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It has been shown that the database schemata often experience considerable changes during the
development and initial use phases of database systems for advanced applications, such as automated
manufacturing and computaided design. An automated schema evolution system can significantly
reduce the amount of work and potential errors related to schema changes. Although schema evolution for
non-real-time databases was the subject of some previous research, its impact on real-time database
systems remains unexplored. Since these advanced applications typically utilize object-oriented models to
handle complex data types and there exists no agreed-upon real-time object model that can be used as
foundation to define a schema evolution framework, we first design a conceptual real-time object-oriented
data model, called ROMPR captures the key characteristics of real-time applications, natimeiyg
constraints and performance polymorphism. It uses specialization dimensions to model timing
specifications and letter class hierarchies to capture performance polymorplasthemte-evaluate
previous (non-real-time) schema evolution support in the context of real-time databases, which results in
several modifications to the semantics of schema changes and to the needs of schema change resolution
rules and schema invariants. Furthermore, we expand the schema change framework with new
constructs—including new schema change operators, new resolution rules, and new invariants—for
handling additional features of the real-time object model.

Key words: Object-oriented database, real-time data model, performance polymorphism, letter class
hierarchy schema evolution.

1 INTRODUCTION

The object-oriented approach has been shown to befestiwd way to manage the development and
maintenance of lge complex systems, including real-time system&][5Many advanced real-time
applications, such as manufacturing workstations/cells and dic ttahtrol systems, require a built-in
database management system (DBMS) to support concurrent data access and provide well-defined
interfaces between d#rent software entities (tasks, processes, and modules). They typically are subject to

a range of timing constraints, which require the DBMS to provide timing guarantees, sometimes, under
complex conditions. The deadlines of real-time tasks can be classifiegidadirm, or soft [26]. A

deadline is said to be hard if the consequences of not meeting it can be catastrophic, such as in a nuclear
reactor controllerA deadline is firm if the results produced by the corresponding task cease to be useful as
soon as the deadline expires, but consequences of not meeting the deadline are not catastrophic, e.g.,
weather forecast. A deadline which is neither hard nor firm is said to be soft. The utility of results produced
by a task with a soft deadline decreases over time after the deadline expires. Conventional DBMSs
generally have no mechanisms to speaiiyd much less to enforce, such complex timing guarantees.

1. This research was supported in part by the Horace H. Rackham School of Graduate Studies at the University of Mich-
igan under a Research Partnership Grant, the United Parcel Service Foundation under an IVHS Graduate Fellowship,
and the National Science Foundation under Grant DDM-9313222.



Thus, they do not &ér the performance levels or response-time guarantees needed by these real-time
applications. Such inadequacy has recently spawned the field of real-time datdh@&326127, 30].

The requirements of a real-time system, like most other systems, are likely to change during its life
cycle. The system must be able to evolve smoothly in order to improve its performance or to introduce new
functionality, without disrupting existing services. The extent of changes in a typical working relational
database system is illustrated in [28], which documents the measurement of schema evolution in the
development and initial use of a health management system used in several hospitals. There was an
increase of 139% in the number of relations and 274% in the number of attributes in the system during the
nineteen-month period of study [18], significant changes (about 59% of attributes on the average) were
reported for seven applications. These applications varied from project tracking, real estate inventory and
accounting and sales management, to government administration of the skill trades and apprenticeship
programs. It was observed that the most frequent contributor to schema changes is changing user
requirements. Advanced database applications, especially engineering design applications, which are most
appropriately captured by object-oriented databases (OODBSs), are typically much less understood and thus
are even more prone to numerous changes in the database schemata. In {hvgepapestigate the
impact of schema evolution on real-time applicatiomsthe best of our knowledge, this question of real-
time schema evolution has not been addressed before.

Real-time database research often uses the object-oriented paradigm. Howagezed-upon real-time
object-oriented data model is available at this time. Therefore, we first need to define a real-time data
model, based on which we can develop a schema evolution framewsHaw/ evaluated existing models
used for real-time applications [8,12,14,16,20,31]. Based on this evaluation, we extract a simple yet
powerful real-time object model that explicitly captures important characteristicEQB Bpplications,
especially in the manufacturing application domain, namgiging constraints and performance
polymorphism. It uses specialization dimensions to model timing specifications and letter class hierarchies
to capture performance polymorphism.

We then develop a framework for changes to schemata of real-time OODBs based on the typical schema
change taxonomy [2]. Schema evolution has been defined for simple (non-real-time) object-oriented
models [222,24,32]. We now re-evaluate this work in the context of real-time databases, which, as we
will show, results in several modifications to the semantics of schema changes and to the needs of schema
change resolution rules and schema invariants. Furthermore, we expand the schema change framework
with new constructs—including new schema change operators, new resolution rules, and new invariants—
for handling additional features of the real-time object modelaldb demonstrate the utility of our real-
time object model and schema evolution framework based on several manufacturing applications.

The remainder of the paper igganized as follows. Sectidhdescribes a conceptual real-time object
model, while SectioB defines a schema evolution framework based on the model. Skbtiefly covers
related work. W discuss additional research issues in Sebtiamd conclude the paper with Secifon

2 CONCEPTUAL REAL-TIME OBJECT MODEL

In this section, we describe a conceptual real-time object model, called R&¥&Rifne Object Model
with Performance Polymorphidmit is conceptualin the sense that it is hot dependent on any specific
implementation. This model aims to provide a simple, ydicgeriitly powerful foundation, for our real-
time schema evolution research by explicitly capturing the key characteristics of real-time applications.

2.1 Object-Oriented Concepts

ROMPP is object-oriented, that is, any real-world entity is represented by one modeling coruigpttan

ROMPP adopts basic object-oriented concepts, such as class and inheritance, as can be found in most
object-oriented models [80, 15]. These concepts are defined below as needed for the remainder of this
paper



Definition 1. Anobject is a triple {dentifier, state, behavior), whee the identifier is generated by the
system and uniquely identifies the object, the state is determined by the set of valuesstinte
variables associated with the object, and the behavior e&sponds to thenethods associated with the
object. An instance variable of an object can hold as value either a sysieitiegr object, such as an
integer or a userdefined object, such as a Sendostance variables arprivate to the object, i.e., they
can only be accessed by the obgectiethods. A method is defined bigr{ature, body), whee the
signatue consists of a method nameand a mapping &m input parameter specifications to an output
parameter specificationm (In, In,, ..., In,) — Out. A parameter specification (either input or output) is a
class name. The body cesponds to the actual code which implements theedee&inctionality of the
method. Methods can be either privatgablic. A public method is accessible to all methods of the object
or even to other objects. An instance varialef an objecta can be specified as beingmposite In this
case, the objecB refeenced though the composite instance variable is owned by the object.
Deletion ofA will cause the deletion &.

Definition 2. A classis a tuple fame structure) that represents a gup of objects with the same
declaration of instance variables and methods. The name of a class is a string and thesstounstigks of
the declaration of common instance variables and methods.

Definition 3. For two classes, and c,, ¢, is asubclasg of c,, denotedc, is-a C,, if and only ifc,
inherits every instance variable and methoaof

Multiple inheritance is allowed, that is, a class can have more than one superclass. Note that private
instance variables and methods of a class are not visible to its subclasses, although they are inherited by the
subclasses. Only public methods of the superclasses are accessible to the subclass and become part of its
public interface. In other words, private instance variables inherited from a superclass are stored in the
instances of the subclass, but these private instance variables (and methods) can only be accessed by the
subclass via public methods defined in the superclass. A public method of a class can be declared virtual,
i.e., it has no code associated with it and must be implemented in the class’ subclasses (or descendants).
The objects of the same class type are usually daltahceof the class.

Definition 4. A class hierachy is a directed acyclic grap%s = (V,E), whee v is a finite set of vertices
andE is a finite set of dacted edges. Each elemenvigorresponds to a class, while E corresponds to
a binary elation onvxV that represents all subclaslationships between all pairs of classesvinin
particular, each diected edge: from C; to C,, denoted by = [T/, C,[, represents the is-aetationship
(c,is-ac,).

2.2  Key Characteristics

Based on our evaluation of existing real-time systems9,[®,14,16,20,31] and real-time
manufacturing applications [4, 19], we have identified two key characteristics for real-time data models:
timing constraintsandperformance polymorphism

2.2.1 Timing Constraints

The first key characteristic is the concept of timing constraints. A real-time system must have the ability
for the users to specify timing constraints and for the system to provide timing guarantees. Any real-time
object model must thus have constructs to specify timing constraints. The implementation of a real-time
DBMS must provide mechanisms to guarantee these deadlines.

Definition 5. Thetiming constraint of a task efers to the deadline by which the task must be completed.

In our real-time object model, timing constraints are associated with the performance of methods, since
the behavior of an object is represented by its methods and applications will be requesting services from

2. Throughout this papewe say that A is aubclasf B (B is asupeclassof A) iff A inherits directly from B, and A is
adescendanof B (B is anancestorof A) iff A inherits directly or indirectly from B.
3. A class hierarchy without multiple inheritance corresponds to a tree rather than a DAG.
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objects via their respective methodse YWus need to extend the definition of a method (Definlfjon

Definition 6. Amethod in ROMPP is defined as a triplsignature, body, performance), with signatue
and body defined as in Definitidn The (optional) thit field specifies the performance measof the
method, such as execution time, memory space, etc.

We shall see that the exact specification of the performance field of a method tfgletegiending on
the type of classes, as described in the next subsection.

2.2.2 Performance Polymorphism

To implement the functionality of a method, typically severdediht algorithms and/or data structures

can be used. Real-time systems need support in selecting one from these implementations based on, for
instance, the performance constraints, since this would allow them to build complex real-time applications
effectively. For example, a method that soft#ems may choose among a variety of sorting algorithms,

such as insertion sort, nger sort, quick sort, counting sort and bucket sort, depending on the size of inputs
and/or knowledge about the keys to be sorted on. A real-time application may want to select among these
different sorting implementations based on performance characteristics, but without having to deal with
details of the respective implementation. This second key characteristic of a real-time model is called
performance polymorphism.

Definition 7. Performance polymorphism refers to the concept of maintaining and selecting among
multiple implementations of a method (body) that carry out the same task and differ only in their
performance meases, such as execution time, memory space, system configuedigdhpecision, and

so on. Performance polymorphism is explicitly supported by ROBIRP®iIng dynamic selection of the
most appopriate method implementation based on performance characteristicedlbgithe application.

If a real-time object model does not have explicit constructs for performance polymorphism, we have to
use one of the following approaches:

1. The knowledge of performance polymorphism is captured and maintained separately from the schema.
For example, the service desigheray use a library to group tlfent implementations of the same
service. The knowledge about such real-time object libraries is not part of the system schema.
Therefore, it is the application develspesponsibility to keep track of fifent implementations and,
more importantly about their relative characteristics and performance metrics. The application
developer must use them appropriately in the improvement of existing systems or the development of
new applications. Obviouslguch approaches do not provide support for software reusadnilityput
all burden on the application developer

2. The service designer could use one implementation of an object to meet all performance requirements,
no matter how dferent they are. This ovaimplistic approach would typically require us to assume a
worst-case scenario. This is not even always possible, because requirements may contradict one
another It also wastes resources and poses true limitation on applications. For example, suppose the
system has a memory space of 10MB, and the chosen implementation of object A requires 8MB while
object B needs 3MB. ObviouslA and B cannot co-exist in memorfherefore, a real-time task
cannot receive services from A and B concurrerthen if A needs only 2MB to provide the desired
services for this particular application when using a slightly slower algorithm.

3. Another option is to duplicate the definition of the method (or object) with each of its implementations
and give them distinct names in order to simulate performance polymorphism. This would again carry
all disadvantages of the first approach above, making the application developer responsible for
maintaining information about individual services and their relationships. In addition, a system of such
a type is dificult to maintain. Any change in the definition of the method has to be made to all its

4. In this paperwe distinguish between tiservice designewho builds the kernel classes required by an application,
and theapplication developewho utilizes these kernel classes stored in the DBMS to construct applications.
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duplicates, which is in&€ient and often prone to errors.
Our model overcomes all of these problems by adopting the following strategies:

1. It provides a definition of the servicef@fed by a method, and supports explicit association of distinct
implementations with each service;

2. It allows for the explicit annotation of the performance features that characterize each implementation
by the service designeand for their explicit maintenance by the database system;

3. It supports an automatic mechanism for the application developer to work with the most appropriate
implementation of a desired service based on requested performance requirements, without having to
explicitly choose one of the implementations. Should the performance requirements of an application
change, the mechanism would transparently rebind the requested service with the most appropriate
implementation.

Performance polymorphism in ROMPP is captured byldtier class hierachy, which is based on an
object-oriented programming technique—émelope/lettestructue [8].

Definition 8. Anenvelope/letter structure is a composite object structuformed by a pair of classes that
act as one: an outer classrvelope classor EC) that is the visible part to the usand an inner class
(letter class or LC) that buries implementation details.

Definition 9. Aletter class hieraichy is a class hierathy as defined in Definitichthat consists of, as its

root, an envelope class and @¢o many letter classes. The envelope class and all its letter classes must
have exactly the same public methods. Furthesntbe letter classes can only have iglationships with
classes in the same letter class hiergr Letter classes ar not explicitly accessed by the application
developerbut rather ae manipulated by the system based on the performagoeaments specified with

the envelope class.

In other words, the letter classes of a letter class hierarchy are all descendants of their corresponding
envelope class. They can have is-a relationships between themselves, thus inheriting additional instance
variables and methods. But they cannot have is-a relationships with any other envelope or letter classes.

Definition 10. An envelope class hierathy is a class hierathy that consists of, as iteat, a system-
provided class, calleBROOT, and one to many envelope classes.

Notice that the definition of an envelope class hierarchy does not include letter classes, although each
envelope class has an associated letter class hieralibemphasizes the fact that, for applications, letter
classes are hidden behind their corresponding envelope classes. A public method of an envelope class can
be designated asspecialization dimensigmas defined belaw

Definition 11. A specialization dimension is a performance measuDefinition6) that distinguishes
letter classes &m one anotherA specialization dimension must be assigned to a public method in the
letter class hierathy. Thee is aspecialization spaceassociated with each letter class hiefay and its

axes ae specialization dimensions.

The letter classes specialize along one or more specialization dimensions that have been specified for the
public methods in their corresponding envelope class. The most common specialization dimension for
real-time applications is the execution time of a method. The public methods corresponding to a
specialization dimension must be declared virtual in the envelope class. That is, there is no code attached to
the methods with envelope classes. A public method could represent more than one specialization
dimension. For example, if the implementation of a method requires a tfaoktvo&en execution time
and memory space consumedfatént implementations of the method will represeriedsht points in a
two-dimensional specialization space, whose axes are execution time and memory space consumed.

The performance-related information of a letter class hierarchy is reflected in its specialization space. A
simple implementation of a specialization space would beganae all letter classes in a letter class
hierarchy into an unsorted linked list. A sequential search through the list would find the best letter class (if



one exists) satisfying the given performance requirements. This simple approach would work well when
the number of letter classes is small. For mofieient lookup, letter classes may be sorted along their
specialization dimensions. Envelope classes have complete knowledge of how their corresponding letter
class hierarchies areganized. This knowledge may be implicit when all letter class hierarchies use the
same aganization technique and it is known to the system, or explicit when the knowledge of the
organization technique is stored in individual envelope classes. The relative performance of a letter class is
significant in terms of its location in this specialization space. Hence any change on the performance value
may map the letter class to afdient point in its specialization space. Letter classes are not necessarily
static (or predefined); they can be created at run-time.

2.3 Model Constructs

For the specification of the constructs introduced above, we propose the following data definition notation.
Note that these model constructs are designed to be programming language independent. They are
specified by statements with special key words preceded by the character “@”. The following constructs
have been defined:

1. @EC <ec>

It declares that <ec> is an envelope class. This statement is used when defining classes.
2. @LC <lc> OF <ec>

It declares that <Ic> is a letter class of the envelope class <ec>, again used for class definition.
3. @DIM: <method> = <identifier>

It specifies that <method> is a specialization dimension of the letter class hierarchy and gives it a
unique identifierThis construct can only be used within the definition of an envelope class.

4. @DIM: <identifier> = { <value> | <expr> | unknown }

It specifies the performance value of the specialization dimension <identifier> that has been declared
for its corresponding envelope class. This construct can only be used in the context of letter classes.

Several examples are given in Sectzof to explain the newly introduced concepts. These examples are
described in C++, since C++ and C are among the most popular programming languages for real-time
applications. By placing the model constructs in programming language comments, we avoid modifying
the programming language itself. The model constructs can be pre-processed, before the code is sent to the
programming language compiler

2.4  Examples
Example 1: A Letter Class Hierarchy with One Specialization Dimension

In Figurel, the classensor is the envelope class, while classesor1 andsensor2 are its letter classes.
The latter encapsulate two féifent implementations of the methaghpie() defined for the formeiThe
method sample() has one associated specialization dimension, identifiedTime. sTime refers to
requirements on execution time of the method, and the two letter classes assderatat dilues of
execution time, i.e., timing guarantees, withple(). In the examplesample() is the only specialization
dimension. Therefore, the specialization space is one-dimensional as shown id (€gure

Example 2: A Letter Class Hierarchy with Two Specialization Dimensions

In the example depicted in Figu2ethere are two specialization dimensions, associated with the methods
sample() andprocess(), respectivelyTherefore, the specialization space is a plane, as shown in E{gure

Note that specialization dimensions may not necessarily be inferred from the structure of the letter class
hierarchies as, for instance, shown in Fidd(l®, since these simply capture is-a relationships in terms of
property inheritance.



/1 @EC. Sensor
cl ass Sensor ({

public:
Sensor () ;
[l @M int sanple() = STinme
virtual int sanple();

}

/Il @C. Sensorl OF Sensor
class Sensorl : public Sensor {

public:
Sensor 1();
// @M STine = 10 ns
int sanple();

}

I/l @C. Sensor2 OF Sensor
class Sensor2 : public Sensor {

public:
Sensor 2();
/I @M STine = 20 s
int sanple();

}

(a) Model Description

conventional class

envel ope cl ass

(:F} letter class

-— is-a

Sensor

Gl

Sensor 1 Sensor 2

(b) Letter Class Hierarchy

Sensor1l Sensor?2

S, S, >
0 10 20 STime (ns)

(c) Specialization Space

Figurel. Example of One-dimensional Specialization Space

/Il @EC. Sensor

cl ass Sensor ({

public:
Sensor () ;
/] @M int sanple() = STine
virtual int sanple();
/] @M void process() = PTine
virtual void process();

}
/1 @C. Sensorl CF Sensor
class Sensorl : public Sensor {
public:
Sensor 1();
/I @M STine = 10 s
int sanple();
/[l @M PTine = 6 nB
voi d process();

}
/1 @C. Sensor2 CF Sensor
class Sensor2 : public Sensor {
public:
Sensor 2();
/I @M STine = 20 s
int sanple();
[l @ M PTime
voi d process();

3 nB

(a) Model Description

Sensor

GG

Sensor 1 Sensor 2

(b) Letter Class Hierarchy

PTi ne
(ms)
Sensor 1
6 O
3 (O Sensor?2
-
0 10 20 STime (ns)

(c) Specialization Space

Figure2. Example of Wo-dimensional Specialization Space



2.5 Real-Time Object-Oriented Database Schema

Definition 12. Areal-time object-oriented database (ROODB) schemais composed of one envelope
class hierachy and a set of zeior moe letter class hierahies, defined in DefinitiotO and Definitiord,
respectivelyEach letter class hierahy is associated with one envelope class.

If an envelope class has no letter classes, it degenerates to a conventional class. Thef@@®B R
schema is comprised of exactly one envelope class hierarchy and zero to many letter class hierarchies. The
root of the envelope class hierarchy is the system provided redass while the root of a letter class
hierarchy is its corresponding envelope class.

Example 3: A RTOODB Schema

Figure3 shows an exampleTRODB schema. The shaded area is an envelope class hiexanatty is

visible to the application. &/now demonstrate how this schema can be used by an application developer
Suppose that the rightmost letter class hierarchy (enclosed in the rounded rectangle) is the same as that in
Example2 (Figure2), i.e., a letter class hierarchy with a two-dimensional specialization space.

Envelope Class Hierachy

% 7™ = 7\

(O

Sensor 1l Sensor 2

Act uat or

O O
O O

Figure3. Example Realdiime Object-Oriented Database Schema

Assume that an application requiresessor object with the following constraints:

Class Foo {
public:
private:
Sensor s(“STime<=15ms, PTime<7ms");

}

Then an object ofensor1 will be constructed by our system since it satisfies constraints orstrath
andpTime. If in the future, the application adjusts its requested timing requirements ferd¢heobject to
“sTime<22ms, PTime<sms”, then the system will automatically select another implementation object for
sensor, hamely an object instance of clasensor2, replacing the initial choice of sensor1 object. This
process of rebinding will bé&ranspaent to the application developesince our model supports true
performance polymorphism.



3 REAL-TIME DATABASE SCHEMA EVOLUTION

The requirements of a real-time system, like most other systems, are likely to change during its life cycle.
The system must be able to evolve smoothly in order to improve its performance or to introduce new
functionality without disrupting existing services. If the service designer adds a new implementation
sensor3 t0 the schema in Figu® for instance, the execution of existing applications (e.g. therelags
Example3) should not be disrupted by this schema change. More important, our system may direct
existing applications to use the newly added implementation, if it is more appropriate for the requested
performance requirements, due to our support of performance polymorphism.

Having designed the real-time object model, we can now proceed with our task of defining schema
evolution. For this purpose, we need to expand the typical steps of schema evolution [2] to the real-time
object model:

1. Identify a schema change taxonoriiyfe need to determine which schema changes are meaningful,
given the new definition of aT®ODB schema.

2. Identify schema change invariants. In order to keep the consistency of the schema dereas dif
modifications, these invariant properties must be preserved.

3. Design schema change rules. When there are alternative ways to do a schema change without violating
any of the invariants, rules are designed to eliminate amhiguity

4. Define schema change semantics. Tlfecebf each schema change identified in 4tep the rest of
the schema is investigated and its impact on the underlying data is also considered.

3.1 Schema Change Taxonomy

One of the first object-oriented schema change approaches has been proposed byeBahg@¢dor
ORION?® Note that this taxonomyadopted in most other schema evolution research for OODBs
[22,24,32], still corresponds to the most frequently used set of schema changes. In fact, most commercial
OODB systems have implemented a subset of this taxonomy as their schema change supp®#]10,

None of these approaches considers real-time modesadapt a similar schema change taxonomy
however with extensions necessary for changes on real-time constructs of the schema. A complete
description of our ROMPP schema change taxonomy is given below:

(1) Changes to the contents of a node (a class)

(1.1) Changes to an instance variable

(1.1.1) Add a new instance variable to a class

(1.1.2) Drop an existing instance variable from a class

(2.1.3) Change the name of an instance variable of a class
(1.1.4) Change the inheritance (parent) of an instance variable
(1.1.5) Drop the composite property of an instance variable
(1.2) Changes to a method

(1.2.1) Add a new method to a class

(1.2.2) Drop an existing method from a class

(1.2.3) Change the name of a method of a class

(1.2.4) Change the body of a method in a class

(1.2.5) Change the inheritance (parent) of a method

(1.2.6) Make a method a new specialization dimension

(1.2.7) Drop the specialization dimension property of a method
(2) Changes to an edge

(2.1) Make a class S a superclass of a class C

5. ORION is an OODB system built at MCC in Austiex@s. A commercial product version of ORION is being mar-
keted as IRSCA [13].



(2.2) Remove a class S from the superclass list of a class C
(2.3) Change the order of superclasses of a class C

(3) Changes to a node

(3.1) Add a new class

(3.2) Drop an existing class

(3.3) Change the name of a class

Although a number of schema changes in our taxonomy are the same as those in [2], we show in
Section3.4 that the semantics of these changes are quieredf. In order to support changes of our
model, we now must evaluate changes on both letter class and envelope class hierarchies. Furthermore,
there are two additional schema changes, “(1.2.6) Make a method a new specialization dimension” and
“(1.2.7) Drop the specialization dimension property of a method”, which are unique to real-time models.

3.2 Schema Change Invariants

In order for any schema change to be meaningful, i.e., to maintain a correct database, it must guarantee the
consistency of the schemaeWhus need schema invariants to define the correctness of schema properties.
We have adopted the invariants proposed in [2] with some modifications:

1. Class Hierachy Invariant The class hierarchy is a rooted and connected directed acyclic graph with
uniquely named nodes (classes) and unlabeled edges (subclass relationships) (see Definition

2. Distinct Name (Signate) Invariant All instance variables of a class must have distinct names.
Similarly, all methods of a class must have distinct signatures (see Def@ition

3. Distinct Origin Invariant All methods of a class have distinct origf’ns.

Full Inheritance Invariant A class inherits all instance variables and methods from each of its
superclasses, except when full inheritance causes a violation of the distinct name (signature) and
distinct origin invariants. Only public methods are visible to the class and its descendants.

Moreover we address the consistency requirements specific to our real-time object model by introducing
the following additional invariants.

5. Envelope Class Hierahy Invariant There is only one envelope class hierarchy in the schema and it
must satisfy the Class Hierarchy Invariant.

6. Letter Class Hierachy Invariant There may be zero or more letter class hierarchies and each of them
must satisfy the Class Hierarchy Invariant.

7. Envelope/Letter Class Relationship Invariafihe declaration of any public method of a letter class
must match that of its corresponding envelope classyiaadersa

8. Specialization Dimension InvarianEach specialization dimension has a unique identifieich is
specified for a method in an envelope class. The identifier can only be referenced with the same
method of the letter classes associated with the envelope class.

3.3 Schema Change Rules

We adopt rules similar to those defined in [2] and enhance them for our real-time object model. They apply
to both envelope class hierarchies and letter class hierarchies.

1. If amethod is defined within a class C, and its declaration is the same as that of a method of one of its
superclasses, the locally-defined method is selected over that of the superclass.

2. If two or more superclasses of a class C have methods with the same declaration but distinct origin, the
method selected for inheritance is that from the first superclass among conflicting superclasses.

6. Since instance variables are private and invisible to subclasses, they always have distinct origins.
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3. If two or more superclasses of a class C have methods with the same origin, the method of the first
superclass is inherited by C.

4. When a method in a class C is changed, the change is propagated to all descendants of C that inherit
the method, unless it has been re-defined within the descendants.

5. If a newly added public method, or a sighature change to a public method, encounters any signature
conflicts in the class or its descendants as a consequence of this schema maodification, this change is
rejected. For the purposes of propagation of changes to descendants, Rule 5 overrides Rule 2.

6. If a class A is made a superclass of a class B, then A becomes the last superclass of B. Thus, any
method signhature conflicts, which may be triggered by the addition of this superclass, can be ignored.

7. If class A is the only superclass of class B, and A is removed from the superclass list of B, then B is
made an immediate subclass of each’efsdiperclasses. The ordering of these new superclasses of B
is the same as the ordering of superclasses of A. A corollary to this rule is that, if tRectaissthe
only superclass of a class B, any attempt to remove the edgedtonto B is rejected.

8. If no superclasses are specified for a newly added envelope class, theoctass the default
superclass. A superclass must be specified for a newly added letter class.

9. For the deletion of edges from A to its subclasses, Ridapplied if any of the edges is the only edge
to a subclass of A. Furthany attempt to delete a system-defined class redar, is rejected.

10. The composite property may be dropped from a composite instance variable; hivwaagrnot be
added to a non-composite instance variable.

11. If a composite instance variable of an object X is changed to non-composite, X disowns object Y
which it references through the instance variable. The object X continues to reference the;object Y
however deletion of X will not cause Y to also be deleted.

In addition, we identify the following real-time-specific rules:

12. Letter classes are dependent on their corresponding envelope classes. That is, deletion of an envelope
class will cause the deletion of its letter classes, and letter classes cannot exist before their
corresponding envelope classes exist. This rule is based on the semantics of the letter class hierarchy
concept given in DefinitioB.

13. Changes to an envelope class must be propagated to its letter classes. This is to maintain the
consistency of the letter class hierarchy (Definifipand the Full Inheritance Invariant.

14. The public interface of letter classes may not be changed, unless the changes are initiated by their
corresponding envelope classes and propagated to letter classes. That is, no direct addition or alteration
of the declarations of letter classes’ public methods is allowed.

3.4 Schema Change Semantics

All changes to a ROODB schema can be classified into the following two categories:

1. Changes to the envelope class hierarchy
2. Changes to letter class hierarchies

In general, changes to the envelope class hierarfdwst &6 corresponding letter class hierarchies, while
changes to letter class hierarchies have no impact on the envelope class hiéaddfine the semantics
of these two categories of schema changes in the following two subsections.

It is often dependent on individual applications whether it is meaningful to convert existing instances of
a class to that of the modified class. In real-time systems, for example, some objects have only a very short
life-time; thus, it may not be necessary to keep them around after a certain period of time. Therefore, we
only describe the impact of schema changes on existing data without worrying about if and when they are
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actually converted. One approach of converting existing instances ofgtiedfetter class to instances of
the new letter class is to provide forward mapping functions or update methods [21].

3.4.1 Schema Changes to a Letter Class Hierahy

(1) Changes to the contents of a node (a class)

(1.1) Changes to an instance variable

(1.1.1) Add a new instance variable to a class
The descendants of the class are informed of the change in order to adjust their memory allocation. This
schema change is almost always accompanied by other changes, e.g., ones that modify methods to use
the new instance variable. Adding new instance variables seldom by iteetf dhe behavior of the
class and its descendants. But in some cases, it could have an impact. For example, when the new
instance variable demands significant amount of memory space, ifectttad performance of some
methods. If it does, the letter class hierarchy specialization space may need tcgdueizredrThis
change décts existing instances of the class.

(1.1.2) Drop an existing instance variable from a class
The descendants of the class are informed of the change. This may cause consistency problems, since
some methods may still be using the dropped instance variable. Therefore, such a change is usually
accompanied by other changes, e.g., ones that modify the methods using the instance variable. The
descendants of the class are informed of the change, in order to adjust their memory allocation. This
change seldom by itself fatts the behavior of the class and its descendants. If it does, the
specialization space may need to beganized. This changefatts existing instances of the class.

(2.1.3) Change the name of an instance variable of a class
No specialization space rgamization is needed. All methods using the instance variable need to be
updated to utilize the new name. In general, existing instances ofdbiedfletter classes may be used
directly as the instances of corresponding new letter classes. No instance conversion is needed.

(1.1.4) Change the inheritance (parent) of an instance variable
It could have the same impact on method performance as in (1.1.1). Since instance variables are private
and not visible to subclasses, this change can only be thefeideoffschema changes (2.2) and (2.3).
This change &kcts existing instances of the class.

(1.1.5) Drop the composite property of an instance variable
Rules 1 and 12 applyA composite instance variable may be changed to non-composite, but not the
opposite. This change is propagated to the descendants of the class. This deatgexadting
instances of the class.

(1.2) Changes to a method
For all changes to a method, existing instances of fhetafl letter classes can be used directly as the
instances of the corresponding new letter classes, without requiring any conversion.

(1.2.1) Add a new method to a class
If the new method is public, the change is not allowed unless it is initiated by the corresponding
envelope class (Rulkb). In this case, the change is made to the root of the letter class hierarchy and
then propagated to all letter classes (Rdle Such a change mayeadt the specialization space, if the
new method represents a new specialization dimension. If the change causes any conflicts, it is rejected
(Ruleb). If the new method is private, the change is not visible to the descendants of the class. This
change does notfatt the specialization space.

(1.2.2) Drop an existing method from a cfass
If the method is public, the change is not allowed unless it is initiated by the corresponding envelope
class. In this case, it must be propagated to all letter classes. Such a chandectrthg apecialization
space, because the dropped method may have represented a specialization dimension or it may have

7. If the specialization space iganized as a linked list, as mentioned in Se@i@nno reaganization will be needed.

If it is organized as an ordered list, then it will have to be re-inserted in the correct position of the list, depending on the
new performance value.

8. The impact of schema changes on behaviors of objects is referred to as the behavior consistency problem in [32].
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overridden some method that would now cause a performance change for other methods that use it. If
the method is private, the change is not visible to the descendants of the class. All other methods using
the dropped method need to be updated using additional schema changes.

(1.2.3) Change the name of a method of a class
If the method is public, the change is not allowed unless it is initiated by the corresponding envelope
class. In this case, it must be propagated to all letter classes. If the method is private, the change is not
visible to the descendants of the class. It does fattdhe specialization space and existing instances.

(1.2.4) Change the body of a method in a class
If the method is public, the change must be propagated to the descendants of the class (Full Inheritance
Invariant). The performance of the method needs to be re-evaluated, in order to determine a new
performance value for each associated dimersibthe method is private, the change is not visible to
the descendants of the class. Such a change feay thie specialization space, as demonstrated by the
example in SectioB.4.3. Providing code to a previously empty method body is a special case of this
change.

(1.2.5) Change the inheritance (parent) of a method
The current method is dropped and the one from the new parent is added. If the method is public, the
change must be propagated to all descendants {Rller rejected if it encounters any conflicts
(Ruleb). Such a change mayfexdt the specialization space.

(1.2.6) Make a method a new specialization dimension
The change is not allowed unless it is initiated by the corresponding envelope class. In this case, it must
be propagated to all letter classes. The specialization space has one more dimension now and may need
to be reoganized.

(1.2.7) Drop the specialization dimension property of a method
The change is not allowed unless it is initiated by the corresponding envelope class. In this case, it must
be propagated to all letter classes. The specialization space has one fewer dimension now and may need
to be reaganized.

(2) Changes to an edge

(2.1) Make a class S a superclass of a class C
C must be a letter class and S must be in the letter class hierarchy associated with C. S is made the last
one in C§ superclass list. C now inherits public methods from S. Any signature conflicts may be
ignored since S is the last ofS&Buperclasses. It may change @osition in the specialization space and
the space may need to be gaorized. This changefatts existing instances of the class C.

(2.2) Remove a class S from the superclass list of a class C
C removes its methods inherited from S. Some methods frenot@er superclasses may become
visible now If S is the only superclass of C, S must not be an envelope class (Defihitiothis case,
let S's superclass(es) be Csuperclass(es), in the same ardiemay change G’ position in the
specialization space and the space may need to lganézed. This change needs to be propagated to
C’s descendants. This changteets existing instances of the class C.

(2.3) Change the order of superclasses of a class C
This has no ééct, if there are no method signature conflicts; otherwise, use Raprd 3. For
example, if a method M is defined in both superclassesn8 $, and S is now before §in C's
superclass list, the method M defined jnisSinherited instead that iny.SThis change &cts existing
instances of the class C.

(3) Changes to a node

(3.1) Add a new class
An envelope class must be specified as its parent @Rutgherwise, the change is rejected. It adds a
new point in the specialization space. The new class has no instances.

(3.2) Drop an existing class

9. The performance can be either analyzed and determined empirically by the service designer or evaluated by an auto-
mated analysis system. Details of this topic are beyond the scope of this paper
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The class to be dropped must be a letter class, i.e., it cannot be the root of the letter class Hierarchy
the class has any children, perform (2.2) for each of them. It removes a point in the specialization space.
The user may choose to either drop its existing instances or convert them to instances belonging to its
superclass(es).

(3.3) Change the name of a class
It brings no change to the specialization space. This name change may need to be registered with the
corresponding envelope class. It may require its subclasses to change thes pameat’

3.4.2 Schema Changes to an Envelope Class Hiecdny

In general, changes to an envelope class hierarchy have similar semantics to those defined in [2]. In

addition, the changes must be propagated to the corresponding letter classessiflafiged above, since

letter class hierarchies are dependents of their corresponding envelope classes. They may cause
reoganizations of the specialization spaces associated with letter class hierarchies. Because an envelope
class acts as an interface to the user while the letter classes encapsulate implementation details
(Definition 8), an envelope class is not allowed to have any instances unless it is degenerate. In this case it
has no letter classes. The following example demonstrates how schema change invariants and rules are
used to define the semantics of changes to an envelope class hierarchy

(3.2) Drop an existing class
Drop it and its associated letter class hierarchy (R2Je If the envelope class has any subclasses
(envelope classes, but not letter classes), perform (2.2) for each of them (Full Inheritance Invariant).
Existing instances of its letter classes are dropped. The envelope class itself has generally no instances,
unless it is degenerate. In the latter case, its instances are also dropped.

The following two schema changes are unique to the real-time object model. Their semantics for an
envelope class hierarchy arefeient from that for a letter class hierarciiflese changes can be made to
an envelope class as needed, but such changes to a letter class are not allowed unless preceded by the same
change to the corresponding envelope class.

(1.2.6) Make a method a new specialization dimension
The change must be propagated to all corresponding letter classes, and the performance value of the
corresponding method is set to “unknown” in the letter classes (see the example in the next subsection).
The specialization space has one more dimension how and may need tgdmizedr

(1.2.7) Drop the specialization dimension property of a method
The change must be propagated to all corresponding letter classes. The specialization space has one
fewer dimension now and may need to beganized.

3.4.3 An Example of Schema Changes

Suppose we have the following letter class hierarchy (Fé@unehich is very similar to the example in
Figure2. Classsensor is an envelope class, asehsor1 andsensor2 are two letter classes. There is one
specialization dimensiosyime, corresponding to the execution time of the metaadie().

The first schema change the service designer makes is to add a new specialization dirmetrsitm,
the methogrocess(): “ADD DIM PTime TO void process() IN Sensor”. According to the semantics defined earlier
(schema change (1.2.6) in Sect®d.1), the change must be made to the envelope class and then
propagated to all its letter classes (and all its envelope class descendants). The schema evolution system
defines the new specialization dimension at@imesensor, which causes the addition of new performance
measures associated with all occurrences oprtheess() method (lin€l6 and line26). Since the system
does not know the performance of the methadess( in letter classes yet, it putsnknown” there
(Figureb). Now the letter class hierarchy has a two-dimensional specialization space.

Assume that next the service designer changes the body of the methag in classsensor1, using the
command MODIFY void Sensorl::process() BODY = { <code>}". This schema change is also available in non-
real-time object models, but it hasfdient semantics in the real-time case. That is, after changing the
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code, an updated performance value must be provided since the method is associated with a specialization
dimension. Suppose the worst-case execution time for this particular implementatiagsef in sensor1

is 6ms, the system modifies the performance measure associated with the method accordinglylsee line

in Figure6).

/I @EC: Sensor

Class Sensor {

public:

/I @DIM: int sample() = STime
virtual int sample();

virtual void process();

©CoO~NOUA_WNPEF

}

11 /I @LC: Sensorl OF Sensor
12 Class Sensorl : public Sensor {

13 public:

14 /I @DIM: STime =10 ms
15 int sample();

16

17 void process();

18

19 }

20

21 /I @LC: Sensor2 OF Sensor
22 Class Sensor2 : public Sensor {

23 public:
24 /I @DIM: STime =20 ms
25 int sample();
26
27 void process();
28
29 }
Figure4. An Example of Schema Changes
1 /| @EC: Sensor
2 Class Sensor {
3 public:
4 /I @DIM: int sample() = STime
5 virtual int sample();
6 /I @DIM: void process() = PTime
7 virtual void process();
8
9 }

11 /I @LC: Sensorl OF Sensor
12 Class Sensorl : public Sensor {

13 public:

14 /I @DIM: STime = 10 ms
15 int sample();

16 /I @DIM: PTime = unknown
17 void process();

18

19 }

20

21 /I @LC: Sensor2 OF Sensor
22 Class Sensor2 : public Sensor {

23 public:

24 /I @DIM: STime =20 ms
25 int sample();

26 /I @DIM: PTime = unknown
27 void process();

28

29 }

Figure5. After Adding a New Specialization Dimension
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11 /I @LC: Sensorl OF Sensor
12 Class Sensorl : public Sensor {

13 public:

14 /I @DIM: STime = 10 ms
15 int sample();

16 /I @DIM: PTime = 6 ms
17 void process();

18

19 }

Figure6. After Changing the Code fpiocess() in Sensor1

4 RELATED WORK

There has been considerable work on defining schema evolution for OODBs. Examples are schema
evolution for ORION [2], Q [32], GemStone [24], and GOOSE [22]. However the best of our
knowledge, there has not been any work on defining schema evolution in the context of real-time OODBs.
We adopt the typical steps of schema evolution and expand them for the real-time object model (see
Section3).

While a lage body of work on real-time systems exists, no agreed-upon, conceptual model for real-time
databases has been established. In this papershow that timing constraints and performance
polymorphism are two key characteristics for the real-time applications and should be explicitly supported
by an real-time data model. CHAOS (Concurrent Hierarchical Adaptable Object Syst@%) iE3an
object-based language and programming/execution system designed for dynamic real-time applications.
One of its key components is a C-based run-time library for the real-time kernel. CHAOS supports a
limited form of dynamic parameterization of generic classes to allow easy developmerferadif
implementations of objects. Objects can be adapted at run-time, such as switchifegantdiérsions of
object methods, changing the degree of concurremayhanging the relative priorities of object methods.
The parameterization of generic classes in CHAOS can be directly modeled by R@néRPenvelope
classes can represent generic classes and letter classes correspdedetd uifplementations. These
letter classes are specialized along several dimensions—the parameterized attributes in CHAOS.

ARTS (Advanced Real-timeethnology) [2029] is a distributed real-time operating system kernel.
RTC++ [12] is an extension of C++. Both of them are based on the same real-time object model, which
describes real-time properties in systems and encapsulates rigid timing constraints in an object. Each
object is composed of data, one or more threads of execution, and a set of exported operations. In this
model, there are active objects—objects having one or more threads that can be executing when a message
arrives. If an active object is defined with timing constraints for its methods, it is called a real-time object.
In this real-time object model, the schedulability of a task set is easily analyzed under the rate monotonic
scheduling. Unfortunatelyperformance polymorphism is not directly supported by the model. The use of
real-time object libraries is suggested by the authors to remedy this. As discussed in23e2tidis is
an undesirable solution in comparison with direct support of performance polymorphism. In R@MPP
address this issue by explicitly supporting performance polymorphism, using the letter class hierarchy
concept.

Flex [14] is a derivative of C++. It supports two modes of flexible real-time programs, designed to adjust
execution times so that all important deadlines are guaranteed to be met. First, it allows computations to
return imprecise results. Programs can be carried out as iterative processes that produce more refined
results as more time is permitted, or they can use the divide-and-conquer strategy that provides partial
results along the waySecond, it supports multiple versions of a function that carry out a given
computation. These versions all perform the same task dadidithe amount of time and resources they
consume, the system configuration to which they are adapted, the precision of the results that they return,
and other performance criteria. The letter class hierarchy of ROMPP capturing the performance
polymorphism corresponds closely to the second feature of Flex. A letter class may also be implemented
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using the imprecise computation technique. In other words, the first technique of Flex is simply one of
several possible approaches for guaranteeing the timing constraints of actual method implementations. In
Flex, several language primitives are provided to describe the alternative implementations of a method in
the class, their performance, and the goals, such that the system may make appropriate selections as
needed. This approach is not as flexible as the letter class hiefaochgxample, with the letter class
hierarchy letter classes can havefdient additional private data and/or methods if needed. Also, the
knowledge about the characteristics of the letter classes may be stored in individual envelope classes, such
that diferent binding procedures may be chosen fdediht letter class hierarchies.

HIiPAC (High Performance ACtive database System) [9] combines databases with rule capabilities.
Rules in HIAC are first-class objects. A rule, among other features, allows the specification of its timing
and other properties. When instances of the same class of rules are applfecettt difuations or objects,
they may have diérent timing specifications. H¥Z does not have performance polymorphism and it
does not make extensive use of most object-oriented features like classes or inheritance. Oheiously
letter class hierarchy can be used to model this characteristic of rules, where an envelope class represents a
generic rule (or a class of rules) and letter classes represent the same rule ferigmt difming
specifications, which may require féifent implementations.

Wolfe et al. [31] propose an object-oriented model that supports the explicit specification of timing
constraints, howeveperformance polymorphism is again not provided.

MDARTS (Multiprocessor Database Architecture for Raatel Systems) [1617], developed at the
University of Michigan, supports explicit declarations of real-time requirements and semantic constraints
within application code. It examines these declarations during application initialization and dynamically
adjusts its data management strategy accordimgky research reported in this paper is an integral part of
the ongoing MDARS project. Specificallywe have extracted a conceptual real-time object model
ROMPP and investigated the impact of schema evolution on real-time data models.

5 DISCUSSIONS

We now want to demonstrate the utility of the real-time object model ROMPP defined in 3edtion
particular we want to discuss how it can be used to build real-time applications. The key concepts of
ROMPR namely using specialization dimensions to characterize timing constraints and using letter class
hierarchies to capture performance polymorphism are incorporated in MBAR®,17]. MDARTS is a
multiprocessor database architecture for real-time systems, being built in C++ in the Unix environment at
the University of Michigan. @ evaluate the suitability of the MDAR in the domain of real-time
manufacturing control applications, a prototype motion controller for a six degree-of-freedom robotic
manipulator was implemented (Figufe It is a physical mechanism for geometric error compensation at
the assembly stage of automotive applications. This mechanism includes a multi-axis manipulating device
(essentially a robotic table to which sheet metal parts carfibeddf a multi-axis servo-motion controller

which handles the execution of desired motions at the manipulator joint level. The servo-motion controller
board is a Programmable Multi-Axis Controller (PMAC) designed and manufactured by Ralta T
Systems. The manipulator consists of a fixed base, a movable platform, and six independently positioned
legs. Each leg is connected to the base by a 2-DOF joint on one end, and to the platform by a 3-DOF joint
on the other end. The tops of adjacent legs are joined together at the platform connection point, forming a
set of three leg triangles.

Timing constraints for data access were specified in order to ensure that all computations can be finished
within each (periodic) control cycle. Although multiple implementations of the same service were not
necessary for this application, the mechanism of selecting the most appropriate one among available
implementations was in place and functioning. It was shown that MI3ARable to monitor and modify
the path of the manipulator while it is executing a sequence of move commands. This experiment
demonstrates, among other features of MDBRthat our real-time object model is useful in practice.
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Figure7. MDARTS Experiment Setup (reprinted with permission)

There are still several open questions to be answered. In partieeilare interested in investigating how
to analyze the performance of methods, especially when they run conculrewtlio enhance the real-
time object model by introducing more sophisticated constructs that #dlowstance, value propagation
(e.q., propagation of the performance value of a method to other methods that use it) and conditional
specifications (e.g., performance dependency on system configuration), and how to support on-line schema
evolution in real-time.

6 CONCLUSIONS

In this paperwe proposed solutions to the as of now unaddressed area of schema evolution for real-time
OODBs. Schema evolution support is becoming increasingly important, as advanced real-time
applications, such as manufacturing systems, are starting to demand database services, dhesdhan

data repositories, in order to reuse system components and to reduce the amount of work related to
improving existing systems and developing new applications. Such applications must be flexible with
revamping an existing system based on changes of technology and/or environment. They also need support
to quickly configure new customized systems.

In the paperwe identified timing constraints and performance polymorphism as two key characteristics
of real-time applications. &/then presented a conceptual real-time object model, ROMRIPh
explicitly captures these two featurese Yé-evaluated previous (non-real-time) schema evolution work in
the context of real-time databases, which results in several modifications to the semantics of schema
changes and to the needs of schema change resolution rules and schema invariants. Furthermore, we
expanded the schema change framework with new constructs—including new schema change operators,
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new resolution rules, and new invariants—for handling features specific to the real-time aspects of
ROMPR There are still many open research questions to be answered, such as how to analyze the
performance of methods that may run concurrently and how to support schema evolution in read-time. W
believe our research is a good first step to explore tiginvarea of schema evolution for real-time
databases, and will cause new researfcintsfto spring up.
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