A Transparent Object-Oriented Schema Change Approach

Using View Evolution!

Young-Gook Ra and Elke A. Rundensteiner

Software Systems Research Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

e-mail: ygra@eecs.umich.edu, rundenst@eecs.umich.edu

April, 1994
Abstract

When a database is shared by many users, updates to the database schema are almost always prohibited because
there is a risk of making existing application programs obsolete when they run against the modified schema. This
paper addresses the problem by integrating schema evolution with view facilities. Each user is assigned his or
her own database view, and develops application programs against the view. When new requirements necessitate
schema updates for a particular user, then the user specifies schema changes to his personal view rather than to
the shared base schema. Our view schema evolution approach then computes a new view schema that reflects the
semantics of the desired schema change, and replaces the old view with the new one. This approach provides the
means for schema change without affecting other views (and thus without affecting existing application programs).
The persistent data is shared by different views of the schema, i.e. by both old as well as newly developed
applications can continue to interoperate. To realize our approach, this paper identifies key features of how views
must be extended to be capacity-augmenting. We then present algorithms that implement the set of typical schema
evolution operations as view definitions. Throughout the paper we present examples that demonstrate our approach.

Index Terms — Schema Evolution, Object-Oriented View System, Interoperability, Capacity-augmenting Views,
Object-Oriented Database.

1 This work was supported in part by the NSF RIA grant #IRI-9309076 and the University of Michigan Faculty Award Program.



TABLE OF CONTENTS

Introduction

The Basic View Schema Change Approach and its Requirements

2.1 TSE: The Basic Transparent Schema Evolution Approach . . . . . ... ... . ... ... ... ...
2.2 A Comprehensive Example . . . . . . .. ..
2.3 Requirements for Realizing the Transparent Schema Change Approach . . . . . . . .. ... ... ..

Extending MultiView System for Transparent Schema Changes

3.1 MultiView: The Underlying Object-Oriented View Support System . . . . . . . . . .. ... ... ..
3.2 Extending Object Algebra for Capacity-Augmenting Views . . .. .. . . ... ... ... ....
3.3 Generic Update Operators . . . . . . . . . . . . .
3.4 Updatability of Object-Oriented Views . . . . . . . . . . . .. .. .

An Object Model Supporting Multiple Classification
4.1 Two solutions for supporting multiple classification . . . . . . . .. ... ... ... 0L

4.2 Comparing Two Approaches for Multiple Classification . . . . . . . .. ... .. .. ... ... ...,
The Transparent Schema Evolution (TSE) System Architecture

Algorithms for Realizing Schema Changes in the TSE System

6.1 Implementing the Add-Attribute Schema Change in TSE . . . . . ... ... ... ... ...
6.1.1 Semantics of the Add-Attribute Operator . . . . . . . . .. ... ... L.
6.1.2 The Algorithm for Mapping the Add-Attribute Operator to Views . . . . .. .. .. ... ..
6.1.3 The Complete Process of View Schema Evolution . . . . . . ... .. ... ... ... . ....

6.1.4 Verification of the Translation Process . . . . . . . . . . . . . . . . . ..
6.1.5 Updatability . . . . . . . . .

6.2 Implementing the Delete-Attribute Schema Change in TSE . . . . ... .. .. ... ... ... ..
6.2.1 Semantics of the Delete-Attribute Operator . . . . . . . . . ... ... ... ... ...
6.2.2 The Algorithm for Mapping the Delete-Attribute Operator to Views . . . . . . . .. ... ..

6.2.3 Verification of the Translation Process . . . . . . . . . . . . . . . . . .

6.2.4 Updatability . . . . . . . . .
6.3 Implementing the Add-Method Schema Change in TSE . . . . .. ... ... ... .. ... ..
6.3.1 Semantics of the Add-Method Operator . . . . . . . . . .. ... ... .. ... ...
6.3.2 The Algorithm for Mapping the Add-Method Operator to Views . . . . . .. .. .. ... ..
6.3.3 Verification of Translation Process and Updatability . . . . ... ... . ... ... ... ...
6.4 Implementing the Delete-Method Schema Change in TSE . . . .. ... ... ... ... ... ..
6.4.1 Semantics of the Delete-Method Operator . . . . . . . . .. ... ... .. ... ... ....
6.4.2 The Algorithm for Mapping the Delete-Method Operator to Views . . . . . . .. .. ... ..
6.4.3 The Verification of Translation Process and Updatability . . . . . ... .. ... ... ... ..
6.5 Implementing the Add-Edge Schema Change in TSE . . . . .. .. ... ... . ... .. ...,
6.5.1 Semantics of the Add-Edge Operator . . . . . . . . . . .. oo



6.6

6.7

6.8

6.9

6.5.2 The Algorithm for Mapping the Add-Edge Operator to Views . . . . . . .. .. ... ... ..

6.5.3 Verification of the Translation Process . . . . . . . . . . . . . . . . . ..
6.5.4 Updatability . . . . . . . . .

Implementing the Delete-Edge Schema Change in TSE . . . . . .. ... . ... .. .. ...,
6.6.1 Semantics of the Delete-Edge Operator . . . . . . .. ... . . L.
6.6.2 The Algorithm for Mapping the Delete-Edge Operator to Views . . . . . ... ... ... ..

6.6.3 Verification of the Translation Process . . . . . . . . . . . . . . . . . ..

6.6.4 Updatability . . . . . . . . .
Implementing the Add-Class Schema Change Operator in TSE . . . . . . ... ... ... .. ...
6.7.1 Semantics of the Add-Class Operator . . . . . . . . . ... ... ... .. ... ...
6.7.2 The Algorithm for Mapping the Add-Class Operator to Views . . . . . .. .. ... .. ...

6.7.3 Verification of the Translation Process . . . . . . . . . . . . . . . . . ..

6.7.4 Updatability . . . . . . . . .
Implementing the Delete-Class Schema Change Operator in TSE . . . . .. ... ... .. ... ...
6.8.1 Semantics of the Delete-Class Operator . . . . . . . .. .. ... ... ... ... ... . ...
Constructing More Complex Schema Change Operators . . . . . . .. ... ... ... ... ..
6.9.1 Constructing the Insert-Class Schema Change in TSE . . . .. . .. ... ... ... ... ..
6.9.2 Constructing the Delete-Class-2 Schema Change in TSE . . . . . .. ... ... ... ... ..

7 Version Merging Using Views
8 Related Research

9 Conclusion and Future Work

i

30

31

33



1 Introduction

Views have been successful in relational databases. They allow a programmer to restructure the database
to meet the specific needs of an application without affecting other application programs. Other advantages of
relational views are data independence, access control and security. Perceiving the importance of views, many
researchers have begun to investigate their counterpart in the object-oriented world [1, 6, 9, 24, 22, 19, 21]. The
diverse view mechanisms proposed typically provide the functionality to restructure a base schema by hiding classes,
by adding classes, by customizing the behavior or extent of classes, and by rearranging the generalization hierarchy.
However, since views correspond to derived data computed based on data stored persistently in database, they by
definition do not support the addition of new stored information to the database.

Together with views, schema evolution has been recognized as an essential feature of OODBs required to deal
with the evolving nature of typical OODB applications such as CAD/CAM, VLSI design and office information
systems. To measure the frequency of schema evolution, a health management system was observed over a 18
month period [26]. It shows that the number of relations in one study increased by 139%), the number of attributes
by 274% and that every relation has been changed. This measurement confirms the need for tools and techniques
for managing schema changes to a database. Similarly, another report [12] confirms that data models are typically
not stable as we expect based on the observation of seven typical database applications such as project tracking,
real estate inventory, accounting and sales management, etc.. These project observation showsthat about 59%
of attributes are changed on the average. In summary, schema evolution is a pervasive problem in many large
systems, and there certainly is a need for the capability of managing the evolution of a schema without any service
interruption [25].

There is active research on schema evolution [4, 2, 10, 14, 11, 15, 29, 8, 31, 32]. Most work focuses on the
modification of a database schema and the corresponding migration of database instances from the old to the
modified schema. However, this direct change on the schema may modify existing views and the application
programs written against the views can no longer run. Typically, this problem is not properly handled in most
conventional systems.

We propose that many advantages could be gained by integrating these two capabilities of view support and
schema evolution into one unified mechanism. This unique integration would allow for the continued functioning of
programs written against the original version of the database while allowing for schema change required to handle
the demands of new programs. This is based on the data independence property gained by view schemas, and the
extensibility of the database achieved by schema evolution. Extending OODBs with these two capabilities would
provide the following advantages: first, a view mechanism would enable them to provide programs with customized
data representations, and second, schema evolution integrated with view support would provide extensibility of the
system to allow for the incorporation of new data as required by new applications.

The basic principle of our view change approach is that, given a schema change request on a view schema, the
system — rather than modifying the view schema in place — computes a new view which reflects the semantics of
the schema change. The new view is assigned to the user, while the old one is maintained by the system as long as
other application programs continue to operate on it.

Thus, our approach keeps the old versions of a schema instead of modifying them; achieving schema versioning
using a view system. Note that in our approach, unlike in other systems [8, 7, 11], the scope of a schema version
is not confined to the objects which have been created under this particular schema version. Instead any object in
the database is able to be accessed and modified through any version of the schema, assuming the classes of the
objects are included in the view schema. We achieve this for two reasons: (1) since all objects are associated with
a single underlying global schema and (2) since each version of the schema is implemented via a view defined on
the global schema.

To simulate schema evolution using view mechanisms, the view system must be capable of generating views that
augment the capacity of the underlying schema in addition to restructuring and restricting it. In addition, views
require multiple classification support in the underlying object model because instances of a new virtual class need
to be classified both as members of the virtual class and as members of the original base class. In this paper, we
present solutions to address these problems of the capacity-augmenting view capabilities and multiple classification
object support. Finally, we show that we can simulate a comprehensive set of schema change operations by creating



BEFORE: AFTER:

MODIFIED
stored data EI\%TED stored data S/T\(_?EED
SCHEMA EXTENDED
global schema GS global schema GS SCHEMA
SR—— /——/
. —
Loy | SCHEMACHANGE | . | (___ % VIEW VS2
| virual datal | isREALIZED BY } virtual datal } F ————— IMPLEMENTS
L | VIEWGENERATION | L THE REQUESTED
—————— N/ \vinual data? SCHEMA
CHANGE
) Jemo ON VIEW VS1
view schema VS1 view schema VS1 ===
" schema VS2
SPECIFY SCHEMA
CHANGE remove
User/Application User/Application USS%AQEE:E 1a flon
Program1 Program2 UserlApplication
Program2

Figure 1: Overall Description of Our Transparent Schema Evolution (TSE) Approach.

a new view schema which reflects the semantics of schema change.

In Section 2, we give an overview of our basic view change approach and identify view system requirements.
In Section 3, we discuss the extensions to a view system for our approach. Section 4 presents the implementation
of the object model having all required features. In Section 5, we give the overall architecture of our system.
To demonstrate the feasibility of our approach, we present algorithms in Section 6 for translating schema change
requests into view specifications. In Section 7, we discuss the version capabilities of our approach. Related research
is discussed in Section 7, and conclusions are presented in Section 8.

2 The Basic View Schema Change Approach and its Requirements

2.1 TSE: The Basic Transparent Schema Evolution Approach

In a typical database development environment, a developer must consult with others to figure out the impact
of a requested schema change on the existing application programs. Thus, the decision process of even a small
schema change is likely to be long. In current OODB systems, if the schema change does impact existing programs,
we typically have two choices: (1) we can rewrite all affected application programs to work with the new schema,
or (2) we can simply reject the upgrade of the schema. The former would be an extremely labor intensive and
costly endeavor, especially if the programs are written in an older programming language and/or are not well-
documented. The later is also undesirable, since it may result in the system not being able to take advantage of
important upgrades in the form of new technology or new algorithmic developments.

To overcome these problems, we propose a transparent schema evolution (TSE) approach. After constructing an
initial global schema, each developer defines her own view of the shared database to serve as a customized interface
to the database. In our approach, whenever a schema change need is identified by a developer, she specifies the



ViewVSl — — ——

—boss

Support
Staff

~ Legend

N\
\ Base Class
\

\
| ¢\ is-a relationship

/ —<attr> property

|—salary /
/ s
L s ( <Name>> Virtual Class
N

ayRate

Figure 2: Example Schema: University Database.

necessary schema change on her own view (in Figure 1 left). The database system computes a new view schema,
which reflects the semantics of the requested schema change, and replaces the old view with the new one (Figure
1 right). In short, rather than directly modifying the old schema, we will ‘simulate’ the requested schema change
using a view schema (i.e., the schema change is performed virtually using the view mechanism). This process should
be transparent to the user. In particular, she should not be able to distinguish beween this virtual schema change
and the direct schema modification. While the user perceives that an actual change occured in place, Figure 1
shows the underlying changes in the database system.

While the view schema and its associated virtual database are adjusted exactly as requested, the global schema
and its global database may not be. Note that even though the schema change is virtual, the global schema must
sometimes be restructured to generate the view schema with the changed semantics. Database reorganization at
the instance level is required — especially when the change is capacity augmenting 2. In Figure 1, we see that the
global schema is augmented for instance with new stored data, when the addition of a new instance variable was
requested through a view change. However, when a delete is requested, it results in a removal from the view (and
its associated virtual data) but not necessarily a delete from the global database.

2.2 A Comprehensive Example

The overall approach is best explained by giving an example using the university database in Figure 2. Assume
one of the developers builds the view schema in Figure 3 (a) to serve as a customized database interface for further
development. This view construction is depicted in Figure 2 by the dotted line. After several application programs
have been written against the view, he finds that each student object should also carry register information for
recording the registration status of each student. Figure 3 (b) shows the modified view schema that he now wants.
The dotted ellipses represent virtual classes, whereas the solid ellipses represent base classes. In traditional systems,
the developer would have to figure out the potential impact of the schema change on other developers’ programs.
In our system, the developer simply specifies the desired schema change directly to the view, in this case “add
attribute register to Student class”, without going through all the irritating procedures explained above.

This requested change would be realized as follows by our system. After the user specifies the add attribute
command, first, the system generates the two virtual classes Student’ and TA’ that refine the Student and TA
classes, respectively, with the new attribute register (Figure 3 (c)). Second, the two virtual classes are integrated

2The capacity augmenting change is defined to be the schema restructuring to enhance the information contents of the schema



—name 1= new view VS2
NN
/

~ Requested Schema Change:
(o)
. \ \
advisor
_ salary \/\\/ N N

\ \ Student'/\— register \\

N~

N add_attribute  register for Student;

defineVC Student as\

(@)

\ (refine register for Stu&eqt);
UnderGrad \ advisor \
name \ \ \
\ \ \
\\ \\
~ N \
gpa \ \v \
— register \ — splay 1
N \'
\ \/\\\ / /
N / w ) /
~ e \\
—__ - == i /
advisor N defineVC TA a§(( .
salary ~o ~( Hﬂn‘e_Stﬂigu&. Boister for TA);
(b) (©

Figure 3: Schema Change for Adding an Attribute.

into the global schema by the classification algorithm as shown in Figure 3 (c¢) [17]. Third, the system selects the
classes Person, Student’ and TA’ for the new view. It then renames the Student’ and TA” classes to Student
and TA within the context of the view, respectively. Fourth, a new view schema VS2 is generated from the selected
classes by running the schema generation algorithm [21]. At last, the system replaces the old view with the newly
generated view. Because all the above procedures are transparent to the schema change specifier, she will have the
perception that she has actually modified her original schema.

Note that the above algorithm runs in the context of a view, so it only creates virtual classes for all subclasses
of a class C within a view. Hence, other classes of the global schema, such as the Grad class, would not be affected
in our approach. This avoids the creation of unnecessary virtual classes for a possibly deep global schema class
hierarchy.

2.3 Requirements for Realizing the Transparent Schema Change Approach

In order to achieve the transparent schema change appraoch outlined above, the following requirements must
be imposed onto our view evolution approach:

e The schema change on a view should not affect any of the existing views which still might have application
programs running on them. This assures that old applications can continue to function properly, and can
in fact inter-operate with new programs. This feature would allow the user to restructure her own view
independently from a database administrator or other users working on the same global schema.

e The newly computed view schema has to be updatable. Many application tools, such as for instance design
and manufacturing tools, frequently need to update the database, hence the updatability of the view is an
essential requirement for many advanced applications.



e Both old and new versions of a schema must be able to share the same (persistent) data, independently from
through which schema they were originally created. Otherwise old and new programs would not be able to
operate on and interchange the same data, i.e., interoperability of these applications would not be guaranteed.

e The schema change has to be transparent to the view user in terms of two perspectives. One, the user should
not need to know whether she is dealing with base classes or virtual classes. Two, the fact that the schema
change is virtual (i.e., a new view is assigned whenever possible) rather than a real change of the global
database shoud not be apparent to the user.

e The views mechanism underlying our schema evolution system must be capable of generating views that
augment the capacity of the schema in addition to restructuring and restricting it. Because current OODB
systems do not provide such capacity-augmenting view mechanisms, we need to develop such a view system as
foundation for our schema change prototype. This requires the investigation of the following two tasks: first,
we need to extend the view definition language with schema-augmenting operators, and second, we need to
provide a flexible architectural framework for supporting the dynamic augmentation of the schema and also
of the database.

e When a virtual class is derived from a base class, instances of the virtual class need to be classified both as
members of the new virtual class and the old base class. In the context of capacity-augmenting views, we
thus need to provide multiple classification support at the object model level as well as dynamic restructuring
support at the data representation level.

In this paper, we detail a view change approach that successfully addresses all of these issues.

3 Extending MultiView System for Transparent Schema Changes

In this paper, we assume a typical OO data model, such as COCOON’s [28], MultiView’s [22] and Orion’s [4].
A list of basic terms of OO data models and views are found in the appendix.

3.1 MultiView: The Underlying Object-Oriented View Support System

Since our view schema evolution approach is based on object-oriented view concepts, we describe below the view
system we have developed towards the specification and maintenance of views, called MultiView [19]. Unlike other
object-oriented view mechanisms, MultiView creates a complete view schema rather than just deriving individual
virtual classes. Furthermore, views in MultiView allow for the insertion of new classes or the modification of
existing classes in the middle of class hierarchy. These unique characteristics effectively support our view change
system, which requires that a view itself is a complete schema graph in order to make the distinction between the
view schema and the base schema transparent to the user. In addition, MultiView offers the following features
that made it suitable as foundation for our schema change approach. First, it generates updatable views [19].
Second, several of the view specification subtasks are already automated, and can be reused in our system. Lastly,
a prototype of MultiView has been implemented at the University of Michigan, and thus can be utilized as platform
for constructing the TSE system.

The task of creating a view schema is divided in the following tasks in MultiView: (1) the generation of
customized classes using an object-oriented query, (2) the integration of these derived classes into one consistent
global schema graph, and (3) the specification of arbitrarily complex view schemata composed of base and virtual
classes. For the first subtask, MultiView provides the user with an object algebra for class derivation [19]. The
second subtask is automated in MultiView by the classification algorithm [17]. The integration of virtual classes
into one global schema provides many benefits, including detecting identical and thus redundant classes, sharing
methods without code duplication by different views, and enabling efficient view schema generation. The third
subtask requires the use of a view specification language for class selection, and a view schema generation algorithm
for the construction of the view generalization hierarchy [21]. Automatic view generation [21] relieves the user



of constructing the is-a hierarchy for each view schema and removes the potential inconsistencies of the view
generalization hierarchy due to the mistakes of the user.

3.2 Extending Object Algebra for Capacity-Augmenting Views

Since our view schema evolution approach is built using the MultiView system, we utilize MultiView’s view
definition language, an object algebra [19, 22, 23, 21, 20, 17, 18], as foundation of our TSE system. While a
complete description of the algebra can be found elsewhere [19], below we briefly introduce the operators. We also
discuss the necessary extension of some of these operators required for schema change support. The object algebra
is set-ortented in that the inputs and outputs are sets of objects. In the context of this paper, we apply them to
classes in order to derive new virtual classes.

e The select operator defined by ( select from <class> where < predicate >) returns a subset of the input
set of objects, namely those satisfying the predicate < predicate >. The type of the resulting set is unchanged
i.e., it is equal to type(<class>).

e The hide operator defined by ( hide <properties> from <class>) removes properties listed in <properties>
from the set of objects <class> while preserving all other properties defined for the type of (<class>). The
type of the output set is a supertype of the input type, as less functions are defined on the output. All objects
of the input set are also the members of the output set.

e Set operations. As the extent of classes are sets of objects, we can perform set operations as usual [22]. The
criterion of duplicate elimination is object identity equality, not value equality as assumed in the relational
model. We need no restriction on the operand types of set operations (ultimately, they are all objects). The
result type, however, depends on the input types: For the union it is the lowest common supertype of the
input types. The difference operator yields a subset of its first argument with the same type. Finally, the
intersect operator results in the greatest common subtype. The syntax of these set operators is defined by
( set-operator <classI> and <class2>).

e The refine operator defined by ( refine <property-defs> for <class> ) returns a set with the same objects
as the input, but with a new type, a subtype of the input type, as all the old properties plus the new one
are defined on it. We require that each property name in <property-defs> must be different from all existing
functions defined for the type of the <class>.

While view definition only derives new data as a function of existing stored data, we now must also support the
extension of the DB with new independent data that is not a function of existing data. In particular, the refine
operator utilized for view definition in MultiView only adds derived attributes (methods) to a virtual class, we
now must modify the refine operator to support stored attribute extensions. In other words, refine is extended
such that now it may contain both kinds of properties, stored attributes and methods, in the parameter <property-
defs>. This important extension allows for capacity-augmenting views, because the enhanced refining operator
can create virtual classes that effectively augment the capacity of the database by adding new stored attributes to
existing classes. When we refine a class with stored attributes, the representation of each object in the class has
to be restructured such that the object can carry the information associated with the new stored attributes. This
restructuring capability must be supported by the underlying OODB architecture. Our approach to addressing
this problem is explained in Section 4.

Furthermore, we need to modify the refine operator defined for MultiView to facilitate inheritance of a property
between virtual classes. The new syntax now is:

refine Cl:<property-name> for C2.

This statement specifies the inheritance of a property of class C'l into another class C'2. The object instances of
class C2 then share the code block of the new property (when it is a method) defined in class C'1 or assign a new
storage for the property (when it is a stored attribute).



—
="

- \ is—a
\ P1(N1) \ defineVC AgelessPerson as

\ —  name ( hide age from Person)
PN
N / - age

~_
extent of
AgelessPerson

P1(N1,20)
P2(N2,61)

extent of Person

Figure 4: Example of Virtual Class Creation.

MultiView allows arbitrary queries composed by nesting these object algebra operators to serve as view defi-
nitions, exactly as in relational DBMSs: defineVC <name> as <query>. After the execution of this statement,
<name> will appear as a persistent class of the database, just like base classes. The only difference is that the
extent of the virtual class <name> is defined by the <query> expression, based on the extents of other virtual
and/or base classes. In Figure 4, for example, the virtual class AgelessPerson, created by the hide operation, is
classified as superclass of its source class Person because the type of AgelessPerson is more general and the extent is
the same as that of the Person class®. In addition, the age attribute is hidden from the instances of AgelessPerson.

3.3 Generic Update Operators

In OODBs, updates are generally performed using type-specific update methods. We, however, want to provide
a set of generic update operations to extend type-specific updates, similar as proposed in other view systems [24].
Such generic update operations can either be used directly or, if desired, overridden by type implementors to define
type-specific methods. The generic update operations include create and delete to create and destroy objects
and set to set attributes to new values. Additionally, we can define add and remove update operators which are
applied to existing objects in order to add them to or remove them from a class. In effect, the existing object gets
a new type or loses a type.

e Create, defined by ( < class > create [< assignment >]), takes a class < class >, with member type T,
and assignments of some values to attributes defined on T. An instance of T is created and added to the
specified class. The properties of the new object listed are set to the given values. The class predicate is
checked (if any) and the instance is also added to other classes, if appropriate. The result of the create
operation is the newly created object.

e Delete, defined by ( <set-ezpr> delete), destroys all objects returned by <set-ezxpr>, i.e., they are removed
from all the classes which they belong to.

e Set, defined by ( <set-ezpr> set [< assignment > |, assigns new values to the attributes of all objects
returned by the <set-expr>. For example, ( e:<set-ezpr> ) set[ salary(e) = 3,000] assigns a new salary of
3,000 to all the objects returned by <set-expr>.

e Add, defined by ( <set-ezpr> add < class >), adds the objects returned by the <set-ezpr> to the class
< class >. As a result, the objects acquire the type of < class >.

e Remove, defined by ( <set-ezpr> remove < class >), removes the objects returned by the <set-ezpr> from
the class < class >. It means that the objects lose the type of < class >.

3The extent of AgelessPerson is drawn with a dotted line representing that it is virtual and dependent on the extent of the source
class.



Note that those generic operators can be used by type implementors to specify type-specific update methods.
Then, arbitrary computations can be performed in such a method e.g., to check some constraints, to update
additional information, or even to refuse the update. For example, updating a derived attribute may be implemented
by either changing the underlying values of the associated base objects or by refusing the update.

3.4

Updatability of Object-Oriented Views

Similar to base classes, instances of virtual classes can be used as arguments of update operators. In our TSE
system, we have to be able to update virtual objects in order to hide as much as possible the differences between
virtual classes and base classes from the database user (or application programmer). It has been shown that virtual
classes created by object-preserving algebra are updatable due to the one-to-one correspondence between base and
virtual object instances [24]. In fact, all update operators have the same effect as if they were applied to the base
class, because the virtual classes’ extents are depending on the extents of base classes.

1.

A select virtual class creates a subclass containing all objects satisfying the selection predicate. Create,
delete, add, remove and set update operators applied to an instance of a virtual select class work on the
source class. Creation, addition and setting values of objects that do not fulfill the selection predicate of the
select class lead to the so-called value closure problem [6]. There are two solutions to this problem: (1) reject
such creation/addition/set, or (2) allow them by inserting them into the source class or setting the value.
Other update operators such as delete and remove don’t cause the value-closure problem because they are
applied to existing objects of the virtual class.

A difference virtual class is a subclass of the first argument class containing all objects of the first argument
class that are not members of the second argument class. In general, difference is just a special case of
selection where the selection predicate is just defined to be “not ¢ member of second class”. Create, delete,
add, remove and set update operators applied to an instance of a virtual difference class work on the first
argument class. For further discussion, see the select operator.

A union virtual class is a superclass of its two argument classes. This case leads to ambiguity for the following
updates: If we want to create or add objects to the virtual union class, we have to propagate this to at least
one source class. In general, there are three choices. We can propagate it to either one of the two source
classes, or to both classes. Generally, the choice depends on the context of the operation (an example will be
detailed in a later section), or on the predicates associated with the source classes. The other generic update
operations such as delete, remove and set are applicable in the obvious way: They always propagate to
both source classes (if the target instances are members).

An intersection virtual class is a subclass of both argument source classes. Similar to the union virtual
classes, the remove operations lead to ambiguity. We can remove an instance from either one of two source
classes or from both. Creating, deleting, adding and setting objects should be always propagated to both
source classes.

A hide virtual class is a superclass of the source class with a changed type. The create and add work as
if they were applied to the source class. The only difference is that we can not assign values to the hidden
attributes. We can address this problem by specifying default values in the view definition or by overriding
update methods which assign the default values *. The delete, remove and set operations are propagated
to the source class in a straightforward manner.

A refine virtual class is a subclass of the source class with an augmented type description. The update
operations create, add, delete and remove work as if they were applied to the source class. If the set
operation involves a refining attribute defined in the Refine virtual class, then the update is applied to the
virtual class instead of being propagated to the source class. °

4 This scheme doesn’t always work especially when the hidden attributes are declared as REQUIRED.
5Details on the actual implementation of this approach are given in Section 4.



Notice that virtual classes may, of course, be defined based on other virtual classes.

Theorem 1. Any virtual class defined by our object algebra defined in Section 3.3 is updatable in terms of the
generic update operators such as create, delete, remove, add and set defined in Section 3.3.

Proof: We can view the history of a virtual class derivation as a DAG with multiple roots where the roots are
base classes and all other nodes are virtual classes. The edges in the DAG indicate that the class at the end point
is a virtual class which is defined based on the classes at the start points of the edge. We can label the edges by
the name of object algebra operator which defines the virtual class. An edge labeled as hide, select or refine have
only one starting node, while the edge labeled as union, intersect or difference have two starting point classes.

Suppose we mark all the roots of the DAG as updatable, because they are all base classes. If we select all nodes
(classes) of which incipient edges are all marked nodes, then all the selected classes are defined based on marked
classes. In the above discussion, we have shown that the virtual classes are updatable in terms of the generic update
operators if the source classes on which they are based are all updatable. As a result, all the selected classes are
also updatable. So, we mark them as updatable. Repeating the above procedure, all the classes in the DAG will
be marked as updatable. q.e.d.

The edges of the above DAG represent the derivation relationships between classes. If we keep the inverse of
the edges, they represent the source relationships which indicate all the source classes on which a virtual class is
based. The source relationships are useful for finding the classes to which the updates on a virtual class should be
propagated. For each virtual class, following the source relationships leads to a set of base classes. They are called
the origin classes of the virtual class. In other words, the origin classes are the base classes to which an update on
the virtual class eventually propagated.

4 An Object Model Supporting Multiple Classification

4.1 Two solutions for supporting multiple classification

In Section 2, we have identified the following two requirements on the object model representation: (1) efficient
dynamic restructuring of object representations and (2) multiple classification. Multiple classification is necessary
in a capacity-augmenting view system, since an object may have to be an instance of different virtual classes (as well
as their base class) 5. To the best of our knowledge, current OODB systems do not support multiple classification
— the only exception is IRIS [5] a functional database system that actually uses a relational database as storage
structure, storing data from one object across many relations. Other OODBs typically represent an object as a
chunk of contiguous storage determined at object creation time. They assume the invariant that an object belongs
to exactly one class only — and indirectly also to all the class’s superclasses.

We identify two general approaches for implementing multiple classification in OODBs: (1) the intersection-class
approach and (2) the object-slicing approach [13]. These approaches are best explained via an example. Assume
that given the schema in Figure 5 (a), we want to create a new car object ol that is both of type Jeep and of type
Imported. We cannot find a class in which to store ol, without violating the invariant that an object belongs to
exactly one class. To resolve this dilemma, the intersection-class approach would create a new intersection class
Jeep&Imported which is subclass of both Jeep and I'mported classes. It then would create ol as member of the
new class (Figure 5 (b)). Next, suppose that ol were already member of the Jeep class, and we simply wanted to
dynamically reclassify it to become member of the I'mported class. Then this would require us to create a new
object 02 as member of the I'mported class, to copy all attribute values from ol to 02, and lastly to swap the object
identities of these two objects. If this dynamic reclassification had the goal of ol not loosing its membership in
the Jeep class, then this dynamic reclassification of an object would again cause the creation of the Jeep&Imported
intersection class.

The object-slicing approach (Figure 5 (¢)) would implement multiple classification by creating three objects to
represent the ol object, each of which carries data and behavior specific to its corresponding class. As we can see,

6 While regular view systems (i.e., that do not allow for capacity-augmenting views) also must support an object to be an instance
of different virtual classes (as well as their base class), note that virtual classes do not carry any additional stored data — and it is thus
trivial to make these objects transient members of virtual classes on access. This is no longer sufficient for capacity-augmenting views.



nation

ol _Jeep ol_ImpoOGrted

__ nation

(b) Object—Slicing Approach

" Jeep& N
\I\mporte/d/ ‘ ol_Jeep&Imported

(©) Intersection—Class Approach

Figure 5: Two Approaches For Implementing Multiple Classification.

the ol object corresponds to a hierarchy consisting of the olca,, 0ljeep and olmporseq objects. When the current
class of the ol object is Jeep, the 0lj.., object represents the ol object. We call the ol object itself the conceptual
object and the three type-specific objects the implementation objects.

The object-slicing approach also enables efficient dynamic restructuring of object representations to account for
the addition of new instance variables. Suppose that we extended our schema, which only contained the Car and
the Jeep classes, by a new refine class called Imported, which refines the Car class by adding the stored attribute
nation. Then each Car object (as well as each Jeep object) can acquire the type of the Imported class. This means
that the Car object representation should be restructured such that it now carries the data for the new attribute.
This can be accomplished by simply creating implementation objects of the Imported class and adding them to
each Car object. So, restructuring of the object representation is relatively efficient and simple compared with the
conventional architecture where each object carries all of its state information in a contiguous block of memory
and belongs to only one class.

4.2 Comparing Two Approaches for Multiple Classification

Both approaches have advantages and their disadvantages. A detailed comparison is presented in Table 1, using
the following criteria:

o Casting an object to a type is readily provided by switching between the representative implementation
objects in the object-slicing approach. However, in the intersection-class approach, we need an additional
mechanism (possibly implemented by the compiler) to implement the casting facility.

e In the object-slicing approach, one object consists of one conceptual object and a number of implementation
objects equal to the number of types an object participates in. So, the number of object identifiers necessary
for one object is equal to 1 4+ Njppr, Where Nyy,p denotes the average number of implementation objects for
each object. The intersection-class approach requires only one object identifier for each object.

o Object-oriented databases use storage for purposes other than storing data values, such as indexes and object
identifiers. The object-slicing approach requires the storage for a number of object identifiers ((1 4+ Nimp1) -
sizeOf(oid)) 7 and pointers to link the implementation objects with the conceptual objects (2 - Nimpi -

7Object identifiers are necessary for one conceptual object and Nimpr implementation objects.

10



object-slicing intersection-class ||

casting change representative implementation object need additional mechanism
#oids for one object 1+ Nimpt one
storage for (1 4+ Nimpt) - sizeO f(oid) sizeOf(oid)
managerial purpose 4 Nimpt - 2 - s1ze0 f(pointer)
storage for no redundancy no redundancy
data values
#classes #user-defined classes #user-defined classes + #intersection classes
performance good for select based on attributes fast access to inherited attributes
for queries
dynamic by creating and destroying by creating another object and copying
classification implementation object values and removing old one
multiple inheritance has flexibility has to be
resolution to dynamically resolve determined statically

Nimpl :

the number of implementation objects for each object.

Table 1: Comparison of Two Multiple Classification Approaches.

sizeO f(pointer)) 8. On the other hand, the intersection-class approach requires the storage for only one oid
for each object.

Both approaches do not require duplication of the data values. So, they are non-redundant in terms of the
storage for data values unless data is purposely duplicated for performance reasons.

In the object-slicing approach, all classes in the global schema are user-defined classes. There is no need
to create hidden classes. However, the intersection-class approach needs intersection classes to accomplish
multiple classification. For each object that takes two types, we must create a class to hold the combination
of the two types, if it does not yet exist. The number of intersection classes may increase to 2Vetess  where
Neigss 18 the number of user defined classes of the global schema.

It is likely that the object-slicing approach will show good performance for select queries of predicates on
simple attributes. There are two reasons: first, slices of the objects of the same attributes tend to cluster
and second, these object slices are much smaller than complete objects and thus one page access should be
sufficient to get all objects from secondary storage. However, the access to the inherited attributes involves
several steps of traversing the pointers which link implementation objects. The intersection-class approach
will be faster in accessing an inherited attribute because the values of all attributes of an object reside in
the same location. Detailed comparison studies are needed to fully analyze the trade-off in performance for
different types of access.

Changing an object from being an instance of one class (C'1) to being an instance of another class (C2) is
called dynamic classification [13]. In the object-slicing approach, when the object is dynamically classified as
the instance of the class C'2 rather than that of class C'1, the object instance takes an implementation object
of the class C'2 and discards that of the class C'l. By combining the operators for adding and removing class
membership, we can easily achieve dynamic classification functionality. In the intersection-class approach,
we first must identify the proper class for the new classification and, if it does not exist, create the class.
Second, we create an object of this new class and copy the values of the object to be reclassified into this
newly created object. To preserve object identity, we must copy the object identity of the old object to the
new object by utilizing a swap mechanism. OODBs such as GemStone that support rudimentary schema
evolution capabilities provide such operators.

The multiple inheritance resolution scheme has to be determined when the system is installed for the
intersection-class approach. This is because representation of an object is affected by the resolution scheme.

8 Each implementation object keeps the pointer to its conceptual object, vice versa.

11



Suppose a class inherits the same named attributes from both superclasses. Then, depending on resolution
scheme, storage is allocated to either attribute or to both attributes. For the object-slicing approach, the
object representation is the same regardless of resolution scheme for the multiple inheritance. This means
that we can adopt various resolution schemes dynamically.

We have chosen the object-slicing approach as the basic architecture of our system because an explosion of
intersection classes is likely to be generated in the intersection-class approach. In the worst case, the number of
intersection classes could grow exponentially with respect to the number of user-defined classes. Also, as demon-
strated above, dynamic classification may require the creation and/or removal of intersection-classes on the fly.
Note that our system is independent of this choice of implementation architecture as long as the underlying object
model supports the required properties of multiple classification and dynamic restructuring. Thus new mechanims
for supporting multiple classification could be swapped in in the near future, when they become available.

5 The Transparent Schema Evolution (TSE) System Architecture

Figure 6 describes the overall architecture of the proposed transparent schema evolution system, or TSE system
9. As shown in the figure, GemStone, version 3.2, Opal Interface '° is used as the underlying platform providing
persistent storage, concurrency control, etc. On top of GemStone, we have built the TSE object model to
support the necessary features of multiple inheritance, multiple classification and dynamic restructuring. The
Global Schema Manager is directly constructed on top of the TSE model, providing a layer between the
database and all other system modules.

Schema Evolution
operation

3)
Transparent Schema Evolution View Manager
Manager (TSEM)

View Schema
@ @ Generator (VSG)

TSE Translator

)

Extended Object Algebra

Processor /\

Obiject
Algebra
Processor Classifier

!

Global Schema Manager (GSM)

View Schema History

vsi [ vsz | [ vsk | | vsn

TSE Object Model

GemsStone System

Storage

Figure 6: The System Architecture for Transparent Schema Evolution.

When a user specifies a schema change on a view (VSy), the Transparent Schema Evolution Manager (TSEM)
module calls the TSE Translator as indicated by the bold arrow labeled (1). The translator, in turn, maps the

9In Figure 6, the shaded modules are specific to the TSE system, and are not available as subsystems of MultiView.
10 GemStone is registered trademark of Servio Corporation.

12



operation of schema change into statements of the Extended Object Algebra (Section 3.2). The execution of
the translated algebra results in the creation of new virtual classes. Now, the TSEM calls the Classifier module
which integrates the new virtual classes into one uniform global schema. This is indicated by the arrow labeled
(2). The TSEM calls the View Manager to generate an appropriate view schema which reflects the modified
schema and registers the generated view schema as a new version of the view (VS;) in the dictionary, called View
Schema History, indicated by the arrow labeled (3).

Each module of our TSE system is briefly explained below:

e TSE object model: The object model provides the required features of multiple classification, dynamic
classification, multiple inheritance and casting to support our schema evolution system.

e Transparent Schema Evolution Manager: The control module takes a user input (a schema change)
and calls appropriate modules to complete the requested schema change.

e TSE Translator: The module translates a requested schema change into a set of extended object algebra
expansions that define all necessary virtual classes.

¢ Extended Object Algebra: The object algebra operators of MultiView take a set of objects as input and
return a set of objects. The output characteristics of the operators enable the algebra to define virtual classes
to constitute views. To achieve schema evolution through a view, we need to extend the operators to augment
the content of the base schema. Thus, the extended algebra can not only customize the interface of existing
data but it also can add new stored attributes to accommodate new data.

e Classifier: This module reclassifies the classes of the global schema to integrate the newly created virtual
classes into the consistent global schema hierarchy, allowing for upwards inheritance for both base and virtual
classes.

e View Manager: The module takes a set of classes as an input and generates a consistent view schema
including the appropriate generalization hierarchy. Currently, we can check the type-closure of a view schema
and incorporate necessary classes for the type-closure. In addition, it manages the history of views.

e View Schema History: The dictionary keeps track of the history of each view schema, allowing for the
substitution of the old view by the newly cerated one.

We are currently implementing a prototype of the TSE system on top of GemStone. We are able to reuse
several subsystems of MultiView, namely the Classifier, View Manager and Object Algebra Processor with
minor modifications for integration purposes. We have completed an initial version of the TSE Object Module,
the View Schema History Manager and the Extended Algebra Processor. We are now embarking on the
development of the TSE Translator.

6 Algorithms for Realizing Schema Changes in the TSE System

One of the first object-oriented schema change approaches has been proposed by Banerjee et al. [8] for the
ORION data model. Note that this taxonomy, adopted in most other schema evolution research for OODBs such
as Encore [27], Goose [7, 11], CLOSQL [15], Rose [14], OTGen [10] and COCOON ([30], still corresponds to the most
frequently used set of schema changes. In fact, most commercial OODB systems such as O3 [31] and GemStone [16]
only support a subset of this taxonomy. To demonstrate the feasibility of the TSE approach, it is thus important
to show that our approach can realize all the schema change operations supported by Orion.

Zicari [31] shows that the schema evolution operations of Orion can be reduced to a small set of primitive
schema change operators, which can be combined to achieve the semantics of more complex operators. Zicari’s
schema update operators fall into two categories: those that change the content of one class, such as (1) add an
attribute, (2) delete an attribute, (3) add a method and (4) delete a method, and those that act upon the class
hierarchy, such as (1) add an is-a edge between two classes, (2) delete an is-a edge between two classes, (3) delete
a class and (4) add a class. The implementation of this basic set of schema evolution operators is thus sufficient

13



for our purpose. Below, we present algorithms for translating a schema change into a number of view definition
statements for each primitive schema update operator.

6.1 Implementing the Add-Attribute Schema Change in TSE
6.1.1 Semantics of the Add-Attribute Operator

The schema change operator defined by “add_attribute x:attribute-def to C” augments the types of the class
C and its subclasses Cgyp with the new attribute ‘x’ [4]. The extents of the classes are not changed in terms of
membership. However, the instance objects of the classes now have one additional attribute x. If there is a property
in class C' with the same name x, the operation is rejected. If a subclass Cy of C' has a property with the name
x locally defined, propagation of the added attribute to C} and its subclasses is stopped because a local property
overrides inherited ones. For multiple inheritance conflicts, we allow two same named properties to be inherited
into the same class. However, due to the ambiguity, the properties can’t be invoked until the user disambiguates
the properties by renaming them. As an example, Figures 3 (a) and (b) show a schema before and after executing
the “add attribute register to Student class” operation, respectively.

6.1.2 The Algorithm for Mapping the Add-Attribute Operator to Views

TSE translates the “add_attribute x:atiribute-def to C” operator to the following view specification:

{ if x already exists in C, reject this operation;
defineVC (' as (refine x:attribute-def for C);
push C onto tmpStack;
while (tmp := pop tmpStack) # NULL do

for all subclasses (Csyp) of the class tmp

if attribute x not defined for tmp
then { defineVC C!,, as (refine C":x for Cyysp);
push Cyyp onto tmpStack;

tmp := pop;

endwhile; }

This algorithm creates virtual classes to reflect the modification of the class C' and its subclasses. The virtual
classes have types which refine the types of their source classes with the attribute ‘x’, while the extents are not
modified. If there exists an attribute named ‘x’ in C', then the refine is rejected. In addition, if a subclass of C
has already defined a property named ‘x’, the procedure of propagating ‘x’ terminates.

6.1.3 The Complete Process of View Schema Evolution

Figure 7 shows the whole process of our schema change approach. Upon the schema evolution request,
“add_attribute register for Student”, on the view schema of a user (Figure 7 (a)), the TSE Translator generates
a set of view specification statements (Figure 7 (b)) using the above algorithm. The Extended Object Algebra
Processor module takes the set of statements and creates the virtual classes, Student’ and TA’ in this example,
according to the statements. The Classifier module then integrates the new virtual classes into the global schema
as shown in Figure 7 (¢). During the classification process, if there already exists a class in the global schema
which is the same as a newly derived class, then the classification algorithm will discover this duplicate and discard
the new class. From the augmented global schema, the View Schema Manager (VSM) picks all base classes
and virtual classes from the old view unless they have corresponding new primed classes!!. In Figure 7 (c), the
VSM module selects the classes Person, Student’ and TA’ for the new view VS2. It then renames the Student’
and TA’ classes to Student and TA within the context of VS2, respectively. Finally, generalization edges are
generated by View Schema Generator for the classes selected for VS2 [21]. At last, the system replaces the old

11 The algorithm names each virtual class by appending a prime to the name of their corresponding original class.

14



view VS1 with the newly generated view VS2. Because all the above procedures are transparent to the schema
change specifier, she will have the perception that her original schema has actually been modified.

6.1.4 Verification of the Translation Process

Proposition A: The algorithm in Section 6.1.2 correctly simulates the semantics of the desired schema change
described in Section 6.1.1.
Let an original schema S = (V, E) be defined as a DAG, where V = {v1,va,...,v,} and E = {e1, €3, ..., €, }. Assume
that normal schema modification of add-attribute would change the schema S into S’ = (V' E'); and our view
change approach would generate the view S” = (V" E") instead. Then, we will verify that the newly created
schema S correctly represents the desired change S’ by showing S’ = 5”.

Let us assume without loss of generality that a subclass of class C, (Csyp # C), has an attribute ‘x’ already
defined. Then we may partition the set V into three subsets V1, V2 and V'3, where V'1 contains the set of classes that
are subclasses of Ciyp, V2 the set of classes that are subclasses of C' (including C') but not subclasses of Cyyp and V3
the remaining classes. Let V1 = {v1,va,...,v¢}, V2 = {Up41, Vb42, ..., Vkti} and V3 = {Urtit1, Vkgita, -, Vbtitj s
with k+:1+j = n.

Let we first discuss how S’ is created. Then, normal schema modification would change only the classes of V2
by augmenting the types of the classes in V2 by the attribute ‘x’; the extents are not modified. The remaining
classes are not changed. So, V2’ would be {v},,,..., v} ;}, with v}, is the result of modifying vy, k+1<p < k+1,
defiend by:

type(vy) type(vp) U {z}
emtent(vl’,) = extent(v,). (6.1)

Let us now examine how S” is created. Our TSE Translator algorithm in Section 6.1.2 identifies the classes
for which virtual classes are to be created. It can be easily seen that they also correspond to the classes of the
set V2. After generating the virtual classes, the new view schema V" would be equal to {vi, ..., vk, v}/, V)44
Vk4it1, -+, Un}, Where vy is a virtual class created for v,, k+1 < p < k +1i. The v classes, for k+1 < p < k+74,
are defined by:

type(vy) = type(vy) U{z}and
emtent(v]';) = extent(vp) (6.2)

because the above algorithm creates virtual classes that refine the classes of V2 with the attribute ‘x’. From the
equations 6.1 and 6.2, we see that v, = vy for all p with k+1 < p < k+4, and V' = V", Because this schema change
does not modify the is-a relationships between classes, we know F = E’. The view schema generation algorithm
of TSE, which is already found in [21], will generate the same is-a relationships as in E, and thus E” = F. This
implies that £ = E/ = E. Because V' = V" and E' = E”, we can say that S” = S’ and that the semantics of the
schema change have been correctly simulated.

Proposition B: Ezisting view schemas are not affected by this schema change.

The global schema is restructured for this schema change operator in order to add some new refining virtual classes.
However, as shown elsewhere as the view independence property [19], existing views are not affected by such global
schema restructuring.

6.1.5 Updatability

For this view, virtual classes are created only by the object-preserving refine operator. Because it has been
shown that virtual classes defined by object preserving object algebra are updatable [24], all classes of the view are
updatable.

15



7name
add_attribute register for Student

Comaen e
advisor
— salary
TSE Translator

@)
PR —_——— T T T T T T —~— -
/ definevC Student’as N\
/ (refine registerfor Student); \ "
Extended Object Algebra
\ | Processor
\ definevC TA'as . T |
N (refine Student’:register for A Y, Object
N — Algebra
—_— e ——— - Processor
® \
View Manager
Classifier

View Schema
Generator (VSG)

UnderGrad
(

Figure 7: Complete Procedure for a Schema Change.



6.2 Implementing the Delete-Attribute Schema Change in TSE
6.2.1 Semantics of the Delete-Attribute Operator

The schema change operator defined by “delete_attribute attribute (x) from C” removes the attribute ‘x’
from the types of the class C' and its subclasses. The extents of the classes remain the same. We can delete only
attributes that are locally defined in class C' to guarantee the full inheritance invariant 12. If the attribute ‘x’ was
overriding a same named attribute in class C, then the suppressed attribute is restored and propagated to the
subclasses.

The term of ‘local’ above must be redefined in our context, because local property in our context means local in
terms of the view schema. We consider an attribute ‘x’ to be locally defined in class C' if class C' is the uppermost
class in the view schema having the attribute ‘x’; even if the property is defined outside the view.

6.2.2 The Algorithm for Mapping the Delete-Attribute Operator to Views

TSE translates the “delete_attribute attribute (x) from C” operator to the following view specification:
{ for all subclasses subC' of the class C, including C
defineVC subC’ as ( hide x from subC' );
if there exists an inherited attribute named ‘x’ in C' then
{ superC := the class defining the inherited attribute;
for all subclasses Cyyp of the class C) including C
defineVC C?,, as ( refine superC:x from C’ , ); }

s sub

}

The above algorithm creates virtual classes that hide the attribute ‘x’ from the class C' and its subclasses. When
the attribute ‘x” has been overrding a same named attribute in the class C', which has been inherited from a class
(super(), the algorithm creates additional virtual classes that refine the class C' and newly created subclasses C,
with the attribute, superC:x. This will effectively restore the suppressed attribute. For an example, Figures 8
(a) and (b) show an old and a new view schema, and Figure 8 (c) shows how the global schema is augmented to
support the schema change. The key here is that the attributes to be deleted are not removed from the underlying

global schema, but rather are made invisible to the view.

6.2.3 Verification of the Translation Process

Proposition A: The algorithm in Section 6.2.2 correctly simulates the semantics of the desired schema change
of deleting an attribute as described in Section 6.2.1.
Let an attribute named ‘x’ is to be deleted from class C'. Then we may partition the set V' into two subsets V'1
and V2, where V1 contains the set of classes that are subclasses of class Csyp (including C') and V2 the set of
classes which are superclasses of class C. Again assume without loss of generality that V1 = {vy,vs,...,vx} and
V2 = {vk41, Vkt2, s Vkti}, Where k + i = n.

Then, normal schema modification would change the classes of V'1 such that the types of the classes are reduced
by the attribute ‘x” and the extents are not changed. The classes of V2 are not affected by this schema change. So,

V' would be {v}, ..., v}, Vk41, ..., un}, where v, is modified from v,, 1 < p < k. The v, classes are defined by:
type(v;) = type(vy) — {z} and
ertent(v;) = extent(vp) for 1 <p <k. (6.3)

Let us now how our view schema approach change the classes of V. The bf TSE Translator algorithm for the
delete-attribute identifies the classes for which virtual classes need to be created. It can easily be seen that they are
identical to the classes of the set V2, which in turn are equal to the set of classes modified by the normal schema

change. Then, V" would be {v{,..., v}/, k41, ..., v, }, where v, are the virtual classes created for v, for 1 < p < k.

12The full inheritance forces all the properties of a superclass to be inherited by its subclasses.

17



- >-< - =< ~
\ N New View
N
—name/ \\
7 \
7
- \
> \
~ \
Student /\— register \
~ —~ |[definevC Student’ as \

( hide gpa from Student );

\

\

|

}

1 /\—salary I

— /
defineVC TA’ as /
~ ( hide gpa from TA); /

S~ -

—_——

delete gpa from Student;

Figure 8: Schema Change for Deleting an Attribute.

The vy classes are defined by:

type(vz')') = type(vp)— {z} and
ea:tent(v;') = extent(v,) for 1 <p<k. (6.4)

This is so because the above algorithm creates virtual classes that hide the attribute ‘x’ from the classes of V2.
From the equations 6.3 and 6.4, we see that v, = v for all p s.t. 1 <p <k, and thus V' = V",

In addition, in case the class C' could have inherited a same named attribute ‘x’ (denoted by Z uppresseq) but
suppressed by the attribute ‘x’ to be hidden (denoted by Zpidden), the attribute zuppresseq Will be restored when
the suppressing attribute zp;44en is deleted. Then the type equations of 6.3 and 6.4 will be changed into

type(v]/o) = type('yp) - {ajhidden} U {Isuppressed} (65)
type(”;l;) = type(vp) - {xhidden} U {xsuppressed} fOT’ 1 S Y4 S k; (66)

respectively. Even for this case, we can see that vy = v, for 1 < p <k, and V" is equal to V', too. Because this
schema change does not change the is-a relationships between classes, we have E' = E’. Besides, the view schema
generation algorithm will generate the same is-a relationships as in E' [21], and then E” = E. In short, it means
that B = F/ = E. Because V/ = V" and F/ = F”, we can say that S” = S’ and that the semantics of the schema
change have been correctly simulated.

Proposition B: Ezisting views are not affected by this schema change.

For this operator, existing classes in the global schema may go though some changes. Some of methods and instance
variables that had been locally defined have now moved upward to other classes 13. In this example, the definition of
the instance variable register is moved upwards from Student to the class Student’. It may be possible that this
code movement has affected the type of existing classes, namely, the classes Student and TA. For example, if the
attribute register in the Student class in Figure 8 (¢) was overriding an inherited and same named attribute, now
the two attributes become conflicting. This problem can be solved by always giving higher priority for inheritance
to the class that is the hide class created from the inheriting class. In other words, the property that had been defined
at a class and projected into a superclass always has higher priority over other same named properties inherited
from other superclasses. Given this name conflict resolution rule, we can assure that users of the other views are
not affected by the fact that a property that had been locally defined has been moved up and now is only inherited
into the class. This outlines our argument why other views are not affected by this operation.

13 This code promotion is performed in MultiView to allow for true upwards method resolution for both base and virtual classes.

18



6.2.4 Updatability

For the same reason as that of adding an attribute, this view is also updatable.

6.3 Implementing the Add-Method Schema Change in TSE
6.3.1 Semantics of the Add-Method Operator

The schema change operator defined by “add method m: method-def to C” augments the types of the class
C and its subclasses with the new method ‘m’. The extents of the classes are not changed. If there is a same
named method locally defined in class C', the operation is rejected. If a subclass of C' has a method ‘m’ locally
defined, the propagation of adding the new method to the subclasses is stopped because a local method overrides
an inherited one. We allow two same named methods to be inherited into the same class. However, the conflict
has to be resolved by the user by renaming the methods.

6.3.2 The Algorithm for Mapping the Add-Method Operator to Views

The algorithm for this schema update is the same as that of the add_attribute operator given in Section 6.1.2
except that this operation doesn’t have to deal with reorganizing the underlying object representation.

6.3.3 Verification of Translation Process and Updatability
The same arguments for teh correctness of the TSE algorithm given for the add_atiribute schema change given

in Section 6.1.4 also hold for this schema change. The updatability of the resulting schema can be shown similarly
to the updatability for the add_atiribute schema change case (Section 6.1.5.

6.4 Implementing the Delete-Method Schema Change in TSE
6.4.1 Semantics of the Delete-Method Operator

The schema change operator defined by “delete_method m from C” changes the types of the class C' and its
subclasses such that method ‘m’ is no longer defined. The extents of the classes remain the same. We can delete
only locally defined methods in class C' to guarantee the full inheritance invariant. Again the term local property
refers to properties with respect to the view schema. In other words, even if the property ‘m’ is defined outside the
view, but the class C' is the uppermost class having the method ‘m’ in the view schema, then ‘m’ is considered a

local property of class C'. If the method ‘m’ was overriding a same named method in class C in the view, then the
method is restored and propagated to the subclasses.

6.4.2 The Algorithm for Mapping the Delete-Method Operator to Views

The algorithm for this schema update is the same as that of the delete_atiribute operator.

6.4.3 The Verification of Translation Process and Updatability

The same arguments for the delete_attribute schema change also hold for this schema change (Section 6.2.3).
The updatability of the resulting schema is similar to that for the delete_atiribute schema change (Section 6.2.4).

19



6.5 Implementing the Add-Edge Schema Change in TSE
6.5.1 Semantics of the Add-Edge Operator

The schema change operator defined by “add_edge C,y,-Cisyp” adds an is-a relationship between two classes
by making Cl,p a superclass of Csy3. Semantically, the addition of the is-a relationship between two classes results
in all properties of class Cyp being inherited by class Ciyp and its subclasses. The added edge may cause multiple
inheritance problems. Our solution is that same named properties can be inherited into one class, and to leave the
resolution up to the user as previously discussed. If a subclass defines a property whose name is the same as one
of the properties in the class Cyyp, then propagation of the property of the class Cyyp is blocked (overridden). The
addition of the is-a relationship also results in the addition of the extent of class Cyyp to the extent of class Clyp
and its superclasses. In Figures 9 (a) and (b), the class SupportStaff is made a superclass of the class TA. As a
result, the class T'A and its subclass Grader now inherit the property boss. In addition, the extent of the class T'A
is added to the extent of the SupportStaff class and of the Person class. Note that in the figure the extent of a
class is denoted by the set bracket below the class !*. The extent of the class SupportStaff { 02 03} is expanded
to { 02 03 04 05 06 }.

6.5.2 The Algorithm for Mapping the Add-Edge Operator to Views

TSE translates “add_edge Cjyp-Csyup” into the following view specification:
{ for all subclasses (w) of Csys, including Ciyp
defineVC w' as ( refine properties of Csyp for (w));
for all superclasses (v) of Cjyp that are not already superclasses of Csyp, including Ciyp
defineVC v as (union(v , C! ;));}

15

The first and second statement add properties of the class Cyyp to the classes which now become subclasses of
Csup due to the added is-a relationship. In Figure 9 (c), the classes TA’ and Grader’ are created with their type
augmented by the property boss of SupportStaff (Csup). The third statement adds the extent of class Cyyp to all
classes which now have become superclasses of Cyyp due to the added is-a relationship. In Figure 9 (c¢), the extent
of class TA (Csusp) is added to the extent of class SupportStaff (Csup). The union virtual class SupportStaf f’
contains the union of the extents of the source classes of T'A’ and SupportStaff. The Person class is not modified,
because the TA class was already a subclass of the Person class before the schema change.

6.5.3 Verification of the Translation Process

Proposition A: The algorithm in Section 6.5.2 correctly simulates the semantics of the desired schema change
of adding an is-a relationship as described in Section 6.5.1.
Let us assume without loss of generality that one of properties of class Cjyp is named x’ and that one of the
subclasses of class Csyp (Coperrige) has already locally defined an overriding property named ‘x’. We now denote
the property ‘x” of the class Cyup 88 Zinherited, and the (overriding) property ‘x’ as Zoyerride. Then we partition
the set of V into three subsets V1, V2 and V3, where V1 contains the set of classes that are subclasses of
class Coyerride, V2 the set of classes that are subclasses of the class Cyyp (including Cisyp) but not subclasses of
Coverride, and V3 contains the superclasses of C'. Again assume without loss of generality that V1 = {vy,vs, ..., v},
V2 = {vr41, Vk+2, --; Uk} and V3 = {Vk4it1, Vktit2, --o) Vk4itj}, Where k+ 1+ j = n.

Then, normal schema modification would make the class C,yu; a subclass of Csyp,. The addition of the new

generalization relationship will create the following new schema V' = {v/, ..., v}, v 11, s Vi i, Vi pig1s o U}, Where
vl’) is derived from v, for 1 <p <k + 14 7. The U}/) classes are defined by:
Jor1<p<k
type(lvzl;) = type(vp) U (type(Csup) - {$inherited}) and

14The term ‘extent’ used in this paper is implicitly assumed to be global extent, and not local extent.
15Note that when class Cg,p already has same named properties as those to be added by refine operation, those properties are not
added to a new refine virtula class. This effectively achives the semantics of overriding.

20



Old View

— name add_edge SupportStaff ~TA | g
{01 0203040506} - / ~_
" DN
= /k N
- | T VA
Support Pid [
orf .
Stff? |— boss salary , »7 NewView |
e otes0s} / 01 02 03 04 05 06}

/
/

defineVC SupportStaff as |7 support

( union(SupportStaff, TA’) (
i AN
() { 06} \
@ name
{01 0203040506}

defineVC TA’ as \

Support )
(refine SupportStaff:boss for TA)

Staff

defineVC Grader' as
(refine SupportStaff:boss for Grad}r)\

{06}

(b)
Figure 9: Schema Change for Adding a Generalization Edge.
extent(v,) = extent(vp); (6.7)
fork+1<p<k+:
type(v;,) = type(vp) Utype(Csup) and
extent(v,) = extent(v,); (6.8)
fork+1<p<k+:
type(v,) = type(v,) and
emtent(v;) = extent(v,) U extent(Csus). (6.9)

For our view schema approach, the algorithm in Section 6.5.2 creates virtual classes for the superclasses of Cyp and
Ciup itself and adds the extent of class Cyyp to the superclasses of Cyyp and to Csyp. In addition, for the subclasses
of the class Cyyp, it creates virtual classes whose types are defined to be the union of the original type and that
of class Cyyp except for the overridden properties. More formally, after generating the necessary virtual classes,
the resulting view schema classes V" would be {vY, ..., v}/, v}y 1, ..., v 5, v ;00, - vn ), where v} is a virtual class
created for vy, 1 < p < n. The ”U;)" classes are defined by:

Jor1<p<k
type(vg) = type(vp) U type(csup) - {winherited} U {xouerride} and
emtent(v;') = extent(vp) (6.10)
fork+1<p<k+:
type(v;’) = type(vp) Utype(Cysyp) and
emtent(v;}') = extent(vp) (6.11)
fork+i+1<p<n
type(v;') = type(vp) and
extent(vg) = extent(vy) U extent(Ciys). (6.12)

21



From the equations, we see that v;, = v forallp s.t. 1 <p <n,and V' =V".

Because normal schema modification just adds an is-a relationship, £/ = E U {< Csup, Csup >}. Besides, the
view schema generation algorithm will generate the is-a relationships of £ augmented by the edge Cyyp — Ciup for
the new schema E”, and thus E” = E' U {< Csyp, Csup >} [21]. Then, we can see that E” = E’. Because V' = V"
and E/ = B, we can say that S” = S’ and that the semantics of the schema change have been correctly simulated.

Proposition B: Ezisting view schemas are not affected by this schema change.

The process of realizing this view schema change also involves the promotion of methods. Especially when the
union classes are created, the common properties of the two source classes are promoted up to the union class.
Again, if we apply the conflict resolution rule that gives higher priority to the property which had been locally
defined, the source classes are changed by neither type nor extent. In general, no other views are affected by this
schema change by the view indenpendency property shown elsewhere [19].

6.5.4 Updatability

The union operator could possibly be problematic because there are two source classes associated with each
unioned virtual class. In Figure 9 (c), the class SupportStaff' has two source classes SupportStaff and TA'. As
we have discussed in Section 4, we have three options for propagating the create update on a union class. We
can choose either SupportStaff or T'A’, or both classes for the source class to which the create is propagated.
Assuming T A’ is chosen and an object ol is inserted into the class T'/A’, then the object must also be inserted into
the base class T'A. Because T'A’ has the same extent as T'A, this inserted object is visible in the class T'A’. This
does not correspond to the expected behavior because now every object inserted into a superclass (SupportStaff')
is visible to the subclass (T'A’). If the operators such as create are propagated to both source classes, we will
see similar unexpected behavior. We can avoid this undesirable situation by selecting the class SupportStaff as
the propagation class. Since the SupportStaff class itself will no longer be visible to the view, the propagation
of the create from the SupportStaff’ superclass to the SupportStaff subclass goes unnoticed. In general, when
a unioned virtual class (C’) substitutes a source class (C') in an old view, create and add are propagated to the
substituted class (C'). To strengthen this argument, also note that class C' always has the same type as the class
C. Other update operations such delete, remove and set are simple. They propagate to both source classes if
they contain corresponding objects.

6.6 Implementing the Delete-Edge Schema Change in TSE
6.6.1 Semantics of the Delete-Edge Operator

The schema change operator defined by “delete_edge Cisup-Csyp | connected_to Cypper |7 deletes the is-a
relationship between the two classes, assuming Cyyp is a superclass of Cyyp. The option connected_to Cypper
indicates that in case the class Cy,p is disconnected from the DAG structure after deletion of the is-a relationship
(i.e., Csup is the only superclass of Cyyp), then the class Cyyp is made a direct subclass of the class Cupper. We
require that the class Cypper needs to be a superclass of the class Cy,. If the optional clause is not specified, then
the class Clyp is made a direct subclass of the system class ROOT '€ to avoid disconnecting the C,,3. Semantically,
the deletion of the is-a relationship between a class Cyy3 and its superclass Cyyp results in hiding from class Ciyp
and its subclasses all the properties that had been inherited from the class Cyp unless the properties are still
inherited through another is-a relationship. It also results in hiding from the class C,,, and its superclass the
extent of the subclass Cyyp unless it is still in the scope of the class C,y;, and its superclasses through another is-a
relationship.

Figures 10 (a) and (b) show example view schemas before and after the update. The deletion of the is-a
relationship between TeachingStaff and T A results in the property lecture being no longer inherited into the
class T'A. In addition, it also results in hiding the extent of T'A { 04 05 } from the extent of T'eachingStaff, i.e.,
the extent is decreased from { 02 03 04 05 } to { 02 03 }.

16 The ROOT class the root class of the DAG structure.

22



gpal N\
| \
/ \\
Ojd View
Newyi€W & \
/ \
/ \
/ \
/
/ N }
// - jLw /\—salary |
@ (s TeachinE — /
{\ \Etaﬁ‘ /f ) 3}, defineVC TA’/As(hide lecture from TA);
— {020
defineVC TedehingStaff as / \ //
gpa ( dif(TeachingStaff, TA) ) /N S
{0l02030405} N7 \\ \‘
\
N {odo5} |
~o Y

Teaching \— lecture — salary
Staff ©
{0405}

{0203}
o) delete_edge TeachingStaff ~TA connected_to  Student

Figure 10: Schema Change for Deleting an Edge.

6.6.2 The Algorithm for Mapping the Delete-Edge Operator to Views

TSE translates the “delete_edge Csyp-Csyp [ connected to Cypper |7 operator to the following view specifi-

cation:
{  for all superclasses (v) of Ciyp (including Ci,p) that are not superclasses of Clyp through some other relation-
ships

{ defineVC X as union( commonSub(v,C;us,Csup-Csus));

defineVC v' as (union(diff(v,Csy3),X)); }
for all subclasses (w) of Ciyp, including Ciyp
{ y = findProperties(w,Csup-Csus);
defineVC v’ as( hide y from w); J

The first loop in the algorithm hides from the extent of the superclasses of Cj,;, all instances that should become
invisible to the superclasses when deleting the edge. To modify the extent of the superclasses, we may want to
subtract the extent of Cyy,p from the superclasses. However, this will not always be correct, as shown by the
example in Figure 11. In this example, the extents of classes C'l, C'2 and C3 would be still visible to the class
v even after the is-a relationship between C,y, and C,yp is deleted. Hence, it can’t be simply be removed from
the class v. The macro commonSub(v,Ciy3,Csup-Csup) returns the list of classes that are the greatest common
subclasses of v and Clyp assuming the edge Csyp-Csyup has been deleted. It will return the classes C'1, C2 and C3
for the above example. The union of these returned classes is called X. The temporary virtual class X contains
the instance objects that are still visible to class v even without the edge Csyp-Csup. So, the extent of X should be
added to diff(v,Csyp) to correctly simulate the effect of this schema change on the extent of the superclasses. This
is achieved by the statement union(diff(v,Cjyp),X).

The types of the superclasses are preserved because the type of the superclasses of Cy,, are not affected by
the deletion of the edge Ciup-Cisus. So, the type of the class v’ is that same as that of the class v. The types of
superclasses are also preserved even though union operation usually construct the type of virtual class, which is
possibly different from any of source classes. However, the union operations in the above algorithm create virtula

23



Figure 11: An Example of Deleting an Edge E.

classes whose types are same as those of first argument source classes, because the set of classes returned from
commonSub are subclasses of the class v.

The macro, findProperties(w,Csup-Cisus), returns the properties that have been inherited to the class w only
through the is-a relationship Csyp-Cisus 17 These properties have to be hidden from the class C,y; and its subclasses.
In this case, when the properties are removed, no overridden property is restored because every property to be
removed has not been defined locally but inherited.

Figure 10 (¢) shows how this schema update restructures the global schema. The extent of the class TeachingStaf f’
({ 02 03 }) is equal to the extent of TeachingStaff ({ 02 03 04 05 }) decreased by the extent of TA ({ 04 05 }). The
macro commonSub(T A TA TeachingStaff-T A) returns the T'A class. The macro findProperties(T A, TeachingStaf f-

T A) returns the lecture property.

6.6.3 Verification of the Translation Process

Proposition A: The algorithm in Section 6.5.2 correctly simulates the semantics of the desired schema change
of deleting is-a edge as described in Section 6.6.1.
We partition the set V' into two subsets V'1 and V2, where V1 contains the set of classes that are superclasses of the
class Csyp and Ciyp itself and V2 the subclasses of class Csup. V1= {v1, v, ..., v5} and V2 = {vpq1, k42, ..., Vpti}
, where k + ¢ = n. Assume that normal schema modification of deleting the is-a edge between Cyyp and Ciyp

changes the classes (v,) of the schema into the modified classes (v, ).

For the classes v,, which are superclasses of Cy, including Cyyp, some instances would become invisible due to
the deletion of the edge. The resulting classes ‘UI/), for 1 < p <k, can be defined as follows:

extent(v,) = extent(v,) — {instances to become invisible without the edge}
= extent(vp) — extent(Cisup) U {instances of Ciyp still visible} and
type(v,) = type(vp). (6.13)

For the classes v,, which are subclasses of Cyyp including Ciyp, some properties of the class Csyp are no longer
inherited. These classes U;, for k 4+ 1 < p < n, as defiend by:

type(v;) = type(v,) — {properties of class Ciyup no longer inherited} and

emtent(v;) extent(vp). (6.14)

Let v} be the virtual classes created by the algorithm describe in Section 6.6.2. For the classes v} for 1 < p < k:

emtent(v;') = (extent(vp) — extent(Ciup)) U emtent(U classes returned from the commonSub)

17The algorithm to implement the macro identifies all paths from the origin class of an inherited property to the class w, and decides
whether these paths contain the edge. If it does, the macro returns the property.

24



type(v,) = type(vp). (6.15)

For the classes v, for k+1 < p < n:

ertent(vg) = extent(vp) and
type(vll,’) = type(v,) — {properties returned from the findProperties macro}. (6.16)

Comparing the equations of 6.13 and 6.15, we can see that U; and v;’ are the same if the union of extents of classes

returned from the macro commonSub is equal to the instances still visible without the edge. By definition, the
macro commonSub returns all classes that are the greatest common subclasses of v, and Cyp assuming the edge

Csup-Csup has been deleted, and in turn these classes cover all the still visible instances. So, v;' = v; for1 <p<k.

Referring to both equations of 6.14 and 6.16, again 'v; and v are the same if the macro findProperties returns
the no longer inherited properties of class Cyyp. This is the exactly the definition of the macro. So, 'U;)/ = vz’g for
k+1<p<n.

Normal schema modification just deletes an is-a relationship, B/ = E — {< Csup, Csup >}. The view schema
generation algorithm will generate the is-a relationships of £ decreased by the edge Ciup — Csyup, and then
E" = E — {< Csup,Csup >} [21]. Then, we can see that £ = E’. Because V' = V" and E' = E"| we can
know that S” = S’ and that the semantics of the schema change have been correctly simulated.

Proposition B: Ezisting view schemas are not affected by this schema change.

For this operation, the global schema is also restructured such that the new classes are added and some properties
are promoted. The promotion of properties does not affect the existing classes if we follow the multiple inheritance
priority rule.

6.6.4 Updatability

Some of virtual classes created for this schema chagne of deleting an edge are union classes. For the same
reason as in the case of adding an edge, create is propagated to the replaced source class. In Figure 10 (c), the
create method applied to the class TeachingStaff’ is propagated to the class Teachingstaff. This decision is
also supported by the fact that the class v (in the above algorithm) has the same type as the class v. For delete,
remove and set updates, they are propagated to both source classes if the modified instances are members of
them.

6.7 Implementing the Add-Class Schema Change Operator in TSE
6.7.1 Semantics of the Add-Class Operator

The schema change operator defined by “add_class C,44 [connected_to Cs,p]” creates a class Cyqq, and makes
it a direct subclass of the class Cyp. We require that the extent of Cy4q is implicitly empty and the new class to
be a leaf class. The type of the class Cyqq is the same as the type of the class Cy,. If the connected_to clause is
not specified, then the class Cy4q is connected to the system class ROOT.

6.7.2 The Algorithm for Mapping the Add-Class Operator to Views

TSE translates the “add_class Cp44 [connected_to Ci,,]” operator to the following view specification:
{ for all the origin classes (Copigin) of Cyyp 3
create a base class C; as a direct subclass of Corigin;
create a virtual class (Cgqq) based on the Cy classes by
following the same derivation procedures of deriving Cjyp from the Corigin classes;

}

18 All the origin classes of a virtual class are found by recursively tracing back the derivation relationships until base classes are met.
The definition is show in Section 3.4.

25



add_class  HonorParttimeStudent
connected_to  HonorStudent
PPN
' S
/// Old View \\\
/ |
\
// _ \
Honor // @ nam\i \
Student )~ gpa /1 \
1/ |
1/
() I

|
|
Il ’
—gpa //
name N /

Honor
Student

New/View

i /
"> Honor ™ / (1) : select Student
\ ( Parttime / where gpa > 3.5
Honor “Student_

(2) : select C_x1

PartTime N /
where gpa > 3.5

Student N _ /
(b) © ———

Figure 12: Schema Change for Adding a Class.

The above algorithm creates base classes C, which are direct subclasses of each Cyi4in class. The origin classes
(Corigin) are the base classes found when we trace back through the chains of deriving the class Csyp. The virtual
class Cgqq is derived by applying to C; the same procedures as deriving the class Cyyp from the base classes Corigin.
The class Cyqq Will be classified as a direct subclass of the class Csyp. The class Cyqq is selected to also belong to
the new view schema.

Figures 12 (a) and (b) show an example of this change of the view schema. In this figure, the class Honor ParttimeStudent

is created as subclass of the class HonorStudent. Figure 12 (c) shows the resulting global schema change. There
may be more than one origin class, but for this example the class Student is the only origin class of HonorStudent.
The dotted arrows represent the view class derivation relationships from the origin base classes to the virtual classes.
The direction of the arrows are not necessarily super/subclass relationships, but rather indicate the direction of
the derivation. Hence Student is not necessarily a superclass of HonorStudent. It just happened in this example.
In addition, we don’t know whether the origin classes have all the properties of the derived virtual classes because
the properties might have been added during the derivation process.

We now create a base class (in our case, Cy1) as a subclass of Student. We then apply the same derivation
process that has been applied to derive HonorStudent from Student to create the virtual class Cyqq from Chyy
(the derivation is labeled (1) in the figure). So, the derivations labeled (1) and (2) are the same except that
the origin base classes are different. We can guarantee that the HonorParttimeStudent class is a subclass of
the class HonorStudent because the origin classes of HonorStudent are all superclasses of the origin classes of
Honor ParttimeStudent.

6.7.3 Verification of the Translation Process

Proposition: The algorithm in Section 6.7.2 correctly simulates the semantics of the desired schema change
of adding a new class as described in Section 6.7.1.

26



P {\%020304}
| C_sup ) \\(1)
= /{010203} /‘\L—~\
( C_sup)
~
T~ {o0lo0204}
&
N
\
{o4} {0l0203 } @
(C] {04}
()
R 7
C_sup) C_sup)
—_—7 {0l020304} ——7 {01020304}
s /
( c_add/) (
{0203}

{olo02} {020304}

Figure 13: Alternative (undesirable) Approach of Examples of Schema Changes for Adding a Class.

We explain our add-class procedure by detailing the problems associated with alternatives, initially plausibly
appearing approaches To achieve the desired add-class semantics of this operator, we could have attempted to
create a base class as a direct subclass of Csyp. Chgq then would inherit its type and membership constraints from
Csup as in Figure 13 (a). Assume as in this example figure that the class Cyyp is a hide virtual class of the class
Clorigin. When we insert an object instance ( 04 ) into the class Cyqq, then the object ( 04 ) would not be visible in
the class Cyup. Csup, being a hide class derived from Clorsgin, would continue to have the same extent { 0l,02,03
}. This violates the constraint of the genearlization concept that a superclass’s extent is a superset of subclass’s
extent.

Next assume that we just could have made Chaa a subclass of Copigin as in Figure 13 (b). Suppose Ciyp were
a select virtual class derived from the class Corigsn. Then, we can’t make the new class Chqq a subclass of Ciyp
because the new class can’t be a subset of Cy, because the select predicate is not associated with the new class.

Again, we try to achieve the semantics of the add-class operator by creating a new base class (Cy) as a subclass
of Corigin, and by deriving class Cyqq using the same derivation procedures as from Corigin to Csyp shown in Figure
13 (c). Its purpose is to impose the constraint of class Cisyp on the class Cyqq. It also guarantees that the new class
Caaa is a subclass of Cyyp. To further investigate this scheme, especially for the case where there are more than
one origin class, we consider the example in Figure 13 (d) where C,y, is a union virtual class based on two source
classes Corigin1 and Corigina. Following the above scheme, the class C is created as subclass of Cyri4in1 and the
class Cguqq 1s created as union of classes C, and Copigina. Clearly, the class Coqq is a subclass of class Cyyp. Also
when we insert a new object instance ( 05 ) into the class Caqq, the insert will be propagated to either (or both)
source classes (Cy and Coriginz) and the new instance will be visible in class Ciyp. So, the subset property of is-a
relationship is also shown to be assured. However, as we can see in the figure, when we add a new class Cljqq,
the class is not empty but is filled with some instances from its two source classes, i.e., instances 02 and 03. This
clearly is not desirable.

To remedy this problem, we create a base class C;; for all the origin base classes Corigin as a subclass of each
origin class, and derive the class Cyqq from the classes C; by the same procedure as deriving the class Cy) from its

27



origin base class Corigin. In the example of Figure 13 (e), the classes Cy1 and Cypy are created as subclasses of the
origin base classes Corigin1 and Corigina, respectively. Then, the class Cyqq is created as union of classes Corigini
and Corigina. Because all the classes on which the extent of the new class is based on are empty, the new class is
also empty.

In the above discussion, the class Cuqq is guaranteed to be a direct subclass of the class Cyyp because the
derivation procedure of the class Cyqq is the same as that of the class Cy, except that Cyqq’s origin classes are
subclasses of Cyyp’s origin classes. The classification algorithm will thus position it as a direct subclass of Clyp.
So, it exactly simulates the semantics of subclassing of a base class (even though we use a virtual class for Cyqq).

6.7.4 Updatability

By assumption, the virtual class HonorStudent is updatable, and the derivation process labeled (1) maintains
updatability. Because we apply the same procedure to derive the class Honor ParttimeStudent from Cy, the class
HonorParttimeStudent is also guaranteed to be updatable.

6.8 Implementing the Delete-Class Schema Change Operator in TSE
6.8.1 Semantics of the Delete-Class Operator

The schema change operator defined by “delete_class C” corresponds to removing the class C' from a view
schema. Its semantics are that the local extent of the class C' (if any) !° is still visible to its superclasses, and
the local properties (if any) are still inherited to its subclasses. In fact, it doesn’t affect any other class in its
view except that it is dropped from the view schema. An operator with these semantics is already provided by a
command of the view specification language, removeFromView «Class, of MultiView [19]. More complex version
of this delete-class operator with the same semantics as the delete-class in Orion [3] can be achieved by composing
several simpler change operators in our system. This will be shown in Section 6.9.2.

6.9 Constructing More Complex Schema Change Operators

The schema evolution capability of our system is not limited to the schema change operators discussed so far.
This section shows how some of the popular schema operations can be achieved by a combination of our primitive
schema change operators. This idea of combining primitive operators to achieve complex schema evolution has also
been discussed by Zicari [31]. For example, we can achieve the complex schema change of inserting a class between
two existing classes or of deleting a class with the same semantics as that of delete-class in Orion [3] as follows.

6.9.1 Constructing the Insert-Class Schema Change in TSE

Semantics of the Insert-Class Operator: The schema change defined by “insert-class Cj,s.r: between
Csup-Csup” creates a class Cypgers as subclass of Cyyp and superclass of Cyyp. The type of the class Cipngers is the
type of the class C,yp. Initially, the class Cipsers is empty, i.e., the local extent is empty and the global extent is
equal to the global extent of the class Ciyp.

The algorithm for Mapping the Insert-Class Opeartor to Primitive Operators: TSE translates the
“insert-class Cjysers between Ciyp-Ciyp” operator to the following script composed of primitive schema change
operators supported by our TSE system:
{ add_class Cj, s connected_to Cyyp;

add—edge Cinsert‘csub; }

Figure 14 shows an insert-class example. First, Figure 14 (b) shows the view schema after the class Cypsert is

19 The local extent has meaning only for base classes. For virtual classes, the local extent is equal to the global extent.

28



insert_class Cipsert between Csup-Csub

(@ (b) ©

Figure 14: Applying Primitive SE operators for inserting a class.

added to the schema in Figure 14 (a). The Figure 14 (¢) shows the view schema after adding an edge Cinsert-Cisus.
Note that the is-a relationship Cjyup-Csup becomes redundant in Figure 14 (c), and could be removed after the
running classification algorithm, if so desired.

Verification of the Translation Process and Updatability: The resulting schema is updatable and other
views are not affected by the schema change operations because the whole procedure consists of only primitive
schema change operators. Since the primitive operators guarantee the updatability and view preservation, the
macro of inserting a class also satisfies the properties.

6.9.2 Constructing the Delete-Class-2 Schema Change in TSE

Semantics of the Delete-Class-2 Macro: The schema change defined by “delete_class 2 Cyeere” deletes a
class Cgerete so that subclasses of the class Cyerere no longer inherit local properties of Cyerere, and the local extent
of class Cyeiete 1s no longer visible to the superclasses of the class Cyerese. If a local property of the class Cyerere
was overriding some property, the overridden property will be restored in the subclasses of the class Cyerete-

The Algorithm for Mapping the Delete-Class-2 Macro to Primitive Operators: TSE translates “delete_class_2
Cleiere” operator to the following script composed of primitive schema change operators:
{ for all direct subclasses (v) of Cyeiete

{ delete_edge Cyerete-v;

for all direct superclasses (u) of Cygetete
add_edge u-v; }
for all superclasses (w) of Cgerete
delete_edge w-Cleiete; }

The example run of the algorithm is shown in Figure 15. First, all the edges incipient to class Clejere are deleted,
and each subclass of Cyerere is connected all the superclasses (( S1 and S2) of Cgerere. The Figure (b) shows the
intermediate schema. Now, all the edges from the class C' are deleted, and the resulting schema is shown in the
Figure (¢). As you can see, the class Cyerere is now connected solely to OBJECT, and it would be removed from

the view 20,

Verification of Translation Process and Updatability: In Figure 15, the subclasses of C' (C'1 and C2) are
connected to all the superclasses of C'. It means that all local properties of the class Cyeese are hidden from C'1 and
C2. In addition, only the direct extent of class C' is now hidden from the superclasses of C'. So, the semantics of

20 The operation of removing a class from a view is supported by the view specification language in MultiView [22].

29



C=D (=D
=D

(@) delete_class ¢ (b)

Figure 15: Applying primitive operators for deleting a class

0
¢

N5
s

©

this operation is achieved. The updatability and view preservation is automatically guaranteed because the macro
only consists of our primitive operators.

7 Version Merging Using Views

Differing from other schema version systems [8, 7, 11], which keep track of constituting classes for each schema
version, the version system of TSE is simple to implement — having only to keep track of view names that correspond
to schema versions. In addition, it doesn’t have to copy instances for each version, because instances are kept under
one global schema and shared by all views defined on the global schema. Another advantage is that TSE system
does not permit duplicate classes. When a duplicate class is created, it is detected by the classification algorithm
[21], even if it has a different name. The existing class will replace the newly created duplicate one.

Sometimes, the user may want to merge two versions into one version schema in order to take advantage of
improvements made in both schema versions. This merging process is likely to be very complicated in other schema
version systems such as Orion [8], Goose [11] and Encore [27]. First, if instances have been copied for each version,
all instance versions (duplicates) with the same object identity should be merged into a single instance. Second,
the two separate schemas must be combined into one consistent schema, integrating also their generalization and
aggregation hierarchies. This requires for instance that the taxonomical position of each class in the combined
schema is determined, and that identical classes with different names as well as distinct classes with the same
names must be found by this integration process.

These difficulties of version merging can be easily solved in the TSE system. In the TSE system, instances
associated with different view schemas are never duplicated for other view schemas but rather are kept as unified
objects under one global schema. Thus, the merging of object instances is by design a non-issue in our system. The
integration of two schemas into one is also automatically achieved in our system, since the classification algorithm
integrates all virtual classes into one consistent global schema graph [17]. In our system, it is easy to determine
based on the global schema whether the same named classes are really identical. Similarly, differently named classes
of separate schemas are said to be identical if they are identical in the global schema.

Figure 16 shows an example of merging two view schema versions. Two users are assigned the view schema
VS.0in Figure 16 (a). The upper branch of the figure corresponds to the schema VS.1 created by adding attribute
register to the Student class in VS.0 by one user, and the lower branch VS.2 by adding attribute student_id to the

30



| |
| |
| |
|
| | [ l
| I |
| | I
: | : register student id |
|
| e —— S : UnderGrad
| I 7
| advior | | | \— adisor advisor | {
salary -
| | | j— slary salary |
|

\

\ N
Student"

\ uoen )—stugem_\d

~ \

N
(\ Studenl)—wgw;ter |

\
s ‘
L | name \
VS0 | ! 1 \ \
| | V53 !
| | /
| @ w | /
| — Student id | \ 77N/
| ‘ | [ o)
| | W AR
| | N \ ~—/
| advisor | ~_7
| —sday | Vsl VS2
L= _ _ |
Vs2 0

Figure 16: Merging Two Schema Versions in TSE

Student class in VS.0 by the other user. If another user wants to utilize both newly added attributes register and
student_id for developing an application, then simply adding another student_id attribute to the VS.1 version will
not be desirable. It would create duplicate fields for the same attribute, causing a waste of storage space and a
potential source of inconsistencies and errors.

In our system, there are two better ways to fulfill the user’s requirement. First, the user could explicitly select
the two student classes, Student’ and Student”, from the global schema shown in Figure 16 (b) using the view
specification language and construct the desired integrated schema from the selected classes using the view schema
generation algorithm provided by MultiView [19]. Second, the user can explicitly request a merge of the two
versions VS.1 and VS.2 as depicted in Figure 16 (a). Then, the system collects all classes of VS.1 and VS.2 and
integrates them into a single view schema VS.3. When merging VS.1 and VS.2, the Person classes of VS.1 and
VS.2 are found to be identical, since they correspond to the same class in the global schema. However, the Student
class of VS.1 is found to be distinct from the Student class of VS.2 even though they have the same name Student.
Because they are actually different classes, they should have distinct names when they coexist in VS.3. In the
example of Figure 16 (a), the problem is solved by adding version numbers to the class names. The user can of
course rename them within the context of VS.3, if desired.

8 Related Research

The continued support of old programs when performing schema evolution has been recognized as a key issue in
the literature [27, 8, 7, 14]. This section compares proposals addressing this issue using the following set of criteria
for comparison:

e sharing of objects by different schemas (application programs): It refers to the capability to access the
object instances from a schema version independent from under which schema version the object instances
were originally created.

31



- combination of
flexibility of subschema | comoina
; i : evolution views with
sharing | effort required by user | composing schema schema change
must create
Encore yes exception handler yes no no
Orion no nothing particular no no no
keep track of class no
Goose yes versions for each schema yes no
must create yes

CLOSQL yes update/backdate functions no no
Rose yes nothing particular yes no no
TSE system yes nothing particular no yes yes

Table 2: Comparison of Related Work.

manual effort required: It refers to the necessary user’s responsibility for changing the schema. Some systems
require the user to provide the exception handlers to resolve the type mismatches between the underlying
object instance representation and the schema to access it [27]. Others require the user to keep track of class
versions for each valid schema [7].

flexibility to build a new schema from class versions: It refers to the capability of composing various schemas
by combining class versions. Some systems allow the user to build a schema from class versions only if the
constituting classes are consistent with each other.

subschema evolution: It refers to the capability to confine the effect of schema evolution to a subgraph
rather than propagating the effect to many, possibly unnecessary, classes of the schema. A schema change is
generally expensive and might require extensive database reorganization at the physical level. Evolving only
the necessary subschema will thus improve the efficiency in terms of computation time and storage overhead.

combination of views with schema change: The combination of these two capabilities offers several
advantages. First, if a user can’t specify the necessary schema change through a customized user view, then
she has to guess the necessary changes on the underlying base schema and then specify a view to obtain the
desired interface. Second, the content-based derivation power of views could be exploited to support more
complex schema customizations as possible with the graph manipulation operators typically supported by
schema evolution.

version merging: It refers to support for merging multiple versions into one integrated consistent schema.
As discussed in Section 7, by the virtue of being based on a view system using an integrated global schema
as backbone, the TSE system provides a simple, yet elegant solution to version merging. To the best of our
knowledge, other schema evolution database systems have not addressed this issue.

Table 2 shows the comparisons of our TSE system with other systems such as Encore [27], Orion [8], Goose [7, 11],
CLOSQL [15] and Rose [14]. Typically, these other systems so not use the view approach, rather they utilize
more traditional versioning concepts. They typically construct new versions of the schema as well as of the object
instances, with instances being assigned to the schema version under which they have been created. Another

important issue not addressed by these systems is the subschema evolution. It deserves more attention considering

that most application programs run on some portion of the schema rather than on the whole global schema, and

schema evolution is a very expensive procedure. We solve this problem by specifying the schema change directly
on a view rather than on the global schema.

32



In a recent SIGMOD record article by Tresch and Scholl [29], the authors also advocate views as a suitable mech-
anism for simulating schema evolution. They state that schema evolution can be simulated using views if they are
not capacity augmenting. In this paper, we go one step further, however, by putting forth that capacity augmenting
schema change is necessary for truly extensible systems and that thus view systems must be extended accordingly
rather than restructuring change capabilities. We also present an architectural solution to this data reorganization
problem using the object-slicing paradigm. They present several simple examples rather than describing general-
purpose algorithms for generating views to simulate schema evolution, as done in our paper. Furthermore, they
do not show how to achieve conventional schema evolution operations that are more graph-manipulation oriented,
such as adding/deleting an is-a relationship and adding/deleting a class.

Zdonik et al.’s approach towards type changes in the Encore System [27] is to keep different versions of each
type, and to bind objects to a specific version of the type. Objects of different versions can be accessed by providing
ezxception handlers for the properties that the types of the object instances do not contain. When a new attribute
is added to a type, old versions of the type have to be provided with an exception handler for the case when a new
program accesses undefined fields of old instances. However, it is both labor-intensive as well as difficult to provide
semantically meaningful exception handlers. Because the schema is not versioned, a virtual version of the schema
is constructed as a lattice of versioned types — with one version instance per type. This approach forces the user to
manage the virtual versions of schemas by keeping track of which versions of types belong to which virtual versions
of the schema.

The schema version mechanism proposed for Orion by Kim and Chou [8] keeps versions of the whole schema
hierarchy instead of the individual classes or types. Every instance object of an old version schema can be copied
and converted to become an instance of the new version schema. Usually, the old objects are frozen to be non-
updatable and only new objects can be updated under the new schema. Object instances are thus not truly shared
among the different schema versions. This approach doesn’t allow backwards propagation. Suppose, for example,
that a user deletes an object under a new version. If the user then operates under an old version schema, the
object will still be visible. By adopting the view mechanism as foundation for our approach, the object instances
are shared by all views, independently from the order in which these view schemas were created. This removes the
inconsistency caused by not allowing back propagation in the schema version approach.

Kim et al. [7, 11] propose the versioning of individual classes instead of the entire schema. A complete schema
is constructed in Goose by selecting a version from each class. This gives flexibility to the user in constructing
many possible schemas, but it also results in the overhead of figuring out whether a given schema is consistent.

Another class versioning approach CLOSQL, proposed by Monk [15], provides update/backdate functions for
each attribute which convert the instances from the format in which the instance is stored to the format that an
application program expects. In such a system, the user’s responsibility would be great even if the system provides
the default conversion functions. In addition, the computation time for conversion might be a significant overhead.
Lastly, extensions for handling new stored attributes have not yet been dealt with.

9 Conclusion and Future Work

In this paper, we present a solution to the problem of schema evolution affecting existing programs. We propose
that schema changes should be specified on a view schema rather than the underlying global schema. Then, a
new view reflecting the semantics of the desired schema change is computed automatically by our TSE system to
replace the old one. In addition, by associating all objects with a single underlying schema (the global schema),
we solve the problem of sharing the persistent objects among all versions of the schema — independently from the
schema version under which they were created.

To support the view technology required for our approach, MultiView [19] is chosen because it generates
updatable views and complete view schemas rather than just individual view classes. In this paper, we have
made several extensions to MultiView to successfully support view evolution, in particular, we added capacity-
augmenting capabilities. We have identified multiple classification as a key feature required of capacity-augmenting
view systems in order to support schema evolution. To the best of our knowledge, none of the emerging view
systems does provide this feature. In this paper, we presented our solution that addressed this problem using an

33



object-slicing approach. The TSE object model has been successfully implemented on top of Gemstone, providing
the necessary features of multiple classification and dynamic data restructuring to the TSE system.

We have demonstrated our approach on a comprehensive set of schema evolution operators, i.e., those typically
supported by OODBs[27, 11, 15, 14, 10, 31, 16]. As a result, we have also shown that object-preserving algebra
operators, as provided by MultiView, are sufficient for supporting a comprehensive set of schema changes. Most
importantly, the resulting view schemas are updatable, because views generated by an object-preserving algebra
have been shown to be updatable.

Some more complex schema evolution operators, such as partitioning a class and coalescing classes, can most
likely not be simulated by an object-preserving algebra. Since they may require more powerful algebra capabilities,
the resulting views may no longer be guaranteed to be updatable with generic update operations. Thus this issue
of updatability of such object-generating views represents a challenging open problem. We also want to develop
optimization strategies for update propagation in our TSE system. This is important because the update on a
virtual class may have to be propagated through long chains of dependent classes.

Acknowledgements: We thank Harumi A. Kuno, who has implemented the current Mult: View prototype system,
for her help and advice. Without her software and expertise, this work could not have been possible.

References

[1] S. Abiteboul and A. Bonner, “Objects and Views,” in Proc. ACM SIGMOD, pp. 238-247, 1991.

[2] F. Bancilhon and W. Kim, “Object-Oriented Database Systems: In Transition,” in SIGMOD RECORD,
volume 19, December 90.

[3] J. Banerjee, H. Chou, and W. Kim, “Data Model issues for Object-Oriented Applications,” ACM Trans. on
Office Information Systems, vol. 5, no. 1, pp. 3-26, January 87.

[4] J. Banerjee, W. Kim, and H. Kim, “Semantics and Implementation of Schema Evolution in Object-Oriented

Database ,” in ACM SIGMOD, 1987.

[5] D. Fishman, “Iris: An Object Oriented Database Management System,” in ACM Trans. on Office Info. Sys.,
volume 5, pp. 48-69, January 1987.

[6] S. Heiler and S. B. Zdonik, “Object views: Extending the vision,” in Proc. IEEE Data Engineering Conf.,Los
Angeles, pp. 86 — 93, February 1990.

[7] H. Kim, “ Issues in Object-Oriented Database Schemas,” in Diss., Dept. of Comp. Sci., Univ. of Tezas at
Austin, TR-88-20, May 1988.

[8] W. Kim and H. Chou, “Versions of Schema For Object-Oriented Databases,” in Proc. 14th VLDB, pp. 148—159,
1988.

[9] H. A. Kuno and E. A. Rundensteiner, “Developing an Object Oriented View Management System,” in CAS-
CON, November 1993.

[10] B. S. Lerner and A. N. Habermann, “Beyond Schema Evolution to Database Reorganization,” in OOPSLA,
pp. 67-76, 1990.

[11] M. Magdi, A. Morsi, Navathe, and H. Kim, “Object Oriented Approach in Information System”, Elsevier
Science Publishers B.V.(North-Holland), 1991.

[12] S. Marche, “Measuring the Stability of Data Models,” European Journal of Information Systems, vol. 2, no.
1, pp. 37-47, 1993.

[13] J. Martin and J. J. Odell, Object-Oriented Analysis and Design, volume 1, Prentice Hall, A Simon & Schuster
Company, Englewood Cliffs, NJ 07632, first edition, 1992.

[14] A. Mehta, D. L. Spooner, and M. Hardwick, “Resolution of Type Mismatches in an Engineering Persistent
Object System,” in Technical Report, Rensselaer Design Research Center and Computer Science Dept. in Rens-
selaer Polytechnic Institute, 1993.

34



[15] S. Monk and I. Sommerville, “ Schema Evolution in OODBs Using Class Versioning,” in SIGMOD RECORD,
VOL. 22, NO.3, September 1993.

[16] D. Penney and J. Stein, “Class Modification in the GemStone Object-Oriented DBMS,” in Proc. 2nd OOPSLA,
pp. 111-117, 1987.

[17] E. A. Rundensteiner, “A Classification Algorithm For Supporting Consistent Object Views,” in Information
and Computer Science Department, Univ. of California, Irvine, Technical Report, 92-50, June 1992.

[18] E. A. Rundensteiner, “Design Views for Synthesis: Provide Both Uniform Data Integration and Diverse Data
Customization,” in FECS, Univ. of Michigan, Tech. Rep. CSE-TR-148-92, November 1992.

[19] E. A. Rundensteiner, “MultiView: A Methodology for Supporting Multiple View Schemata in Object-Oriented
Databases,” in 18th VLDB, pp. 187-198, August 1992.

[20] E. A. Rundensteiner, “Research Initiation Award: An Object-Oriented Extensive View System for Computer-
Aided Design Application,” in NSF proposal, 1993.

[21] E. A. Rundensteiner, “Tools for View Generation Object-Oriented Database,” in CIKM, pp. 635-644, Novem-
ber 1993.

[22] E. A. Rundensteiner and L. Bic, “Set Operation in Object-Based Data Models,” IEEE Trans. on Data and
Knowledge Engineering, pp. 382-398, June 1992.

[23] E. Rundensteiner, “Object-Oriented Views: An Approach to Tool Integration in Design Environments,” in
Diss., Info. & Comp. Sci. Dept. Univ. of Cal., Irvine, Fall, 1992.

[24] M. Scholl and C. Laasch, “Updatable views in object-oriented databases,” in Proceedings of the Second DOOD
Conference, pp. 1-19, December 1991.

[25] M. E. Segal, “Personal Discussion about software interface evolution ,” in Member of Technical Staff, Applied
Research, Bellcore, 1994.

[26] D. Sjgberg, ¢ Quantifying Schema Evolution,” Information and Software Technology, vol. 35, no. 1, pp. 35-54,
January 1993.

[27] A. H. Skarra and S. B. Zdonik, “The Management of Changing Types in an Object-Oriented Database,” in
Proc. 1st OOPSLA, pp. 483-494, 1986.

2

[28] M. Tresch and M. Scholl, “Implementing an Object Model on top of Commercial Database Systems,” in Proc.

3rd GI Workshop on Foundation of Database Systems, May 1991.

[29] M. Tresch and M. H. Scholl, “Schema Transformation without Database Reorganization,” in SIGMOD
RECORD, pp. 21-27, 1993.

[30] M. Tresch and M. H. Scholl, “ Meta Object Management and its Applications to Database Evolution,” in
EDBT, October 1992.

[31] R. Zicari, “A Framework for Oy Schema Updates,” in 7th IEEE International Conf. on Data Engineering, pp.
146-182, April 1991.

[32] R. Zicari, “Primitives for schema updates in an Object-Oriented Database System: A proposal,” in Computer
Standards & Interfaces, pp. 271-283, 1991.

Appendix: Glossary of Terms

e virtual classes: Classes derived via an object-oriented query.
¢ base classes: Classes to be able to actually store instances.

e source classes: Classes on which the derivation for a virtual class is based (they can be both base or virtual
classes).

35



global schema: The schema integrating all base and all virtual classes

view schema: The schema containing a subset of both base and virtual classes as required by a particular
user.

view classes: the classes in a view schema which can be both base and virtual classes.
attribute: The state of an object

method: The behavior of an object

property: This refers to both attributes and methods

type: A library of methods and instance variables defined for a class

extent: The set of object instances belonging to a class.

36



