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Abstract

This technical report describes IDtrace, a program that produces execution traces for ix86 instruction set
architectures using late-code modification. IDtrace provides a low cost method for producing input data
for a wide variety of performance evaluation tools such as code profilers, branch prediction simulators,
and cache simulators. IDtrace can generate several types of output traces: profile, branch, memory refer-
ence, and full execution traces. It currently runs on ix86 SysVR4 Unix systems.

The report briefly introduces various trace generation methods and discusses the advantages and disad-
vantages of late code modification over other code instrumentation techniques. The majority of the
report describes the use of IDtrace and outlines the formats for all generated trace files. In addition, the
issues involved in constructing such an instrumentation tool, including the challenges imposed by the
i486’s CISC-like features, are discussed. Architectural attributes such as the large number of memory
referencing instructions, the complex instructions and addressing modes, and the variable instruction
lengths make instrumentation difficult and sometimes impossible at the binary level. These problems
and their possible solutions are discussed.

Finally, the report includes some experimental results to illustrate the applicability of IDtrace. The
experiments involve profiling the instructions frequencies of a subset of the SPEC92 benchmarks, eval-
uating a common branch prediction technique, deriving optimal cache configurations based on several
application programs, and comparing the cache behavior of the i486 with that of the MIPS R3000.

1. This work was supported by a grant from the Intel Corporation.
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1.0 Introduction

Trace driven simulation plays an important role in the design and tuning of computer architectures. If
highly accurate traces are required that capture operating system effects and which are not distorted by
the collection mechanism, hardware monitors are usually the only solution [3][10]. However, it is often
sufficient, particularly for initial design studies, to collect traces using software tools that are hosted on
a system having a CPU that matches the instruction set architecture (ISA) under study. This paper dis-
cusses IDtrace, a software tracing tool for the i486 that produces input data for a wide variety of perfor-
mance evaluation tools including code profilers, branch prediction simulators, and cache simulators. In
keeping with most software tracers it is quite fast (10-12 times slower than real time) and can be used in
applications such as secondary cache simulation which require very long address traces [1][11]. It is
also possible to use it in situations where trace sampling is considered sufficiently accurate [12]. Traces
are produced by first instrumenting a program with IDtrace and then running it on an existing system.

We noted above that hardware monitoring can give the most accurate and general traces. There are a
number of ways of obtaining traces through hardware monitoring. Perhaps the most straightforward is
to attach a logic analyzer to the processor pins or system bus, detect special situations, and use the ana-
lyzer to store these events. This approach was taken by Nagle et al. to measure TLB misses on a DECs-
tation 3100 [10]. An alternative approach is to add special processing and recording hardware to the
system bus which monitors traffic and detects and saves selected events. BACH is an example of a i486-
based tool which gathers traces in this manner [3]. While these methods present the fastest way to
gather information, their speed can present a problem. A full address trace is difficult to gather and store
because of the high data rate at which the references are produced. Tracing must be interrupted each
time the recording capacity of the monitoring device is reached. Furthermore, these methods require the
user to have both significant hardware expertise and the capability to obtain or fabricate the monitoring
tools.

Software monitors or instrumentation tools modify a program or its execution so that traces or statistics
are recorded at runtime. As a whole, these tools are much slower than hardware monitoring and they
cannot observe all hardware events. Furthermore, they are not unobtrusive. The tool’s use affects the
simulation and these effects must be taken into account and/or minimized. However, long continuous
traces can be gathered easily and cheaply. An early approach to software monitoring was to use an OS
trap on every instruction to record execution information [4]. This method is extremely slow and for
instruction sets with a high density of memory references it is almost useless. A more common software
approach is the use of a code instrumentation tool. Such a tool adds additional code to a program so that
when the modified program is executed it will output some sort of trace while maintaining its original
functionality. Techniques of code modification are discussed in the next section. The remainder of the
paper will discuss an instrumentation tool for ix86 architectures called IDtrace. Section 3.0 shows how
to use IDtrace and explains various options. Section 4.0 outlines the issues involved and the challenges
faced in building such an instrumentation tool and Section 5.0 discusses its limitations. Finally,
Section 6.0 contains the results of several experiments illustrating how IDtrace can be used to profile
the instructions frequencies of a subset of the SPEC92 benchmarks, to evaluate a common branch pre-
diction technique, to find optimal cache configurations with respect to several applications, and to com-
pare the cache behavior of the i486 with that of the MIPS R3000. The appendices contain descriptions
of file and output trace formats.

2.0 Software Instrumentation T echniques

Program instrumentation can be done at several levels. The easiest is source level instrumentation
where code is added to each assembly level source file and the code is reassembled to produce the
instrumented objects. A second method is to start with the program’s compiled objects. These are disas-
sembled, modified along with the relocation and symbol tables, and then linked using the system’s
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linker. A third approach is to modify the final executable. This requires disassembly, modification, and
code relocation. Each of these methods have advantages and disadvantages which we briefly survey
below.

2.1 Source Code Modification

 Assembly level source modification is the easiest to perform. Most compilers generate object code in
two phases, first the conversion to assembly and then a call to the machine’s assembler to create the
binary object file. Relatively little effort is required to add additional instructions to the assembly file to
record runtime information such as memory references branch targets. The existing assembler and
linker can be used to create the executable. While this tool is relatively quick and simple for the tool
designer to build it is the most difficult to use and maybe the least useful, for the following reasons:

• Source Availability — The user may not always have access to the source code.

• Source Size — If the source is large, repeated compilation of modified and unmodified sources is
time consuming.

• Library Routines — Under normal circumstances library calls will not be annotated since they are
not part of the source. This could distort results. Each library module could be also be modified but
this requires access to the library sources, space for modified and unmodified modules, and more
time for multiple compilations.

• User Knowledge — The user of the tool must understand the compiler’s code generation process to
the extent of knowing which library objects are needed, how special code inside the libraries can be
instrumented, and how memory is allocated for variables and tables.

• Kernel Routines — Kernel code is difficult or impossible to instrument in this manner.

There are many examples of tools which instrument code at the source level. One of the best known is
MPtrace written by Eggers et al. which runs on Sequent i386-based shared memory multiprocessor sys-
tems [2]. The generated trace is only a subset of the full execution trace to allow trace storage and to
minimize time dilation during program execution. The latter is important for multiprocessor simulation
which is the goal of MPtrace. While the preprocessor instruments the assembly output of the compiler it
also creates a “roadmap” file for the later reconstruction of the trace.

A novel twist on source code modification is to perform the code instrumentation within the compiler.
One advantage this approach has over assembly code modification is that the compiler can identify
high-level code constructs and can use this knowledge to reduce the amount of instrumentation to con-
struct a partial trace. Larus developed this approach for tool called AE [8]. A modified GNU C compiler
generates instrumented code which upon execution will output a skeleton trace. The compiler also cre-
ates a schema file which is later used to reconstruct the full trace.

2.2 Object Code Modification

Rather than instrumenting the assembly source it is possible to wait and modify the compiled object
instead. This can be done by a sophisticated linker which includes a module rewriter. During the linking
process each object is passed to the rewriter which performs the necessary code modifications and han-
dles code and data relocation. The latter is primarily a task of noting location changes in the object’s
relocation dictionary and symbol table. The modified objects are then passed back to the linker proper
and are combined into one executable as usual. Recompilation of the source code is unnecessary. The
presence of the relocation data and symbol table make relocation straightforward. Postponing modifica-
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tion until the executable stage when this information is missing makes relocation much more difficult
and sometimes impossible.

There are several tools which perform link-time modification. Mahler is a back-end code generator and
linker for Titan, a DECWRL experimental workstation [19]. The module rewrite linker can perform
intermodule register allocation, basic block counting and address trace generation, and instruction pipe-
line scheduling. Code and data relocation is done as described above. Another tool, Epoxie, relies on
incremental linking which produces an executable containing a combined relocation dictionary and
symbol table [18]. Its advantages over Mahler are that the standard linker can be used and data sections
remain fixed so data relocation is not necessary. Epoxie produces address traces and block statistics.

Since binary code is manipulated, a link-time modification tool must have the use of a disassembler and
will be more difficult to build than a source code annotator. From the user’s point of view, many of the
compilation complexities have been hidden but the user still must know how to perform the link step.
Furthermore, an executable binary alone still cannot be instrumented. Often if the user does not have
access to the source code neither will he or she have all the object modules.

2.3 Executable Modification

The third time at which code can be modified is after the objects have been compiled and linked into
one executable. This is referred to as late code modification [18]. Its virtue is its ease of use. It is now
trivial for the user to collect trace and other runtime information. In principle, any binary can be instru-
mented with such a tool without the user knowing anything about the assembly code constructs or com-
pilation process. Also, the user need not have access to any source or library code. Unfortunately, such a
tool is much more difficult to build than the ones described earlier. Disassembly is required to instru-
ment instructions along with the ability to relocate user and library code. By trying to alter the code so
late in the compilation process much information about the program structure needed for relocation is
lost and sometimes instrumentation is impossible. At the very least, additional runtime overhead is
likely to be incurred to overcome this loss.

One of the earliest tools of this type is Pixie which runs on MIPS R3000-based systems [9]. It instru-
ments an R3000 binary and produces a runable.pixie file. When the new binary is executed trace and
statistics files are also generated. These files can be examined and various execution statistics generated
by pixstats or fed into a cache simulator [15]. Pixie is compiler-independent and will instrument
most but not all programs. One drawback of Pixie is that it suffers from significant runtime overhead.
The reasons for this are described later. Another tool, Nixie, was written to reduce this overhead [18]. It
is functionally equivalent to Pixie on a restricted set of programs. Nixie makes various assumptions
about code structure to improve performance and reduce modified code size. Sometimes these assump-
tions are incorrect and the modified program fails to run. In addition, many of assumptions are based on
code sequences generated by a particular compiler thus making Nixie compiler dependent.

Goblin is a tool similar to pixie built for the IBM RS/6000 architecture [16]. It instruments user code
only and has been used for instruction mix, register liveness, and basic block statistical studies. Finally,
Sun has a similar family of tracing tools for Sparc executables called Spixtools[17].

Despite the dominance of the ix86 family of architectures in the marketplace, a similar tool for it has not
been widely available. We have created IDtrace to instrument ix86 programs at the executable level to
allow low-cost and fast analysis of various architectural trade-offs. It can produce a variety of types of
traces including profile, memory reference, and full execution traces. It is very simple to use: no source,
special hardware, or knowledge about libraries, linkers, or compiler constructs is required. IDtrace can
instrument a stripped binary, no symbol table is needed. The disadvantage is that IDtrace cannot instru-
ment all programs. Because of information loss in the translation process it must make certain assump-
tions about the code structure to successfully create a new binary. Hand coded assembly might contain
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unrecognized control constructs which would produce erroneous instrumentation. Potential problems
are described in Section 5.0. Currently IDtrace runs on Unix SysV R4 ELF binaries created using the
Intel/AT&T and USL CCS C compilers. An earlier version ran on Sequent’s DYNIX/ptx systems.

In summary there are three times at which code instrumentation can be performed. Binary instrumenta-
tion requires only the final executable, will instrument all library code automatically, and is simple to
use. However, it is the most difficult tool to build and may not be able to instrument all programs. On
the other hand, an assembly code instrumentation tool is relatively easy to build but more difficult to
use. The user must maintain instrumented versions of all source files and possibly obtain instrumented
versions of object files. Finally, object code instrumentation involves intermediate complexity to build
and all programs can be instrumented since the system’s linker can be used for relocation. The source
code perhaps is not needed but it is unusual to have the object files but not the source files.

3.0 Method Of Use

This section describes how to use IDtrace. Included are the steps necessary to generate traces, a descrip-
tion of the available options and postprocessing tools, and a listing of the SysV instructions required to
pipe the trace directly to a postprocessor. Figure1 shows the relations between the various generated
files, traces, and tools.

3.1 Trace Generation

1. Create a statically linked executable of the test program.

This is done using the -dn flag with the cc or icc compiler. IDtrace will not correctly instrument a
dynamically linked executable. Thus

cc -o bench -dn bench

will create the proper executable.

2. Run IDtrace

Idt takes the binary as input and returns a new instrumented version. Various options can be given to
produce different types of traces.

idt [options] bench

When idt completes two new files are created,bench.idt  andbench.blk . The former is the new
executable and the latter is an array of basic block structures with one structure corresponding to one
basic block in the program. Each structure contains the basic block number, address, number of instruc-
tions, and a list of the instructions in the basic block. The .blk file is used by vcount or other postproces-
sors to generated dynamic profile data. The exact format of the .blk file can be found in A.2 on page21.

3. Execute the new binary

Oncebench.idt  has been created it can be executed exactly likebench.  Two more files will be cre-
ated:bench.trc  andbench.cnt.
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The .trc file is the output trace and can be saved or piped directly to a simulator. The .cnt file holds the
dynamic execution count of each basic block and is described in A.2 on page21.

3.2 IDtrace Options

The options are:

• -p Profile trace (default)

• -b Branch trace

• -c Cache trace output with line size equal to default value (currently 16 bytes)

• -l <num>  Cache trace output with line size equal to <num> bytes

• -e Execution trace

• -B <num> Maximum number of blocks

• -h This option menu

• -H <fname> Use hint input file

• -r Distinguish between regular and block (repeat) accesses

• -s No block count overflow check for short trace

• -t Binary fully instrumented but no trace file produced

• -v Verbose mode during binary instrumentation

The -s option will produce a somewhat faster executable because block count overflow tests are not
added to the code. Using this option with traces of over 4 billion instructions could cause an overflow of
the basic block counts and thus give incorrect results. The -r option is used for block access analysis and
will cause different tags to be used for data references from a rep prefixed instruction. A special repeat_-
end entry will also be output after the last reference of a rep instruction. This option can only be used in
conjunction with the -c or -l options and is automatic with the -e option. IDtrace will report when the -
B option is necessary. Since memory must be allocated for basic block counts prior to analyzing the
code, IDtrace will estimate the space needed by looking at the file’s text size. If it underestimates the
number IDtrace will report that the user must specify a value greater than its estimation and idt must be
rerun using this option. Compiler dependency problems can be alleviated with the -H option. A hint file
can be created to give IDtrace relocation information which it cannot derive itself. The specifics of this
file can be found in Section 5.2. The -t flag specifies that the binary should be fully instrumented but the
trace buffer output is disabled. This allows the measurement of the speed of the instrumented code with-
out the collection of a potentially large trace. Finally, the verbose mode is used primarily for debugging
IDtrace. It presents the addresses of various functions in the original and new binary, the size and loca-
tion of tables and buffers, etc. The various traces and their formats are described in A.1 on page18.

3.3 Postprocessing and Data File V erification

Several basic postprocessing tools accompany IDtrace. They are given as examples on how to interpret
the various trace and information files. One tool isvcount  which uses the .blk and the .cnt file to list
the dynamic instruction count, instruction mix information, and some basic block information. Tools
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which use the .trace file arevtrace  which allows viewing the .trc file andrtrace  which accepts a
trace generated using the -r option and outputs the number and sizes of block accesses. Type

vcount bench , vtrace bench , or rtrace bench

to run the postprocessing tools.

Another tool,idt2kt , converts an execution trace into KT format. It uses the .trc and the .blk files
along with the original binary to create a .kt file. The format of this file is outlined in Appendix B on
page23. Idtinfo is a utility which helps to maintain the correct versions of the .idt, .cnt, and .blk files.
Typing

idtinfo bench

will look for the various created files, output the options used when created the .idt file, and check the
magic numbers of the data files to verify that they were generated by the current .idt file and the current
original binary.

3.4 Piping the Results

The trace file can be piped directly into a simulator using the mknod(2) command. The trace file will not
be saved for future use. To pipe the output trace of the binary bench directly to the postprocessor
vtrace  type the following:

>mknod bench.otr p  - This creates bench.otr as a pipe file

>bench.idt &  - Run bench.idt in the background

>vtrace bench  - Run processing program that uses bench.otr

4.0 IDtrace Design Issues

This section describes the operation of a typical late code modification tool, how the target instruction
set architecture (ISA) can affect the complexity of the tool, and the particular problems encountered in
creating IDtrace.

bench idt

bench.trc

bench.cnt

bench.blk

bench.idt

vtrace / simulators

vcount

FIGURE 1. IDtrace programs and files - Rectangles are executables, ovals are data files produced by IDtrace,
boldface names are IDtrace tools.
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A late code modification tool must disassemble the text section of the binary, insert binary code before
each basic block and data memory referencing instruction, relocate all control instructions to account
for text expansion, and combine the text and data sections along with some working tables and buffers
into a new executable file. Only the text section is modified; any section containing data cannot be
changed or moved in memory since it is impossible at this stage to relocate data references. The added
code before a memory reference calculates the effective address and sends the address and type of refer-
ence to a reference buffer. The code added at the beginning of a basic block outputs profile data and
instruction references and flushes the reference buffer if necessary. Creating the new executable can be
tricky depending upon the OS loader’s faithfulness to the executable file specifications. IDtrace is
forced to combine all modified sections along with the original data into one expanded data section due
to many loaders’ inability to interpret all but the simplest executable structure.

There are some inherent architectural features which simplify the above procedures. Others pose diffi-
culties and add complexity.To illustrate these, below, we have compared and contrasted some character-
istics of the ix86 ISA and the R3000 ISA1 which affect memory reference instrumentation:

•  Instruction Set — The i486 has approximately 296 different instructions, 182 of which can refer-
ence memory. Many of these instructions can reference two addresses or perform both a read and
write. The R3000 has around 90 instructions including floating point and only 14 can reference
memory [5][7]. No instruction can reference more than one data address. Since code must be added
after each referencing instruction the ix86 instrumented code will be longer and slower.

• Indeterminate Reference Instructions — Some instructions produce an indeterminate number of ref-
erences. One example is the i486 rep instruction prefix which can cause one string instruction to
repeatedly access memory until a condition is true, the number of iterations can only be determined
at runtime. To extract the memory references, the instruction must be emulated by a loop con-
structed during instrumentation.

• Fixed Instruction Length — The combination of data in the text section and variable instruction
length can make it impossible to correctly disassemble the text section, because disassembly can
become unaligned with correct instruction borders. Common sources of data in the text section are
constant data and jump tables. In contrast to the R3000, the i486 has variable instruction lengths.

1.  Recall that R3000 executables can be instrumented with Pixie.

Original Memory Configuration

New Memory Configuration

Original Text

New Text

Original Data

New Data

Original Bss

New Bss

FIGURE 2. Original and new binary file configuration.
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• Addressing Modes — There are seven different modes in the i486 while the R3000 has only two.
More addressing modes as well as instruction types add to the complexity of the instrumentation
tool both to recognize a data referencing instruction and to output the proper instrumentation code.

• Indirect Addressing — Most architectures support this but use it only occasionally to index into a
jump table or for an indirect call. Such control instructions are hard to relocation and usually add
additional runtime overhead to resolve. The R3000 uses data indirection to perform a procedure
return and so this overhead can be substantial. This is discussed further below.

• Register Set — The i486 has 8 general purpose registers while the R3000 and many RISC-style pro-
cessors have 32. Instrumentation code needs several global variables to hold such things as buffer
pointers. RISC instrumentation tools store these variable in little used registers while IDtrace must
save register values, load the variables into registers, and then restore the register’s original contents
for every added code sequence. This causes a significant code size and execution speed penalty for
IDtrace. In addition, the ix86 ISA includes segment registers which add to the complexity of effec-
tive address calculations. Fortunately, these registers are not used on most Unix machines.

Along with ISA characteristics, compiler constructs can also cause problems for late code modification
during code relocation. Two examples are jump tables and indirect calls.

• Jump Tables — A jump table is a list of absolute addresses indexed by an indirect jump that is usu-
ally generated by a long switch or case statement. They can be in either the text or data section and
the instrumentation process must find and update them since they are lists of absolute addresses
which no longer point to their proper locations within the instrumented text. IDtrace analyzes the
compiler generated preamble instructions before an indirect jump instruction to get the location and
size of a jump table. Once a table is found each absolute address is relocated and the indirect jump
will execute as intended. IDtrace is dependent upon the compiled code to have recognizable pream-
ble instructions and thus may not correctly instrument all binaries.

• Indirect Calls — The target of most procedure calls is given by a static relative offset. Sometimes,
however, an indirect call is used and the target is computed at runtime. The instruction1

call *1044(%eax,4)

is an example of an indirect call. The target is computed from register values thus cannot be relo-
cated at instrumentation time. In other words, if the target were originally $1000 and after code
modification it has moved to $1200, it is difficult to change the instruction operands so that the new
target of $1200 will be computed.

The solution is to build an address translation table which will be resident when the new code is run.
The table associates the original beginning addresses of all procedures with their corresponding new
addresses. All indirect call instructions are replaced by code which computes the original call target
and passes the target to a call-handling utility routine. This routine does a table lookup using the
original target to find the new target and then transfers control to that address. Upon return, control
passes back to the instruction after the indirect call. This method requires runtime overhead for
every indirect call and additional memory allocation to store the table. Furthermore, hand coded (as
opposed to compiler generated) routines may contain indirect calls to targets which are not recog-
nized as function beginnings. Since an indirect call is the procedure return method on the R3000,
this overhead is substantial in code instrumented by Pixie. In contrast, Nixie, the more efficient but
compiler dependent version of Pixie, removes the return overhead by assuming register r31 always

1.  This is i486 assembler indirect (*), indexed addressing using register%eax multiplied by 4 with a displacement
of 1044.
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holds the return address, which it normally does. The relocated return address is put in r31 during
the call so that an unmodified indirect call can be used to return to the correct location.

5.0 Instrumentation Limitations

Since IDtrace must perform complete code relocation of a binary with no relocation information it is
possible that IDtrace will be unable to correctly instrument all programs. Outlined below are the known
limitations of IDtrace.

• Compiler dependency - To handle relocation IDtrace must be somewhat compiler dependent. Cur-
rently IDtrace recognizes code generated by the Intel/AT&T compiler and the Intel Proton compiler
version Jul92. The areas of dependence and how they can be manually overcome are discussed
below in Section 5.1.

• Data in text segment - Some compilers in-line read-only data such as constants or jump tables in the
code segment. The data will be disassembled as instructions which in itself is not a problem but,
because of non-uniform instruction length, it is highly likely that disassembly will not be aligned
with the beginning of real instructions after the in-lined data. Thus spurious instructions will be pro-
duced ensuring that the resulting code will not run. The above compilers put such data in a read-only
data section.

• Unusual indirect calls - All indirect calls must point to the recognizable beginning of a function.
Currently a function beginning is recognized by a preceding ret, nop, or jmp instruction. The sup-
ported compilers conform to this rule but others may not. An indirect call to an unrecognized
address will cause an error message and execution termination.

• Unexpected code termination - Unspecified results occur if the test code terminates without calling
the C library exit routine. Most likely the .cnt file will be empty and the .trc file will be empty or
incomplete. Again this will not be a problem with code generated by the above mentioned compil-
ers.

• Fork system calls - A fork call will execute properly but the child process will not be instrumented.
It is possible for the child process to be separately instrumented and the source code of the parent
process to be modified to call the instrumented version of the child process. However, two separate
trace files would then exist and the method of merging the two files is unclear. Furthermore, if the
child process is called multiple times, only the trace of the last call will be saved.

As a final note, not all instructions are currently implemented primarily because they have yet to appear
in any tested application code. The following instructions are unimplemented:enter, frstor,
fsave, fnsave, lgdt, lidt, lldt, sgdt, sidt, sldt, verr, andverw. Test code which
includes any of these instructions should still run correctly but the resulting trace data may be somewhat
incorrect.

5.1 Compiler Dependencies

IDtrace relies on specific compiler conventions in many places. If the binary contains code which does
not conform to these conventions it is likely that the instrumented version will not run. Some actions
mentioned above such as data inlining and strange indirect calls cannot be overcome. However, other
dependencies listed below can be overcome by manually examining the code and including extra infor-
mation in the hint file:
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• _start in crt0.o - IDtrace finds the addresses of main and exit by looking in predefined locations in
_start for calls to these functions. Different positions for these calls can be given by including
main_call or exit_call entries in the hint file. As a side note, Idtrace differentiates the Intel/AT&T
and Proton compiled code by the beginning address of _start. This will be changed in the future.

• Start and stop instrumenting addresses - IDtrace will start instrumenting code at the predefined
address directly after _start and computes the stop instrumentation address by looking for the .fini
section. Start and stop addresses can be given directly by including trace_beg and trace_end entries
in the hint file.

• _curbrk location - _curbrk is a C library variable which contains the address of the end of the data
segment. It is modified during calls to sbrk which is called by malloc. The initial value of _curbrk is
the correct value for the original binary but it must be increased to reflect the larger size of the
instrumented binary. Idtrace must know the location of _curbrk to make this change and it finds it by
pattern matching disassembled instructions with known sbrk instructions. If IDtrace cannot find
_curbrk a warning message is produced. It is not always an error because _curbrk is not included in
all programs. A curbrk_addr entry can be added to the hint file if IDtrace cannot find _curbrk but the
user can.

• jump tables - Jump tables are produced by long switch statements. The usual code structure is a few
preamble instructions checking the length of the jump table and then an indirect jump to the jump
table located in the data segment. IDtrace must know the position and size of a jump table so that it
can update the original table entries with their new relocated values. If the predefined preamble
instructions are not what IDtrace expects, the table size cannot be ascertained and the jump table
will not be updated. An indirect jump without the expected preamble instructions will cause a warn-
ing to be issued at which point the user can decide the jump table address and size and include a jtab
entry in the hint file.

5.2 IDtrace Hint File (-H option)

The hint file can be created by the user to assist idt in instrumenting the binary file. It is an ASCII file
and is composed of any number of the following lines:

The values can be given in decimal or hexadecimal. The tag values can be found in idtdef.h.

6.0 Experiments with IDtrace

Idtrace can produce a variety of traces including profile, memory references, and full execution traces.
In this section we illustrate some of its capabilities. All experiments were run on an Intel 50MHz i486
machine running USL Unix SysV R4. The programs used are the C benchmarks from the SPEC92
benchmark suite, see Table1. IDtrace can instrument a binary in roughly three times the time required

Line Tag Description

TRACE_BEG_TAG Address at which to begin instrumentation

TRACE_END_TAG Address at which to stop instrumentation

MAIN_CALL_TAG Address of main call in start()

EXIT_CALL_TAG Address of exit call in start()

JTAB_TAG Table Beginning AddressTable Size

CUR_BRK_TAG Address of _curbkr
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to compile the binary and it is about twelve times larger than the original. Execution time for the instru-
mented program ranges from two times that of the original for a profile trace to about twelve times for a
full execution trace. For comparison, Pixie running on a DECstation 5000 has a filesize expansion of
about four times and execution slowdown of about two times with no memory reference trace and ten
times with a reference trace. The following subsections illustrate instruction mix and basic block statis-
tics using a profile trace, a branch prediction study using the branch traces generated by IDtrace, and
finally, cache studies using memory reference and full execution traces.

6.1 Instruction Mix

Table2 illustrates instruction mix measurements using six integer benchmarks. Notice that the top 3
instruction types comprise 60% of the total instructions executed and the top 14 types make up 90%.

Frequency measures of this type can be used to guide implementation decisions such as whether an
instruction should be designed to execute in one cycle or emulated in microcode in multiple cycles.

6.2 Code Profiling

The spatial locality of executed code can be measured by using the basic block execution counts pro-
vided in the profile trace. The execution frequency of a block is multiplied by the number of instructions
in the block to get the approximate time spent in each block. The largest times are then summed until

Program Description Type
i486
Instructions

cc1 Major forked process of GNU C compiler Integer 65 million

compress Unix compression utility Integer 60 million

eqntott Boolean equation to truth table translator Integer 1650 million

espresso Logic minimization tool Integer 531 million

sc spreadsheet program Integer 980 million

xlisp XLISP interpreter solving 8 queens problem Integer 990 million

alvinn Neural network training with backpropagationFP 5042 million

ear Inner ear model FP 458 million

TABLE 1.  The SPEC92 C benchmarks used in our experiments.

Opcode % of Total Opcode % of Total

mov 28.3 pop 2.9

jcc 17.4 xor 2.9

cmp 14.4 and 2.2

push 4.9 add 2.0

movswl 4.1 jmp 1.7

inc 3.8 dec 1.2

test 3.5 call 1.1

TABLE 2. Instruction mix of integer benchmarks: cc1, compress, eqntott, espresso, sc, and xlisp. Total of 4.3 billion
instructions.
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they equaled 90% of the total execution time. The results in Table3 show that most of the execution

time is spent in a small portion of the executed code, as one would expect. Although the first four
roughly follow the 90/10 locality rule, floating point and highly iterative programs show even greater
localization.

6.3 Branch Prediction

The branch trace output can be used as input to a branch prediction simulator to measure the perfor-
mance of different branch prediction algorithms. During our preliminary study it was noted that most
prediction misses are caused by only a few conditional branches, i.e., while most branches are almost
always predicted correctly, a few rarely are and cause most of the misses. The following results were
generated by a prediction simulator using a dynamic 2-bit saturating counter prediction algorithm with a
history table of 1024 2-bit entries. The last bits of a branch instruction’s address is used to index into the
table. If the value of the counter in the table is non-negative the branch is predicted taken. Taken
branches increment the counter up to at most a value of 1 and non-taken branches decrement the counter
to at most -1. The simulator outputs the location of the branch and whether or not it was predicted cor-
rectly. A postprocessor counts the number of unique, executed conditional branches and the number of
mispredictions for each branch. Table4 shows that a few unique branches are executed many times. The
last column gives the number and percentage of unique conditional branches which generate 90% of the
total conditional branches executed. More importantly, the last column in Table5 gives the number and
percentage of unique branches which cause 90% of the mispredictions. It shows that an even smaller
percentage of conditional branches (usually less than 5%) cause 90% of the misses. Further examination
revealed that the misses are caused by multiple branches contending for the same counter in the history
table and just a few branches behaving in bad, cyclical patterns which a 2-bit counter cannot contain
enough information to predict.

Program
Different Executed

Basic Blocks
Number Generating

90% of Total Ex. T ime Percent

cc1 10216 1482 14.5%

xlisp 1204 119 9.9%

espresso 3752 343 9.1%

sc 3047 223 7.3%

compress 421 18 4.3%

eqntott 749 12 1.6%

ear 906 12 1.3%

alvinn 1065 9 0.8%

TABLE 3. Code locality - The percentage of the different executed basic blocks which contribute 90% of the total
execution time.

Benchmark
Total Branches

Executed
Unique

Branches
Number Causing 90% of
Total Branch Executions

eqntott 345763211 333 5 (2%)

ear 37291744 402 8 (2%)

compress 11749280 217 13 (6%)

sc 193868064 1427 104 (7%)

TABLE 4.  Conditional Branch Distribution



lDtrace — A T racing T ool for i486 Simulation 15 of 25

6.4 Cache Simulations

Our first cache study was to investigate the properties of the i486 on-chip cache. To do this timing and
memory-system simulators where built to model i486 behavior. The memory simulator models the
cache, write buffers, and instruction prefetcher. The timing simulator takes an execution trace and
derives the execution time for each instruction. It calls the memory system simulator to determine mem-
ory stalls due to cache misses or full write buffers. Floating point instructions are not accurately mod-
eled at present so the experiments were only run on the integer benchmarks. While our results should
not be used to derive any absolute performance figures such as CPI or effective memory access time
since actual times will be slower due OS effects, it is possible to use these results to measure relative
i486 performance with respect to different cache configurations. Furthermore, it sheds light on the i486
designer’s cache parameter choices. In an effort to make the cache results more representative of multi-
programming operation, the cache is flushed every 50,000 instructions.

The i486 on-chip cache is an 8K byte, 4-way set associative, unified write through cache with a line size
of 16 bytes. In addition, 4 double word1 (dword) write buffers avoid lock-up on writes. The fastest i486
memory model was used: 2 cycles to read the first 4 byte dword, 1 cycle for subsequent burst dword
reads, and 2 cycles to write a dword. Thus a cache line refill takes 5 cycles. If its buffer is not full, the
prefetcher tries to prefetch the next line past the current execution point. The line can be copied from the
cache or from memory if the memory bus is free from pending writes and cache misses caused by data
reads. If the line is copied from memory it is termed a memory prefetch. It can potentially increase per-
formance by eliminating an instruction cache miss. Both the cache and prefetch buffer are updated on a
memory prefetch. For more complete timing and memory system information see [5] and [6].

Table6 shows the cycles required to run 10 million instructions of each benchmark for different cache
configurations which bracket the on-chip cache found on the i486 (shown in bold in the table). Table7
shows the combined statistics for all six benchmarks. Unfortunately, the relatively small number of

1.  We use Intel’s convention of 16 bit words.

xlisp 157075812 425 49  (12%)

espresso 98055126 1434 188 (13%)

Benchmark
Unique

Branches
Branch Prediction

Accuracy
Number Causing

90% of Misses

eqntott 333 82.8% 2 (1%)

ear 402 94.9% 3 (1%)

compress 217 84.8% 6 (3%)

sc 1427 91.4% 44 (3%)

xlisp 425 82.9% 19  (4%)

espresso 1434 84.6% 134 (9%)

TABLE 5.  Mispredicted Branch Distribution

Benchmark
Total Branches

Executed
Unique

Branches
Number Causing 90% of
Total Branch Executions

TABLE 4.  Conditional Branch Distribution
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misses in the SPEC benchmarks produces only a small spread in the cycle counts but for these user pro-

grams, the i486 cache configuration is near optimal. The 8-way associativity is beneficial but probably
not worth the cost or potential increase in critical path. In fact, 2-way associativity might have sufficed.
The bus traffic can be viewed by comparing the prefetches and write buffers full columns. Fewer
prefetches mean fewer free bus cycles. Similarly, an increase in number of times the write buffers are
full means there were fewer cycles available to write the buffers. This is most evident in caches with
long cache lines and many misses both of which tie up the memory bus. Finally, it is interesting to note
that an increase in the number of prefetches doesn’t translate into a reduction of instruction misses. In
fact, the number of prefetches which actually prefetch a line from memory into both the cache and the
prefetch buffer (prefetch misses) is fairly constant. This implies that little is gained by prefetching user

Cache Config. cc1 compress eqntott espresso sc xlisp

Vary
Line
Size

8B, 4-way, 4wb 21.3 19.0 18.3 17.4 20.8 18.3

16B, 4-way, 4wb 21.2 18.8 18.1 17.2 19.9 18.1

32B, 4-way, 4wb 21.7 18.8 18.0 17.2 19.8 18.1

64B, 4-way, 4wb 24.6 19.1 18.0 17.5 21.1 18.6

Vary

 Asso-
ciativity

16B, 8-way, 4wb 21.0 18.8 18.0 17.0 19.7 17.7

16B, 4-way, 4wb 21.2 18.8 18.1 17.2 19.9 18.1

16B, 2-way, 4wb 21.6 19.0 18.1 17.3 20.2 18.3

16B, 1-way, 4wb 23.5 19.2 18.5 17.7 21.0 19.3

Vary
Write

Buffers

16B, 4-way, 4wb 21.2 18.8 18.1 17.2 19.9 18.1

16B, 4-way, 2wb 21.4 18.8 18.1 17.2 20.3 18.1

TABLE 6. Cycles (in millions) to execute 10 million instructions of each benchmark with cache configurations
bracketing that onboard the i486. The cache was flushed every 50 instructions to approximate context
switches. 8B, 4-way, 4wb denotes line size, associativity, and the number of write buffers. The other
parameters, 8K total, unified, and a write-through policy are fixed.
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code.  Branches in the code still cause instruction misses and sequential instruction lines are most often

already in the cache.

The availability of IDtrace also makes it possible to compare cache performance of two very different
approaches to instruction set design typified by the i486 and the R3000. The i486 to maintain compati-
bility with earlier members of the ix86 family has variable length instructions and few CPU registers (8
vs. 32) resulting in higher code density but more memory data references. We found these differences to
be less significant than one would expect, because the i486 stack acts as an extended register file that
usually resides in the cache.

The R3000 traces are generated by Pixie on a DECstation 5000 and the cache simulator used is a modi-
fied version of the multicache simulation tool, Tynero [14]. Table8 shows some preliminary data in

Cache Config.
Cycles

 (M)

Read
Misses

(K)

Instr .
Misses

(K)
Prefetch

(K)

Memory
Prefetch

(K)

Write
Buffers

Full

Vary
Line Size

8B, 4-way, 4wb 115 1719 2069 7710 12 2

16B, 4-way, 4wb 113 1220 1535 2836 15 27

32B, 4-way, 4wb 114 979 1155 1391 15 102

64B, 4-way, 4wb 119 1045 1153 281 13 270

Vary

 Associa-
tivity

16B, 8-way, 4wb 112 953 1361 3206 12 39

16B, 4-way, 4wb 113 1220 1535 2836 15 27

16B, 2-way, 4wb 115 1453 1535 2719 31 71

16B, 1-way, 4wb 119 2341 2451 2162 46 122

Vary
Write

Buffers

16B, 4-way, 4wb 113 1220 1535 2836 15 27

16B, 4-way, 2wb 114 1224 1545 2849 15 112

TABLE 7. Combined cache performance statistics of the six integer benchmarks: cc1, compress, eqntott, espresso,
sc, and xlisp.

Misses in thousands (% Ratio)

i486: 290M references R3000: 134M references

Line Size (bytes) 32 64 32 64

8K 1-way 9329 (3.2) 8093 (2.8) 9836 (7.4) 8371 (6.3)

8K 2-way 7038 (2.4) 5036 (1.7) 8310 (6.2) 6541 (4.9)

8K 4-way 6566 (2.3) 4607 (1.6) 7462 (5.6) 5506 (4.1)

64K 1-way 1112 (0.4) 1030 (0.4) 1892 (1.4) 1843 (1.4)

64K 2-way 607 (0.2) 551 (0.2) 1314 (1.0) 1204 (0.9)

64K 4-way 504 (0.2) 447 (0.2) 1108 (0.8) 1030 (0.8)

TABLE 8. Cache misses running espresso on i486 and R3000 for different cache configurations.
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which the R3000 has roughly two to four times the miss ratio of the i486 on most benchmarks. On
smaller caches the number of misses is about the same, however the i486 makes about twice as many
references. On larger caches the R3000 has more misses which increases the miss ratio disparity. This
implies that the R3000 program has a larger working data set. The factor of two reference difference is
due to the lack of registers in the i486, which results in a much greater degree of spillage. This is han-
dled by pushes and pops and base pointer references off of the stack. Once the top of the stack is resi-
dent in the cache few of these references will be misses. To confirm this IDtrace was modified to output
special tags for push and pop stack references and Tynero was modified to record separate counts.
Table9 shows that the miss ratio of push/pop references is far less than that of non-push/pop references
for larger caches. Thus the large number of stack references generate few misses on the i486 and the
number of misses on the two processors are roughly equivalent.

7.0 Conclusion

Instruction traces can be gathered by both hardware and software methods. Hardware monitoring gives
complete system level information but its use is limited by the required equipment. Software methods
can provide much of same information yet are much more accessible. Software instrumentation tools
provide an easy way to gather traces and have been build for many architectures. IDtrace is the first exe-
cutable-level instrumentation tool for ix86 architectures running Unix SysV. Its advantages are its ease
of use, low cost, ability to instrument library code, freedom from source code, and fast trace gathering.
The tool is currently being used to gather traces for cache performance, branch prediction, and instruc-
tion pipeline studies.

Appendix A Trace and File Formats

This section describes the format of the information contained in the various files created by IDtrace.
The actual tag values given for the tag names are not guaranteed to be the current values. It is suggested
that names be used from the header file addcode.h. The C structures below can be found in idtdef.h.

A.1 Trace Formats

IDtrace will produce four different kinds of traces for different applications depending upon the options
given.

Profile T race

Records only the dynamic execution count of each basic block in the .cnt file. This file in conjunction
with the .blk file (and maybe the original binary) can be used to produce profile and runtime statistics.
An empty .trc file is also produced.

Cache Config.

Push
Write Miss

Ratio

Non-P/P
Write Miss

Ratio

Pop
 Read Miss

 Ratio

Non-P/P
Read Miss

Ratio

8K 2-way 1.0% 4.3% 0.5% 2.4%

8K 4-way 0.5% 3.7% 0.2% 2.1%

16K 2-way 0.4% 2.8% 0.2% 1.1%

16K 4-way 0.3% 2.4% 0.1% 1.2%

TABLE 9. Miss ratios for push, pop, and non-push/pop references running espresso on the i486.
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Branch T race

This trace is designed for branch prediction simulation. The .trc file is a stream of two entry types. One
is a 5 byte entry specifying a basic block beginning. The first byte is a basic block tag, BBADTAG
(0x70), and the other 4 bytes contain the basic block beginning address. The other type of entry is either
6 or 7 bytes long. It specifies a control instruction ending the basic block. The first byte of the entry is
the tag, either OP1TAG or OP2TAG (0xa0 or 0xb0 respectively) for 1 or 2 byte opcodes. The next 1 or
2 bytes is the control instruction opcode and the last 4 bytes contain the address of the last byte of the
control instruction. Although the last field may seem unintuitive, branch target buffers are often indexed
by this number. As an example its use, suppose a control instruction entry for a conditional jump con-
tains X in the address field and the immediately following basic block entry contains the address Y. If X
+ 1 = Y then the jump was not taken and execution continued with the instruction (basic block) succeed-
ing the conditional jump.

Cache Trace

The trace file is for use as input to a cache simulator. If the -r option is not given the trace is a stream of
two entry types: cache line accesses for instructions and effective addresses for data references. Each
entry is 5 bytes long. The first byte of the data reference entry is a tag containing information about the
direction of the access (read or write) and the size of the reference (byte, word, lword, etc.) The tag is
generated by adding either RDTAG (0x10) for a memory read or WRTAG (0x20) for a memory write
reference with one of the size values from the table below.

For example, 0x21 is a byte write and 0x13 is a lword read. Unaligned and aligned references are
treated identically. It is assumed the cache simulator will specially handle unaligned references.

Type Value Type Value

byte 0x01 64 bits 0x04

word 0x02 80 bits 0x05

lword 0x03

Basic Block AddressBBAD

OP1 Op 1

OP2 Op 1 Op 2

Last Byte Address

Last Byte Address

2-Byte Control Instruction Entry

1-Byte Control Instruction Entry

Basic Block Address Entry

FIGURE 3. Branch Trace Entries
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The other entry type of the cache trace is an instruction cache access. Since is wasteful in both space and
time to output an entry for each executed instruction, one entry is output to the trace file for each cache
line access instead. If two instructions in a basic block are located in the same cache line only one entry
will be output. The default cache line size is currently16 bytes and can be changed using the -l option.
So with the default value caches with lines size of 16 bytes or greater can be modeled. Increasing the
trace line size will reduce the number of entries to be processed and thus will slightly reduce simulation
time. The format for a cache access entry is a 1 byte tag of value CLTAG (0x60) followed by the 4 byte
address of the beginning of the cache line.

Upon entering a basic block, the instruction cache line entries will be generated first followed by all data
references. Thus the instruction and data references are not interleaved within a basic block but are in a
coarser sense throughout the whole program. This will have no effect when modeling split caches and a
negligible effect on a unified cache model.

If the -r option is given repeat-end entries will be output and different tags will be used for data refer-
ences generated by instructions with rep prefixes. An instruction with a rep prefix will generate at least
one data reference entry for each iteration. The data reference format will be the same as above except
that RRDTAG (0x30) is used for the repeat read tag and RWRTAG (0x40) for the repeat write tag. A
repeat-end entry is output at the end of the data reference entries for a rep instruction. The first byte of
this entry type is a tag with value RENDTAG (0x50) and the other 4 bytes are zero. The use of different
tags and the repeat-end allow a postprocessor to analyze the locations and sizes of block references.

Execution T race

By comparing the original binary code with the execution trace it is possible to recreate the exact behav-
ior of the program. The information and format of this trace is geared toward creating a kernel trace (KT
format) for processor and pipeline simulators. A program exists called idt2kt which converts IDtraces’s
execution trace into the KT format. Information on this tool can be found in Section3.3 on page8.
There are four types of entries: data references, repeat ends, basic block file positions, and targets. All of
them begin with a one byte tag and then have a 4 byte information field, look at Figure6 on page21.
Unlike in the cache trace the data reference entries produced for an instruction do not always correspond
to the memory references performed by the instruction. Exceptions are listed below. Instructions with a

Cache Line Entry

Data Reference Entry

Cache Line Beginning AddressCL

ref tag Data Reference Effective Address

FIGURE 4. Cache Trace Entries

Repeat Read Entry

Repeat Write Entry

Repeat Read Effective AddressRRD

RWR Repeat Write Effective Address

REND Repeat End Entry0x00 0x00 0x00 0x00

FIGURE 5. Repeat Entries
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rep prefix generate multiple data reference entries using the RRDTAG and RWRTAG tag values as does
cache tracing with the -r option. Basic block beginnings generate a basic block entry with tag value
BBFPTAG (0x80). The four byte information field contains the location of the block record in the .blk
file. A target entry with tag value TARGTAG (0x90) is generated by control instructions such as call,
lcall, ret, and jumps. The information field of the target entry contains the target address of the control
instruction. There are a few other details:

• Call instructions first produce a target entry and then a data reference entry,

• Lcall instructions generated a target entry and then one data reference entry containing the first stack
push address (%esp-4),

• In the case of indirect jumps or calls the target entry contains the indirection pointer, i.e., not the
actual target but the location at which the target is found,

• Pusha, pushal, popa, and popad generated only data reference entry - the stack location of the first
push (%esp-4) or pop (%esp),

• Instructions such as inc which read and write to the same effective address generate only one data
reference entry with a tag value of RWTAG (0x00). The cache trace would produce separate read
and write entries.

A.2 File Formats

.idt File

ELF executable

.blk File

This file hold information pertaining to each basic block of the original binary. The first bytes are the
header structure:

#define BLK_FHDR struct blkhdrstruc

struct blkhdrstruc {

long blk_cnt;

long oldt_offset;

magic_t orig_magic_num;

magic_t idt_magic_num;

};

Basic Block Entry

Target Entry

Basic Block .blk File PositionBBFP

TARG Target Address

FIGURE 6. Execution Trace Entry Formats
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Blk_cnt is the number of basic blocks and oldt_offset is the difference between the address of an
instruction and its file position in the original binary. Its use is shown below. The rest of the file is a
list of block structures - one for each basic block. Each block structure has the form of BLOCK-
STRUC below.

#define I_INFO struct i_info

struct i_info {

short idt_id;

char instr_size;

char entries;

};

#define BLOCKSTRUC struct blockstruc

struct blockstruc {

ADDR address;

char size;

I_INFO instr_list[MAX_INSTR_PER_BLOCK];

};

The field address refers to the beginning of the basic block and size is the number of instructions in
the basic block. The file position of the basic block can be found by subtracting oldt_offset from
address. Instr_list is a list of 4-byte I_INFO structures, one for each instruction in the order in
which they occur in the basic block. The first two bytes contain a unique identifier for the instruction
which enables instruction recognition without opcode disassembly and the next byte, instr_size, is
the number of instruction opcode bytes. The last byte, entries, is the number of trace file entries gen-
erated by the instruction. In the cache trace this would be the number of data references, in the exe-
cution trace it would also include target entries. An exception to the definition of entries is for
instructions with a rep prefix since the number of data references produced is unknown prior to exe-
cution. A rep prefixed instruction which has one data reference per iteration (scas, lods, and stos) has
the value -1 for entries while rep prefixed instructions with two references per iteration (movs and
cmps) has a value of -2. So to associate a rep prefixed instruction with its data references, entries in
the trace file are read in groups of the absolute value of the entries field until a REPEND entry is
read thus signalling the end of the rep instruction.

.cnt File

This file holds the dynamic count of the number of times each basic block is executed. The first
bytes are the header structure:

#define CNT_FHDR struct cnthdrstruc

struct cnthdrstruc {

magic_t orig_magic_num;

magic_t idt_magic_num;

};

The rest of the file is a stream of long (4-byte) integers. The number of integers will be a multiple of
the block count. For smaller traces there will be exactly one number for one basic block. The first
number after the header is the execution count of the first basic block, the second number is the
count of the second basic block, etc. Multiple sets of counts are saved if one block count becomes
too large (> 232-1). For example, if there are 1000 basic blocks, there could be 1000, 2000, 3000,
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etc. integers in the file after the header. The sum of the 1st, 1001st, 2001st, 3001st, ... integers is the
total execution count for the first block.

.trc File

The trace file does not have any header information and its structure depends upon the trace option
given to idt. The trace file will be empty for a profile trace.

Appendix B KT Format

There are three trace driver data records. PID records contain information about the process for which
the following instructions and memory references pertain. MMU records contain information regarding
the virtual memory to physical memory mapping for the current address space of the process. Instruc-
tion trace records contain information regarding the effective address and contents of the current
instruction. IDtrace will only output instruction records. The others are described for completeness.

The internal format for each of the records follows. Note that the ‘type’ of each record is defined by byte
4 of the record. The following shows the meanings of type field values:

PID Records

The format:

MMU Records

The format:

The four bytes containing ‘type’ and ‘va’ above are considered as a four byte integer representing the
virtual address of the page plus the value of TR_MAP.

Type Values

Instruction 0x00 - 3f

Reserved 0x40 - 7f

PID 0x80

MMU 0x81

Reserved 0x82 - ff

Mnemonic Size Description

pid 4 bytes Current Process ID

type 1 byte TR_PID from sys/tr.h

PAD 3 bytes Pad bytes for record alignment

Mnemonic Size Description

pfn 4 bytes Page Frame Number

type 1 byte TR_MAP from sys/tr.h

va 3 bytes Virtual Address of page
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It may be necessary to keep up to TR_TLBR MMU records in the buffer in order to successfully decode
the physical addresses involved in an instruction.

Instruction Records

The format:

An instruction can have 0, 1 or 2 effective address entries.N = nnnn is the number of bytes of instruc-
tion opcode bytes andE = ee is the number of 4 byte effective addresses. Some instructions put values
other than memory effective addresses in the ea field.

• Jump and conditional jump instructions have the target address in ea field.

• Indirect jumps have the effective address of location of the indirection pointer in the one ea entry.

• Return and leave instructions have the stack pointer and base pointer respectively in the ea field
since they are memory references of those instructions.

• Instructions with the rep prefix generate a separate entry for each iteration of the instruction. For
instance, a rep movsb instruction which executes five times would generate five instruction records.
The eip, type, inst, and PAD fields would all be identical. The ea field of the first record would con-
tain %esi and %edi (in that order), the ea field of the next record would have %esi+1 and %edi+1,
and so on until the ea field of the last record contains %esi+4 and %edi+4.

• The instruction type not the actual number of memory references performed by the instruction deter-
mines the number of effective addresses in the ea field. In other words one ea entry may result in
more than one memory reference. For instance, instructions such as inc which perform two refer-
ences to the same address have a single ea entry.

Below is a table of all the cases of two ea entries:

Mnemonic Size Description

eip 4 bytes Instruction Pointer

type 1 byte 00eennnn

inst N bytes Instruction opcode bytes

PAD (-n-1) % 4 bytes Pad bytes for record alignment

ea E*4 bytes E effective addresses (virtual)

Name Opcode Ea1 Value Ea2 Value

Call Ev ff /2 stack ind. addr

Push Ev ff /6 stack target

Call Jv e8 target stack

movs/cmps a4 - a7 %esi %edi

Call Ap 9a target stack

Call Ep ff /3 target stack
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