Supporting Queries on Source Code: A Formal
Framework

Santanu Paul Atul Prakash

Software Systems Research Laboratory
Dept. of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI-48105

santanu@eecs.umich.edu, aprakash@eecs.umich.edu

Abstract

Querying source code interactively for information is a critical task in reverse engineering of software.
However, current source code query systems succeed in handling only small subsets of the wide range
of queries possible on code, trading generality and expressive power for ease of implementation and
practicality. We attribute this to the absence of clean formalisms for modeling and querying source
code. In this paper, we present an algebraic framework (Source Code Algebra or SCA) for modeling and
querying source code. The framework forms the basis of our query system for C source code. An analogy
can be drawn with relational algebra, which forms the basis for relational databases. The benefits of using
SCA include the integration of structural and flow information into a single source code data model, the
ability to process high-level source code queries (command-line, graphical, relational, or pattern-based)
by translating them into SCA expressions which can be evaluated using the SCA evaluator, the use of
SCA itself as a powerful low-level source code query language, and opportunities for query optimization.
We present the SCA’s data model and operators and show that a variety of source code queries can
be easily expressed using them. An algebraic model of source code addresses the issues of conceptual
integrity, expressive power, and performance of a source code query system within a unified framework.

Keywords: Reverse engineering, source code query, query languages, algebra, generalized order-sorted
algebra.

1 Introduction

Programmers have become part historian, part detective,
and part clairvoyant.

Tom Corbi, in Program Understanding: Challenge for the 1990s [12].

In the last few years, software reverse engineering, code re-engineering, and program understanding
have emerged as the latest challenges in the field of software engineering. Interest in these areas has been
triggered by the presence of extremely large, difficult-to-maintain software systems, better known as legacy
systems, which for reasons of economics cannot be thrown away and rewritten.

One of the early conclusions in reverse engineering research is that a complete automation of the design
recovery process is not feasible [12]. Given the current state-of-art in reverse engineering technology, it is felt
that reverse engineering of real systems can at best be automated 50 percent, and the rest must be by human
participation [44]. This acceptance of the critical role that must be played by a human reverse engineer has
led to research in software tools that can assist or support the human in this task.

Of the many tools that will be required to support reverse engineering, we are concerned with the design
of one: a language-based tool for querying source code to support the task of software understanding and
design recovery. Support for extracting relevant information from source code has so far been left either to
rudimentary, string searching tools like grep, awk, etc. (which are capable of handling only trivial queries),
or to general-purpose database approaches that have limited querying power for the source code domain
[8, 10, 28, 30]. The need for sophisticated querying tools for reverse engineering has been articulated by
Biggerstaff in terms of a “conceptual grep” [3], and also by Chikofsky [9]. The purpose of a source code
querying tool is to help a human reverse engineer indulge in plausible reasoning [3] or domain bridging [5] —
an iterative process of guesswork and verification that leads him or her to a better understanding of what
the source code is doing.

Reverse engineers may need to make several types of queries. Queries may be based on global structural
information in the source code, e.g., relations between program entities such as files, functions, variables,
types, etc. Queries can also be based on statement-level structural information in the source code, e.g.,
looking for patterns (e.g., loops) that fit a programming plan or a cliche [33, 34, 36]. Queries may also be
based on flow information derived by static analyses such as data-flow and control-flow analyses, e.g., to
locate program slices [43], to find the variables whose values are affected by a particular statement, etc.
Finally, a reverse engineer may need to make queries that use both structural information as well as program
flow information.

Unfortunately, one of the fundamental problems designers of source code querying systems face is the
lack of good underlying models to represent source code information and to express queries. For example,
in our previous work on building source code querying tools SCAN [1] and SCRUPLE [34], and earlier in
our work on the Evolution Support Environment System (ESE) [35], we found that no satisfactory choice
for the underlying model to represent program information was available. One option for us was to use the
relational model, as used in several systems such as OMEGA [28], CIA [8], and CIA++ [18]. The advantage
of that would have been the availability of a formal query language (based on relational algebra) — our
work in developing a query language and a query processor would have been reduced. Unfortunately, it is
difficult, if not impossible, to use the relational model to make queries for locating patterns in source code
and to make queries based on data-flow and control-flow. Another option would have been to use some
other representation model such as graphs or abstract syntax trees, as used Rigi [30] and Microscope [2]
or an object-based representation as used in REFINE [26] and in [27, 20]. However, the problem with
those models would have been the lack of a query language with well-defined operators. Either option was
somewhat unsatisfactory. Current versions of SCRUPLE and SCAN ended up using an attributed syntax-

tree representation whereas the ESE system used a relational representation. In both cases, we definitely
felt the lack of either a proper query language or adequate modeling power.

In order to alleviate the above dilemma faced by designers of reverse engineering tools, this paper
proposes a source code algebra as the foundation for building source code querying systems. An algebra
defines a model for representing source code information and gives a well-defined set of operators that
can be used to make queries on the information. The analogy is the use of relational algebra [11] as the
foundation for relational database systems. Algebras have also been used in the design of general-purpose
query languages for the relational data model [11], the nested relational model [21, 22, 23], the extended
relational model [38], the object model [29, 31, 40, 41], and also in the design of a domain-specific query
language for structured office documents [19]. The benefits of using an algebra as the basis for a query
language include the ability to provide formal specifications for query language constructs, the ability to use
the algebra itself as a low-level query language, and opportunities for query optimization. The need for a
special-purpose algebra for source code stems from the modeling limitations of above-mentioned data models
for representing source code information and the absence of appropriate operators for expressing queries of
interest to reverse engineers.

The proposed source code algebra (SCA) effectively models source code information and contains the
necessary operators for making a variety of queries of interest to reverse engineers on source code. The model
views source code as a domain of typed objects with attributes that store component information, relations
with other objects, computation methods, and any other relevant information. The model supports the
notion of a collection of objects. Collections can be viewed as either sets (e.g., a set of variable objects) or
as sequences (e.g., a sequence of statement objects). Operators are then provided to operate on individual
objects and their collections. As in relational algebra, queries are expressed by writing expressions using the
given operators.

The paper is organized as follows. Section 2 discusses the type of queries on source code that we would
like to be able to handle in the source code algebra. Section 3 discusses our approach of using an algebra to
support querying on source code. In order to specify the algebra, we first define a data representation model
that is rich enough to capture relevant information about the source code and then give a well-defined set
of operators for the model that can be used to express a variety of queries on the source code. Section 4
illustrates the expressive power of the operators — it shows how different kinds of queries on source code are
expressed using the given operators. Section 5 outlines design and performance issues in using the algebra as
the basis of a system to support source code querying. Section 6 compares our algebra to other algebras that
have been proposed for querying in other domains. Finally, Section 7 presents our conclusions and future
work.

2 Requirements of a Source Code Query System

While a well-researched survey of commonly-used source code queries continues to be unavailable, a compara-
tive study of systems currently used to query code offers valuable clues regarding the functionality that needs
to be supported. In this section, we will present sample source code queries and specify the requirements of
a source code query system.

2.1 Examples of Source Code Queries

e Queries based on Global Structural Information:

The first category consists of queries that pertain to global structural information, relating to files,
modules, functions, global definitions, etc.

1. What are the functions defined in the file analyzer.c?

2. Find all global variable definitions of type matriz.

3. Find the file that has the mazimum number of functions.

Query 1 pertains to the organization or high-level design of the program, specifically, it concerns itself
with the distribution of functions in files. Query 2 detects the use of a certain type definition. Query
3 is a numerical query based on program structure, and is representative of a large class of source code
queries that are based on software metrics.

e Queries based on Syntactic Structure:

These are queries that deal with fine-grain syntactic and structural information, such as code patterns,
structures of constructs, etc.

1. Show the body of the function sort().

2. Find patterns consisting of sequences of three i f statements, possibly separated by arbitrary state-
ments.

3. Find all the iterative statements in the program.

Query 1 pertains to the abstract syntax of a function. Query 2 is essentially a syntactic pattern at the
level of statements, based on the implicit concept that a statement list has the semantics of a sequence.
Implicit in query 3 is the notion of generalization, i.e., while,do, and for statements are specialized
forms of iterative statements.

¢ Queries based on Program Flow Information:

These are queries that probe information flow between source code entities. Typically, maintainers are
interested in information that can be obtained by static analyses of source code, such as definition and
use of identifiers, data-flow and control-flow information, and so on.

1. Find all references to the identifier counter.
2. Identify the set of all functions that are directly or indirectly invoked by the function sort ().

3. Find the subsequent uses of the variable v defined in statement s.

Query 1 is a common source code query based on the “refers-to” relationship between an identifier
reference and its definition. Query 2 can be thought of as a recursive query that computes the closure
of the program call graph, starting from a given function. Query 3 is an example of simple data flow
analysis.

2.2 Definition of a Source Code Query System

We define a source code query system informally as an environment with the following characteristics. First,
it must provide a data model for source code which captures structural as well as program flow information.
Second, it must provide a query language, that permits the specification of queries based on structural as
well as flow information in a seamless manner.

Ideally, the source code data model should be complete and minimal. Completeness ensures that “all”
information needed to query source code is available in the model. In the absence of a formal notion of
source code query completeness, we must settle for approzimate completeness based on the range of queries
a model can handle. Minimality eliminates redundant information from the data model. At the same time,
the source code query language should be ezpressive and usable. Expressiveness implies that any information
that exists in the data model or can be computed from it should be accessible using the query language.

Usability measures the ease with which such information can be derived. For example, a declarative or
applicative language is easier to use than a procedural language.

An implementation of a source code query system must include 1) a repository that stores source
code information according to the data model 2) tools that populate the repository with structural and/or
program flow information, such as parsers, static analyzers, etc. 3) a interface for the user to specify queries,
and 4) a query processor that handles queries by examining the repository.

2.3 Designing a Formal Query Language

To be expressive and usable, a source code query language, in our view, should have two characteristics.
First, it should have a formal framework, second, it should be non-procedural.

The arguments in favor of building a formal query language are compelling. The constructs of a
formal language have well-defined semantics. It has been observed in the context of query languages that
formal frameworks such as relational algebra [11], relational calculus [42], NST-Algebra [19], etc. have yielded
powerful and expressive high-level query languages, and have been argued to be functionally complete within
their respective data models. Well-defined semantics has led to clean implementations for query processors.
In algebraic frameworks such as relational algebra (both classical and extended), rules and heuristics of
algebraic transformation have been used for query optimization. In NST-Algebra, as in relational algebra,
the algebra can serve as an applicative query language.

A non-procedural query language is desirable because it greatly simplifies the task of expressing queries.
In applicative languages such as algebras, a query is specified as an algebraic expression that must be
evaluated to obtain the result. In declarative languages such as calculi, a query is a logical assertion about
the properties of the result. In either case, there is no need for procedural descriptions of queries.

In contrast, the lack of formal frameworks and the absence of non-procedural query languages in many
object-oriented data models has led to problems in query processing and optimization [14].

3 Owur Approach: An Algebra for Source Code

To facilitate queries on source code, we have developed a source code data model that captures the necessary
structural and program flow information and designed a formal framework to query the model for such
information.

The key feature of our approach is the modeling of source code as an algebra. Informally, algebras
are mathematical structures that consist of data types (sorts) and operations defined on the data types
(operators). We are interested in the design of a source code algebra (SCA). The objective is to model the
data types in the source code domain as sorts of the SCA, and to design source code query primitives as
operators of the SCA. A clear analogy can be found in the relational data model, where the relational algebra
serves as the underlying mathematical model. By modeling source code as an algebra, we hope to address the
conflicting issues of conceptual integrity, expressive power, and performance of a source code query system
within a single formal framework.

We will begin this section with a brief description of relational algebra. The purpose is to demonstrate
how the domain of relations benefits from an algebraic framework, and offer a rationale for the use of algebras
to model source code. Next, we will present our source code data model, and show why SCA must belong to a
class of algebras (generalized order-sorted algebras) more powerful than that of relational algebra (one-sorted
algebras). Finally, we will outline the operators of SCA.

3.1 Relational Algebra

Operator Signature Description

union,difference RELATION x RELATION — RELATION | Obvious

intersection

select RELATION — RELATION Returns a subset of
the tuples based on a
boolean condition

project RELATION — RELATION Returns a relation
with only the specified
fields

cartesian product | RELATION x RELATION — RELATION | Combines the
tuples in two relations
exhaustively

join (natural) RELATION x RELATION — RELATION | Cartesian product fol-
lowed by select

Table 1: Relational Algebra Operators

Classical relational algebra is an instance of a one-sorted algebra, i.e., it deals with only one data type,
namely relations. Relations are sets of tuples whose fields have atomic values such as integers, strings, etc.
The primitive operators of the algebra are union(U), set difference(—), select (o.), project (Ta,,a,,...,), and
cartesian product (x) [11]. Join (M) is a derived operator of the algebra (composition of ¢ and x). Each
of these operators take relations as arguments, and produce new relations. For example, the o, operator
takes a relation R and produces a new relation R’ that contains only those tuples of R which satisfy a given
boolean condition ¢. The signatures of the operators are shown in Table 1.

Codd has shown that all information stored using relations can be accessed using the five primitive
operators of relational algebra. In that sense, the relational algebra is query-complete [11]. Relational algebra
has also been shown to be equivalent to relational calculus [42]. Relational algebra (or its equivalent relational
calculus) forms the basis of a wide variety of relational database query languages such as SQL, QUEL, ISBL,
and QBE [42]. However, a major weakness of relational algebra is that it fails to include basic data types
such as integers, strings, etc. as elements of the algebra itself. Consequently, many operations permitted in
SQL (aggregate, sort, etc.) do not have well-defined semantics in terms of relational algebra [19].

Relational algebra also helps in query optimization by algebraic transformations. Consider the rela-
tional algebra expression o, (0¢,(R)). It so happens that o commutes with itself, and we have the following
identity:

Ocy (Ucz(R)) = 062(001 (R))

Now, if R were to contain a large number of tuples, and condition ¢s was significantly harder to compute
than ¢1, we could optimize an algebra expression which contained the subexpression o, (0., (R)) by replacing
the subexpression with o,(co.,(R)). Many such identities that arise in relational algebra are used in practice
to optimize queries [42].

3.2 The Domain of Source Code

3.2.1 Many Data Types

An obvious difference between relational algebra and an algebra for source code is that the latter must handle
many different kinds of data types. We will concern ourselves with source code written in C. The data types
that arise in source code modeling can be classified into two broad groups:

labeled-stmt :
default-Istmt

compound-stmt selection-stmt

TYPE HIERARCHY FOR C STATEMENTS

i

Figure 1:

¢ Atomic data types: These are the basic data types such as INTEGER, FLOAT, BOOLEAN, CHAR,
STRING, etc. Unlike relational algebra, SCA treats these basic data types as elements of the algebra.
This permits the introduction of operators such as 4+, —, and, or, etc. as valid algebra operators.

e Composite data types (Objects): Some examples of composite data types in C are the while-statement
type, the relational-expression type, and so on. Two different kinds of source code objects are

modeled in SCA:

— Singular objects such as a while-statement, an identifier, etc. Typically, these are con-
structs of the programming language which have a syntactic structure given by the abstract syntax
of the language. For example, a while-statement object has two structural components, the con-
dition (of type expression) and the body (of type statement). Singular objects are analogous to
nested relations in the nested relational model [21, 22, 23].

— Collective objects: These are collections of other objects. For example, the type statement-1list
represents a sequence of objects of type statement. Similarly, the type declaration-list rep-
resents a set of objects of type declaration.

3.2.2 Hierarchy of Data Types

An interesting feature that characterizes source code data types is the presence of a type hierarchy or class
hierarchy. For example, while-statements are a subtype of the type statements (by specialization of
behavior), in turn statements form a subtype of the type program-objects. Consequently, during query
processing, it should be possible to substitute a while-statement in place of a statement, and a statement
in place of a program-object. A pictorial representation of the C type hierarchy restricted to the type
statement is shown in Figure 1.

A critical requirement in the design of SCA then must be the ability to incorporate the source code type
hierarchy as an integral part of the algebraic framework. The algebra must handle the notion of subtyping

and inheritance, and support substitutability, a critical feature which lets an instance of a subtype be used
in place of a supertype.

3.2.3 Object Attributes

There are four different kinds of atiributes that may be associated with a source code object.

By components, we mean syntactic or structural information. In the case of a while-statement object,
the components are its condition and body. Conceptually, a restriction of the source code representation with
respect to component attributes would yield the abstract syntax tree of the program. Extracting structural
information from source code and storing it in the source code database is a part of the source code parsing
process.

By relationships, we refer to the associations between objects. In addition to simple cross-referencing
information, they offer a way of modeling program flow relationships that occur between objects. One set of
important data flow relationships in the source code domain model are the “uses” and “defines” relationships
(see STATEMENT in Figure 2). If a statement s uses a variable v, a “uses” (and symmetrically, “used-
by”) exists between them. Similarly, if a statement s defines a variable v, a “defines” (and symmetrically,
“defined-by”) exists between them. Extracting and storing such information is the responsibility of flow
analyzers.

An attribute of an object can also be a method or a function that is computed on-the-fly. Methods are
a standard feature of object-oriented data models [13], and can be used to introduce complex and specialized
algorithms into the data model. For example, efficient algorithms for data flow analysis such as live variable
analysis, available expression analysis, etc. [24] can be used to compute the attributes such as “live” (see
STATEMENT in Figure 2), which computes the set of live variables for a given statement, and their respective
next statements in the “uses” chain. While the algebra, in principle, should be powerful enough for such
computations, methods can be used as hooks to incorporate specialized algorithms on grounds of efficiency.

In addition to components, relationships, and methods, other kinds of information may be relevant to
the problem of querying source code. Typical among these are information regarding line numbers, metrics,
ete.

In addition to attributes that are precomputed or computed on-the-fly using methods, new attributes
can be added to objects during a query. Such relationships can be thought of as derived attributes, and their
computation should be part of a view generation process [42]. In section 3.3, we will introduce the extend
operator, which lets such attributes to be added to objects.

3.2.4 A Suitable Algebra for Source Code

As seen in the previous sections, an algebra for source code marks a major departure from relational algebra
because it must 1) support a wide variety of atomic and composite data types, and 2) incorporate the notion
of a type hierarchy within the algebra itself.

The first condition can be satisfied if| instead of using the class of one-sorted algebras, we use the class
of many-sorted algebras [4, 17] to model SCA. Unlike one-sorted algebras that model a single data type,
many-sorted algebras can model a variety of atomic and composite data types and the operations on those
types within a single algebraic framework.

However, to handle type hierarchies within the overall framework of many-sorted algebras, it is first
necessary to define a partial order on the different types (sorts) of the algebra based on the subtype of or
subsort of relationship. The issue of ordering the sorts of a many-sorted algebra was first addressed as
a theoretical problem by Goguen and Meseguer [16] who proposed an order-soried algebra based on the
interpretation of subsorts (subtypes) as subsets. The interpretation of subsorts was later relaxed in the
work of Bruce and Wegner on generalized order-sorted algebras to a weaker form of behavioral compatibility

type IDENTIFIER-REF subtype of EXPRESSION

endtype

type IDENTIFIER subtype of PROGRAM-OBJECT
name:STRING
id-references:SET(IDENTIFIER-REF) inverse id

endtype

type FUNC-CALL subtype of EXPRESSION
func:FUNCTION
arguments: EXPR-LIST

endtype

type FUNCTION subtype of PROGRAM-OBJECT
type-spec: TYPENAME
name:STRING
parameters: PARAM-LIST
body:COMPOUND-STMT
calls:SET(FUNCTION)
in-file:FILE inverse funcs

endtype

type FILE subtype of PROGRAM-OBJECT
name:STRING
funcs:SET(FUNCTION) inverse in-file
decls:SET(DECLARATION)

endtype

type STATEMENT subtype of PROGRAM-OBJECT
line-no:SET(FUNCTION)
uses:SET(VARIABLE) inverse used-by
defines:SET(VARIABLE) inverse defined-by

endtype

Figure 2: Type definitions

[6]. Essentially, a sort is a subsort of another if the former is behaviorally compatible with (i.e., can be
substituted for) the latter.

A generalized order-sorted algebra is thus a many-sorted algebra with a partial order defined on its
sorts. Intuitively, it is apparent that SCA can be modeled as a generalized order-sorted algebra where the
sorts are the various source code data types (atomic and composite) ordered by the subtype of relationship.
The concept of behavioral compatibility is particularly suitable because a while-statement is indeed a
behavioral subtype of a statement (as opposed to being a subset or a restriction) since it contains additional
attributes.

We now use a formal definition of generalized order-sorted algebras to characterize SCA:

Definition 1: Let S be a set of sorts. In SCA, S contains all the atomic data types and composite
data types discussed in section 3.2.1. Thus,

ATOM = {INTEGER,BOOLEAN,FLOAT,...}
COMP = {while-statement,...,statement,... statement-list,...}
S = ATOM U COMP

Definition 2: A generalized order-sorted algebra A is a 3-tuple < S, <,OP >, where S is a set of
sorts, < a partial ordering defined on the sorts, and OP a set of functions (called the operator set) such
that:

1. aset Ay, called the carrier set or domain of s, is defined for each s € S

2. the signature of a function ¢ € OP is given by
oA, XA, X oo X Ay — A
where s1, 82, ...,8,,s are elements of S.

3. if t <'s;, then elements of A; can substitute as elements of Aj,.

In SCA, the partial order < is given by the subtype of relationship. The set O P contains operators for atomic
data, objects, and collections of object such as sets and sequences. The details of the SCA operators are
presented in the next section.

3.3 Source Code Algebra Operators

Given the source code data model in SCA, the next task is to define the algebra operators that are relevant
to the task of querying source code. SCA is essentially an algebra of objects. We have used and extended
operators from pre-existing object algebras for set operations, generalizing them to operate on sequences
wherever possible, and proposed appropriate operators for sequences. Operators for sequences have only
recently begun to be proposed in literature [15, 37]. We have introduced seq-extract, a powerful new
operator for sequences which uses regular expressions as the basis for extracting subsequences. SCA offers
a unified approach to querying collections, whether they be sets or sequences. This is a departure from
earlier approaches where the data model is either essentially set-oriented or sequence-oriented. Using the
SCA operators, source code queries can be expressed as algebraic expressions. An evaluation of an algebraic
expression on the source code representation yields the result of the query.

The operators of SCA can be classified into two broad categories. Table 2 shows SCA operators defined
on atomic data types. The second category of SCA operators are defined on objects (composite data types).
Operators shown in Table 3 are defined on all objects. Table 4 shows operators defined on collections; i.e.,
both sets and sequences. Operators specific to sets and sequences are shown in Tables 5 and 6 respectively.

10

Operator Signature
+,—,% INT x INT — INT

FLOAT x FLOAT — FLOAT
/ FLOATx FLOAT — FLOAT
and,or BOOL x BOOL — BOOL
not BOOL — BOOL
=,<,>,<,> | ATOM x ATOM — BOOL

Table 2: SCA Operators for Atomic Data Types

Operator | Signature

closure COMP — SET(COMP)
equal COMP1 x COMP1 — BOOL
identical | COMP1 x COMP1 — BOOL

Table 3: SCA Operators for Composite Data Types

In the remainder of this section, we will discuss the semantics of some of the interesting operators of
SCA. A complete description of SCA operators can be found in [32].

3.3.1 closure

This computes the transitive closure, or reachability graph, given a attribute name. For a given object and
an attribute name, closure produces a set of all objects that are reachable from the original object using
the only the named attribute as ‘links’.

syntaz: closurec griributes(< object >)

For example, closure on the attribute “call” would result in all the functions directly and indirectly called
by a function.

3.3.2 select

Given a set (sequence) of objects and an algebraic expression that evaluates to a boolean value, select
returns a subset (subsequence) of the objects for which the expression evaluates to TRUE. This has been
extended from select in relational algebra. select produces a subclass of objects of the same type.

syntaz: select cpoolean expression>(< objectcollection >)

3.3.3 project

Given a collection of objects and a list of valid attributes of the objects, it returns a collection of new objects
which contain only the listed attributes. This is extended from the project operator in relational algebra.
project produces a superclass of the input class, since the resulting type is a supertype of input type by
generalization (as it has fewer attributes).

syntaz: project .,y ipurerist>(< objectcollection >)

11

Operators Signature

select COLLECTION(ANY1) — COLLECTION(ANY1)

project COLLECTION(COMP1) — COLLECTION(COMP2)

extend COLLECTION(COMP1) — COLLECTION(COMP2)

retrieve COLLECTION(COMP) — COLLECTION(ANY)

apply COLLECTION(ANY1) — COLLECTION(ANY2)

product COLLECTION(COMP1) x COLLECTION(COMP2) — SET(COMP3)
flatten COLLECTION(COLLECTION(COMP1)) — COLLECTION(COMP1)
pick COLLECTION(ANY1) — ANY1

size_of COLLECTION(ANY) — INT

reduce COLLECTION(ANY) — ANY

forall,exists | COLLECTION(ANY) — BOOL

is_empty COLLECTION(ANY) — BOOL

member_of | ANY1 x COLLECTION(ANY1) — BOOL

Table 4: SCA Operators for Collections (sets and sequences)

3.3.4 extend

Given a collection of objects, a function name, and an algebraic expression, extend returns a collection
of new objects which have all the attributes of the input objects and also a new attribute whose value is
obtained by evaluating the algebraic expression. This is equivalent to the A operator in NST-Algebra [19],
and the extend operator in Schek and Scholl’s extended relational algebra [39]. extend produces a subclass
of the input class, since the resulting type is a subtype of the input type by specialization (as it has more
attributes).

syntaz: extendcattribute:=algebraic expression>(< objectcollection >)

3.3.5 retrieve

Given a collection of objects, this operator retrieves the specified attribute (field) for each object. The
attribute may be specified using its index or its name.
syntaz: retrieve ¢ gprivute>(< objecteollection >)

3.3.6 apply

Given a collection and a unary operator, apply returns a new collection where the objects are obtained by
applying the operator to each of the input objects.
syntaz: apply ,perarors (< objectcollection >)

3.3.7 Cartesian Product

Given two collections of objects, it returns a set where the objects are obtained by systematically combining
all possible pairs of objects between the two collections. Extended from cartesian product in relational
algebra.

syntaz: product(< objectcollectionl >, < objectcollection2 >)

12

Operator Signature

union,difference,intersection | SET(ANY1) x SET(ANY1) — SET(ANY1)
subset_of SET(ANY1) x SET(ANY1) — BOOL
set_to_seq SET(ANY1) — SEQ(ANY1)

Table 5: SCA Operators specific to Sets

Operator Signature

head,tail SEQ(ANY1) — SEQ(ANY1)

concat SEQ(ANY1) x SEQ(ANY1) — SEQ(ANY1)
order SEQ(ANY1) — SEQ(ANY1)

seq_extract SEQ
seq_element | SEQ
subseq_of SEQ
seq_to_set SEQ

ANY1) — ANY1
ANY1) x SEQ(ANY1) — BOOL
ANY1) — SET(ANY1)

)
|
ANY1) — SEQ(ANY1)
)
)
)

= ===X==

Table 6: SCA Operators specific to Sequences

3.3.8 forall

forall returns TRUE if for all elements in the collection, the boolean expression evaluates to TRUE.
syntaz: forall y,orcan copression>(< objectcollection >)

This is a derived operator, whose semantics is equivalent to the truth of the expression:
size_of(select cpootean expression>(< objectcollection >)) = size_of(< objectcollection >)

3.3.9 exists

exists returns TRUE if for some element in the collection, the boolean expression evaluates to TRUE.
syntaz: existS<poolean expression>(< objecteollection >)

This is a derived operator, whose semantics is equivalent to the truth of the expression:
size_of(select cpootean expression>(< objectceollection >)) # 0.

3.3.10 seq_extract

The choice of appropriate sequence operators is a topic of current research [37]. Existing sequence manip-
ulation languages provide little or no support for extracting subsequences based on sequence patterns. We
have attempted to address this problem by introducing the seq_extract operator.

synta:p: 5€Q—ertra6t<pattern>:<boolean e:cpression>(< ObjeCtseq >)

The < pattern > is a regular expression [25]. An example of a pattern could be
(while-statement,statement*,if-statement,statement*,while-statement) in which case it would re-
turn a subsequence of the input sequence which starts and ends with a while-statement, and has a
if-statement somewhere in between. Additional constraints about the pattern can be expressed using
the the < boolean expression >.

13

3.3.11 order

order accepts a sequence and returns a sequence ordered by 1) the values of the objects if it is a sequence
of atomic data items, or 2) the values of the attribute if the elements are objects.

syntaz: ordercattribute> <ord>(< Objectseq >)

The order returned is increasing or decreasing based on whether the parameter < ord > is’ <’ or /' >'.

4

Source Code Queries as SCA Expressions

We now demonstrate the power of SCA by expressing some source code as SCA expressions. This exercise
shows the use of SCA as a low level source code query language. We hope to show the feasibility of modeling
and querying information related to both program structure as well as program flow within the framework

of SCA.

1.

What are the functions defined in the file analyzer.c?:

First, the file anaylzer.c is selected, and then its attribute “funcs” (the set of functions defined
in the file) is retrieved.

Tetrieve puncs(select name=analyzer.c(FILE))

. Show the body of the function sort().:

The function sort () is selected and its “body” retrieved.

retrievesody (selectname=sort(FUNCTION))

. Find all the iterative statements in the program.:

The objects of type iteration-statement are selected. This includes all objects of types do-statement,
while-statement, and for-statement (the subtypes of
iteration-statement).

selectrrug(ITERATION — STATEMENT)

. Find the file that has the mazimum number of functions:

First, the file objects are extended with a new field, namely no_of func. The set of these new ob-
jects is then converted into a sequence and arranged in decreasing order of their no_of_func. The head
of this sequence is the file with maximum functions.

head(orderno_of func,>(set to_seq(extendn,_of _funci=size_of(funcs)(F' 1LE))))

. Find a sequence of three if-statements, possibly separated by arbitrary statement lists:

The unary operator seq-extract operates on every statement-list and extracts, wherever appli-
cable, the subsequences that fit the pattern of three if-statements with other statements in between.

(STATEMENT — LIST)

image
g seq_ertract(;fstatement,statements,ifstatement,statements,ifstatement): T RUE

14

6. Find all references to the identifier counter.

Each identifier object has an attribute named ide-references that points to the set of expressions
that refer to it.

TEtTiEVeid_references(S€leCt name=counter(IDENTIFIER))

7. Identify the set of all functions that are directly or indirectly invoked by the function sort().:
This is a clear instance of transitive closure based on the ‘calls’ relation.

closurecqns (select name=sort(FUNCTION))

8. Which functions in until.c are called by functions in main.c?

First, the functions in file main.c are selected. For each function, the set of functions it calls are
obtained (using the image operator). The result is a set of set of functions. The flatten operator
flattens the nested set into a single set of functions. The select operator then picks out only those
that are defined in until.c.

selectin_ pite=untir.c(flatten(retrieve qus (selectin_ fite=main.c.(FUNCTION))))

9. Find all subsequent uses of the variable defined in statement s.
The variable defined in s is selected, and then all its uses are retrieved.

flatten(retrieveyseq—py(retrieveqefines (select (STATEMENT))))

5 Incorporating SCA into a Reverse Engineering System

Figure 3 shows how SCA would fit into the design of a query system. Source code files are processed using
tools such as parsers, static analyzers, etc. and the necessary information (according to the SCA data
model) is stored in a repository. A user interacts with the system, in principle, through a variety of high-
level languages, or by specifying SCA expressions directly. Queries are mapped to SCA expressions, the
SCA optimizer tries to simplify the expressions, and finally, the SCA evaluator evaluates the expression and
returns the results to the user.

We expect that many source code queries will be expressed using high-level query languages or invoked
through graphical user interfaces. High-level queries in the appropriate form (e.g., graphical, command-line,
relational, or pattern-based) will be translated into equivalent SCA expressions. An SCA expression can
then be evaluated using a standard SCA evaluator, which will serve as a common query processing engine.
The analogy from relational database systems is the translation of SQL to expressions based on relational
algebra.

Where high-level queries available to the user are not sufficiently expressive, the SCA itself can be used
as a low-level source code query language. Users familiar with SCA can exploit the power of the algebra by
expressing queries directly as SCA expressions, thus bypassing the high-level query interface. Queries that
involve structural as well as flow information are ideal candidates for such treatment.

An obvious issue in the above architecture is whether SCA expressions can be evaluated efficiently.
While the study of SCA optimization is currently in progress, we have strong grounds to believe that
important performance gains can be achieved using our approach. One reason is that many of the set

15

User Interface

Source Files

-y \ Processing |
~ Query
é Translators \ Que Tools
~ \ y
AN Processor Source Code Base

\
lational

o Query

Optimizer
SCA OPTIMIZER

N\ X SCA DATA MODEL
Reverse Enginaer phical PARSHR ./ |
N\
\ STATIQ
N\ ANALYZER .
N ttern [
\ “uery - v .
NP S)
: EVALUATOR .
. FLOW,
\ : ANALZER
\ﬁj

Figure 3: SCA-based Source Code Query System

operators in SCA are extended from relational and extended relational algebras, for which optimizations
already exist [31, 39]. Furthermore, many sequence operators introduced in SCA (such as seq-extract) can
be implemented using efficient algorithms developed in our work on the SCRUPLE system.

Obviously, the above is only an outline of the ideas required to incorporate the framework in a query
system. Open issues exist and a more complete discussion would go beyond the scope of the paper. How-
ever, what we have attempted to do is show that the model is worth pursuring because of the following
merits. First, given a query processor based on the model, it would ease the design of source code query
systems. Second, techniques used for optimizing queries in other algebraic models can also be applied to our
model. And third, whenever available query optimizers are not good enough, our model allows designers to
incorporate specialized code analysis algorithms easily into the model using method attributes.

To further investigate design and implementation issues, a prototype of the current system is being
built on top of Gemstone, an object-oriented database system [7]. Several key components such as parser
and query processor for handling sequences have been built and were tested in the SCRUPLE system for
pattern matching. Performance results for operating on sequences were promising and are available in [34].

6 Comparison of SCA with other Query Algebras

The most well-known query algebra is the relational algebra. Query languages for the nested and extended
relational models have also been developed by relaxing the first normal form restriction of relational algebra
[21, 22, 23, 38]. The primary data type in these models is the relation, which is a set of tuples.

Inspired by the relational model, some object-oriented database systems have attempted to develop
object algebras to serve as a basis for their query languages. Some of these algebras are the PDM algebra
[29], Osborn’s algebra [31], Straube and Ozsu’s algebra [41], and Shaw and Zdonik’s algebra [40]. The object
algebras treat all their data types as first class objects, and compared to relational algebra, permit consider-
ably more orthogonality between objects and type constructors. Object algebras differ from one another in
the range of their supported types and, more importantly, in their operators. One of the major drawbacks
of these algebras is that they fail to provide modeling and operator support for data type collections such
as sequences. Like relational algebra, object algebras are essentially set-oriented.

16

Sequence Algebras

1. Codd's relational algebra

2. Jaeschke’s nested relational algebra
3. Schek and Scholl's algebra, 1986

4. Schek and Scholl’s algebra, 1990

5. Osborn’s object algebra

6. Shaw and Zdonik’s object algebra

7. PDM algebra

8. Straube and Ozsu'’s object algebra
9. NST-Algebra

10.Source Code Algebra (SCA)

Object Algebras

Figure 4: SCA in comparison with other Query Algebras

Unlike set algebras, the field of sequence algebras is in its infancy. The NST-algebra (Nested Sequence
of Tuples) [19] is a many-sorted algebra used as a query language for structured office documents, a do-
main where nested sequences arise naturally. Documents are modeled as nested sequences of tuples (NST).
However, there is no support for extracting subsequences in NST-algebra.

Figure 4 shows the world of query algebras using a Venn diagram. Different query algebras are posi-
tioned in the diagram based on the data types supported by them. It shows that the relational algebras (1,2
and 3) fall within the larger class of set algebras. It shows that Osborn’s object algebra (5) supports objects
and sets, but does not support sequences. Similarly, NST-Algebra supports sequences, but does not support
sets.

Since SCA (10) is essentially an algebra of objects, sets, and sequences, it belongs to the intersection
set of object, set, and sequence algebras.

7 Conclusion

We began this paper by presenting the requirements of a source code query system. A useful source code
query system must model information pertaining to program structure (global as well as fine-grained) and
program flow in a seamless manner. A powerful query language should then be used to extract the information
present in the model.

We introduced Source Code Algebra (SCA), a formal framework that models source code as an algebra
of objects. Our solution views source code as a domain of strongly-typed objects (and their collections) with
attributes, and supports type hierarchies as an integral part of the model. A set of well-defined algebraic
operators are defined to extract information from the model. Theoretically, SCA belongs to the class of
generalized order-sorted algebras.

Modeling source code as an algebra has important benefits in terms of query languages. We have shown,

17

with examples, how SCA can be used as a low-level source code query language. Queries written in high-level
query languages (commandline, graphical, pattern-based, etc.) can also be processed by mapping them to
equivalent SCA expressions and evaluating them using a standard SCA evaluator. Since SCA expressions
can be simplified using rules of algebraic transformation, source code queries mapped to SCA expressions
can be optimized. From a theoretical point of view, high level query languages built on top of SCA will have
well-defined semantics.

The implementation of a prototype source code query system based on SCA is in progress. The proto-
type will allow us to investigate issues such as SCA optimization strategies, and view generation mechanisms
similar to the relational model.

References

[1] R. Al-Zoubi and A. Prakash. Software Change Analysis via Attributed Dependency Graphs. Technical
Report CSE-TR-95-91, Dept. of EECS, University of Michigan, May 1991. Also in Software Mainte-
nance, to appear.

[2] J. Ambras and V. O’Day. Microscope: A Program Analysis System. In Proc. of the 20th Hawaii
International Conference on System Sciences, pages 460-468, 1987.

[3] T. Biggerstaff, B.G. Mitbander, and D. Webster. The Concept Assignment Problem in Program Un-
derstanding. In Proc. of the 15th International Conference on Software Engineering, pages 482-498,
1993.

[4] G. Birkhoff and D. Lipson. Heterogeneous Algebras. Journal of Combinatorial Theory, 8:115-133, 1970.

[5] R. Brooks. Towards a Theory of Comprehension of Computer Programs. International Journal of Man

Machine Studies, 18:543-554, 1983.

[6] K. Bruce and P. Wegner. Advances in Database Programming Languages, chapter An Algebraic Model
of Subtype and Inheritance. ACM Press, 1990.

[7] P. Butterworth, A. Otis, and J. Stein. The Gemstone Object Database Management System. Commu-
nications of the ACM, 34(10):50-77, October 1991.

[8] Y. Chen, M.Y. Nishimoto, and C.V. Ramamoorthy. The C Information Abstraction System. IEEE
Transactions on Software Engineering, 16(3):325-334, March 1990.

[9] E. Chikofsky. State-of-Art Talk on Reverse Engineering. Invited Talk at the 15th International Confer-
ence on Software Engineering, Baltimore, Maryland., May 1993.

[10] L. Cleveland. A Program Understanding Support Environment. IBM Systems Journal, 28(2):324-344,
1989.

[11] E.F. Codd. A relational model for large shared data banks. Communications of the ACM, 13(6):377-387,
1970.

[12] T.A. Corbi. Program Understanding: Challenge for the 1990s. IBM Systems Journal, 28(2):294-306,
1989.

[13] M. Atkinson et al. The Object-Oriented Database System Manifesto. Technical Report ALTAIR TR
30-89, GIP ALTAIR, LeChesnay, France, 1989.

18

[14] M. Stonebraker et al. Third-generation database system manifesto. ACM SIGMOD Record, 19(3), 1990.

[15] S. Ginsburg and X. Wang. Pattern Matching by Rs-Operations: Towards a Unified Approach to
Querying Sequenced Data. In Proc. of the 11th ACM SIGACT/SIGMOD/SIGART Symposium on
Principles of Database Systems, pages 293-300, 1992.

[16] J. Goguen and J. Meseguer. Extensions and Foundations of Object-oriented Programming. Technical

report, SRI, 1986.

[17] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. Current Trends in Programming Methodology, vol-
ume IV, chapter An Initial Algebra Approach to the specification, correctness, and implementation of
abstract data types. Prentice-Hall, Englewood Cliffs, N.J., 1978.

[18] J.E. Grass. Object-Oriented Design Archaeology with CIA++. Computing Systems: The Journal of
the USENIX Association, 5(1):5-67, Winter 1992.

[19] R.H. Guting, R. Zicari, and D.M. Choy. An Algebra for Structured Office Documents. ACM Transac-
tions on Office Information Systems, 7(4):123-157, 1989.

[20] K. Heisler, Y. Kasho, and W.T. Tsai. A Reverse Engineering Model for C Programs. Information
Sciences, 68:155-193, February 1993.

[21] G. Jaeschke. An Algebra of power set type relations. Technical Report TR 82.12.002, IBM Heidelberg
Scientific Center, Heidelberg, Germany, 1982.

[22] G. Jaeschke. Nonrecursive Algebra for relations with relation-valued attributes. Technical Report TR
85.03.001, IBM Heidelberg Scientific Center, Heidelberg, Germany, 1985.

[23] G. Jaeschke. Recursive Algebra for relations with relation-valued attributes. Technical Report TR
85.03.002, IBM Heidelberg Scientific Center, Heidelberg, Germany, 1985.

[24] K. Kennedy. Program Flow Analysis: theory and applications, chapter 1. Prentice-Hall, 1981.
[25] B.W. Kernighan and R. Pike. The UNIX Programming Environmeni. Prentice-Hall, 1984.

[26] G.B. Kotik and L.Z. Markosian. Automating Software Analysis and Testing Using a Program Trans-
formation System. In Proceedings of ACM SIGSOFT, pages 75-84, 1989.

[27] W. Kozaczynsky, J. Ning, and A. Engberts. Program Concept Recognition and Transformation. IEEE
Transactions on Software Engineering, 18(12):1065-1075, December 1992.

[28] M.A. Linton. Implementing Relational Views of Programs. In Proc. of ACM SIGSOFT/SIGPLAN

Software Engineering Symposium, May 1984. Practical Software Development Environment.

[29] F. Manola and U. Dayal. PDM: an Object-oriented Data Model. In Proc. of Intl. Workshop on Object-
ortented Database Systems, pages 18-25, September 1986.

[30] H.A. Muller, B.D. Corrie, and S.R. Tilley. Spatial and Visual Representations of Software Structures:
A model for reverse engineering. Technical Report TR-74.086, IBM Canada Ltd., April 1992.

[31] S.L. Osborn. Identity, Equality and Query Optimization. In 2nd Intl. Workshop on Object-oriented
Database Systems, pages 346-351. Springer-Verlag, September 1988.

[32] S. Paul. Theory and Design of Source Code Search Systems. PhD thesis, University of Michigan, 1994.
In preparation.

19

[33] S. Paul and A. Prakash. Source Code Retrieval Using Program Patterns. In Proc. of the 5th International
Conference on Computer Aided Software Engineering, pages 95-105, 1992.

[34] S. Paul and A. Prakash. A Framework for Source Code Search Using Program Patterns. IEEE Trans-
actions on Software Engineering, 1994. Accepted for publication.

[35] C.V. Ramamoorthy, Y. Usuda, A. Prakash, and W.T. Tsai. The Evolution Support Environment
System. TEEE Transactions on Software Engineering, pages 1225-1234, November 1990.

[36] C. Rich and R. Waters. The Programmer’s Apprentice. Addison-Wesley, Baltimore, Maryland, 1990.

[37] J. Richardson. Supporting Lists in a Data Model. In Proc. of the 18th VLDB Conference, pages 127-138,
1992.

[38] H.J. Schek and M.H. Scholl. An Algebra for the relational model with relation-valued attributes.
Information Systems, 11:137-147, 1986.

[39] H.J. Schek and M.H. Scholl. A Relational Object Model. In 3rd Intl. Conference on Database Theory,
pages 89-105. Springer-Verlag, 1990.

[40] G.M. Shaw and S.B. Zdonik. An Object-oriented Query Algebra. Bulletin of IEEE technical commitiee
on Data Engineering, 12(3):29-36, 1989.

[41] D.D. Straube and M.T. Ozsu. Queries and Query processing in Object-oriented Database Systems.
ACM Transactions on Information Systems, 8(4), October 1990.

[42] J.D. Ullman. Principles of Database Systems. Computer Science Press International, Rockville, Mary-
land, 1990.

[43] M. Weiser. Program Slicing. IEEE Transactions on Software Engineering, 10(4):352-357, June 1984.
[44] E. Yourdon. RE-3. American Programmer, 2(4):3-10, April 1989.

20

