX has a 128-instruction control store. Microprograms for typical routing and switching schemes
require about 60 to 70 instructions to implement.
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Figure 2: OSI reference model

redundancy code (CRC) for error detection. After sending the last data word of the packet, the
PRC TX transmits a 32-bit timestamp, read from a counter on the PRC, followed by the CRC;
the timestamp values facilitate clock synchronization and computation of end-to-end packet
latencies. The PRC TX transmits each of these words to the NI a byte at a time. Under NI
TX control, the TAXI TX on the NI converts each byte into a string of bits for transmission
on the serial link.

Cut-through: Packet reception begins when data arrives at a TAXI RX in the network
interface. The NI RX initially forwards data to its associated PRC RX, until the PRC RX
has received enough header bytes to make a routing decision for the packet. If the packet is
destined for a subsequent node, the PRC RX can try to send the packet directly to the next
node by reserving an NI TX. If the PRC RX is able to establish a cut-through, the PRC RX
then sends the data it has accumulated to that transmitter and reconfigures the NI RX to
forward data directly to the reserved NI TX, bypassing the PRC entirely (as indicated by the
dashed line in Figure 2). When the packet has cleared the node, the NI RX automatically
reconfigures itself to forward the next packet to its associated PRC RX.
Reception/Buffering: When a packet buffers at the local node, however, the PRC RX
simply collects the bytes from the NI, reaccumulating the CRC while transferring each word
of the packet to the memory interface. These words are assembled into cache lines and written
into pages in the host memory. The PRC event queue logs the arrival of each page, noting the
address and size. At the end of the final page of the packet, the PRC RX appends the packet
with a receive timestamp and logs a packet-arrival event indicating the outcome of the CRC
check. If the packet has reached its destination, the host reassembles the pages into a packet
and the packets into a message. Otherwise, the host schedules the packet for transmission to
the subsequent node in its route.

4 Managing High Connectivity

Besides managing traffic originating and terminating at the node, the host may have to manage
in-transit traffic that cannot cut through. Because of the concurrency at the physical links,



the host must process a large number of transmission and reception events, and service each
channel in a fair and efficient manner. SPIDER’s host interface facilitates fine-grain bandwidth
allocation between channels while increasing throughput and minimizing the intrusion on the
host. Using the primitives exported by SPIDER, the host can exercise dynamic, fine-grain
control over the individual transmission and reception channels.

4.1 Host Interface

To facilitate the coexistence of different classes of traffic, the host may support various
priority-based scheduling policies. Implementing priority-based queueing entirely in hardware
incurs higher cost and limits flexibility; implementing it entirely in software increases overhead
and limits throughput. The scheduling queues are therefore implemented partially on SPIDER,
as short FIFO page tag queues, allowing the host to employ different algorithms and arbitrary
queue structures in software to schedule messages and packets. The page tag queues for
outgoing channels form the logical head of these scheduling queues; they are fed from the
host-managed scheduling queues through the memory-mapped control interface. The event
queue, which logs SPIDER’s use of pages for both transmission and reception, forms the
logical tail of the internal event queues maintained by the host. The host can parse the logged
events into several internal event queues, possibly corresponding to different channel priorities,
and influence packet scheduling and free-list maintenance based on this feedback. Using this
information the host can reconstruct received packets and update internal state information
for each active channel.

Even though the control port introduces a physical serialization point, the primitives
exported to the host preserve the channel abstraction maintained inside SPIDER. Provid-
ing transmission and reception page tag queues for each virtual channel enhances SPIDER’s
throughput by preserving inter-channel concurrency. A single, shared event queue simplifies
event logging, and effectively decouples the host from the events generated by SPIDER during
packet transmission and reception. The host can handle groups of events by draining the event
queue through the control port. Together with selective interrupt masking, this effectively
reduces the number and frequency of interrupts delivered to the host, and amortizes the cost
of fielding an interrupt over multiple events. The host can further avoid the relatively high
cost of fielding interrupts by polling SPIDER instead, further bounding the potential intrusion
by in-transit traffic.

Because SPIDER views a packet as a collection of one or more pages, it places few restric-
tions on packet format or size. These pages could be partially-filled and non-contiguous in
memory (similar to MBUFs and MBUF clusters [32]). This allows a sending host to generate
the packet header on a separate page while leaving the data pages untouched, minimizing
data-copying overhead and host memory fragmentation. SPIDER coordinates memory trans-
fer for packet transmission and reception, insulating the host from direct involvement with
data movement. To avoid replicating bus arbitration logic for each channel and to minimize
host bus loading, the PRC multiplexes the active channels at the granularity of 32-bit words.
Channel multiplexing significantly reduces the pin-out of the PRC, allowing an integrated,
single-chip solution. The internal design bounds worst-case access latency, guaranteeing for-
ward progress for each active channel. The external cache interacts with the host memory
using block transfers of cache lines, amortizing the overhead of bus arbitration over multiple
words.



4.2 Host Policies

The fine-grain coordination between the host and SPIDER enables the software protocols
to efficiently manage different traffic characteristics and quality-of-service requirements. To
support a mix of traffic classes, the host can assign individual traffic classes to distinct virtual
networks, precluding channel contention in one class from directly influencing the other classes.
The host can control traffic mixing on these virtual channels/networks by maintaining distinct
scheduling queues and appropriate multiplexing policies. Within SPIDER, packets on different
virtual networks interact only to compete for access to the physical link. Careful selection of
switching and routing schemes, coupled with fine-grain arbitration between the virtual net-
works, allows the multiple traffic classes to share communication bandwidth without affecting
the performance of each class.

Since the channel abstraction is preserved across SPIDER’s control interface, the host can
efficiently retrieve status information for all virtual channels through a single control-interface
primitive. The host uses this feedback to determine the rate at which data is fed into the active
channels. The host can exercise fine-grain control over guaranteed traflic, while pipelining
packet transmissions to support high-throughput best-effort packets. While SPIDER supports
low-level cut-through switching schemes, the host at intermediate nodes can also implement
partial cut-through [24,33] for large packets which may be buffered because of busy outgoing
links. This technique improves performance by overlapping the forwarding of buffered pages
with the arrival of subsequent pages of a packet.

SPIDER facilitates the detection of anomalous network conditions, such as congestion or
faulty links, by software protocols. Since SPIDER tags each incoming and outgoing packet
with a timestamp, the host can determine the latency experienced by incoming packets. Simi-
larly, since SPIDER logs the outcome of the CRC check for each arriving packet, the host can
diagnose intermittent link faults. The notification FIFOs provide a rendezvous point between
each PRC RX and the host, and are used to diagnose and respond to dynamic network con-
ditions. For example, each PRC RX can relay the cut-through statistics for recently arrived
packets or report dropped packets. Using the notification FIFOs, the host can direct a PRC
RX’s response to the prevailing network conditions.

5 Evaluation

To capture the interaction between routing, switching, and host policies, we have developed
pp-mess-sim (Point-to-Point MESS SIMulator) [29]. Implemented in C++, pp-mess-sim is an
object-oriented discrete-event simulation environment for evaluating point-to-point network
adapters. Using a high-level specification language, the user can select the interconnection
topology and the communication patterns generated by each node in the network. These
patterns stem from a collection of independent traffic classes, each with its own performance
metrics and packet characteristics. The simulator allows the derivation of packet length, in-
terarrival times, and target nodes from a variety of stochastic processes. To evaluate traffic
mixing, the simulator associates each traffic class with a routing and switching scheme on a
set of virtual networks.

Besides providing a general framework for evaluating adapter architectures, pp-mess-sim
includes a cycle-level model of SPIDER that captures the details of flow control, resource ar-
bitration, and microcode execution. The simulations capture the activity at SPIDER’s mem-
ory and control interfaces, including memory access delay and packet scheduling. Although
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Figure 3: Comparison of switching strategies using 64-byte packets.

SPIDER supports a variety of network topologies and packet sizes, the simulation studies focus
on fixed-length packets traveling in a 6 x 6 wrapped square mesh (torus). Most of the exper-
iments employ dimension-ordered routing, which requires a packet to travel along a minimal
path completely in the z-direction before proceeding in the y-direction to reach the destina-
tion node [9,28]. For the simulation results below, each node independently generates packets
with exponentially-distributed inter-arrival times and uniform random selection of destination
nodes, unless otherwise stated.

5.1 Switching

In defining how packets flow through the network, the various switching schemes stress
different resources at intermediate nodes. Figure 3(a) shows the average rate of in-transit
packet arrivals at a node as a function of the switching scheme and the traffic load. These
experiments employ dimension-ordered routing, with wormhole packets utilizing two virtual



channels to guarantee deadlock-avoidance [27]. As expected, packet switching imposes the
highest in-transit load on the host, regardless of the traffic load. Wormhole switching, on the
other hand, offers complete insulation of the host from in-transit packets by using channel re-
sources to store blocked packets. When the traffic load increases, however, channel contention
causes wormhole latencies to become worse than those with packet switching, as seen in Fig-
ure 3(b). This contention also results in a dramatically lower peak throughput [26,34], as seen
in Figure 3(c).

By removing blocked packets from the network, virtual cut-through offers lower latencies
under heavy loads than wormhole switching. Virtual cut-through also provides excellent la-
tencies under light loads, but as seen in Figure 3(a), it does not completely insulate the host
from in-transit packets. As an effective compromise, a best-effort traffic class can employ
deadlock-free wormhole routing but allow lightly-loaded hosts to buffer blocked packets to al-
leviate contention. By using the notification FIFOs, individual nodes can alternate between
stalling and buffering any blocked in-transit packets, depending on current host conditions.
Dynamically selecting the switching scheme allows hosts to insulate themselves from in-transit
packets when necessary or to accept additional communication overhead in order to improve
network throughput.

5.2 Routing

The benefits of cut-through switching depend largely on the likelihood of cut-through at
each node. Adaptive routing algorithms can significantly increase this probability, especially in
the presence of non-uniform traffic patterns. Figure 4 compares the performances of dimension-
ordered routing and an adaptive minimal path algorithm, in a network containing both uniform
and non-uniform traffic.’> The adaptive algorithm used allows a packet to consider an alternate
link along any shortest path when the first-choice link is busy. In this experiment, both
algorithms use virtual cut-through switching; the amount of non-uniform traffic in the network
is held constant while the level of uniform background traffic is varied.

As shown in Figure 4(a), adaptive routing significantly reduces the number of intermediate
packets seen at the hot-spot node compared to dimension-ordered routing. Allowing the in-
transit packets to circumvent this congestion relieves the hot-spot node, which is busy with
additional traffic destined for it. Avoiding the congestion also increases the probability of cut-
through and hence, decreases the average packet latency as shown in Figures 4(b) and 4(c).

While this experiment shows the benefits of adaptive routing in a given environment, using
SPIDER, the host can select its routing policies to suit a wide range of operating environments.
The host, for instance, may find that that the performance of dimension-ordered routing is
comparable to adaptive routing in low-connectivity networks and in networks with uniform
traffic patterns. The use of adaptive routing in these cases would be offset by the protocol
overhead in reordering packets at the destination nodes, making static routing a better alter-
native. In contrast, adaptive algorithms could be used for messages traveling longer distances
where the benefits of the increased cut-throughs outweigh this overhead. The host, with the
variable-length packet features of SPIDER, could also send entire messages in one packet using
adaptive routing and avoid reordering costs altogether. In each case, the PRC RX can use the
routing header to determine how to route individual packets. Finally, adaptivity facilitates

? To generate the non-uniformity, a single node in the network was made the “hot” node by having its

adjacent neighbors transmit additional packets to it. Each neighbor generates an additional 0.02 packets per
cycle to send to the “hot” node, possibly emulating the traffic near a server.
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Figure 5: Partitioned and mixed traffic with 32-byte and 256-byte packets.

fault-tolerance; by using the notification FIFOs in the PRC, the host can diagnose network
failures and change routing policies in response to them. With these mechanisms, SPIDER can
tailor its routing algorithms to the needs of its applications and to the state of the network.

5.3 Traffic Partitioning

Since the various routing and switching schemes have diverse performance characteristics,
SPIDER allows the host to tailor communication policies to meet the requirements of each
traffic class. Figure 5 illustrates the effects of partitioning traffic onto separate virtual networks
according to packet length. In the mixed traffic experiment, short and long packets share a
pair of virtual networks; the other experiment assigns each traffic class to its own virtual
network. As shown in Figure 5(a), mixing the two classes of traffic adversely affects the
average latency of the short packets. When the two classes share virtual channels, a short
packet may wait behind one or more long packets to reserve an outgoing channel. Avoiding
interference with other packets places a tighter bound on end-to-end latency. The host may, for
example, dedicate a virtual network to infrequent control messages; this provides a fast path
for important messages, while allowing best-effort traffic to utilize any remaining bandwidth.

While the short packets benefit from partitioning the traffic, the long packets incur addi-
tional delay as shown in Figure 5(b). When both classes shared the virtual networks, a packet
could utilize either virtual channel on a physical link in its route. In effect, additional virtual
channels provide greater flexibility and adaptivity in establishing cut-throughs for in-transit
packets. Relegating long packets to a single virtual network increases their end-to-end latency
by reducing the cut-through probability. Depending on the relative importance of the traffic
classes, the host uses virtual channels to limit interference between different traffic classes or
to reduce channel contention within each class.

Increasing the number of virtual channels on each link allows the host more flexibility in
reducing contention [26] and partitioning traffic. Figure 6 evaluates a configuration where each
physical link has three virtual channels, two allocated to best-effort packets for deadlock-free
wormhole routing [27] and one dedicated to guaranteed traffic using packet switching. The

12
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Figure 6: Partitioned packet switching and wormhole switching using 64-byte packets.

experiment varies the best-effort traffic load, while injecting guaranteed traffic at a constant
rate.* Figure 6(a) shows the average end-to-end packet latency for each class of traffic; Fig-
ure 6(b) shows the standard deviation of latency for all packets traveling exactly five hops.
Both the average latency and predictability of the guaranteed packets are largely unaffected
by the best-effort traffic, due to fine-grain arbitration amongst the virtual channels. Channel
contention on the best-effort virtual networks does not influence the guaranteed packets, since
blocked wormhole packets temporarily stall in their own virtual network instead of consuming
any physical link or buffer resources.

6 Conclusion

The location and semantics of the boundary between the network adapter and the software pro-
tocols determine not just the performance of data transfer, but also the flexibility afforded the
software to intelligently manage this transfer. In point-to-point distributed systems, flexible
hardware support for routing and switching improves performance and facilitates the coexis-
tence of traffic with varying characteristics and quality-of-service requirements. Although it is
possible to construct a point-to-point distributed system using replicated single-port commu-
nication hardware at each node, cost and performance considerations necessitate an efficient,
integrated design for the network adapter.

In this paper we have presented and evaluated SPIDER, a network adapter featuring flexible
hardware support for point-to-point distributed systems. Protocol support and media access
in SPIDER stem from distributed systems, while the low-level packet routing and switching
schemes derive from the point-to-point parallel computing domain. While network adapters for
distributed systems typically manage a single conduit to the interconnection fabric, SPIDER
manages communication on multiple network links. Cycle-level simulations justify the flexible
support and demonstrate the utility of traffic partitioning using virtual channels. Based on

*Each node generates a guaranteed packet once every 1500 cycles.
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this evaluation, we plan to increase the number of virtual channels per link by reducing the
number of PRC RXs and allowing each PRC RX to service multiple virtual channels.

In the current design, SPIDER interfaces to the Ironics IV-3207 [35], a VMEbus-based
68040 card, through a daughterboard interface to the processor memory bus. An IV-3207 card,
coupled with the SPIDER daughterboard, can serve either as a network-based uniprocessor
handling both application and communication tasks or as a dedicated network host for the
node. Since the daughterboard interface is used for both control and data, the performance of
SPIDER is limited by the bandwidth of the host memory bus. To provide additional bandwidth
for data transfers, we are modifying the design such that these transfers utilize the VME bus;
the control port still connects to the daughterboard interface. To eliminate the intrusion on the
host memory, we will provide separate buffers on SPIDER for in-transit packets. This would
enable the host to perform buffer management and scheduling for in-transit packets without
consuming local memory resources.

SPIDER facilitates fine-grain bandwidth allocation between virtual channels while mini-
mizing the intrusion on the host. It exploits the concurrency between the virtual channels
internally, and exports the channel abstraction across the host interface. This allows host
software to employ channel management policies that support traffic partitioning and exploit
inter-channel concurrency. Using SPIDER-based network hosts, we plan to study point-to-
point distributed systems with a variety of regular and irregular topologies. SPIDER’s design
enables flexible host policies regarding processor, memory, and bandwidth allocation in point-
to-point distributed systems.
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