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Abstract

We believe that separation of economic decisions from feasibility decisions is a necessity for achieving organizational
goals in a timely manner. In this paper we describe an approach that coordinates both causal and economic decisions of
an organization. Concurrency is enhanced as economic decisions can be made without causal information, and the results
of these decisions can be used to guide the causal decision makers. The causal decision makers can proceed, for the most
part, in parallel since economic interdependencies have been eliminated.

1.0 Introduction

The goal of any organizational structure is to enhance the abilities of its constituents for gainful activity. While
organizational structures vary, the need for coordinating constituent decision making transcends any particular structure.
We have been developing techniques to support decision making in large-scale organizations, particularly for the design
of complex systems (e.g., automobiles). Our approach is based on separating decisions about design feasibility from
those regarding the economic value of particular designs.

We have developed a representation and set of algorithms based on constraint-satisfaction techniques to reason over entire
design spaces of very large size (hundreds of variables). This representation allows individual agents (constituents in an
organization) to make decisions about the feasibility of the design space concurrently, and in some cases to eliminate
iteration through this space. This dramatically reduces design time. These algorithms deal with design causality; they
describe what is physically possible given some set of component and manufacturing technologies. They do not,
however, effectively consider economic impact.

We have noticed that the design of large systems involves a great deal of economic decision making that is entirely
separate from causal decision making. The objective here is to assign economic value to points or regions in the feasible
design space. Traditional optimization processes, for example, confuse these two things by the very nature of the way a
problem is specified. Through well-founded statements of preference (not constraints) about design alternatives and
explicit statements about the value of time, we can effectively capture the economic decision-making process.
Furthermore, the majority of interactions among causal decision makers stems from economic interdependencies (e.g., all
agents must share common budgets such as dollar cost).

In this paper, we describe an approach that coordinates both causal and economic decisions of an organization. Section 2
describes a decision-theoretic approach for distributed economic decision making. Section 3 provides an overview of the
representation and algorithms for casual decision making. Finally, Section 4 provides a discussion of the merits of our
approach.

2.0 Distributed Economic Decision Making

The field of decision theory [Lindley71] provides tools for rational decision making. Optimality is defined in terms of
preference statements made by the decision maker. Specifying economic preferences between alternatives provides simple
means for capturing economic goals and is well understood by decision makers. Furthermore, it is mathematically well
founded.

Solving a problem using decision theory proceeds as follows. All decision alternatives are identified along with their
respective consequences. The desirability of each consequence is determined using statements of preference from the
decision maker. Probability is used to measure the likelihood of a consequence and a utility function is used to measure
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desirability of an alternative/consequence pair. Using this formulation, the alternative that provides the highest expected
utility is chosen.

Multi-attribute decision making allows the evaluation of alternatives based on a number of attributes. In general,
attributes cannot be directly combined into a single objective function since they are non-commensurate. For example,
the attribute profit is quantitative and has units of dollars, while the attribute corporate image is qualitative and has no
standard set of units. Fortunately, Multi-Attribute Utility Theory (MAUT) [Fishburn70] provides means to evaluate the
desirability of multi-attribute consequences, and thus, facilitates multi-attribute decision making using a decision
theoretic approach. For mutually preferentially independent attributes, the multi-attribute utility function is expressed as
a weighted summation of attribute utility functions.

A major limitation of a utility function is that all feasible alternatives must be enumerated and evaluated in order to
specify the utility function. Although this requirement prohibits the use of a utility function for many problems, an
imprecise utility function [White84], which can be specified based on a subset of alternatives, can be used. An imprecise
utility function specifies a partial order on the set of feasible alternatives, and can be used to identify a non-dominated set
of alternatives.

In the remaining portion of this section, we describe an approach for distributed economic decision making based on the
use of an imprecise utility function for capturing economic preferences. The approach is based on a hierarchy of
attributes, and on the distribution of coordinator preferences to subordinates.

2.1 Objective/Attribute Hierarchy

For a given design problem, an attribute/objective hierarchy is identified. This hierarchy is similar to that involved in
any MAUT based technique. Objectives are refined to the point where they are directly measurable in physical terms.
Figure 2.1 provides an example of refinement of objectives. Measurable objectives are called attributes and are the basis
for quantitative decision making. In the example organizational structure given in Figure 2.2, agent 1 would identify
relevant attributes for agents 2-5, while agent 5 would refine its assigned attributes into those relevant to agents 6 and 7.
The total objective/attribute hierarchy forms a top-down link to coordinate economic decision making in an organization.
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Figure 2.1: Example objective hierarchy

Coordinator

1

2 3 4 5

6 7
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In the ideal case, all attributes used for decision making are identified in the objective/attribute hierarchy. Unfortunately,
it is difficult for large organizations, operating in a dynamic environment, to define and maintain such a hierarchy on a
day-to-day basis. Thus other attributes are introduced into the decision making process, especially at the lower levels of
the organizational hierarchy.

Consider the example given in Figure 2.3. Three different scenarios of attribute intersection are given for agents 5, 6, and
7 from Figure 2.2. In the first, the obj./attr. hierarchy of agent 5 produces two, mutually exclusive sets of attributes, one
each for agents 6 and 7. For both agents, the total set of attributes used for decision making includes those identified by
agent 5 as well as local attributes. Note that agents 6 and 7 do not share any common attributes, thus there is no
interaction between these agents for economic decision making. In the other two scenarios, agents 6 and 7 share
attributes, and may have to work together to achieve global goals.
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Figure 2.3: Three Venn diagrams illustrating the intersection of attribute sets.

2.2 Distributing Preferences

With the attribute hierarchy defined, statements of economic preference, in terms of relevant attributes, are made by the
coordinating agent. These statements are generated by performing pair-wise comparison between a random sample of
feasible design alternatives. Appropriate preference statements are then communicated to subordinate agents. For
example, in Figure 2.2, statements of economic preference by agent 1 are distributed to agents 2-5. Each of the agents 2-
5 combine these preference statements with their own local preferences to create a imprecise utility function to guide
their decision making. Agent 5 would also provide appropriate preference statements to agents 6 and 7.

It is necessary to categorize preference statements into two different classes:
1. Primary preferences
2. Secondary preferences

The ordering of alternatives created by primary preferences must always be obeyed. As previously discussed, decision
making by a subordinate may involve attributes other than those in the top-down obj./attr. hierarchy. A primary
preference statement mandates that local attributes and preferences be ignored in decision making, unless there is a need to
break ties. Thus, if the imprecise utility function specified by primary preferences is unable to order two alternatives,
then decision making may expand to include local attributes and local preferences.

In contrast, secondary preferences specify an ordering, assuming all other values of local attributes are equal. The
decision-making process for the subordinate is based on both those relevant attributes in the obj./attr. hierarchy and local
attributes. Merging local and secondary preferences may result in conflicts, and an appropriate conflict resolution strategy
must be used.

2.3 Additional Coordination Requirements

As shown in scenarios 2 and 3 in Figure 2.3, the value of some attributes may be influenced by more than one decision
maker. Once a feasible set of alternatives has been generated (Section 3.2), it can be shown that, for additive attributes
and linear attribute utility functions, a hierarchical distribution of preferences (Sections 2.1 & 2.2) is adequate to achieve
optimal decision making by an organization. Unfortunately, such is not the case for non-linear attribute utility functions.
In the worst case, the partial order specified by an imprecise utility function defaults to that specified by Pareto preference
[Nemhauser89]. In this case, too many alternatives will remain in the non-dominated set, and the time required to
evaluate all possible choices will bring the productive activity of an organization to a halt.

For non-linear attribute utility functions, the impact of a local decision, based on a set of attributes, on the overall utility
function, is dependent on all decisions relating to those attributes. Assuming a representation as described in Section 3, it
is possible to reduce the uncertainty in global utility relating to a local decision. By calculating the range of values that
an attribute can take, a strong partial order, which produces a small set of non-dominated alternatives, can still be
achieved.
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3.0 Distributed Causal Decision Making

To coordinate constituent decision-making for determining a set of decision alternatives, we cast the organizational
structure as a constraint-satisfaction problem (CSP) [Mackworth77]. A CSP consists of a set of variables, a set of
domain values that can be assigned to the variables, and a set of constraints that restrict the assignment of values to
variables. A feasible assignment is an assignment of values to variables that satisfies all constraints. The problem of
finding a solution to the CSP problem is NP-complete, but we have developed an algorithm and representation that
makes the problem tractable in a large number of cases for configuration design problems [Darr94].

3.1 Organizational Representation

In our CSP model, constituent members of an organization are modeled as CSP variables. These constituents are
completely described by a set of attribute values that include the capabilities or the functions that the constituent may
perform for the organization. Communication paths among constituents are modeled as CSP constraints.
Communication of decisions by constituent team members is done wholly through constraints. Constraints define the set
of feasible combinations of decisions among team members, and can be used to facilitate the concurrent execution of
decision making by the organization as a whole.

In a traditional CSP, all domain values are scalar; we extend this to allow intervals or ranges of values, which facilitates
a least commitment strategy for decision-making: a value is fixed at the last possible moment. In a similar vein, our
constraints may be hierarchical, and can be refined in much the same way as described in Section 2.1. For example, in
Figure 2.2, the coordinator may specify a very high-level constraint that is not directly useful for coordination of
decision-making. This constraint may be further specified by constituents 3, 4 and 5 which would allow effective
problem-solving behavior among these agents to achieve a set of decision alternatives that can be used in some other part
of the organization.

To facilitate organizational decision-making, we augment the traditional CSP formulation by allowing constraints and
variables to change dynamically during the decision-making cycle. This allows organization constituents to form teams
based on the problem to be solved. We seek ways to achieve the greatest degree of coordination possible by minimizing
unnecessary communication. For example, it may be the case that a constituent C1 can provide services (S1, S2, S3)
needed by some other constituent or group of constituents. This constituent would be preferred over a set of three
constituents (C2, C3, C4), where C2 provides S1, C3 provides S2 and C4 provides S3. The reason for this is that the
first constituent can provide (S1, S2, S3) with little, if any, communication, whereas (C2, C3, C4) may require
significant communication in order to achieve (S1, S2, S3). This is illustrated in Figure 3.1.
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Figure 3.1: Example Communication

3.2 Feasible Set Generation

Identification of a feasible set of alternatives is performed in a decentralized manner with communication between groups
strictly through the constraints that link the activities of the two groups. The form of our constraints allows the
decisions to be refined as the design progresses, which is consistent with the structures illustrated in Figures 2.1 and 2.2.
Since constraints may be hierarchical, constraints can also from groups to minimize communication as illustrated in the
previous section. For example, the objective to maximize gas mileage may be expressed in very high-level terms by the
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coordinator, which would translate into a wide interval for the set of attributes that relate to that objective. Similarly, the
sub-objectives would also be expressed with some “slack” that allows individual decision-makers a certain degree of
leeway to make decisions. This is in contrast to an organizational structure where fixed target attribute values are given
by the coordinator and teams must engage in bitter negotiation to gain possession of limited resources. Such a scheme
would lead to many iterations until project management intervenes to force a resolution. Such an approach loses the
opportunities for parallelism and concurrency that are possible with our approach.

4.0 Discussion

We believe that separation of economic decisions from feasibility decisions is a necessity for achieving goals in a timely
manner. First, concurrency is enhanced as economic decisions can be made without causal information, and the results of
these decisions can be used to guide the causal decision makers. The causal decision makers can proceed, for the most
part, in parallel since economic interdependencies have been eliminated. Second, we can direct the proper information to
the decision makers without overwhelming them with unnecessary information. Finally, we can provide an integrated,
rational decision-making process that not only reduces design time, but makes the rationale behind design decisions much
clearer.

This rationale can be used to guide organization re-engineering and analysis. For example, by studying past design
processes, it is possible to dynamically create highly effective “tiger teams” for future design problems by bringing
together only those participants who have proven capabilities relevant to a problem. Furthermore, the communication
and decision-making needs of this group can be anticipated, so that a proper organizational structure can be developed to
support them.

We have developed several prototype systems demonstrating the effectiveness of our approach. In one series of
experiments, we show that the time for computer agents to make decisions is independent of the number of agents
involved in the design process. In another series of experiments, we demonstrate how shared utility functions, even in
hierarchical organizations, can be used to coordinate decision making in groups with goals that are not necessarily
commensurate (at the individual agent level); we also demonstrate how such a utility function can be found using only
preferences about decision alternatives.
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