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Abstract

In this paper, we identify key features required from OODB systems in order to provide support for ad-
vanced object-oriented tools that facilitate customized tool integration and transparent changes to database
schemata. These features include multiple classification, derived classes, view schemata, dynamic reclassifi-
cation, and flexible restructuring. Unfortunately, such features are currently not supported by commercial
OODBMSs. In fact, in this paper we demonstrate that the object model assumptions underlying most OODB
systems, namely, contiguous object layout, fixed typing and upwards inheritance, conflict with the identified
requirements. We thus propose a flexible object-oriented modeling approach based on the object-slicing
paradigm that overcomes these limitations. We describe a prototype of this object model that we have build
on top of the commercial system GemStone to demonstrate the feasibility of our approach. This Multi View
prototype realizes all features required for supporting capacity-augmenting views. We also compare and
discuss the performance results of MultiView versus GemStone on the OO7 Benchmark. The system now
serves as a platform suitable for implementing advanced OODB tools, such as schema evolution tools.
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1 Introduction

As views in relational databases successfully provide programmers with the capability to restructure a schema
so that 1t meets the needs of specific applications, a number of researchers have proposed view systems in the
context of object-oriented databases (OODBs) [1, 12, 17, 28, 25, 26]. However, most of them fail to preserve
the advantages of relational views in OODBs. Specifically, the proposed view systems typically cannot create
views such that users perceive them as real database schemas. For example, most systems create only individual
virtual classes rather than a complete schema graphs for customized views [12]. Even those researchers who have
adopted the concept of virtual schemata, that is, customized view class hierarchies over the real schema, do not
meet this goal. Their proposed virtual schemata behave differently from the real schema, especially regarding
the updatability of the view classes and the inheritance of methods and attributes [1, 32]. The objectives of
this paper are to identify what features must be provided by the underlying object model in order to support
object-oriented view schemata that look and feel like (basic) object-oriented schemata and to demonstrate a
general methodology for achieving them.

Along with view mechanisms, schema evolution is also an important issue in OODB research, both be-
cause data models are less stable than expected [18] and also because typical OODB application domains such
CAD/CAM and multimedia information systems are not well understood and require frequent schema changes.
In an earlier paper [24], we show that capacity-augmenting view systems (views that augment the information
content of a database by adding stored data in addition to deriving data as a function of already existing data
[33]) can be used to achieve transparent schema evolution. We also demonstrate that a schema evolution system
built using a view approach bears many advantages over a version-based approach [3, 20] — it guarantees that
uninvolved views will not be affected by schema change and it allows instance objects to be shared by old and
new versions of a schema [24]. This clearly demonstrates the need for developing capacity-augmenting view
mechanisms.

The goal of this paper thus is to design and build a powerful object-oriented (OO) data model and view
mechanism with the following desirable properties: (1) A view class should look-and-feel like a real database
class; (2) A virtual schema should behave like a real schema, including use of the same inheritance mechanisms for
both base and virtual classes; (3) The underlying class hierarchy model should be flexible enough to integrate the
customized virtual classes; (4) A view should be capacity-augmenting so that it can be utilized for implementing
the advanced schema evolution capabilities.

To realize these properties, we identify the object model features required for such general view support to
include a powerful class hierarchy incorporating virtual classes, capacity-augmentation, multiple classification
to allow an object to be an instance of multiple classes, classification algorithms to integrate wvirtual classes
with real classes, and method/attribute promotion for uniform inheritance. Unfortunately, such features are
currently not supported by commercial OODBMSs [5, 10, 15, 21]. In this paper we demonstrate that the object
representation assumptions underlying most OODB systems, namely, contiguous object layout, fixed typing and
upwards inheritance, conflict with the identified requirements.

We then propose a novel object-oriented modeling approach based on the object-slicing paradigm that
overcomes these limitations. The proposed object model is targeted towards supporting multiple classification,
capacity-augmenting views, and the dynamic restructuring of objects and classes. The object-slicing approach 1s
a technique to store the data of an object as a flexible object hierarchy structure rather than a contiguous object
layout. Using this approach as a basic implementation paradigm, we have built our own inheritance mechanism
for flexibility. To better support object-oriented views in our model, we support a comprehensive object algebra
including select, hide, union, intersect, refine and difference that can be used to define virtual classes. We also
show how these wirtual classes are created and integrated in the context of our object-slicing model. A key
characteristic here is that an object that 1s a member of both a base and a virtual class can now share data
storage at the attribute level, even if materialized. In addition, our architecture is being used to implement a
powerful object-oriented view management system (MultiView [26]) and for implementing a transparent schema
evolution system (7'SE [24]) to demonstrate the support our model offers for such systems.

In Section 2, we identify the object model requirements for supporting powerful view systems. Section 3
explains the implementation of our object model, and Section 4 the implementation of features that are used
for constructing wvirtual schemata. Section 5 discusses how updates are handled in our implementation, and
speculates on the overhead cost of our implementation by comparing the performances of MultiView versus
GemStone using some of the OO7 Benchmark tests. Section 6 compares our work with related research, and
Section 7 concludes this paper.



2 Requirements for Supporting Object-Oriented Views

In this section, we describe capabilities an underlying OODB must provide in order to support powerful capacity-
augmenting views. Figure 1 is a graphical display of the required OODB features and their interrelationships.

2.1 Class customization

One major goal for the support of object-oriented view schemata is that the system’s class-restructuring ca-
pabilities be powerful and flexible, as represented by the left-hand side of Figure 1. At a minimum, this goal
requires that a view definition language must be provided, such as a comprehensive set of object algebra oper-
ators, to create customized versions of existing classes. Traditional views, however, cannot handle all cases of
data restructurmg, for example, they cannot extend virtual classes with stored data. However, such advanced
capability is required if schema versioning based on object-oriented views is to be supported [4 24]. Therefore,
we extend the traditional class-restructuring capabilities of views to include the creation of capacity- augmentzng
virtual classes that augment the information content of classes on which the virtual classes are based on.

The introduction of query operators for the construction of virtual classes requires that additional features
be supported by the underlying data model, as depicted in the left hand half of Figure 1. For example, select
queries permit users to create virtual classes whose ezfents consists of a subset of existing classes’ extents. We
therefore must be able to maintain membership predicate information as part of the class definition of a virtual
class. For views, (1) we must be able to specify queries on collections of object instances, and (2) the extents
of virtual classes depend on the extents of other classes, so i1t is natural to associate extents and classes in
the context of views. This facilitates the easy retrieval of a class’s extent membership. We thus associate the
concepts of both type and extent with a class !
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Figure 1: Requirements and Features for Desirable OO Views

Note that object instances that fulfill the predicate conditions of a select wirtual class and thus become
members of the new virtual class should continue to belong to the class from which they were selected. The
data model must thus support multiple class membership, meaning that an object can be an instance of more
than one class. Most available OODB systems do not currently support multiple class membership capabilities.

1We define a type as the set of methods and instance variables associated with a class, an extent as the set of objects that are
instances of a class, and a class as consisting of a type and an extent. Note that although there is no general agreement on whether
or not classes in OODBs should incorporate their own extents rather than requiring users to maintain their own collections of
class-instances, several systems that follow this philosophy, including Orion and the system proposed by H. J. Kim [14], have been
built. Furthermore, the proposed ODMG standard [2] recently formulated by several key OODB vendors also follows this approach.



Similarly, because object instances that belong to a virtual class should possess the types of both the virtual
and the original class, the data model must provide multiple classification. This means that an object can
be classified as an instance of several types at the same time. An object that is multiply classified could be
interpreted as having multiple interfaces, each associated with a set of methods to which the object can respond.
As is the case with multiple class membership, most existing OODB systems do not currently support multiple
classification. In fact, most OODBs represent an object as a chunk of contiguous storage determined at object
creation time, and adhere to the invariant that an object belongs to exactly one class (and indirectly to that
class’s superclasses).

Furthermore, an object instance could dynamically gain the type of a (select) virtual class if its data values
change so that they fulfill the class’s selection predicate. Similarly, it could dynamically lose the type of a
(select) virtual class if its data values change so that they no longer fulfill the class’s selection predicate. For
these reasons, a view system must support the dynamic reclassification of object instances. We need this
capability in order to let persistent objects flexibly gain and lose types, including both the data that they can
store in their state as well as the set of methods to which they can respond.

The support of capacity-augmentation virtual classes, which means that virtual classes can be refined to
augment the storage capacity of base classes by storing additional instance variables, also has implications for
the data model. Again, because object instances should be able to gain and lose virtual types dynamically,
while remaining members of their original classes, dynamic reclassification and multiple classification are re-
quired. Because capacity-augmentation involves the modification of the structure of object instances (e.g.,
that they can store new instance Varlables) the system must also permit the dynamic restructuring of obJect
representations. More specifically, object instances must be capable of efficiently changing their set of stored
attributes or relationships over time.

2.2 A view should look and feel like an actual database

Relational views are utilized to operate upon a shared global schema as a customized database interface, and
thus they appear identical to real schemata from the perspective of the database users. To preserve this property
for object-oriented views (denoted as the look&feel like real database requirement in the right hand side of Figure
1), an object-oriented view should form a schema graph (generalization hierarchy) — rather than existing as an
isolated individual virtual class disjoint from all other classes of the schema. The hierarchy, which we call a
view schema, can consist of base classes from the base schema hierarchy and virtual classes that restructure the
interfaces and customize the extents of the underlying base classes 2. The view classes that compose a view
schema are organized according to their class relationships in a generalization graph, thus forming a subgraph
of the global generalization hierarchy.

In order to have a view schema act like a real database schema, the inheritance mechanism in place between
base classes should also hold between the classes of the view schema. This is expressed as the uniform inheritance
requirement in Figure 1. Traditionally, in object-oriented systems, whenever an object receives a message, the
class of the object is first searched for the corresponding method, then if the method is not found there, the
superclasses are searched upwards through the class hierarchy. Most OODBs adopt this upward search rule as
an inheritance mechanism for reasons of efficiency and code reuse. We propose that this inheritance mechanism
should be uniformly applied to all classes regardless of whether they are base classes or view classes. For example,
suppose that we add a new method to a class C' — a common practice in most object-oriented databases. Then
this method should be inherited downwards to all subclasses — rather than upwards to all superclasses of the
class C'. None of the available OODB view systems, however, support uniform inheritance for both virtual and
base classes [4, 8, 32].

The issue of inheritance mechanisms for view classes (referred to as “method resolution”) has also been
discussed by other researchers in OODBs [32, 8]. However, to the best of our knowledge, none of them achieves
uniform inheritance semantics. Instead, they either advocate downward search for some virtual classes [32, 1]
or else they statically compile all methods with each virtual class, thus forestalling dynamic inheritance. For
example, suppose a virtual class projecting some methods from a base class were to be placed above the base
class. Other systems’ method resolution mechanisms require the virtual class to perform downward search to
find the code block of the methods that are stored in the lower base class. We propose that this problem can be
solved by promoting the projected methods from the base class to the virtual class. The methods are now defined
in the virtual class, and the code block is actually stored there. Upward search now suffices for inheritance of
the projected methods by the base class. This scheme, allowing the same inheritance strategy for both base and
virtual classes, is discussed in more detail in Section 3.2.2.

2To simplify the remainder of this discussion, we call the classes of a view schema view classes.



Enforcing a uniform inheritance mechanism leads to the concept of a global class hierarchy (middle of right
hand side of Figure 1). Because virtual classes are governed by the same inheritance mechanism as base classes,
both base and virtual classes can be integrated into a single generalization global hierarchy, which we call the
global schema. Once the global schema has been formed, view schemata can be constructed simply by selecting
necessary classes from the global schema for a customized external view.

The global schema approach can be considered a natural eztension of the relational view concept. In relational
systems, we can build customized database views by first defining virtual relations via queries, storing the virtual
relations in the global dictionary, and then constructing a customized view schema and database by selecting
desired virtual and/or base relations. To parallel this relational approach in OODBs, we advocate that first
virtual classes are derived via object-oriented queries, next the virtual classes are integrated into a consistent
global schema with the base classes, and lastly external view schemata are constructed by selecting both base
and virtual classes from the augmented global schema. However, one major distinction between object-oriented
and relational views is the complex hierarchical structure of object-oriented schemata. In a relational database,
the schema is a set of relations that are unrelated to each other (except via foreign keys). On the other hand,
an OODB schema corresponds to a hierarchy of classes that are related to each other by generalization and
aggregation relationships. Thus the global schema view mechanism is more complicated for OODBs because
(1) the virtual classes must be correctly positioned within the global schema, and (2) selected view classes must
be arranged into a view hierarchy. This is denoted as the classification requirement in Figure 1.

This classification requires the explicit capture of all class relationships between base and derived classes in
terms of type inheritance and subset relationships (rather than only between base classes as is typically done in
an object-oriented data model). Type and subset relationships of base classes are defined by the user when the
base classes are created since base classes are explicitly created as subclasses of existing classes. Derived classes,
however, are defined by the object query language without type and subset relationships being necessarily
explicitly specified. So, the classification system must be able to infer the type and extent of a virtual class from
the query definition to capture the relationships of the virtual class with other classes in the hierarchy.

Classification also requires a more flezible, dynamically changeable class hierarchy than is provided by cur-
rently available OODBs, most of which don’t allow the insertion of a class into the middle of the hierarchy even
if it wouldn’t affect the types or extents of existing classes [5, 23, 9]. To integrate virtual classes into the global
schema, we must be able to insert a newly created virtual class into the global class hierarchy at the proper
position. This insertion will not affect the type or extent of any existing class, assuming that the new class is
correctly classified. In addition, multiple inheritance is necessary for classification, since some virtual classes,
such as the intersection class, must be classified as direct subclasses of at least two classes.

Finally, most views in relational systems are not updatable due to the update ambiguity problem, but this
ambiguity can be overcome in the context of object-oriented systems due to the concepts of object identity [28]
and of class-specific update methods. View schemata, being updatable, thus behave more like base schemata.

3 The MultiView Object Model and Its Implementation

Our goal is to design an object model that supports all required features outlined in Section 2, such as multiple
classification, capacity-augmentation, etc. No current OODB supports all of the features we identified as
necessary for view support in Section 2. In this section, we therefore provide a general implementation approach
that we have designed and implemented to support all required features. This has been developed in the context
of the MultiView project focusing on OO view technology; in fact, this implementation is Mult:View version 2,
which extends the first object model to include capacity-augmentation.

3.1 The object-slicing paradigm for supporting multiple classification

In Section 2.2, we identified multiple classification as a key requirement on the object representation underlying
view mechanisms. Multiple classification is particularly necessary in a capacity-augmenting view system, since
an object may have to be an instance of different virtual classes (as well as its base class) . To the best of our
knowledge, current OODB systems do not support multiple classification — with the exception of IRIS [10],

3 While regular view systems (i.e., that do not support capacity-augmenting views) also must permit an object to be an instance of
multiple virtual classes (in addition to its base class), note that virtual classes do not carry any additional stored data — and it is thus
trivial to make the object a transient member of the virtual classes on access. This is no longer sufficient for capacity-augmenting
views.
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Figure 2: Two Approaches For Implementing Multiple Classification.

which is a functional database system that uses a relational database as a storage system, to store data from
one object across many relations. Most OODBs typically represent an object as a chunk of contiguous storage
determined at object creation time. They adhere to the invariant that an object belongs to exactly one class
only — and indirectly also to all the class’s superclasses.

We identify two approaches for overcoming this limitation of current OODB systems: (1) the intersection-
class approach and (2) the object-slicing approach [19]. Both approaches provide explicit support for multiple
classification in the object model. In the first approach, whenever an object is an instance of two classes, a new
class that is an intersection of the two classes must be created to accommodate the instance. In the second
approach, a real-world object corresponds to a hierarchy of implementation objects linked to a conceptual object
rather than one contiguous sequence of stored data. The latter approach is more flexible, permitting the object
to store the data associated with being an instance of multiple classes without the creation of these artificial
intersection classes.

These approaches can be explained via an example. Given the schema in Figure 2 (a), we want to create a
new car object ol that has both type Jeep and type I'mported. We cannot find a class in which to instantiate
ol without violating the invariant that an object belongs to exactly one class. To resolve this dilemma, the
intersection-class approach would create a new intersection class Jeep&Imporied, subclass of both Jeep and
I'mported classes, on the fly. We then could create ol as a member of the new class (Figure 2 (b)). Furthermore,
suppose that ol were already a member of the Jeep class and we wanted to reclassify it dynamically as a member
of the I'mported class. This would require us to create a new object 02 as member of the I'mported class, to
copy all attribute values from ol to 02, and lastly to swap the object identifiers of these two objects. If this
dynamic reclassification had the goal of ol not losing its membership in the Jeep class, then this would again
cause the creation of the Jeep&Imported intersection class. Changes to individual object instances would thus
force the awkward situation of dynamic schema changes. This approach does not provide support for true
multiple classification, but rather simulates it by creating artificial intersection classes.

On the other hand, the object-slicing approach (Figure 2 (c)) would implement multiple classification by
creating three objects to represent the ol object, each of which carries data and behavior specific to its cor-
responding class. As we can see, the ol object corresponds to a hierarchy consisting of the olcgar, 0l7..p and
0lrmporteq Objects. We call the ol object itself the conceptual object and the three type-specific objects that

are linked to ol the implementation objects. When the current class® of the ol object is Jeep, the ol;.., object
represents the ol object. Note that although the implementation objects are actual object instances of classes
to which the object belongs, implementation objects are linked into a single conceptual object. From the user’s
perspective, implementation objects are transparent — the user perceives only the conceptual objects. Thus
one of the functions our system must perform is overriding of identity and equality methods, so that each
implementation object uses the object-identifiers of its conceptual object for these comparison operators.

4The current class of an object is the class through which the user is accessing the object.
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In this object representation, dynamic restructuring and reclassification of an object involve only a small
part of the conceptual object, namely only the implementation objects containing the directly affected data. In
other words, typically only one implementation object may be touched during restructuring and reclassification,
whereas in the intersection-class approach, the entire object must be removed and recreated. For example, a
new class representing the intersection of the Imported and Jeep classes would be created and the object ol
would be reclassified to be a member of that class. Thus, these requirements are efficiently supported in the
object-slicing approach.

The object-slicing approach also enables flexible resolution of name conflicts due to multiple inheritance.
In traditional object-oriented systems, the inheritance resolution scheme must be determined when the system
is developed. This is because the representation of an object is affected by the resolution scheme. Suppose a
class inherits the same named attributes from both superclasses. Then, depending on the resolution scheme,
storage is allocated to only one of the attributes or to both of them. For the object-slicing approach, the object
representation is the same regardless of which resolution scheme is chosen for multiple inheritance. This means
that we have the flexibility to adopt various resolution schemes dynamically.

Both approaches have their advantages and their disadvantages and a detailed comparison is presented
elsewhere [24]. We have chosen the object-slicing approach as the basic architecture of our object model
because an explosion of intersection classes is likely to be generated in the intersection-class approach. In the
worst case, the number of intersection classes could grow exponentially with respect to the number of user-
defined classes. Also, as demonstrated above, dynamic classification may require the creation and/or removal
of intersection-classes on the fly. Note that 1t is transparent to a user whether the implementation is based on
the object-slicing or intersection-class approach, because both approaches can provide the same interfaces to
the user for data definition and manipulation by encapsulating implementation details.

3.2 Implementing the object-slicing approach using GemStone

3.2.1 The basic representation

Figure 3 describes the implementation approach of realizing this object-slicing model on top of GemStone °.
In the figure, the thick dashed line arrows represent is-a relationships of GemStone, the thick solid arrows depict
the is-a relationships of our system and the thin dotted lines link the conceptual object with its implementation
objects. Each user-defined class of our system is implemented as a GemStone class. Every user-defined class is

created as a direct GemStone subclass of MVClass, which is a meta-class we developed to provide functionalities

5More specifically, we use GemStone version 3.2, using the Opal interface. GemStone is registered trademark of Servio
Corporation



method: MVClass “MVClass defines doesNotUnderstand method”

doesNotUnderstand: msg “msg is a parameter”

{1: 01 := conceptuallLink: self. “getting the conceptual object of self”
2: superClass := pick from class variable supers of self.class. “getting a superclass of self’s class.”
3: superObj := 01 implementationLink: superClass. “getting an implementation object of the superclass”
4: superObj msg. } “delegate msg to super0bj.”

Figure 4: Pseudo Code of Inheritance Mechanism

and data structures for our system (Figure 3). One of the main functionalities provided by the MVClass is the
message forwarding mechanism, which enables the development of an inheritance mechanism for the object-
slicing approach. Details of the inheritance mechanism are explained in Section 3.2.2.

Every user-defined class C' inherits the class variables of supers and subs from MVClass, which keep track
of the direct superclasses and subclasses of C' within our object-slicing model, respectively. For example, in
Figure 3, the Imported class has the supers variable that references the Car class object, and the subs variable
that references the Hyundai class object. These is-a relationships are denoted as thick dashed-line arrows in
Figure 3. We keep track of subclasses using the subs class variable for three reasons: (1) the global extent of a
class C, which includes the instances of all subclasses as well as of the class C, can thus be collected efficiently,
(2) the class hierarchy can be restructured efficiently for virtual class integration, and (3) method polymorphism
is supported, as described in Section 3.2.6.

Let us explain the implementation approach using an example. Object Ol in Figure 3 consists of a con-
ceptual object and four implementation objects of type Car, Jeep, Imported and Hyundai, respectively. The
implementation object of the Car class carries the data for the color attribute, that of the Jeep class the
data for the fuel attribute, that of the I'mported class for the data for the nation attribute and that of the
Hyndai class the data for the rebate attribute. Each implementation object is implemented as an instance of
a user-defined class, which is subclass of MVClass. Each carries a system-defined attribute conceptuallLink
pointing to its conceptual object O1 as well as class-specific data. The conceptual object does not carry any
state but rather holds the references to its implementation objects. More specifically, the conceptual object
O1 carries a dictionary holding associations of pointers to O1’s implementation objects (implementationLink)

and their respective classes ® (depicted as a table inside the conceptual object in Figure 3). So, each imple-
mentation object can be referenced by its class through the dictionary associated with its conceptual object.
For example, the implementation object of the Imported class for Ol can be found by sending the message
“implementationLink: Imported”’ to the conceptual object of O1. In summary, an object is represented in our
system by a hierarchy of implementation objects linked to each other via a conceptual object.

3.2.2 Imheritance in object-slicing model

Since the data associated with each conceptual object is now distributed, we had to develop our own inheritance
mechanism for the object-slicing model. This means that objects of user-defined classes in our object-slicing rep-
resentation can’t directly use the GemStone inheritance mechanism. We build our own inheritance mechanism,
in which implementation objects search upwards for methods through other implementation objects, on top of
GemStone. This mechanism effectively replaces the pre-existing GemStone inheritance mechanism by enforcing
every user-defined class to be a GemStone subclass of the system “meta-class” MVClass (in Figure 3). We have
designed the MVClass meta-class to have the “doesNotUnderstand:” method of the Object class overridden so
that it will perform upwards delegation of “unknown” methods and thereby achieve upwards inheritance. The
Smalltalk-like pseudo-code of the delegation is presented in Figure 4.

The algorithm of Figure 4 is best explained by an example (again in Figure 3). Assume that an implemen-
tation object Olpyundas for the Hyundaz class receives a message for the method “color,” which 1s an access
method for the attribute “color” defined in Car. Because Hyundazis not a GemStone subclass of Car, the method
“color” is not understood by the receiving implementation object. Then, the code of the doesNotUnderstand
is executed as defined in Figure 4. In the first line, the conceptual object O1 of the receiving object is found.
In the next line, the superclass of the Ol’s class superClass is found using the class variable supers. In our
example, this would be the Imported class. In the third line, the implementation object of superclass super0bj
(Olrmported) is found from the dictionary of the conceptual object. Finally the msg “color” is sent to the
super0bj Olrmporteq- Since the “color” message is not locally defined in the Imported class, this algorithm

6 This dictionary is a set of the associations indexed by class names. Thus, associations can easily be added to or removed from
the dictionary.



is recursively called until it reaches the Car implementation object ©. When the msg “color” is sent to the
implementation object of O1 for the Car class, the doesNotUnderstand method is not executed because it now
can respond to the “color” method. Ol¢g, thus recognizes the method, performs the appropriate operation and
returns the value “blue” for the element “color” to the user.

Because our system supports multiple inheritance 8, the class variable supers may contain more than one
class as superclass. Then the second line of the above algorithm must be extended so that every path has
to be searched. However, if there is more than one class that locally defines the desired method, then the
well-known issue of naming conflict is encountered. Our solution is to force users to resolve the conflict by
renaming, otherwise the invocation is rejected with an error message. This simple solution, also adopted by
other OODB systems for dealing with name conflicts [34], could be modified to avoid such rejections by allowing,
for example, (1) a fixed ordering of superclasses to determine the choice of the method resolution or (2) user-
constructs indicating priority among superclasses for the purposes of name resolution.

3.2.3 Creating and deleting an object

Since the physical representation of a real-world object in our system is different from that of GemStone ?, we

provide our own object creation and deletion methods create and delete. Suppose the create method is sent
to the Hyundai class (Figure 5.a). Then, it would create first the conceptual object O1 (Figure 5), second the

implementation objects for O1 for all classes lying in the path from the receiving class Hyundai to the Root '°
class, and finally it would link the implementation objects and the conceptual object. In our example, it would
create the implementation objects Olgyundai, Olrmported and Olc,, and connect them to O1 by adding the
appropriate associations into Ol’s dictionary. The deletion of an object is achieved by sending the message
“delete” to the object O1. This would first delete all the implementation objects of O1, and then delete the

conceptual object itself 1.

3.2.4 Dynamic reclassification and restructuring

This section shows that we can achieve dynamic reclassification and dynamic restructuring with the help of
the two methods getType: and loseType:. Suppose an object Ol is created as instance of Hyunda: by the
command “Hyundai create” (Figure 5 (a)). The object O1 can also be made an instance of Jeep by sending
the message “getType: Jeep” to the object O1, which changes the representation of O1 depicted in Figure 5
(a) into that of Figure 5 (b). The method “getType: <class>" also creates the implementation objects of
classes lying in the path from <class> to Root if they do not already exist. In this example, the implementation
object Ol¢,, already exists. Thus the creation of the implementation objects terminates at the Car class. New
implementation objects are connected to the conceptual object of O1.

In the above example, the object O1 is restructured from the presentation of Figure 5 (a) to that of Figure 5
(b). One implementation object Olj..p is created and linked to the conceptual object O1 by adding the new
association (Olj.cp, Jeep class) into O1’s dictionary. Note that this dictionary is unordered and its associations
keep track of pointers to implementation objects rather than actual data. This assures that the associations,
which are homogeneous regardless of the size of data that the implementation objects carry, can quickly be
added or removed. This restructuring of the object representation is relatively efficient and simple compared
with the conventional architecture where each object carries all of its state information in a contiguous block of
memory and belongs to only one class. The restructuring in the conventional architecture involves creating a
new object of a target class, copying the values of the object to be restructured into this newly created object,
copying the object identity of the old object to the new object by utilizing a object identity swap mechanism
to preserve object identity, and destroying the old object. In short, our object-slicing approach enables efficient
dynamic restructuring of the object representation.

We also support the reverse operation of getType, called loseType. For example, the conceptual object O1
is changed from Figure 5 (b) to Figure 5 (a) by sending the message “loseType: Jeep” to Ol. The method
“loseType: <class>" destroys the implementation objects of <class> and its subclasses.

7In our actual prototype, this is optimized by only accessing an implementation object if the desired method is locally defined
for its class.
8 GemStone only supports single inheritance; however we implement multiple inheritance as required for the support of view
systems.
9 GemStone uses the conventional approach of representing each object as a piece of contiguous storage
10The Root class is the system class that is the topmost class of every user-defined class hierarchy. It is not shown in the figures
for simplicity, but it is implicitly assumed.
11 Due to space limitations, the description we give here is simplistic and does not address referential integrity issues.
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Figure 5: Getting and Losing a Type

It now can easily be seen that we can achieve dynamic classification by combining getType and loseType
methods. For example, the O1 obJect of the class Hyundai can be reclassified as instance of Jeep by executing
the two methods “getType: Jeep” and “loseType: Hyundai”

3.2.5 Switching between types

While an object can have multiple types (roles), at times we may want to treat an object in the context of one
of its types. In a strongly typed language like C++, the type of a variable pointing to an object determines the
current type of an object, while in a loosely typed language like Smalltalk and Lisp, the current type is fixed to
the type of the class to which it directly belongs. Even if our system is built using a loosely typed environment,
language, we can cast an object to another type taking advantage of our unique object-slicing technique. We
provide a method, “asClass0f: <class>", which changes the current type of a receiving instance to the
<class>. Internally, this method works as follows: (1) The message conceptuallink is executed to find
the conceptual object of the receiving (implementation) instance; (2) the message “implementationLink:
<class>", sent to the conceptual object, returns the implementation object of <class> type. In summary,
our system requires the explicit call of the method asClass0f to cast an object to any of its types. For
example, casting Olj..p, to Imported can be performed by sending the message “asClass0f: Imported” to

Oljeep, (Figure 3).

3.2.6 Polymorphism

Polymorphism is often defined as the capability of objects to respond differently to a given message depending
on their type. In C++4, polymorphism is achieved via the wvirtual function concept; in Smalltalk, by fixing the
current type of an obJect to its most specific type. Traditional OODBs, where there is one most specific class,
can always determine the most specific method unambiguously. This is no longer true in our more flexible model.
Polymorphism in our context means that when multiple classes have identically named methods, the method
defined in the class with the most specific type should be invoked for the object. This requires us to introduce
the explicit method “asMostSpecific: <aMethod>” to our implementation. The method “asMostSpecific:
<aMethod>" searches downward from the current class and returns the implementation object whose type is
the most specific from the object types having <aMethod>. For example, in Figure 6, suppose the object O1
receives a message, “asMostSpecific: #dealer-margin” and its current type is Imported. In this example,
the implementation object Olzmporieq Teceives the message and forwards it to Olgyundai, because Hyundai is
the class with most specific type defining the method #dealer-margin starting from the Imported class.

However, in some cases, multiple classification can cause ambiguity regarding polymorphism. Suppose the
current type were Car in the above example. Following the same procedure, the Ol¢g,, object would receive
the message and would search downward for the most specific type. Unfortunately, for this case, there are two
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Figure 6: Example of Polymorphism in the Object-Slicing Approach

most specific classes, Jeep and Hyundaz, that both define the method. This ambiguity doesn’t happen in single-
classification systems because each object always belongs to only one most specific class. When this ambiguity is
encountered, our system gives an error message and the user must disambiguate by explicitly casting an object
to the desired class (or at least to a class which is specific enough to allow only one downward search path).
This approach parallels our solution for dealing with multiple inheritance.

4 Implementation of Object-Oriented View Mechanisms

4.1 Virtual class creation

In Section 2.2, we argued that the extent should be associated with each class to support, for instance, select
virtual classes created by selection predicates. Since GemStone does not support extents, we have addressed
this issue in our current implementation by associating with every class a collection class variable extent to
keep track of all instances of the class type. We provide methods for object creation and deletion that assure
the correct handling of the class extent. For example, an object can only be created by the predefined method
“create”, which automatically adds the created object into the collection representing the class extent. These
predefined methods are implemented as methods of meta-classes of our view system, and thus are inherited by
all user-defined subclasses. Of course, users are not permitted to modify them.

While the extent of a base class is a collection of real object instances, the extent of a virtual class is derived
from the class(es) on which it is based on. In other words, the extent of a virtual class is typically expressed
as a predicate on the extents of base classes. Besides the extent, the system also determines the type of the
virtual class to find out the taxonomical position of the class. The upper half of Figure 8 shows the meta-classes
of MultiView that provide administrative functionalities for base and virtual classes. One major function of
the meta-classes is to provide polymorphism to the getExtent method, which returns the extent of base as
well as of virtual classes. The getExtent method of both base and virtual classes returns the collection of the
implementation objects kept by the class. The virtual classes’ extents must, of course, be kept consistent with
the base classes '2.

We present below the procedures by which a virtual class is created in our system, the type determined from
the class definition, and the getExtent method implemented. We support an object-preserving object algebra
for virtual class specification [26], composed of the following operators:

e The select operator defined by (<class> createSelectClass: <new-class-name> query: < predicate >)
creates a select virtual class that is a GemStone subclass of the SelectClass meta-class (Figure 8).
As a result, it inherits the methods and variables of the SelectClass such as the getExtent method,
sourceClass and pred variables. The sourceClass class variable points to the receiving <class> and
the pred class variable holds the <predicate>. The getExtent computes the extent by applying the pred

12Note that because Multi View does not replicate data, materialization in our system is significantly different from materializa-
tion in traditional systems. Our base and materialized instances actually share implementation objects when appropriate, thus
simplifying view updates.
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to the extent of the sourceClass. The type of the resulting class is unchanged from type(<class>). This
is achieved by placing the virtual class as subclass of the source class in our MultiView generalization
hierarchy with no locally defined properties. In Figure 8, the select virtual class BlueCar is created by the

command “Car createSelectClass: #BlueCar query: [ :c | ¢ color = ‘blue’ ].”
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Figure 7: Virtual Class Implementation Using GemStone

e The hide operator defined by (< class> createHideClass: <new-class-name>] hideProperties: <properiies>)
returns a GemStone subclass of the HideClass meta-class, the type of which excludes properties listed
in <properties> from the type of <class> while preserving all other properties defined for the type of
(<class>). The resulting hide class is always a superclass of its source class, because its type is a su-
pertype of the source class’s type. This type is constructed by placing the new class as superclass of the
source class and promoting non-hidden methods from the source class 3. The getExtent method returns
the same extent as that of the source class (pointed to by the class variable sourceClass). In Figure 8,
the hide virtual class ColorlessCaris created by the command “Car createHideClass: #ColorlessCar

hideProperties: #[ color ]”.

e The union operator defined by (<class1> createUnionClassWith: <class2> ) creates a GemStone sub-
class of the UnionClass meta-class. The type of the new class is the lowest common supertype of the input
types, which is constructed by promoting the common properties of the source classes into the new class,
if necessary. getExtent returns all objects which are instances of <classI> or <class2>. In Figure 8, the
union virtual class JeepOrimportedis created by the command “Jeep createUnionClassWith: Imported

name0f: #JeepOrImported”.

13 This type construction usually involves the movement of methods and attributes, as explained in detail in Section 4.2.2.
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e The intersect operator defined by (<classi> createIntersectClassWith: <class2> nameOf: <new-
class-name>) creates a GemStone subclass of the IntersectClass meta-class. The type of the new class
is the greatest common subtype of the input types; and this type is achieved by placing the new class as a
common subclass of the source classes. getExtent returns all objects that are instances of both <class1>
and <class2>. In Figure 8, the intersect virtual class Jeep&Imporied is created by the command “Jeep
createIntersectClass: Imported nameOf: #Jeep&Imported”.

e The difference operator defined by ( <classI> createDifferenceClassWith: <class2> nameOf: <new-
class-name>) creates a GemStone subclass of the DifferenceClass meta-class. The type of the new class
is the same as the type of <classi>. It i1s constructed by placing the new class as a subclass of <class?>.
getExtent returns the objects that are in <classi> but not in <class?>. In Figure 8, the difference
virtual class DomesticJeep is created by the command “Jeep createDifferenceClassWith: Imported
name0f: #DomesticJeep”.

e The refine operator defined by (<class> createRefineClass: <new-class-name> withProperties:
<property-defs>) creates a GemStone subclass of the RefineClass class. The getExtent returns the
same extent as that of the input class. The type of the new class is a subtype of the input type as all the
old properties plus the new one are defined on it. This type is achieved by placing the class as a subclass
of the source class with the refining properties. In Figure 8, the refine virtual class Car’is created by the
command “Car createRefineClass: #Car’ withProperties: #[maker]”. The type of the new class
is that of Car augmented by maker, the extent is the same as that of Car and it is classified as subclass

of Car.

From the above discussion, we can also see that multiple class membership is vital for view systems, because
an object may belong to any number of virtual classes whenever it satisfies the predicate membership conditions
of its virtual classes.

While traditional view definition only derives new data as a function of existing stored data, we also support
the extension of the database with new (non-derived) data for capacity-augmenting views. In particular, the
refine operator creates a capacity-augmenting virtual class by allowing the parameter <property-defs> to
contain new stored attributes as well as methods (derived attributes). When we refine a class with stored
attributes, the representation of each object in the class has to be restructured such that the object can carry
the information associated with the new stored attributes. This dynamic restructuring capability is supported
by our underlying OODB implementation as we have demonstrated in Section 3.

4.2 Classification

Based on previous sections, it becomes apparent that most virtual classes “share” methods and attributes with
their source classes. As stated in Section 2.2, we thus propose that the same inheritance mechanism should
be utilized for both virtual and base classes, which would lead to the integration of all database classes into a
global class hierarchy. As commonly assumed, if two classes in our model share some common property then
they most both have inherited it from some common superclass, regardless of whether the classes are base or
virtual. If the two same-named methods have been defined in two distinct origin classes, then we consider them
to be distinct. Hence, with the integration of virtual classes into the global schema graph, we promote method
code upwards to this single point of inheritance to preserve this inheritance property in the integrated graph.
This approach supports true upwards inheritance of methods by both base and virtual classes, and also avoids
the duplication of code and attributes. Besides enabling uniform inheritance, the global class hierarchy also
facilitates the formation of view schemata (as described below).

A view management system must support a flexible classification mechanism in order to maintain this
global class hierarchy. For example, the system must be able to make dynamic changes to the class hierarchy,
possibly inserting a new class between two existing classes. We thus have developed MultiView global and view
schema manager classes that provide their own classification methods. These include support for placing a class
within the generalization hierarchy, for comparing two classes (using their types, extent-defining predicates,
and derivation histories), and for promoting and demoting methods and instance variables (as classes are
dynamically placed in the hierarchy). We thus have a mechanism in place to satisfy all the classification
requirements described in Section 2. In particular, our system supports the ability to make dynamic changes to
the generalization hierarchy and to construct a global class hierarchy with a uniform and consistent inheritance
mechanism. In this section, we show how such properties are achieved under the object-slicing approach.

Recall that the MVClass meta-class uses class variables to maintain the sets of the direct super- and subclasses

of each class, and representing the super- and subclass relationships between classes. Our inheritance mechanism
(discussed in Section 3.2.2) uses these class variables to determine the generalization/specialization relationships

12



of classes in the hierarchy. Thus, in order to insert a new class into the hierarchy, all we must do is reset the
appropriate class variables of the classes directly above and directly below the new class. We provide a dynamic
method resolution and code migration scheme that assures that no side-effects arise from this.

4.2.1 Algorithm for dynamic insertion of classes into the generalization hierarchy

As new virtual classes are created in MultiView, they are automatically incorporated into the system’s global
class hierarchy so that it is below all classes that subsume it and above all classes that it subsumes. We
have developed a classification algorithm for Mult:View based on type lattice theory that successfully solves this
classification problem [25]. The automatic classification of virtual classes into the global generalization hierarchy
is a unique feature of MultiView with other view systems either avoiding the issue of integration and/or requiring
manual graph manipulation [25, 4, 12, 13, 14, 28, 32]. After a virtual class has been created, the MultiView
classifier performs the following steps: First the system generates intermediate classes to serve as unique point
of inheritance, if warranted by the addition of the new class into the hierarchy. Next, the system calculates
which existing classes should be direct children and parents of the new class, and updates the generalization
hierarchy’s edges, removing any redundant edges. Lastly, the system promotes the code of any methods or
attributes that now should be located at a new superclass.

The introduction of intermediate classes above is our solution of the following two problems of the automatic
integration: (1) the inheritance mismatch problem in the type hierarchy, and (2) the problem of integrating is-a
incompatible subset and subtype hierarchies into one class hierarchy. The inheritance mismatch problem occurs
when a new virtual class is created for which there is no existent correct place in the global type hierarchy, as
illustrated in Figure 9(a). The ColorlessHyundai class cannot be placed directly between any existing classes
in the hierarchy because there is no class whose type is a strict subtype of the ColorlessHyunda: type, yet the
ColorlessHyundar class shares properties with other classes in the hierarchy. For example, ColorlessHyunda:
cannot be placed either above or below the Imported class, because although it shares the nation property with
the Imported class, ColorlessHyunda: does not have the color property and Imported does not have the rebate
property. The is-a incompatibility problem results when the subtype and subset relationships between two or
more classes conflict. For example, when a virtual class’s set content may be lower in the corresponding set
hierarchy than its place in the corresponding type hierarchy then neither can be classified as a direct superclass
nor a direct subclass of the other.

Intermediate i
@ color color Class naton
fuel . ~\nation ~\nation
@ Imported }nation ColorlessHyundai ) ., - ColorlessHyundai
rebate
;
.

Figure 8: Inheritance mismatch problem and solution.

Our solution to both these problems is to create and insert additional intermediate classes into the global
class hierarchy, as shown in Figure 9(b). For instance, the Intermediate Class class holds the nation property
that can now be inherited by both the Hyunda: and ColorlessHyundai classes. The addition of intermediate
classes ensures that a complete global schema can be calculated for any configuration of base and virtual classes
- with the inform inheritance mechanism outlined above [25].

When inserting a new class into the global schema, our classifier creates a set of intermediate classes that
is both necessary and sufficient to guarantee the closure of the resulting class hierarchy [25]. The creation
of intermediate classes i1s a key feature for achieving the object-slicing paradigm, because it assures a unique
source of inheritance for all properties. Each property in the database, whether method or attribute (instance
variable), is associated with exactly one class, which serves as the point of inheritance for that property. Thus
when a conceptual object in our object-slicing implementation acquires an implementation object of a class,
it is guaranteed that the class of the new implementation object is the point of inheritance for any properties
locally associated with the class. Furthermore, there is a unique location for each stored attribute, namely, with
the implementation object associated with the class that represents this unique point of inheritance.
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After the class hierarchy has been prepared by the insertion of necessary intermediate classes, the new virtual
class can easily be inserted into the global schema by identifying all direct is-a relationships between the new
class and the other classes using a depth-first downwards traversal algorithm. At each node, we apply the
subsumes function to determine the relationship between the newly inserted class and the existing class [17].
The resulting global schema incorporates the virtual class in a consistent and efficient manner, as shown in [25].

4.2.2 Method and attribute promotion

As described in Section 2.2, in order to preserve uniform upwards inheritance, it may be necessary to promote
methods and/or attributes from a subclass to a new superclass. This will ensure that the property will be located
above all the classes that inherit that property. For instance, in Figure 9, the nation property is inherited by
both the Imported and ColorlessHyunda: classes, and thus should be located at the IntermediateClass. When
methods or attributes are moved from an existing class to a new superclass, the system performs the following
tasks (also illustrated by an example in Figure 10): First the new superclass is extended to include the migrating
(to be locally defined) methods and/or attributes. Next, the migrating methods and attributes are removed
from their original class. Finally, each implementation object instance of the original class is split into an
implementation object of the modified original class and an implementation object of the new superclass '*.
These new implementation objects are linked together by their corresponding conceptual objects.
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Figure 9: Attribute a and method print_a are moved from class B to a new superclass.

Figure 10 shows an example of attribute and method migration. Figure 10(a) shows a class Class B that has
two attributes a and b and two corresponding methods print_a and print_b. Figure 10(b) shows a new class,
NewClass, inserted into the hierarchy in such a way that attribute a and method print_a should be promoted
from Class B to NewClass. Figure 10(c) shows the first task of the migration process, where NewClass is extended
to include code for the to-be-migrated method print_a and storage for the migrating attribute a. Figure 10(d)
shows the modification of Class B so as to remove the print_a method and storage for the migrating attribute
a. Finally, Figure 10(e) shows how an implementation object (01), originally belonging to Class B is split into
an implementation object of Class B and an implementation object of NewClass. The system will make the
appropriate links between the new implementation objects and the conceptual object for 01.

14We use the become: method to give the implementation object of the modified existing class the same object identifier as the
original implementation object.
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The existence of a single point of inheritance combined with the object-slicing approach guarantees that no
more than two classes (the original class where the properties currently reside, and the new class to which they
are being moved) will ever be involved in such a migration. The proof for this is presented elsewhere [16].

4.3 Construction of view schemata

MultiView uses the augmented global schema graph for the selection of both base and virtual classes and for
arranging these classes in a consistent class hierarchy, called a view schema. View schemata represent the virtual
restructuring of the is-a hierarchy, allowing users to hide and/or highlight classes. At any time, the user can
specify view schemata from the global schema by adding classes to (and removing classes from) a view schema.

We do not support the further modification of a virtual class specification due to its inclusion in a view
schema; rather a virtual class will look the same and exhibit the same behavior in any view schemata in which 1t
is included. This feature of MultiView is significantly different from other approaches. For instance, in [20], the
specification of a virtual class (both type and extent) must be dynamically recomputed for each view schema it
is inserted in, since, for example, the addition of an is-a relationship may add new inherited attributes to the
virtual type. In MultiView a view schema is instead defined simply by collecting all virtual classes that are to
be made available to a particular user into one schema.

While this selection of classes for a particular view is done explicitly by the user, the generation of view
generalization relationships among the set of selected classes of a view schema is automated in the current
version of our system. Automatic view generation simplifies the view specification process for the users by
automating tedious tasks, and guarantees the consistency of the view schema.

Because the global schema maintains the relationships between all base and virtual classes, we can generate
the view schema relationships in polynomial time. The process of constructing a view schema from a set of
classes can be divided into three tasks [27]: First, let V = ¢1,¢a, ..., ¢, be the subset of the classes in the global
hierarchy chosen to participate in the view schema. For each pair of classes ¢;,¢;(i # j) we define the value,

subsumed(c;, ¢j), calculated as follows:

_ 1 if ¢ is-a ¢

subsumed(c;, ¢;) = { 0 otherwise

The subsumed(c;, c;) values for each set of classes can be directly inferred from the global hierarchy. The
result of this is an nxn matrix called edge-matriz (c;,c;), which contains a 1 for every possible edge in the
view schema. The second task is to remove redundant edges from the edge — matriz. This can be done by
first multiplying the edge-matrix by itself, then subtracting it from itself. The resulting edge-matrix contains
only non-redundant edges. Once the correct edge-matrix has been calculated, the final task is to set the edge
relations within the view schema. This can be done by walking through the non-redundant edge-matrix and
generating a subsumption relationship between pairs of classes in the view schema (using the class variables of
the view schema class) wherever a 1 value exists.

5 Discussion

5.1 Status of implementation

The object-slicing data model described in this paper has been implemented using the GemStone OODB, version
3.2. Our prototype provides a set of about 40 meta-classes that use object-slicing to extend GemStone’s Opal
model to include multiple inheritance, multiple type instantiation, multiple class membership, and dynamic type
changes. This layer of meta-classes is self-contained and thus could easily be retargeted to any other Smalltalk-
based OODB system (or even persistent store) to provide a powerful view-based object model. Members of our
team are currently using this extended architecture as a foundation for quickly constructing advanced OODB
tools, such as object-oriented view management systems [13] and the Transparent Schema Evolution manager

for OODBs [24].
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5.2 View updates in object-slicing model

In relational systems, updates on views (virtual tables) are usually translated into updates onto the appropriate
base relations. Unfortunately, many view queries cannot be unambiguously translated into base queries, and
thus relational views are often not updatable. Two reasons why object-oriented systems more naturally permit
updatable views are that (1) objects have unique, system-generated object identifiers, and (2) class-specific
methods are associated with each object [26]. An object-oriented query operates upon objects rather than
values, so all updates are specified in terms of these object-identifiers. This is one reason why although in
relational systems most views are not updatable, in object-oriented systems, a large class of views are updatable
(subject to the intentions of the user).

Our current MultiView implementation provides fully updatable views, since we utilize an object-preserving
algebra for class derivation [26, 28]. Because attributes for both base and virtual classes are stored in a single
place in our object-slicing model, update methods applied to instances of virtual classes automatically propagate
to the classes where the attributes are stored. When a conceptual object is modified, the access method is
propagated (via the inheritance hierarchy) to the appropriate implementation object holding the value of the
affected instance variable. Note that the modification of an attribute could also affect the virtual classes derived
from any class that inherits from or is based on the class where the modification took place. Since as an intrinsic
property of our model, all classes that inherit an instance variable will inherit it from a single source, we would
be safe in propagating notification of the change downwards from the modified class. We avoid unnecessary
propagation of view updates by associating with each class a list of the selection classes whose predicates involve
attributes belonging to that class. In this way modifications are passed efficiently to only those affected classes.
A more detailed treatment of view materialization issues is beyond the scope of this paper.

5.3 Performance studies using the OO7 benchmark

To justify our object-slicing representation paradigm, we have run several test queries from the OO7 benchmark
with the goal of comparing GemStone’s native implementation versus our Mul{:View object model implementa-
tion [6]. GemStone is a Smalltalk-based system while the four systems compared in the OO7 benchmark paper
[6, 7] are all C++ based. GemStone thus supports dynamic method resolution, run-time augmentation of the
schema with new methods, etc. For these reasons, we did not compare GemStone against other systems - but
limited our study to comparing “pure” GemStone with Mult:View. For this study, we used GemStone, version
3.2 Opal; and created a randomly populated database of the parts-assembly benchmark example with 10,000
Atomic Parts.

First, we compare results for navigation-type queries, e.g., for the “Traversal 1”7 query, which required more
than ten minutes on the average to run. The “Traversal 17 query tests raw pointer traversal speed with a high
degree of locality [6]. The query requires a traversal of the assembly hierarchy (shown in Figure 11) and performs
a depth-first search on each part’s graph of atomic parts. For this type of queries;, Mult: View slightly improved
upon GemStone’s time (by & 4%). We achieved this improved performance in spite of having built MultiView on
top of GemStone rather than directly into the GemStone kernel — and thus having an extra layer of indirection.
The improved performance can be explained as follows. First, the navigation was limited to access of local
instance variables (rather than inherited ones), thus there was no overhead of finding appropriate implementation
objects for MultiView. Consequently, the search is limited to one implementation object per atomic part
- rather than possibly several implementation objects. Most importantly, these navigated implementation
objects are much smaller in size (containing only local instance variables) compared to GemStone’s native
objects (containing both local and inherited instance variables in one contiguous allocation).

Next, we ran exact match lookup queries, in particular, “Query 1 Search” that does random lookup of an
atomic part based on the inherited property “id” as shown in Figure 11. For this lookup, MultiView performed
3-1/2 times slower than GemStone. Given that our first MultiView prototype is not optimized for performance,
this result was to be expected. The major overhead stems from the fact that for each of the 10,000 lookups,
we would have to traverse from each Atomic Part’s implementation objects to its corresponding DesignObj’s
implementation object to retrieve the “id” data value. Also, since we do not have full access to GemStone’s
source code, the MultiView prototype is layered on top of GemStone, causing additional overhead.

Accessing an inherited attribute in Multi View requires two additional traversals than in GemStone: One to
traverse the conceptuallLink to get from the implementation object to its conceptual object, and the other
to traverse the implementationLink to get from the conceptual object to the correct implementation object
holding the desired data value. As demonstrated in this paper, these two links improve the flexibility of our
object model greatly but they also cause the observed performance degradation. However, we anticipate that
this can be alleviated by clustering the conceptual object and all implementation objects of the same entity
into the same page. This technique would result in the same number of pages faults as in the conventional
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system, and all additional traversals would be in-memory operations. It is well known that increased in-memory
operations do not degrade the performance significantly because they are very fast compared to 1/O operations.
In the future, we may also be able to improve upon this cost by maintaining partial caches of methods with
classes in order to speed method lookups.

6 Related Work

In recent years, several proposals for object-oriented view systems have appeared in the literature [1, 4, 12, 21,
28, 31]. Below, we first compare other approaches towards view management with the Mult: View approach, and
then we compare the object-slicing approach used in our implementation with similar approaches.

MultiView differs from other view systems in that it does not simply adopt assumptions made by current
OODB architectures, but rather we re-examined key features required as foundation for views. For example,
we overcame the problem of each object belonging to one and only one most-specific type — which is an un-
reasonable assumption for view systems. Rather than use contiguous storage for objects, a MultiView object
is distributed among multiple object-slicing implementation objects. The Iris functional database system re-
sembles our implementation in that, being built on top of a relational engine, it distributes data over several
relational tables [10]. Tris does not support view mechanisms, and does not address issues of classification,
inheritance for virtual classes, etc.

Most of the current proposals for view management systems have not yet been implemented. Furthermore,
none of those which have been implemented support all of the features we identify as desirable for view systems
(Section 2.2). O2 Views [21] [8], based on Abiteboul and Bonner [1], is the first and only commercial imple-
mentation of an object-oriented view management system, currently realized. The O2 Views approach does
include the integration of view classes into a view schema, but rather than supporting a global class hierarchy,
it daisy-chains views to enable selective upward versus downwards inheritance (instead of creating intermediate
classes and propagating methods). Tt thus has limited update capabilities. O2 Views does not provide type
closure in views, does not support union classes (because of its lack of a type inference mechanism), and does
not support capacity-augmenting views.

Scholl et al’s work on views comes closest to our work [28, 29]. They suggest use of an object-preserving
subset of their algebra to define virtual classes and thus achieve updatable views. However, they do not address
the classification of view classes into a global schema, the automatic generation of complete view schemata, nor
the implementation of capacity-augmenting views.

The object-slicing implementation underlying the current implementation of MultiView can also be compared
to mechanisms used in role modeling approaches [11, 22]. In role modeling systems, objects dynamically gain and
lose multiple interfaces (aka roles) throughout their lifetimes. These roles can be compared to the implementation
objects of an object-slicing implementation, in that both permit objects to belong to multiple classes and change
types dynamically. In some sense, accessing an object through one of its implementation objects is like accessing
an object while it is playing one of its roles. However, role systems and views systems have different goals. Role
systems strive to increase the flexibility of objects by enabling them to dynamically change types and class
membership. View systems, on the other hand, enable users to restructure the types and class membership of
classes - based on content-based queries.
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Unlike many role systems, which allow object hierarchies to exist independently from class hierarchies [30],
objects in our implementation always conform to the existing global class hierarchy in that if an object possesses
an implementation object of a given class’s type, it must also possess an implementation object for every class
that is a superclass of that given type. This achieves an efficient and uniform inheritance scheme. Also, unlike
many role systems, in our implementation conceptual objects can be associated with at most one implementation
object of a given type [11]. Role systems do not deal with the issues of virtual class derivation, classification,
nor with method promotion.

Finally, the role system discussed in [11] was implemented using techniques similar to object-slicing. This
system, like ours, is implemented in Smalltalk by overriding the doesNotUnderstand: method. The difference
between [11] and our implementation is that [11] is a role system while our implementation is a view system.
For example, unlike [11], we do not permit entities to occur several times in the same type of role. Also, the [11]
system does not permit the derivation of new virtual classes, thus not addressing any of the issues related to
view management.

7 Conclusions and Future Work

In this paper, we have re-examined the representation assumptions underlying most OODB systems from the
perspective of achieving a flexible and powerful view system. We have identified several key features that are
not provided by current OODB systems. In particular, we found that none of the available OODBs provide
the features required of an object model for capacity-augmenting views, such as multiple classification and
dynamic restructuring of object representations. We propose a novel object-oriented modeling approach based
on the object-slicing paradigm which addresses these limitations. We then describe a design of the object
model, addressing issues of inheritance, type changes, classification, and capacity-augmentation. Using this
paradigm to support a flexible object model implementation offering efficient re-structuring, re-classification,
multiple classification, updatability, and capacity-augmenting views, we have successfully completed a prototype
implementation using the commercial GemStone OODB system.

We have evaluated our system using the OO7 benchmark in order to determine the overhead associated
with our approach. In the course of this evaluation, we identified classes of queries in which the MultiView
overhead degraded GemStone’s performance, and other classes of queries in which Mult: View actually improved
upon GemStone’s performance. In the future, we plan to reduce the associated overhead, improve the update
strategies, and continue to employ the system as a testbed for research into topics such as transparent schema
evolution and flexible tool integration.
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