Probing and Fault Injection of Protocol Implementations

Scott Dawson and Farnam Jahanian

Real-Time Computing Laboratory
Electrical Engineering and Computer Science Department
University of Michigan
Ann Arbor, MI 48109-2122

{sdawson,farnam}@eecs.umich.edu

ABSTRACT

This paper presents a technique for probing and fault injection of distributed protocols. The proposed technique,
called script-driven probing and fault injection, can be used for studying the behavior of distributed systems and for
detecting design and implementation errors of fault-tolerant protocols. The focus of this work is on fault injection
techniques that can be used to demonstrate three aspects of a target protocol: 1) detection of design or implementation
errors, ii) identification of violations of protocol specifications, and iii) insight into design decisions made by the
implementors. The emphasis of our approach is on experimental techniques intended to identify specific “problems”
in a protocol or its implementation rather than the evaluation of system dependability through statistical metrics such
as fault coverage.

To demonstrate the capabilities of this technique, the paper describes a probing and fault injection tool, called
the PFI tool (Probe/Fault Injection Tool), and several experiments that studied the behavior of two protocols: the
Transmission Control Protocol (TCP) [}, 25] and the Group Membership Protocol (GMP) [18]. The tool can be used
to delay, drop, reorder, duplicate, and modify messages. It can also introduce new messages into the system to probe
participants. In the case of TCP, we used the PFI tool to duplicate the experiments reported in [7] on several TCP
implementations without access to the vendors’ TCP source code in a very short time. We also ran several new
experiments that are difficult to perform using past approaches based on packet monitoring and filtering. In the case
of GMP, we used the tool to test the fault-tolerance capabilities of an implementation under various fatlure models
including daemon/link crash, send/receive omissions, and timing failures. Furthermore, by selective reordering of
messages and spontaneous transmission of new messages, we were able to guide a distributed computation into hard

to reach global states without instrumenting the protocol implementation.

Keywords: distributed systems, communication protocol, fault injection, protocol testing, executable specifications

1 Introduction

As software for distributed systems becomes more complex, ensuring that a system meets its prescribed
specification is a growing challenge that confronts software developers and system engineers. Meeting this
challenge is particularly important for distributed applications with strict dependability constraints since they
must provide the required services under various failure scenarios. As we are witnessing a convergence of key
technologies, emerging new applications, and market needs in this decade, we can expect that distributed
systems will become more complex and that an increasing number of them will have to operate under strict
availability and reliability requirements.

In this paper, we present a technique, called scripi-driven probing and fault injection, for studying the
behavior of distributed systems and for testing the fault tolerance capabilities of distributed applications
and communication protocols. The proposed technique is motivated by several observations:

e In testing a distributed system, one may wish to coerce the system into certain states to ensure that
specific execution paths are taken. This requires the ability to orchestrate a distributed computation
into “hard-to-reach” states.

e Asynchronous communication and inherent non-determinism of distributed systems introduces addi-
tional complexity. One must be able to order certain concurrent events to ensure that certain global
states can be reached.

e In testing the fault-tolerance capabilities of a distributed system, one often requires certain behavior
from a protocol participant that may be impossible to achieve under normal conditions. This may
require the emulation of “misbehaving” participants by injecting faults into the system.

e Testing organizations often require a methodology that does not instrument the code being tested.
This is particularly important for testing existing systems or when the source code is unavailable.

e Most existing testing and fault injection approaches depend heavily on probabilistic (or random) test
generation. Orchestrating a distributed computation into a particular execution path requires deter-
ministic approaches.

The remainder of this paper is organized as follows: Section 2 presents the approach for probing and fault
injection of distributed systems. Section 3 described the implementation of a tool based on the proposed
approach. Section 4 discusses in detail the experimental results from studying several implementations of
TCP and GMP protocols. Section 5 describes related work. Section 6 presents concluding remarks and
describes future directions of this work.

2 Approach
2.1 Script-Driven Probing and Fault Injection

The proposed approach views a distributed protocol as an abstraction through which a collection of par-
ticipants communicate by exchanging a set of messages, in the same spirit as the z-Kernel [16]. In this
model, we make no distinction between application-level protocols, interprocess communication protocols,
network protocols, or device layer protocols. As shown in Figure 1(a), each protocol is specified as a layer
in the protocol stack such that each layer, from the device-level to the application-level protocol, provides
an abstract communication service to higher layers.

As mentioned earlier, determining whether or not a protocol implementation meets its prescribed specifi-
cation requires orchestrating the system execution in a deterministic way. The proposed approach relies
on intercepting and filtering messages between protocol participants. In particular, a probe/fault injection
(PFT) layer is inserted between any two consecutive layers in a protocol stack. The PFI layer can execute
deterministic or randomly-generated test scripts to probe the participants and inject various faults into the

----- o orverLae
Machine 1 Machine 2 Machinem $
“““ [R | [| .
1 [layers |1 1 [layer1 | I I Synchronization Protocol Layer Recognition/
1 [_l_. 1) _I- M essages : Generation Stubs
IR B T ! L Corived :
(Layer2 | [ayer2 | E—— i Lrayer2 |, E—— : $
I 1 . 47—. I) : fe— SendFilter
| L . , | njector | . | | njector L. S| PRI Layer
| - 1 il | | . | <—| Receive Filter
||Iayern |I I|Iayern |I , Ia):’ern | $
Lower Layers

@ ®)

Figure 1: (a) Protocol Stacks. (b) Script Interaction.

system. By intercepting and filtering messages between two layers in a protocol stack, the PFI layer can
delay, drop, reorder, duplicate, and modify messages. Furthermore, the PFT layer can introduce spontaneous
messages into the system to probe the participants and to orchestrate the system execution into a particular
path. Because the PFI layer scripts can recognize different packet types, they can perform filtering and fault
injection based on message type.

Figure 1(a) illustrates how the nodes in a distributed system run a modified protocol stack to test Layer 2,
which we will call the target protocol. The idea is that the target protocol layer is encapsulated between
the driver and PFI layers on the protocol stack. The driver and PFI layers are used to examine and to
manipulate the messages exchanged between the participants in the target protocol. The driver layer is
responsible for generating messages and running the test. The PFI layer intercepts all messages coming
into and leaving the target layer. The PFI layer can manipulate messages to/from the target layer as they
pass through the protocol stack, and it can introduce spontaneous messages into the system to observe the
behavior of target protocol participants on other nodes. The driver and PFI layers communicate with each
other during the test and can coerce the system into certain states.

The reason for having a layer both above and below the target layer is to allow creation of new messages
and manipulation of messages generated by other participants in a protocol. The PFI layer which only sits
below the target layer can drop, delay, and corrupt messages, but it may not be able to generate messages
directly because it cannot manipulate data structures in the target layer. The driver layer, however, can
be used for doing most message generation so that data structures in the target protocol will be updated
correctly.

The driver and PFI layers run scripts which control their actions as messages are exchanged between protocol
participants. As shown in Figure 1(b), the PFI layer runs a script, called the send filter, each time a
message is pushed (or sent down) the protocol stack. It runs another script, called the receive filter, each
time a message is popped (or sent up) the protocol stack. These scripts perform three types of operations
on messages:

1. Message filtering: for intercepting and examining a message.
2. Message manipulation: for dropping, delaying, reordering, duplicating, or modifying a message.

3. Message injection: for probing a participant by introducing a new message into the system.

The packet recognition/generation stubs shown in Figure 1(b) are invoked to determine the message type
whenever a message in intercepted by the PFI layer. An interface from the send/receive scripts to the stubs
exists so that the scripts can determine what types of packets they are operating on. The send/receive
scripts can also use the packet generation stub to generate messages of certain types at the PFI layer. The
packet stubs are written by people who know the packet formats of the target protocol. A packet stub may

be written by the protocol developer for an application-level protocol, or it may be supplied by the system
for a popular protocol such as TCP whose packet formats are known.

Message generation can only be done if state of the target protocol doesn’t have to be updated for the
generated message. For example, when generating a spurious ACK message in TCP, no data structures need
to be updated. The message can simply be generated and sent. However, when generating a data message
in TCP, the sequence number would need to be used and updated, and the message would have to be kept
track of in case retransmissions were needed. This type of message generation cannot be done by the PFT
layer because it does not have access to the data structures of the target protocol (in this case, TCP). In
such cases, the message can be generated by the driver layer.

2.2 Failure Models

Testing the fault-tolerance capabilities of a protocol implementation requires the emulation of misbehaving
participants by injecting various types of faults into the system. Hence, techniques that exercise the fault-
tolerance capabilities of a distributed system must take into consideration the various ways in which a
protocol implementation may fail.

A protocol participant is faulty if it deviates from its prescribed specification. A model of failures specifies
in what way a protocol participant can deviate from its correct specification. The fault injection approach
introduced earlier can test the fault-tolerance capabilities of protocol implementations under various failure
models commonly found in the distributed systems literature including: process crash failures, link crash faul-
ures, send omission failures, receive omission failures, timing/performance failures, and arbitrary/byzantine
failures. Although a formal treatment of different failure models is beyond the scope of this presentation
[14], a brief outline of various failure assumptions that can be tested by our technique is described below.

Process crash failures: A process/processor fails by halting prematurely and doing nothing from that
point on. Before stopping, however, it behaves correctly.

Link crash failures: A link fails by losing messages, but it does not delay, duplicate, or corrupt messages.
Before ceasing to transport messages, however, it behaves correctly.

Send omission failures: A process fails by intermittently omitting to send messages it was supposed to
send.

Receive omission failures: A process fails by intermittently omitting to receive the messages that were
sent to it.

General omission failures: A process fails by suffering a send or receive omission failure, or both. Simi-
larly, a link fails by intermittently omitting to transport messages sent through it.

Timing/performance failures: A process fails by violating the bound on the time required to execute a
step. A link fails by transporting messages faster or slower than its specification.

Arbitrary /byzantine failures: A faulty link or faulty process can exhibit arbitrary behavior including;:

generate spurious messages,

claim to have received a message,
modify/corrupt message content, and
reorder messages.

The models presented above can be classified in terms of severity. Model B is more severe than model A if
the set of faulty behavior allowed by A is a proper subset allowed by B. Thus, a protocol implementation
that tolerates failures of type B also tolerates those of type A. The failure models above were presented in
the order of severity.

2.3 Script Specification

Scripts are at the heart of this approach. Scripts are instructions that are executed by the driver and the
probe/fault injection (PFI) layer to orchestrate the system computation into a particular state and to inject
various kinds of faults into a system. A system designer must be able to specify sufficiently powerful scripts
for manipulating the messages exchanged in a distributed computation. We must emphasize that the scripts
serve a dual purpose. They are used for:

e specification of the instructions to orchestrate a distributed computation into a desired state, and

o specification of the fault(s) to be injected into the system once a certain state is reached.

We believe that inventing a new scripting language is not the solution. Instead, modifying and supporting a
popular interpreted language with a collection of predefined libraries gives the user a very effective tool which
allows him/her to write most scripts. It also eases the burden of learning a new language for users already
familiar with whatever interpreted language is chosen. Furthermore, if a script written in this interpreted
language can invoke user-defined procedures which can modify the internal state of the protocol, then the
system designer has the ability to write scripts which can perform complex actions. This is a powerful tool
because changing the scripts to perform new or different tests does not require re-compiling the PFI layer.
The only time a re-compilation is required is when the library routines are changed. (As mentioned in
Section 7?7, we plan to use T'¢l as the scripting language in the implementation of our tool. Tcl allows users
to define their own extensions, usually written in C, to the scripting language.)

Our experience during the last few months supports the view that a rich set of predefined library routines
can help the system designer to develop powerful scripts in a very short time. In particular, predefined
procedures can be used for:

filtering messages based on the header or content,

dropping, delaying, modifying, and duplicating messages,

introducing spontaneous or probe messages to observe the response from another participants,
reordering events in a run to ensure that certain global states are reachable.

injecting various fault types into the system as described before,

synchronizing scripts executed by PFI layers running on different nodes, and

setting and manipulating timers and clock variables.

3 Probe/Fault Injection (PFI) Tool

In order to demonstrate the effectiveness of the approach presented in Section 2, we developed a tool based
on the concept of script-driven probing and fault injection. We also performed extensive experimental studies
of several commercial and prototype distributed protocols. This section introduces a brief overview of the
tool; the next section presents a detailed discussion of our experiments.

The Probing and Fault Injection (PFI) tool was initially developed on the z-Kernel running on Mach 3.0 and
later ported to SunOS. The tool is meant to be inserted into a protocol stack as a separate layer of the stack
below a target protocol. Figure 2 illustrates the various components of the PFI tool: send/receive scripts,
filters (or interpreters), recognition/generation stubs, user-defined procedures, and system utilities.

Send/receive scripts are the instructions for orchestrating a computation into a particular path and for
injecting faults into a system. We chose Tcl [24] as the language for writing the scripts. Filters are the
interpreters that execute the scripts as messages pass through the PFI layer. In Tcl, an interpreter is simply
an object which contains some state about variables and procedures which have been defined. In order to
run a script, the user evaluates the script in the context of the interpreter. The call might look something
like Tc1 Eval(interp, script), where interp is a handle on the interpreter object in which the script is
evaluated, and script is a character string. Each time a message passes into the PFT layer, the appropriate

Recognition/ /"&\
Generation Stubs Probe/Fault Inj ector
r |]
- \'J 1
User Defined Send Receive 1
Procedures Filter Filter Send/Receive
N—7 A .
R) Scripts
\ /
Common \ ’
Procedures Ny, 7

Figure 2: Probe/Fault Injection Tool

(send or receive) script is interpreted in the appropriate interpreter. A handle on the current message (called
cur_msg) is also created so that the script can perform operations on this message.

When a script is interpreted, it may do several things. The most common action is to invoke the operation
msg_type x, which returns the type of message x. Usually this operation is performed on the current message
in order to determine whether to perform some action on the message or not. A simple example of a script
written in Tcl follows. This script simply drops all acknowledgement (ACK) messages.

Message types are ACK, NACK, and GACK.
This script drops all ACK messages.
set ACK 0x1

set NACK 0x2

set GACK 0x4

Print out a banner and then the contents of the current message.
puts -nonewline "receive filter: "
msg_log cur_msg

Get the type of the message and drop it if it’s an ack.
set type [msg_type cur_msg]
if {$type == $ACK} {

xDrop cur_msg

}

Scripts can also set up state which can be used later in the test. For example, a script may keep a running
count of the number of messages which have passed through the PFI layer. Since state of variables is stored
in the interpreter object, the value of this count is persistent across messages.

The other components of the tool is a set of utility procedures which the script can call. Several of these were
used in the above script, such as msg_log, msg type, and xDrop. There are several categories of utilities.
One is the recognition/generation stubs. These allow the script writer to determine the type of a message
(recognition), and also to create messages of certain types (generation). The stubs are written by anyone
who understands the headers or packet format of the target protocol. They could be written by the protocol
developers or the testing organization, or even be provided with the system in the case of popular and well
known protocols such as TCP.

Another category of utilities is a set of common procedures which might be frequently invoked by scripts
writers in testing different protocols. These procedures might perform actions such as logging or dropping

messages, as in msg_log and xDrop. Of course, msg_log depends on the contents of the message, so it
would have to be tailored by someone who knows the header format of the target protocol. Also included
in this category of utilities is a set of procedures which allow the user to generate probability distributions.
For example, a call such as dst normal mean var will produce numbers with a normal distribution around
mean with variance var. In this way, it is possible for the script writer to perform actions on messages in a
probabilistic manner if desired. Other things that fall into this category are procedures which give the script
access to system time and procedures which allow the send filter script to change state in the receive filter
and vice versa. Changing the state of the other interpreter is used for cross-interpreter communication. For
example, the send filter might set a variable in the receive interpreter which tells the receive filter to start
dropping messages. Lastly, there is the category of user defined procedures. These are procedures which
may be needed by whomever is performing the test. These procedures can be written in C and linked into
the tool. The scripts then have the ability to call the new procedures, allowing the tester to perform more
powerful tests.

The basic idea behind script driven probing and fault injection is that testing different failure scenarios and
creating different tests is accomplished simply by invoking different scripts. Since these scripts are inputs
into the PFI tool, changing the scripts does not require recompilation of the tool. Once all of the utility
procedures are in place, the tool is compiled. After that, barring changes to the utility procedures, the tool
remains static. This reduces the time required to run different kinds of tests compared to a system which
might require some type of re-compilation in order to run different tests.

4 Experimental Results

This section describes the results of extensive experiments on several commercial implementations of TCP
and a prototype implementation of a Group Membership Protocol (GMP). These experiments were con-
ducted to demonstrate the capabilities of the PFI tool described in Section 3. Three aspects of the target
protocols were demonstrated: i} detection of design or implementation errors, ii) identification of viola-
tions of protocol specifications, and iii) insight into design decisions made by the implementors. The fault
injection experiments and their results are summarized in the following two subsections.

4.1 Testing of TCP

The Transmission Control Protocol (TCP) is an end-to-end transport protocol that provides reliable transfer
and ordered delivery of data. TCP is connection-oriented protocol and it uses flow-control between protocol
participants to operate over network connections that are inherently unreliable. Because TCP is designed
to operate over links of different speeds and reliability, it is widely used on the Internet. TCP was origi-
nally defined in RFC-793 [25] and was updated in RFC-1122 [4]. In order to meet the TCP standard, an
implementation must follow both RFCs.

For testing TCP, we modified an z-Kernel protocol stack to include a layer which incorporates the PFI tool
described in Section 3. We call this layer the PFI layer. The PFI layer sits directly between the TCP layer
and the TP layer. The resulting z-Kernel protocol stack is shown in Figure 3. In the figure, there is one
machine running Mach and a modified z-Kernel protocol stack. It is connected to the network which also has
machines running vendor TCP implementations. In the tests, connections are opened between the vendor
TCP implementations and the 2-Kernel TCP.

Four vendor implementations of TCP were tested using the PFI tool. They were the native TCP implemen-
tations of SunOS 4.1.3, Solaris 2.3, AIX 3.2.3, and NeXT Mach, which is based on Mach 2.5. The SunOS,
AIX, and NeXT Mach implementations were all very similar, and seemed to have been based on the same
release of BSD unix. Solaris, which is based on an implementation of System V, behaved differently than
the others in most experiments. Five experiments were performed on each of the TCP implementations, as
described below. Results of these experiments are summarized in a tabular form for ease of reference.

x-Kernel boundary

S—

! N g
"7 Probe/Fault Injector pls
N 8
! 1
W =
Send Receive
Filter Filter
1\)
N /
N /
\ /
Sun0S4.1.3 AIX 323
Lower Layers
| ISR N R R U | 4
Network
NeXT Solaris 2.3 Mach 3.0

Figure 3: TCP Test Platform.

Experiment 1: TCP retransmission intervals

This experiment examines how different implementations of TCP retransmit dropped data segments. TCP
uses timeouts and retransmission of segments to assure reliable delivery of data segments. Each time the
sender sends a data segment, a timeout for the segment is set. If an acknowledgement is not received before
the expiration of the timeout, the data is assumed lost and is retransmitted. When the data is retransmitted,
another timeout is set to keep track of when the acknowledgement is expected. The TCP specification
states that for successive retransmissions of the same segment, the retransmission timeout should increase
exponentially. It also states that an upper bound on retransmissions may be imposed.

This experiment tested how vendor TCP implementations retransmitted segments. In the experiment, a
connection was opened to z-Kernel machine from the each vendor machine. The receive filter script of the
PFI layer was configured such that after allowing thirty packets through without dropping or delaying their
ACKs, all incoming packets were dropped. In order to monitor the retransmission behavior of the SunOS
4.1.3, Solaris 2.3, AIX 3.2.3, and NeXT Mach implementations, each packet was logged with a timestamp
by the receive filter script before it was dropped. When the PFI layer started dropping messages, no further
data was received by the TCP layer of the z-Kernel machine and so no ACKs were sent. The results of the
experiment are summarized in Table 1.

The SunOS 4.1.3 machine retransmitted the packet twelve times before sending a TCP reset and closing
the connection. The timeout on the retransmissions increased exponentially until it reached 64 seconds, at
which point it leveled off. This was the upper bound on the retransmission timeout. In most cases, the Sun
sent the next segment in the sequence space soon after the initial transmission of the dropped segment. This
is so that if the original segment was only delayed in the network, the ACK was delayed or dropped, or the
receiving TCP was using delayed ACKs, data is not retransmitted because it need not be. By transmitting
the next segment in the sequence space, the sending TCP was simply eliciting an ACK for both segments at
the same time. After not receiving the ACK for either segment, the original segment was retransmitted until
the connection was timed out and dropped.

1One possible reason for this is to increase performance on high speed local area networks. The RFC states that a lower
bound of 1 second is probably inadequate for high speed LANs.

Results

| Comments

SunOS 4.1.3

Retransmitted segment 12 times before
sending TCP reset and closing connec-
tion. Retransmissions increased expo-
nentially. Used an upper bound on re-
transmissions of 64 seconds.

AIX 3.2.3

Same as SunOS

NeXT Mach

Same as SunOS

Solaris 2.3

Retransmitted segment 9 times before
closing connection abruptly.
set segment was sent.
sions increased exponentially as in other
implementations.

No re-
Retransmis-

No upper bound was established because
the connection closed before stabilizing
at one. Also, there was a very short lower
bound on retransmissions (330 millisec-
onds as opposed to 1 second used in other

. . 1
implementations” .

Table 1: TCP Retransmission Timeout Results

Behavior on the RS/6000 running ATX 3.2.3 and the NeXT machine running Mach was essentially the same
as that of the SunOS 4.1.3 machine. The segment was retransmitted twelve times before a reset was sent and
the connection was dropped. The timeout on the retransmissions increased exponentially until it reached an
upper bound of 64 seconds. In all cases, both machines transmitted the next segment soon after the segment
which was dropped, but when no ACK was received, they started transmitting the original segment until the
connection was timed out and dropped.

The Solaris 2.3 implementation behaved differently than the others. The connection was dropped abruptly
without stabilizing at an upper bound as in other implementations. This occurred after nine retransmissions
of the packet. The reason that no upper bound was reached was that there was a very short lower bound on
retransmissions in Solaris (an average of 330 milliseconds over 30 runs). Therefore, exponential backoff of
the RTO started from around 330 milliseconds, and the ninth retransmission occurred an average of only 48
seconds after the eighth. When the connection was dropped, no reset segment was sent, presumably because
no one would be waiting to receive it. Table 1 summarizes the results of the above experiment.

Experiment 2: RTO with three and eight second ACK delays

This experiment examines how different implementations of TCP adjust the retransmission timeout value in
the presence of network delays. The retransmission timeout value (RTO) for a TCP connection is calculated
based on measured round trip time (RTT) from the time each packet is sent until the ACK for the packet is
received. RFC-1122 specifies that a TCP must use Jacobson’s algorithm [17] for computing the retransmission
timeout coupled with Karn’s algorithm [20] for selecting the RTT measurements. Karn’s algorithm ensures
that ambiguous round-trip times will not corrupt the calculation of the smoothed round-trip time.

We ran two variations on the same experiment. The experiment was to delay acknowledgements of incoming
segments in order to check the response of the sending TCP to this apparent network delay. One variation
used an ACK delay of three seconds, the other used a delay of eight. The send script of the fault injection
layer was set up to delay each outgoing ACK for 30 ACKs in a row. After doing this, the receive filter started
dropping all incoming packets. Each incoming packet was logged. Approaches which depend on monitoring
and filtering packets [7,21] cannot perform tests like this one because they do not have the ability to
manipulate messages. For example, they do not have the ability to direct the system to perform a task such
as “delay all ACK packets.”

We expected that the RTO value of the sender would be adjusted to account for apparent network delays,
and that the first retransmission of a segment would occur more than three (or eight) seconds after the initial
transmission of the segment. We also expected that subsequent retransmissions of the same segment would
occur with timeouts increasing exponentially from the value of the initial RTO to 64 seconds at which point
the RTO would level off. We had not yet established an upper bound for Solaris 2.3 TCP, and hoped to do

so 1n the course of this experiment.

In the SunOS 4.1.3 experiment, when the 2-Kernel machine started dropping packets, the first retransmission
occurred about 6.5 seconds after the initial transmission of the segment. Additional retransmissions increased
exponentially from 6.5 seconds until they leveled off at 64 seconds. In AIX 3.2.3 the initial retransmission was
at eight seconds and retransmissions backed of exponentially as well. The NeXT started at five seconds and
increased exponentially. In all experiments, the next segment was transmitted soon after the first segment
as in the previous no delay experiment.

The behavior of the Solaris implementation was different than the others. The first retransmission of the
dropped segment occurred at an average of 2.4 seconds. The second retransmission was seen an average of
1.2 seconds later, and exponential backoff started from there. It seems that Solaris 2.3 TCP either did not
use Jacobson’s algorithm, or did not select RTT measurements in the same way as other implementations.
It was not nearly as adaptable to a sudden slow network as the other implementations. Because of the low
RTO value, all connections timed out before stabilizing at an upper bound. In most of the runs (out of 30
runs), only seven retransmissions occurred. Only one run had nine retransmissions.

In an effort to find out why connections were being dropped before nine retransmissions (which was how
many occurred in the no ACK delay test performed previously), another experiment was run. Tt was suspected
that Solaris TCP was keeping a global fault counter and dropping the connection when this counter reached
some threshold. This suspicion was raised when the following sequence of events was observed in an earlier
experiment. In the sequence, A and B are machines, and A is sending messages to B. B responds with
ACK messages which are delayed by the PFI. At some point, the fault injector on B starts dropping incoming
messages. After this point, the TCP on B does not receive any more messages, and so no ACKs are sent. A
eventually times out the connection. The interesting thing is that A times out the connection after fewer
retransmissions of message m2 than expected (six as opposed to nine).

A B
B ACKm1 4 (delayed)

PFI layer on B started dropping incoming messages

1 .
AT B (retransmit)

1 .
AL B (retransmit)

A now receives ACK which was delayed

AT B
m2 .
A= B (retransmit)
2 .
AT B (retransmit)
2 .
A B (retransmit)
2 .
A B (retransmit)
2 .
AT B (retransmit)
2 .
A B (retransmit)

A drops connection

Based on this behavior, a new experiment was constructed which attempted to increase the number of times
which m1 was retransmitted, and decrease the number of retransmissions for m2. In this experiment, thirty
packets were allowed through, and then the initial transmission of a new segment (m1) was ACKed with a
35 second delay. All subsequent incoming packets were dropped by the PFI layer on B. The hope was
that multiple retransmissions of m1 would be seen before the ACK arrived at the sender. Then, only several
retransmissions of m2 would occur before the connection was dropped, confirming the global counter theory.

This was exactly what happened. M1 was retransmitted six times before the original ACK arrived. M2 was
then transmitted three times before the connection was dropped.

The active probing method proposed by Comer & Lin [7] cannot discover behaviors such as this one. In
their approach, only crash failures are generated. Long delays of specific messages are not possible and so a
situation where the initial packet is retransmitted multiple times before the ACK is received does not occur?.
Because of this, connections are not observed to close after only several retransmissions of a packet, leaving
interesting implementation details such as the global error counter undiscovered.

The results for the eight second delay variation of this experiment were essentially the same as the three
second delay case. The three BSD derived implementations behaved as expected by adjusting their RTO
values to account for apparent network slowness. The Solaris RTO seemed to be unaffected by the increased
ACK delays. This was simply more evidence that Solaris either does not use Jacobson’s algorithm or is
selecting the RTT measurements in a way that it different from the other implementations. Graphs of the
three second, eight second, and no ACK delay experiments are shown below. Table 2 also summarizes the
results of this experiment.

60.0 60.0

40.0 40.0

Time (s)
Time (s)

20.0 20.0
A—ANo ACK delay

A—ANo ACK delay
©—o3 second ACK delay
*—% 8 second ACK delay

G—03 second ACK delay

%% 8 second ACK delay

4

00 00

1 3 5 7 9 11 1 3 5 7 9 11
Timeout number Timeout number

(a) SunOS 4.1.3 (b) ATX 3.2.3

A—7ANo ACK delay
G—©O 3 second ACK delay
— 8 second ACK delay

60.0 60.0

40.0 40.0

Time (s)
Time (s)

20.0

A—ANo ACK delay
©—o3 second ACK delay
*—% 8 second ACK delay

L L L L L 0.0
1 3 5 7 9 1 3 5 7 9 1
Timeout number Timeout number

(¢) NeXT Mach (d) Solaris 2.3

Figure 4: Retransmission timeout values

Experiment 3: Keep-alive Test

This experiment examines the sending of keep-alive probes in different TCP implementations. There is no
provision in the TCP specification for probing idle connections in order to check whether they are still active.
However, many TCP implementations provide a mechanism called keep-alive which sends probes periodically
that are designed to elicit an ACK from the peer machine. If no ACK is received for a certain number of probes
in a row, the connection is assumed dead and is reset and dropped. The TCP specification states that by
default keep-alive must be turned off, and that the threshold time before which a keep-alive is sent must be
7200 seconds or more.

In this experiment, the receive filter of the PFI layer was configured to drop all incoming packets. The sending
machine (the machine for which keep-alive was being tested), opened up a connection to the machine running

2Comer & Lin did show that for a crash failure, a packet is retransmitted nine times before the connection is dropped. We
duplicated this result in a previous section

10

Comments

| || Results

SunOS 4.1.3 || Retransmissions started from 6.5 seconds
for three second delay case, accounting
for apparent network delays.

AIX 3.2.3 Started retransmitting at 8 seconds.
NeXT Mach || Started retransmitting at 5 seconds
Solaris 2.3 Started retransmitting at 1.2 seconds. Did not use Jacobson’s algorithm for
computing the RTO estimate or did
not use Karn’s algorithm for selecting
RTT measurements. Used a global error
counter to determine when to drop the
connection.

Table 2: TCP Retransmission Timeouts with Delayed ACKs

the 2-Kernel machine and turned on keep-alive. The receive filter script in the PFI layer was configured to
log all incoming packets with a timestamp and then drop them.

The SunOS 4.1.3 machine sent its first keep-alive 7202 seconds after the connection was opened. The packet
was dropped and was retransmitted 75 seconds later. After retransmitting the keep-alive a total of eight times
at 75 second intervals, the Sun sent a TCP reset and dropped the connection. No further traffic was observed
from the connection after this time. The format of the Sun keep-alive packet was SEG.SEQ = SND.NXT - 1
with 1 byte of garbage data. That is to say, the sender sent a sequence number of one less than the next
expected sequence number, with one byte of garbage data. Since this data has already been received (because
the window is past it), it should be acked by any TCP which receives it. The byte of garbage data is used
for compatability with older TCPs which need it.

The ATX 3.2.3 machine sent the first keep-alive 7204 seconds after the connection was opened. The keep-alive
packet was dropped, and eight keep-alives were then retransmitted at 75 second intervals, all of which were
dropped. After not receiving ACKs for any of the keep-alives, the sender sent a TCP reset and dropped the
connection. The format of the AIX keep-alive packet was SEG.SEQ = SND.NXT - 1 with 0 bytes of data.
The NeXT Mach implementation had the same behavior and used the same type of keep-alive probe as the
RS/6000. Note that the keep-alive sent by NeXT and AIX did not contain the one byte of garbage data.

The Solaris 2.3 implementation performed differently than the others. The Solaris machine sent the first
keep-alive 6752 seconds after the connection was opened. The keep-alive was dropped, and the Solaris TCP
retransmitted it almost immediately and it was dropped again. Keep-alive probes were retransmitted with
with exponential backoff, and the connection was closed after a total of seven retransmissions. It should
be noted that by sending the initial keep-alive packet at 6752 seconds after the connection was opened, the
Solaris TCP violated the TCP specification which states that the threshold must be 7200 seconds or more.

In a variation on this experiment, the incoming keep-alive packets were examined to determine the interval
between keep-alive probes. The probes were not dropped by the PFI layer, so the connections stayed open
for as long as the experiments ran. The SunOS 4.1.3, AIX 3.2.3, and the NeXT Mach machine continued
transmitting keep-alive packets at ~7200 second intervals as long as the keep-alives were ACKed. Solaris sent
probes at 6752 second intervals. The test was run for eight hours (four keep-alives) on the SunOS 4.1.3
machine, 14 hours (seven keep-alives) on ATX 3.2.3, 20 hours (10 keep-alives) on NeXT Mach, and 112 hours
(60 keep-alives) on the Solaris 2.3 machine. The results of this experiment are summarized in Table 3.

Experiment 4: Zero window probe test

This experiment examines the sending of zero window probes in different TCP implementations. The TCP
specification indicates that a receiver can tell a sender how many more octets of data it is willing to receive
by setting the value in the window field of the TCP header. If the sender sends more data than the receiver
is willing to receive, the receiver may drop the data (unless the window has reopened). Probing of zero
(offered) windows MUST be supported [4,25] because an ACK segment which reopens the window may be

11

Results | Comments

SunOS 4.1.3 || First keep-alive arrived at about 7200
second mark. When dropped, the keep-
alive was retransmitted eight times be-
fore the connection was dropped. When
the keep-alives were not dropped, they
continued to be sent at 7200 second

intervals.

AIX 3.2.3 Same as SunOS.
NeXT Mach || Same as SunOS.
Solaris 2.3 Sent first keep-alive at 6752 seconds. | Specification was violated by the sending
When dropped, the keep-alive was trans- | of keep-alives at < 7200 second intervals.

mitted with exponential backoff seven
times before the connection was dropped.
When keep-alives were not dropped,
they were sent at 6752 second intervals
indefinitely.

Table 3: TCP Keep-alive Results

lost if it contains no data. The reason for this is that ACK packets which carry no data are not transmitted
reliably. “If zero window probing is not supported, a connection may hang forever when an ACK segment
that re-opens the window 1s lost.”

This test determined how the SunOS 4.1.3, Solaris 2.3, AIX 3.2.3, and NeXT implementations of TCP
perform zero window probing. The machine running the z-Kernel was configured such that when the driver
layer received data, 1t did not reset the receive buffer space inside the TCP layer. The result was a full
window after several segments were received. Incoming zero-window probes were ACKed, and retransmissions
of zero window probes was logged. On all implementations except Solaris 2.3, the retransmission timeout
of zero-window probes exponentially increased and leveled off at 60 seconds. Solaris used a 56 second upper
bound for the timeout value. As long as the probes were acked, they continued to be sent.

A variation on the zero window probe experiment was also performed. It was the same as the original
experiment, except that as soon as x-injector advertised a zero window, the receive filter started dropping
incoming packets. The expectation was that the connection would eventually be reset by the sender because
no ACKs were received for the probes.

Even though the zero-window probes were not ACKed, the SunOS, AIX, and NeXT Mach machines all
continued sending probes at 60 second intervals and appeared as if they would do so indefinitely. Solaris
did the same at 56 second intervals. The test was allowed to continue for 90 minutes on all machines. This
behavior could be a problem because if a receiving TCP which has advertised a zero window crashes, the
sending machine could stay in a zero-window probing state until the receiving TCP starts up again and sends
a RST in response to a probe. In order to make sure whether this was in fact the case, the same experiment
was performed, but once a steady state of sending probes was established, the ethernet was unplugged from
the x-injector machine. Two days later, when the ethernet was reconnected, the probes were still being sent
by all four machines. The results of this experiment are summarized in Table 4.

Experiment 5: Reordering of messages

This experiment examines how different TCP implementations deal with messages which are received out of
order. When a TCP receives segments out of order, it can either queue or drop them. The TCP specification
in RFC-1122 states that a TCP should queue out of order segments because dropping them could adversely
affect throughput. In this test, the send filter of the fault injection layer was configured to send two outgoing
segments out of order, and the subsequent packet exchange was logged. In order to make sure that the
second segment would actually arrive at the receiver first, the first segment was delayed by three seconds

12

| Results | Comments
SunOS 4.1.3 || Zero window probes were retransmitted | While not a specification violation, it
with exponential backoff until a 60 sec- | seems that transmitting zero window
ond upper bound was reached. Then | probes forever even when they are not
they were transmitted at 60 second inter- | ACKed could pose a problem.
vals indefinitely, whether they were ACKed
or not.
AIX 3.2.3 Same as SunOS.
NeXT Mach || Same as SunOS.
Solaris 2.3 Same as SunOS except that the upper | This is interesting, because the ratio
bound on retransmissions was 56 seconds. | of Solaris/Other Vendors for this upper
bound is the same as it was for the Keep-
alive interval®.

Table 4: TCP Zero Window Probe Results

and any retransmissions of the second segment were dropped.

The result was the same for the Suns running Solaris 2.3 and SunOS 4.1.3, the RS/6000 running AIX 3.2.3,
and the NeXT running Mach. The second packet (which actually arrived at the receiver first), was queued.
When the data from the first segment arrived at the receiver, the receiver acked the data from both segments.

4.2 Testing of GMP

The objective of the experiments described in this subsection is to test the fault-tolerance capabilities of a
prototype implementation of the strong group membership protocol [18] using the probe and fault injection
technique presented earlier. In a distributed environment, a collection of processes (or processors) can
be grouped together to provide a service. A server group may be formed to provide high-availability by
replicating a function on several nodes or to provide load balancing by distributing a resource on multiple
nodes. A group membership protocol (GMP) is an agreement protocol for achieving a consistent system-
wide view of the operational processors in the presence of failures, 1.e., determining who is up and who s
down. The membership of a group may change when a member joins, a member departs, or a member is
perceived to depart due to random communication delays. A member may depart from a group due to a
normal shutdown, such as a scheduled maintenance, or due to a failure. The group membership problem
has been studied extensively in the past both for synchronous and asynchronous systems, e.g., [8,22,26]. A
detailed exposition of this problem is beyond the scope of this presentation.

Informally, the strong group membership protocol, as described in [18], ensures that membership changes
are seen in the same order by all members. In this protocol, a group of processors have a unique leader
based on the processor id of each member. When a membership change is detected by the leader of the
group, it executes a 2-phase protocol to ensure that all members agree on the membership*. The leader
sends a MEMBERSHIP CHANGE message when a new group is being formed. A processor, upon receiving this
message, 1f the message is from a valid leader, removes itself from its old group. At this point, the group of
this processor is said to be in a IN_.TRANSITION state, i.e. it is a member in transition from one group to
another. This processor then sends an ACK message to the leader. The leader, after collecting either ACKs or
NAKs from all the members, or when it has timed out waiting, determines what the membership of the new
group will be. It then sends out a COMMIT message containing the group membership to all the members.
The important aspects of this protocol are that the group changes are acknowledged, and that for some
period of time, all the members that will be in a new group are in transition.

3That is to say, 56/60 & 6752/7200, suggesting that the Solaris implementation has somehow scaled its upper bounds for
retransmissions. One suggestion for why this is happening is that timers which the TCP implementation is depending on are
not quite correct. For example, the TCP could rely on seeing 7200 ticks of a one second timer between sending keep-alives. If
this one second tick actually occurred every .938 seconds, keep-alives would be sent at 6752 second intervals.

4 The protocol is deceptively simple, but it has a number of subtle properties which are beyond the scope of this presentation

13

The implementation of the group membership protocol which we tested was developed by a group of three
graduate students as part of a project in a course on distributed systems in the Fall Term, 1993. The students
were already familiar with SunOS and socket-level programming on TCP/IP. Furthermore, as part of the
course project, they performed several extensive tests by instrumenting their code. The implementation
of the GMP was written as a user-level server which ran on SUN machines on top of UDP. A Reliable
communication layer was implemented using retransmission timers and sequence numbers. In order to test
the group membership daemon (gmd), we inserted the PFT tool into the communication interface code where
udp send and receive calls were made. The change is shown in Figure 5. The experiments and results follow.
As in TCP, a summary of results appears in a table after the discussion on each experiment.

GMP GMP
Comm L ayer Comm Layer
UDP Fault I njector
UDP
Original GMP Modified GMP

Figure 5: Modified Group Membership Daemon

Experiment 1: Packet interruption

This set of tests involved three machines and various types of packet interruption. The group mem-
bership daemons (gmds) were tested for resiliency to delayed or dropped heartbeats, dropped ACKs of
MEMBERSHIP CHANGE messages, and dropped COMMIT messages. The results are presented below.

Group membership daemons normally send heartbeats to each other in order to keep track of who is up and
running. If a gmd does not receive heartbeats from another gmd for a period of time, it will declare to the
group leader that the other machine is down. As a simple test of this behavior, the send filter script on one
of the machines was configured to oscillate between two states. In the first state, heartbeats which the gmd
sends were actually sent. In the second state, all outgoing heartbeats were dropped.

Because of some code instrumentation by the implementors of gmp, an error turned up when heartbeats to
the local machine were dropped. What happened was that when the local machine did not receive heartbeats
from itself, it sent out a message to the other members of the group saying that it had died! However, it
did not update its own local state very well and instead of forming a singleton group (a group containing
only itself), it stayed in the old group but simply marked itself as down. After this, if someone sent it a
PROCLAIM message, it would forward it to the group leader, but there was a bug in the code which forwarded
the message. A routine was being called with the wrong type of parameter, which resulted in the packet
not being forwarded at all. Even though they had instrumented the code, the implementors of the gmp
did not find this error. The reason was that they did not perform this type of test. Even when this bug
was fixed, because the local gmd did not correctly update its state when it believed itself “dead”, it would
continue to send bad information to the other gmds. The other machines were not resilient to this type of
failure, which was a serious implementation problem. Timing failures on the local machine could actually
cause the machine to go “haywire” and have a detrimental effect on the global state of the entire system.
The implementors should have coded for the case in which the machine that has “died” is the local machine.
Identical behavior was observed when a gmd was suspended for 30 seconds®. When it was un-suspended,
it’s timers had expired and the same bugs were observed.

Since the group membership daemons could not handle dropped heartbeats to themselves, another test was
performed. The test was the same as the previous test, but instead of dropping all heartbeats in the second

5This was done by sending a SIGTSTP to the running program by typing a <Ctrl>-Z in the shell where the program was
running. It was put back into the foreground 30 seconds later by typing fg into the shell.

14

state, only heartbeats to other members of the group were dropped. The result was that the machine which
was dropping heartbeats kept getting kicked out of the group even though it was still active. The machine
would then form a singleton group, and then would try to join the others again. It would be admitted to
a new group containing all machines, and would remain in the group until it started dropping heartbeats
again. When it started dropping heartbeats, the cycle would repeat with the “faulty” machine being kicked
out of the group again.

A similar experiment was performed in which heartbeats were delayed by ten seconds. The results were
exactly the same because delayed heartbeats are like dropped ones. This is because the heartbeat expect
timer expires before the delayed heartbeats arrive, having the same effect as dropped packets.

When a new group is formed, there is a two phase commit process. First, the group leader sends a
MEMBERSHIP CHANGE message to all prospective members of the new group. It waits for ACK messages from
the members, and then sends a COMMIT message to all machines that it received ACKs from. If a machine
does not send an ACK message in reply to the MEMBERSHIP CHANGE message from the leader, it should never
receive a COMMIT message and will not be part of the new group. In this test, the receive filter script of the
group leader was configured to drop ACK messages from one of the machines (compsunl). Expected behavior
was that compsunl never would never get committed into any group.

In the experiment, gmds were started on two machines and allowed to form a group. Then, the gmd on
compsunl was started. It sent PROCLAIM messages to the other two machines and received a PROCLAIM from
the group leader. It replied with a JOIN message, and the group leader initiated the change to a new group
by sending MEMBERSHIP_CHANGE messages to everybody. The ACK from compsunl was dropped by the fault
injector on the group leader, and the group leader did not send a COMMIT to compsunl. The two original
machines formed a group with only themselves in it, and compsunl stayed in a transitional state. Some time
later, compsunl’s MEMBERSHIP CHANGE timer expired and it sent out PROCLAIM messages to the others and
the whole process repeated. Compsunl was never admitted to a group.

In a variation on the previous test, the receive filter script of compsunl was configured to drop incoming
COMMIT packets. The expectation was that a group would be formed containing all machines, but compsunl
would not ever accept the view of the group (because it would not see the COMMIT). Since compsunl would
not view itself as in the group, it would not send heartbeats to the other members and would be kicked out
of the group.

In the experiment, gmds were started on two machines and allowed to form a group. When compsunl
started running, it sent PROCLAIM messages and received a PROCLAIM from the group leader in response.
Compsunl then sent a JOIN message to the leader. The leader sent out MEMBERSHIP CHANGE messages to
all machines and all responded with ACKs. The leader then sent COMMITs to everybody. Compsunl dropped
its COMMIT message and stayed in the IN_TRANSITION state. The other two machines adopted the new
group view which contained everybody. After not receiving any heartbeats from compsunl, the leader
declared compsunl dead and formed a new group which did not contain compsunl. Again, some time later,
compsunl’s MEMBERSHIP _CHANGE timer expired and it sent out PROCLAIM messages to the others and the
process repeated. The results of this experiment are summarized in Table 5.

Experiment 2: Network partitions

The group membership protocol is designed to tolerate network partitions. If a partition occurs, the result
should be that separate but non-overlapping groups are formed. In order to test whether this worked or not,
several tests were run in which messages between group members were dropped.

In the first test, the send filter scripts were configured to oscillate between two states. In the first state, all
outgoing messages that the gmd sends were actually sent. In the second state, the messages were dropped
based on destination address. Five machines were involved; they were compsun{l-5}. In the second state,
compsun{1-3} could only send messages to each other, and compsun{4,5} were similarly isolated.

When the machines started dropping messages, two active but disjoint groups were formed. One consisted of
compsun{1-3}, and the other had compsun{4,5}. After a while, the machines entered the original state again
and started transmitting to each other. At this time, a group was formed which contained all machines. A
while later, the machines entered the second state and the process repeated.

15

Drop all heartbeats/ || Gmd believes it has died because it does not | Implementors should have coded
suspend gmd receive heartbeats from itself. There was also | for the special case in which the lo-
a parameter passing bug in the gmd. cal machine has “died”

Results | Comments |

Drop most heartbeats Machine which was dropping outgoing heart- | Behaved as specified.
beats kept getting kicked out of the group.
When it started sending heartbeats again, it
would be re-admitted, only to be kicked out
again when it started dropping heartbeats.

Drop ACKs || The machine dropping the ACKs was never ad- | Behaved as specified.
of MEMBERSHIP CHANGE || mitted to a group

messages

Drop COMMITs The machine which drops the COMMIT packet | Behaved as specified.

stayed in the IN_.TRANSITION state. Everyone
else committed it into their view of the group,
but since it did not send heartbeats, it got
kicked out of the group.

Table 5: GMP Packet Interruption

Results | Comments |

Partition into two || Two separate but disjoint groups were | Behaved as specified.
groups formed, and then when heartbeats were
again allowed between all machines, a
single group formed again. When the
heartbeats were again dropped, the cy-
cle repeated.

Leader/CrownP Depending on the timing of dropped | Behaved as specified.
separation heartbeats, there were two possible paths
to the same end state. In the end state,
the original leader was again the leader,
and the original crown prince was not in
the group.

Table 6: Network Partition Experiment

In another test, the leader and crown prince were configured to stop sending messages to each other. The
crown prince is the machine which is next in line to be the leader if the leader fails. There were two courses
of action, but the result was the same for both. In the end, the crown prince was in a singleton group by
itself, and everyone else was in a group with the leader. The two possible courses of action were dependent
on the ordering of concurrent events.

If the leader sent out the MEMBERSHIP CHANGE for the new group before the crown prince, everybody but the
crown prince became part of a new group. The crown prince was never admitted to the new group because
it was not able to send a JOIN message to the leader.

If the crown prince sent out the MEMBERSHIP CHANGE for the new group first, everybody but the leader joined
a group with the crown prince as the new leader. Soon after, however, the original leader sent a PROCLAIM to
everybody which was received by all machines except for the new leader (the former crown prince). Since the
original leader had a lower TP address than the new leader, each machine responded to the original leader
with a JOIN message. A group was formed which consisted of all machines except for the crown prince. The
crown prince was never admitted to this group because it was not able to send a JOIN or PROCLAIM message
to the leader. The results are summarized in Table 6.

16

Proclaim forwarding When a proclaim was sent to a non leader | There was a bug in the proclaim forward-
machine, it was forwarded to the leader. | ing code. This bug was fixed.

However, instead of the leader respond-
ing to the original sender, it responded
to the machine which forwarded the mes-

Results | Comments |

sage. This caused a proclaim loop.

Table 7: Proclaim Forwarding Experiment

Experiment 3: Proclaim forwarding

In the group membership protocol, machines which desire to be in a group send PROCLAIM messages to
potential members of the group. These messages are either responded to if received by the leader, or
forwarded to the leader if received by another group member. When the leader receives a PROCLAIN, it
should respond to the originator of the PROCLAIM with either a PROCLAIM of its own or a JOIN message
(depending on which machine has a lower TP address). In this test, a machine sent a PROCLAIM to a machine
which was not the group leader. In order to do this, the send filter script of the machine compsunl was
configured to drop PROCLAIMs to the group leader so that only the PROCLAIM to non-leader machines were
actually sent. The expectation was that the PROCLAIM would be forwarded to the leader, who would then
respond to the PROCLAIM originator (compsunl).

The gmds on the two machines were started and allowed to form a group. Compsunl was then started, and
sent PROCLAIMs to the other two machines, but the one to the leader was dropped by the send filter script.
The crown prince received the PROCLAIM and forwarded it to the leader, who responded to the crown prince
instead of the original sender with a PROCLAIM of its own. Of course, the crown prince simply forwarded
the PROCLAIM right back to the leader, who responded with a PROCLAIM. This created a vicious cycle of
PROCLAIM sending between the forwarder (in this case the crown prince), and the leader. The original sender
of the PROCLAIM (compsunl) never received a PROCLAIM in response to its PROCLAIM, which was a serious
problem. The code was fixed so that the group leader always responds to PROCLAIM originator instead of the
PROCLAIM sender, because the sender may only be forwarding the message. The results of this experiment
are summarized in Table 7.

Experiment 4: Timer test

The group membership protocol uses timers extensively. There are timers set for sending and receiving
heartbeats, sending PROCLAIM messages, joining groups, and preparing to commit new groups, among others.
It is important that during some phases of the protocol, all timers be unset. For example, it doesn’t make
sense to time out waiting for a heartbeat message when you are waiting for the COMMIT message for a new
group. This test exercised the code which unsets the timers when a machine receives a MEMBERSHIP_CHANGE.
In the test, the receive filter for compsunl was configured such that it was allowed to join one group. After
that, when it received a second MEMBERSHIP CHANGE (when another group was formed) it started dropping
all incoming COMMIT and heartbeat packets.

To begin the test, compsunl and the group leader were started and formed an initial group. When a third
machine was started later, compsunl received a second MEMBERSHIP CHANGE and went into a state in which
incoming heartbeat and COMMIT messages were dropped. Soon after, compsunl was still in a transitional state,
when no timers (except for the MEMBERSHIP CHANGE timer) were supposed to be set. However, compsunl
timed out waiting for a heartbeat message from the leader. This means that the heartbeat expect timer for
the leader was not unset when the IN_TRANSITION state of the protocol was entered.

It turned out that there was an error in the code which unregisters timeouts. In the procedure, if an
argument is NULL, all timeouts of the same type are unregistered. If the argument is non-null, only the first
is unregistered. It worked the opposite of how it should have because of a logic error, and was fixed. The
results of the experiment are shown in Table 8.

17

Results | Comments |

| |
Timer test || When a machine enters the IN_TRANSITION | Behaved as specified.
state, it should unset all timers. By dropping
incoming COMMIT packets, it was ensured that
the machine would stay IN_TRANSITION for a
long time. During this time, the heartbeat ex-
pect timer expired, which should not have oc-
curred. This was an error in the code which

unsets timers.

Table 8: GMP Timer Test

5 Related Work

Numerous approaches have been proposed in the past for evaluation and validation of system dependability
including formal methods, analytical modeling, and simulation and experimental techniques. Past research
closely related to the work presented here can be classified into two areas: (a) network monitor and filter-
based approaches; and (b) fault injection techniques.

Packet Monitoring and filtering:

To support network diagnostics and analysis tools, most Unix systems have some kernel support for giving
user-level programs access to raw and unprocessed network traffic. Most of today’s workstation operating
systems contain such a facility including NIT in SunOS and Ultrix Packet Filter in DEC’s Ultrix. To minimize
data copying across kernel /user-space protection boundaries, a kernel agent, called a packet filter, is often
used to discard unwanted packets as early as possible. Past work on packet filters, including the pioneering
work on the CMU/Stanford Packet Filter [23], a more recent work on BSD Packet Filter (BPF) which uses a
register-based filter evaluator [21], and the Mach Packet Filter (MPF) [29] which is an extension of the BPF,
are related to the work presented in this paper. In the same spirit as packet filtration methods for network
monitoring, our approach inserts a filter to intercept messages that arrive from the network. While packet
filters are used primarily to gather trace data by passively monitoring the network, our approach uses filters
to intercept and manipulate packets exchanged between protocol participants. Furthermore, our approach
requires that a filter be inserted at various levels in a protocol stack, unlike packet filters that are inserted
on top of link-level device drivers and below the listening applications.

Another closely related work is the active probing approach proposed in a recent paper by Comer and Lin
[7] to study five TCP implementations. Active probing treats a TCP implementation as a black box, and
it uses a set of user-level procedures to probe the black box. Using the NetMetrix protocol analyzer and
monitor tools, trace data is gathered and analyzed to reveal characteristics of various TCP implementations.
In addition to repeating TCP experiments similar to those reported in [7], our approach allows other tests
that are not possible with techniques that are based primarily on monitoring and gathering trace data. In
particular, our approach differs from the active probing technique in four major aspects. First, using a fault
injection layer below the TCP layer in the z-Kernel protocol stack, we are able to intercept and manipulate
the TCP packets without having access to the SunOS, AIX, NeXT Mach, or Solaris TCP source code.
The manipulation of TCP packets allows various operations such as delay, reorder, and selective message
loss. Second, our script-driven approach makes writing complex test scripts relatively easy in a short time.
A protocol developer can use a combination of predefined filters and user-defined procedures written in C
to develop complex scripts. Third, while an approach based on passive monitoring or active probing can
simulate crash failures, more complicated failure models such as omission and timing failures are nearly
impossible to test using these methods. A richer set of failure models can be tested using the approach
presented here. Finally, although our approach can be more intrusive than active probing, it is intended
to be the basis for a tool that can be applied to testing application-level services as well as communication
protocols. Our experience in testing the fault-tolerance capabilities of the Group Membership Protocol
(GMP), as described in Section 4, seems to support this view.

18

Fault injection approaches:

Various techniques based on fault-injection have been proposed to test fault-tolerance capabilities of systems.
Hardware fault-injection [1,12,28] and simulation approaches for injecting hardware failures [6,9, 13] have
received much attention in the past. Recent efforts have focused on software fault-injection by inserting faults
into system memory to emulate errors [5,27]. Others have emulated fault-injection into CPU components
[19], typically by setting voltages on pins or wires. However, fault-injection and testing dependability of
distributed systems has received very little attention until recently [3,10,11,15]. Most of the recent work in
this area have focused on evaluating dependability of distributed protocol implementations through statistical
metrics. For example, the work reported in [2] calculates fault coverages of a communication network server
by injecting physical faults, and it tests certain properties of an atomic multicast protocol in the presence
of faults. Other work can be characterized as probabilistic approaches to test generation [3,10]. The work
reported in [15] focuses on CPU and memory fault injection into a distributed real-time system; this approach
also allows inducing communication faults with a given statistical distribution that is specified by the system
implementor. Finally, the work reported in [10] is closest to the approach proposed here.

Rather than estimating fault coverages for evaluating dependability of distributed systems, this work focuses
on techniques for identifying violations of protocol specifications and for detecting design or implementations
errors. The proposed research complements the previous work by focusing on deterministic manipulation of
messages via scripts that can be specified by the protocol developer. The approach is based on the premise
that injecting faults into a protocol implementation requires orchestrating a computation into hard-to-reach
states. Hence, deterministic control on ordering of certain concurrent messages is a key to this approach.

6 Conclusion

This paper presented a technique for probing and fault injection of distributed protocols. To demonstrate
the capabilities of this approach, experiments were performed that tested several implementations of a
transport layer communication protocol, TCP, and an application-level protocol, GMP. The advantages of the
proposed approach include: portability to different platforms; uniform treatment of network communication
and application-level protocols; support for deterministic and probabilistic testing; and support for user-
defined test scripts. Ongoing activities on this project are currently focused on three related paths: (i)
development of a more elaborate tool with a graphical user interface; (ii) automatic generation of test scripts
from a protocol specification; and (iii) experimental studies of other commercial and prototype distributed
protocols.

Acknowledgement

We wish to thank the three graduate students in EECS 682 who provided a stable copy of the GMP protocol
for us to test. Although our experiments uncovered several subtle implementation errors and violations of
protocol specification, their final grades remained the same. Thanks also to Stuart Sechrest for pointing out

that 6752/7200 ~ 56/60.

References
[1] J. Arlat, Y. Crouzet, and J.-C. Laprie. Fault injection for dependability validation of fault-tolerant
computing systems. In Proc. Int’l Symp. on Fauli-Tolerant Computing, pages 348-355, June 1989.

[2] J. Arlat et al. Experimental evaluation of the fault tolerance of an atomic multicast system. IEEE

Trans. Reliability, 39(4):455-467, October 1990.

[3] D. Avresky, J. Arlat, J.C. Laprie, and Yves Crouzet. Fault injection for the formal testing of fault
tolerance. In Proc. Int’l Symp. on Fault-Tolerant Computing, pages 345-354. IEEE, 1992.

19

[4]

[5]

R. Braden. RFC-1122: Requirements for internet hosts. Request for Comments, October 1989. Network
Information Center.

R. Chillarege and N. S. Bowen. Understanding large system failures — a fault injection experiment. In
Proc. Int’l Symp. on Fault-Tolerant Computing, pages 356-363, June 1989.

G. Choi, R. Iyer, and V. Carreno. Simulated fault injection: A methodology to evaluate fault tolerant
microprocessor architectures. TEEE Trans. Reliability, 39(4):486-490, October 1990.

Douglas E. Comer and John C. Lin. Probing TCP implementations. In Proc. Summer USENIX
Conference, June 1994.

F. Cristian. Reaching agreement on processor-group membership in synchronous distributed systems.

Distributed Computing, (4):175-187, 1991.

E. Czeck and D. Siewiorek. Effects of transient gate-level faults on program behaviour. In Proc. Int’l
Symp. on Fault-Tolerant Computing, pages 236-243. IEEE, 1990.

K. Echtle and Y. Chen. Evaluation of deterministic fault injection for fault-tolerant protocol testing.
In Proc. Int’l Symp. on Fault-Tolerant Computing, pages 418-425. IEEE, 1991.

Klaus Echtle and Martin Leu. The EFA fault injector for fault-tolerant distributed system testing. In
Workshop on Fault-Tolerant Parallel and Distributed Systems, pages 28-35. IEEE, 1992.

G. Finelli. Characterization of fault recovery through fault injection on ftmp. IEEE Trans. Reliability,
36(2):164-170, June 1987.

K. Goswami and R. Iyer. Simulation of software behaviour under hardware faults. In Proc. Int’l Symp.
on Fault-Tolerant Computing, pages 218-227. IEEE, 1993.

Vassos Hadzilacos and Sam Toueg. Fault-tolerant broadcasts and related problems. In Sape Mullender,
editor, Distributed Systems. Addison Wesley, 1993. Second Edition.

Seungjae Han, Harold A. Rosenberg, and Kang G. Shin. DOCTOR: An integrateD sOftware fault
injeCTOn enviRonment. Technical Report CSE-TR-192-93, The University of Michigan, December
1993.

Norman C. Hutchinson and Larry L. Peterson. The z-Kernel: An architecture for implementing network
protocols. IEEE Trans. Software Engineering, 17(1):1-13, January 1991.

Van Jacobson. Congestion avoidance and control. In Proc. of ACM SIGCOMM, pages 314-329, August
1988.

Farnam Jahanian, Ragunathan Rajkumar, and Sameh Fakhouri. Processor group membership pro-
tocols: Specification, design and implementation. In Proceedings of the 12th Symposium on Reliable
Distributed Systems, pages 2-11, Princeton, New Jersey, October 1993.

G.A Kanawati, N.A. Kanawati, and J.A. Abraham. FERRARI: A tool for the validation of system
dependability properties. In Proc. Int’l Symp. on Fault-Tolerant Computing, pages 336-344. IEEE,
1992.

Phil Karn and Craig Partridge. Round trip time estimation. In Proc. SIGCOMM 87, Stowe, Vermont,
August 1987.

Steven McCanne and Van Jacobson. The bsd packet filter: A new architecture for user-level packet
capture. In Winter USENIX Conference, pages 259-269, January 1993.

Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. A membership protocol based on par-
tial order. In Second Working Conference on Dependable Computing for Critical Applications, February
1990.

20

[23]

[24]

[25]

[26]

[27]

[28]

[29]

J. Mogul, R. Rashid, and M. Accetta. The packet filter: An efficient mechanism for user-level network
code. In Proc. ACM Symp. on Operating Systems Principles, pages 39-51, Austin, TX, November 1987.
ACM.

John K. Ousterhout. Tcl: An embeddable command language. In Winter USENIX Conference, pages
133-146, January 1990.

Jon Postel. RFC-793: Transmission control protocol. Request for Comments, September 1981. Network
Information Center.

A. M. Ricciardi and K. P. Birman. Using process groups to implement failure detection in asynchronous
environments. In Proceedings of the 11th ACM Symposium on Principles of Distributed Computing,
Montreal, Quebec, August 1991.

7. Segall et al. Fiat — fault injection based automated testing environment. In FTCS-18, pages 102-107,
1988.

K. G. Shin and Y. H. Lee. Measurement and application of fault latency. IEEE Trans. Computers,
C-35(4):370-375, April 1986.

Masanobu Yuhara, Brian N. Bershad, Chris Maeda, and J. Eliot B. Moss. Efficient packet demultiplex-
ing for multiple endpoints and large messages. In Winter USENIX Conference, January 1994. Second
Edition.

21

