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the goal. Thus, we rely more and more on knowledge search and the surprise was that the
least-commitment, run-time control of behavior inherent in problem spaces is actually more
important than the more traditional function of search. We are happy that on this second
account, Allen (and Herb) were right (about the importance of problem spaces), but possibly

for the wrong reason.
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this search can itself be controlled by any knowledge available to the agent (from memory
or additional problem search); and by learning, the agent can convert problem search to
memory search.

These distinctions are not unique to Soar, and go all the way back to the first AI systems
developed in the "50s. What is unique to Soar is that it is structured so that all problems that
Soar attempts can use either type of knowledge when it is available, preferring knowledge in
memory when it is available. That is, in Soar, standard, non-problematic decision making
is controlled directly by continual retrieval of preferences from production memory, and
problem search only arises when memory search fails.

The biggest surprise in our investigation of Soar is that Soar is still with us (or possibly
more correctly we are still with it) after twelve years. In Al architectures are typically built,
tested, used for one, maybe two systems, and then discarded so that the lessons learned
can be incorporated in a new, better architecture that is built from scratch. Maybe Soar’s
longevity is just a testimony to our own stubbornness and perseverance. However, at the
time Soar was created, we did not expect it to last this long. During the summer following the
initial development and success of Soar, we (John Laird, Paul Rosenbloom and Allen Newell)
decided to form a project for the continued investigation of general cognitive architectures.
We needed a name, but Allen knew that the name of the project could not be Soar. Soar was
just the name of our current architecture, and clearly we wanted the project to last longer
than a transitory piece of software. We are happy that on this account, Allen was wrong.

One explanation for Soar’s longevity may be rooted in a second surprise which concerns
our understanding of the role of problem spaces in producing intelligent behavior. Originally
Allen and Herb Simon conceived of problem spaces as an arena for search [Newell and Simon,
1972]. Allen’s original statement of the Problem Space Hypothesis was that “all symbolic
goal-oriented activity could be cast as search in a problem space” [Newell, 1980]. This
statement became more and more awkward as many of our systems did less and less search,
but still successfully solved problems using problem spaces. Instead of searching, they relied
on the “situatedness” inherent to Soar. That is, each decision in Soar combines the available
knowledge by retrieving preferences for action from production memory based on its sensing

of the environment, its current goals, and its interpretation of the environment in light of



These problems aside, where are we on our quest for creating an architecture that supports
general intelligence? We have come along way from the eight puzzle and hill climbing, but
clearly we have a long way to go, with the need to generalize and extend many of the

capabilities in Soar that are currently ad hoc and incomplete. For example

1. Some essential forms of learning, such as episodic (especially auto-biographical) and
declarative (especially inductive) are still more complex and difficult, and less routine,

than it seems they ought to be.

2. Learning is still fragile. Problems remain of overgeneralization, undergeneralization,

utility, and working appropriately in the presence of a dynamic environment.
3. Ways of coping with multiple interacting goals are still rather ad hoc and not routine.

4. Spatial and temporal reasoning (and more generally, dealing with non-symbolic inputs

and outputs) are still rather ad hoc and incomplete.

5. Soar is still radically incomplete with respect to being a full unified theory of cognition,
and incorrect in a number of obvious ways (such as having an unbounded working

memory).

Although there is a lot left to be done (thus guaranteeing that we will have no problem
finding research projects for our graduate students for the foreseeable future), Soar has been
a successful vehicle in our quest as evidenced by the range of systems that have been built
with it. Our belief is that this success can be traced to the central idea in Soar, which
is that there are two distinct sources of knowledge for controlling behavior. One source is
the system’s long-term memory. This memory is under the architecture’s control and can be
organized for efficient retrieval of knowledge relevant to the current situation. Thus, memory
search need not be inherently combinatorial, and the associative retrieval of a production
system is a useful way to organize long-term knowledge.

The second source of knowledge is the system’s explicit inferences about the problem:;
that is, its search through an appropriate problem space. For novel problems, that search can
generate new situations, i.e., new states, that the system has never previously considered.
Thus, problem search can generate new knowledge and new options to consider, making it

impossible for the architecture to avoid combinatorial search in all novel problems. However,



8.1 Implementation Level

Once it was clear that a complete reimplementation was called for, the next decision to be
made was whether it should be in Lisp or some other language (in particular, C). Driven by
concerns about portability and efficiency, the decision was eventually made to reimplement
in C. In addition to the reimplementation, a formal specification of Soar 5 in Z was created
[Milnes, 1992] to aid in constructing a correct implementation. The new implementation
was designed not only for speed and maintainability, but also for scalability so that very
large numbers of productions could be learned. To preserve the ability to compare systems
in both Soar 5 and Soar 6, only a few very, relatively minor conceptual changes were made
to the underlying architecture.

The resulting system has the following characteristics:

1. Soar 6 is 15-20 times faster than Soar 5 for medium size tasks (1000 productions).

2. Soar 6 learns over 1,000,000 productions without significant performance degradation

for certain tasks [Doorenbos, 1994].

3. Soar 6 has run over 4,000,000 production firings on a single task (simulated aircraft

control [Pearson et al., 1993]) without significant performance degradation.

The performance improvements of Soar 6 have opened up new classes of tasks, such as
real-time simulated aircraft control [Pearson et al., 1993] and tactical behavior [Jones et al.,
1993; Rosenbloom et al., 1994], and interactive natural langnage instruction [Huffman and

Laird, 1993].

Conclusion

Our efforts over the last twelve years have been focussed on the scientific issues surrounding
the development of a general cognitive architecture. This focus has been useful in the de-
velopment and evolution of Soar in terms of functionality, but it has also not come without
cost. For years we ignored software engineering, user interface and learnability issues that
have made learning and using Soar sometimes more than a small challenge. In the reimple-
mentation of Soar 6 we addressed many of the software engineering problems, but Soar is

still difficult for novices to learn and use — an issue we continue to struggle with.
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ning system. The real-time system consists of the three lower levels, while the reflective level
allows unlimited planning. These levels can execute in parallel, and knowledge about activity
(usually represented as preferences) is transferred from the planning/reflective level to the
others through chunking. This makes Soar looks similar to multi-level agent architectures
such as Atlantis [Gat, 1992] and Circa [Musliner et al., 1992], but with some key differences
(many of which are shared with Theo [Mitchell et al., 1991]): Soar’s levels are all based on
a single underlying representation of knowledge (productions), its levels arise dynamically
based on the needs of the problem, and its learning leads to a gradual transition from a
reflective to a reactive system.

The range of tasks to which Soar 5 was applied included a number of robotic control
systems: high-level control of a Puma arm using camera input for vision [Laird et al., 1991],
control of a Hero mobile robot [Laird and Rosenbloom, 1990], navigation in a 2D simulated
mobile robot domain [Stobie et al., 1993], control of simulated aircraft [Pearson et al., 1993],
and video game control [John et al., 1990]. Another class of systems where built that inter-
acted with other software systems [Newell and Steier, 1991] including databases, symbolic
mathematics packages, chemical process simulators, drawing packages, tutorial environments
[Ward, 1991], building-design tools [Steier, 1990], and physical-world simulators. A full sum-
mary of the domains tackled with Soar 5 can be found in the Introduction to [Rosenbloom

et al., 1993].

8 Soar 6 (1992)

Although Soar 5 broadened the types of domains that Soar could be applied to, it was not
without cost. Soar 5 was created by modifying Soar 4, which in turn was based on the
code for Soar 3 and Soar 2. There was still some of the original Lisp code for the RETE
matcher from OPS5. The patchwork nature of the code made maintenance difficult. In
addition, many of the algorithms and implementations developed for those earlier versions
were extremely inefficient under the new architecture. Many programs ran a factor of 3 slower
under Soar 5 than under Soar 4. Thus Soar 6 was generated as a complete reengineering

and reimplementation of Soar 5.
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Figure 7: Multiple Levels of Soar Architecture.
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timing and semantic penetrability.

Another way of looking at Soar 5 as an architecture to support external interaction comes
from looking at increasing time-scales of activities, as shown in Figure 7. At the fastest
time-scale, fixed input and output modules interface Soar to its external environment. Input
modules install data from sensors into working memory. Output modules detect motor
commands in working memory and transfer them to the motor system.

The next level is the reactive level, at which productions match in parallel to the situation
in working memory. This level provides for quick reflexive responses to changes in the
environment, but does not allow for the integration of knowledge a production is an
isolated piece of knowledge.

The third level is the deliberative level, at which the functions of problem spaces are
performed, such as selecting and applying operators. This level is less immediately responsive
than the reactive level, as it is implemented by sequences of parallel production firings, plus
a decision; however, it makes up for this by enabling two forms of knowledge integration in
its action generation: first, through sequences of production firings, where the actions of one
production are conditional on the actions of those that fired before it; and second through
the combination of preferences in the decision procedure. The fact that the elaboration
phase runs until quiescence means that there is an exhaustive access of all directly available
knowledge in long-term memory. Thus, as new productions are added to long-term memory,
the deliberative level automatically will use them when they are relevant. This is the base
level of knowledge-intensive behavior — behavior where the system knows exactly what to
do at each step.

The fourth, and final, level is the reflective level at which the functions of problem
spaces can themselves be the object of problem solving in subgoals. This level is the least
responsive timewise, but it also provides the most flexibility, by allowing arbitrary problem
solving in producing its results. It can involve planning, reasoning by analogy, hierarchical
decomposition, and other complex problem solving methods. It is also the source of new
knowledge, because all results of subgoals lead to the creation of new productions that
augment the other levels.

Taking these levels together, Soar 5 can be viewed as a combination real-time and plan-
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7.3.4 Maintaining the coherence of problem spaces

In previous versions of Soar, the current state was always a “valid” state in the problem
space. During operator application, the new state being constructed was not the current
state. The system would “jump” from one valid state to the next. However, in Soar 5, once
an operator is selected, the state changes in place. During application, the state may be in a
state that is not valid within the problem space. For example, if the state consisted of a set
of blocks, during application, a block might temporarily not have a location because its old
location was deleted and a new location is being computed. However, when the operator is
terminated, the state must be valid. That must be one of the post-conditions of the operator.
The fact that the state can be temporarily invalid would be cause for concern if a decision
were based on it; however all operator decisions are held off until operator termination, so
that when a new operator is selected, it is for a valid state of the problem space.

In order to implement the new “termination” problem space function, a new preference
was added called reconsider. The existence of this preference for a context slot (problem
space, state, operator) signifies that a decision can be made for that slot. When a decision

is made for the operator slot, it signifies that the current operator has terminated.

7.4 Implementation Level

Soar 5 was built on top of the existing implementation of Soar 4 in Common Lisp. Al-
though it provided new functionality, the dynamic creation of justifications led to significant

slowdowns, even though time was saved by eliminating most state copying.

7.5 Results

Soar 5 was successful in supported interaction with external environments. Input could
be asynchronous, and the recognition nature of the production system allowed systems to
be built that could be reactive to changes in their environment. In addition, it supported
interruption, planning, hierarchical execution, and learning that converted planning into
reactive execution [Laird and Rosenbloom, 1990]. However, problems  and controversies

still remain in understanding exactly how learning should occur in the presence of external

interaction so that behavior after learning maintains appropriate properties with respect to
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Figure 6: Processing Cycle of Soar 4 and Soar 5

matcher then detects when any of the conditions of the justification are no longer satisfied

and retracts the result.

7.3.3 Overlapped application and selection

In previous versions of Soar, the basic cycle of progress was select a state, propose and select
an operator, apply an operator and then select a state. This is shown in the top of Figure 6.
In Soar 5, the process compacts so that following the selection of the initial state, operators
are proposed and the current operator is selected, the operator is applied until termination,
when a new operator is selected, and so on. Under this scheme, knowledge to select a future

operator is applied in parallel with the application of the current operator.

44



preferences must have two different classes of persistence. The first class persists as long as
the production matches from which the preferences were created are still satisfied, and the
second persists independent of the satisfaction of the productions that created them.?

A key issue is how to determine which preferences should fall in which persistence class.
Such decisions cannot be done solely by a manual labeling of a production because pro-
ductions can be learned via chunking. Similarly, manual labeling of actions will not work,
because even though the actions of a chunk are based on the actions of an existing produc-
tion, the exact role the action plays  operator application or entailment  can be different
in a subgoal, where the operator may participate in the application of a operator, and in the
goal where the chunk applies, where the action might be an entailment that should retract
when its enabling conditions are no longer satisfied.

It is difficult to determine the exact right way of doing this; however, for Soar 5, we
adopted the strategy of using the problem space function of the action to determine its
persistence. This is possible in Soar by examining the types of working memory elements
tested in the condition of the production, and the type of object the preference is for. These
factors determine whether or not the production fulfills the function of operator application.
For example, if a preference is generated by a production that tests a state and an operator
and modifies the state, then it is part of operator application and does not retract. This is
an example where the problem space formulation plays a central role in the architecture.

In previous versions of Soar, the result of a subgoal would persist until the supergoal
structure to which it was linked was removed from working memory. In Soar 5, some prefer-
ences must retract when the conditions of the production that created them no longer match
(see above). However, the result of a subgoal should not be retracted when the conditions
of the production that created it (i.e., the production in the subgoal) are retracted. Instead,
its persistence must be equivalent to what it would have been if it had been created by
the chunk learned from the subgoal (otherwise results would retract as soon as the subgoals
that created them disappear). Therefore, a new structure must be built for each result; a

justification that can be added to the matcher to represent the persistence of the result. The

2The complete details of the persistence scheme are available in the Soar 5.2 manual [Laird et al., 1990a]
and the Soar 5 specification [Milnes, 1992].
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a production no longer directly changes working memory, but instead creates preferences for
how working memory should be changed. This maintains the monotonic nature of production
actions, thus avoiding action conflicts. The productions still only create structures, but the
structures they create have a non-monotonic effect on working memory (through the decision
procedure). If there is a conflict between preferences, this also can be represented in working
memory as an impasse, but not one that necessarily prevents progress in problem solving, as
does an impasse on a context slot. Instead such an impasse represents indecision as to the
value of a particular structure. If progress (context decisions) can be made without resolving

this indecision, that is fine.

7.3.2 Persistence

Although the preference scheme allows for non-monotonic changes to working memory, by
changing a state in place instead of creating a new one from scratch, we were faced with issues
of the consistency and persistence of structures in the state. In previous versions of Soar,
a new state was created from scratch. If a part of the state was an entailment from other
parts of the state, it would be computed anew for any new state. Thus, although there was
duplication in the derivation of the entailment of a state, a new state would be consistent. In
Soar 5, structures in the state could be based on data that was later modified by an operator.
These structures would have to be removed or recomputed to retain the consistency of the
state. In order to avoid requiring domain knowledge to explicitly remove these structures,
the semantics of production was changed so that their actions would “retract” when their
conditions no longer matched. Thus, a production that calculated an evaluation would
retract its result when the aspects of the state it was based on changed (and possibly,
independently add a new evaluation based on the updated information). Surprisingly, this
“truth maintenance” calculation is provided at no additional computational cost by the
RETE match algorithm employed by Soar.

However, retraction semantics cannot be adopted by all productions. Specifically, pro-
ductions that participate in applying an operator must test existing portions of the state
and assert preferences to change them. Such changes must persist beyond the match of the

production’s conditions, or the change would retract as soon as it was generated. Thus,
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to addition changes to the architecture, including implementation of an automatic persis-
tence scheme, a modification to the elaboration/decision cycle, and the explicit signalling of

operator termination via a new preference.

7.3.1 Destructive State Modification

In previous versions of Soar, an operator applied by creating a new state symbol, copying
over much of the prior state, and the adding in those aspects of the state required by the
application of the operator. This is essentially the situation variable model adopted in many
logic-based problem solvers. Unfortunately, it requires a large amount of copying, especially
for large states. Under the single state principle, the creation of completely new states is
not possible, and instead, the current state is modified in place, a process called, destructive
state modification.

In terms of frame axioms, the previous versions of Soar required axioms as to what stayed
the same between states. In contrast, Soar 5 requires axioms as to what changes between
states (like STRIPS, but more flexible in representation).

By adopting the single state principle and the associated destructive state modification
approach to operator application, it was necessary to devise an approach to applying oper-
ators that was still consistent with encoding the actions of the operators in an associative
long-term memory. We were still committed to having operators whose executions were com-
posed at run time by relevant productions, as opposed to being limited to fixed declarative
descriptions of the actions and post-conditions of the operator (as in STRIPS). On the posi-
tive side, productions as well as impasse-driven subgoals promised to provide a rich medium
for representing conditional and time-dependent actions. On the negative side, all previous
Soar systems assumed that all production firings were monotonic so as to avoid conflicts
between actions. This was critical to avoid arbitrary action resolution schemes where some
source of knowledge (a production) is masked. The only non-monotonic changes were made
by the decision procedure — to select new problem spaces, states, or operators — where
they could be directly influenced by the system’s knowledge.

To support destructive changes to the state, we extended the preference scheme and

decision procedure to apply to all working memory elements, not just the context slots. Thus,
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7.2.4 Interaction

In previous versions of Soar, it was difficult to incorporate changes from the outside into
the problem space model. Since all state transitions led to new states, conceptually, any
input from the outside would have to lead to a new state. This was handled by not allowing
asynchronous input; all input came in by explicit request during an operator application. In
contrast, in Soar 5, it is easy to extend the problem space model so that the input from sensors
dynamically changes the state. As the environment changes, the internal representation of
those aspects of the environment sensed by the system also change. Under this model, the
top problem space includes a representation of the external environment, although only a
portion of the state is directly available to the system. Changes in that problem space can
be effected by the agent, through actions on the environment and its own internal structures,

as well as other processes in the environment.

7.2.5 Hierarchical Execution

In previous versions of Soar, a subgoal to implement an operator could perform arbitrary
processing, but it would always terminate by generating a new state. It was not possible
for the subgoal to incrementally modify the current state. Thus, it was not possible to have
complex operators that required incremental interaction with an environment. In Soar 5,
the implementation of a complex operator, such as “pick up the block” can be performed in
a subgoal via more primitive operators, such as “move gripper”, as shown in Figure 3. The
state of the subgoal is the same as the state to which the “pick up the block™ operator is
being applied. The problem solving in the subgoal can incrementally perform the operator.
This problem solving can be time-dependent, require feedback from the environment, or even

involve planning.

7.3 Symbolic Architecture Level

To support the single state principle, and thus support interaction with external environ-
ments and eliminate extensive state copying, the architecture level was significantly changed.

The most significant of these changes was destructive state modification. Adopting this led
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7.2.2 Backtracking

In earlier versions of Soar, the ability to select previously generated states allowed the sys-
tem to “backtrack” during problem solving within a single subgoal. Under the single state
principle, such backtracking is no longer possible. Surprisingly, little backtracking of this
sort actually ever occurred in Soar programs. The reason is that whenever there was a un-
certainty in a decision, there would be an impasse and a look-ahead search across a series of
subgoals would determine which was the best choice. This look-ahead search might generate
multiple states, but these states were always the single current state in some goal in the
context hierarchy. Figure 4 shows that all of the choice points during planning are initial
states of evaluation goals. Thus, most backtracking was across goals and not within goals.
The single state principle still allows this behavior, so that Soar can still search, as long as

it is across goals using internal states.

7.2.3 Operator Termination

In previous versions of Soar, the termination of an operator was signaled by the selection of
a new state. Thus, there was no need to explicitly signal that an operator had terminated.
Also, all operator applications were under complete control of the system, so if it had the
knowledge to apply an operator, then and only then was the operator completed. In contrast,
Soar 5 has no state selection so that once an operator is selected, there must be some signal
that the operator is complete so that a new operator can be selected. In addition, it is
possible that completion of an operator requiring interaction with the external environment
will be uncertain. There must be an explicit test that the post-conditions of the operator
have been achieved. Merely wishing that a block is stacked on another does not make it
come true, and conversely, it is possible that the stacking of a block will be carried out by
another agent, even before the system has a chance to work on it. These factors combined

to lead to the requirement for a new problem space function: termination.
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to modify the external environment, and the environment has its own dynamics, possibly
including other agents. The actions of the problem solver may require time to execute and
their effects may be difficult to predict. The dynamics of the world implies that the problem
solver cannot simply backtrack out of undersirable situations in an external worl, but must

press ahead from its current state.

7.2 Problem Space Level

The characteristics of external environments listed above challenge not only Soar, but also
the standard formulation of problem spaces as used by most of AI. This in turn has led to
dissatisfaction by many with symbolic Al for external interaction. One response has been
to abandon the problem space model for interaction with external environments, sometimes
denying any internal representation of the problem [Brooks, 1991]. Often, when the problem
space model is used, it is disassociated from execution and used only for planning activity,
with the actual execution performed by separate “customized” modules [Fikes et al., 1972;
Gat, 1992]. The challenge for Soar 5 was to develop an approach which maintained a single
formulation of problem spaces for both execution and planning.

Soar 4’s formulation of operators and states was the source of its incompatibilities with
external interaction. In Soar 1-4, every operator application created a new state, which was
then usually selected to be the current state. All previously generated states were available
within the problem space. For Soar 5, we adopted the single state principle, with the result
being that there is a single state  the current state  available within a goal at any time.

Adopting this principle has a number of ramifications as listed below.

7.2.1 State Selection

In previous versions of Soar, the decision to select the current state was one of the problem
space functions. Under the single state principle, once the initial state is selected, there is

no further state selection within a goal.
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unchanged state information. A second, seemingly unrelated problem was that programs in
Soar 4 had difficulty interacting with external environments. Almost all of the tasks encoded
in Soar 4 were internal to the system itself. If it was solving blocks world problems, it solved
them in an internal model of the blocks world. The crux of the problem was that there was
no theory as to how Soar systems should interact with the world. There were some basic
facilities from OPS5 for reading and writing text; however, the production system would stop
running while waiting for the completion of the input (and chunking couldn’t appropriately
capture these interactions).

The remedy to both of these problems was to adopt a new symbol-level approach to
operator application and state maintenance, called destructive state modification. This in
turn led to a revision of the problem space computational model through the adoption of
the single state principle: at any point in time there should be at most one state active for
each goal (i.e., a stock of one state). Newell observed that this principle was based on both
functional and psychological grounds. Psychologically, search strategies such as progressive
deepening arise because of the trouble people have in maintaining more than one internal
state (plus the external one that is available via perception). Functionally, it was a burden
on Soar’s matching capabilities to maintain so many states in working memory.

The Soar 5 manual provides the most complete description of Soar 5 [Laird et al., 1990a).

7.1 Knowledge Level

At the knowledge level, the changes made to Soar 5 were meant to expand the types of tasks
to which Soar could be applied, and in turn, expand the range of knowledge that the system
could encode and use. In Soar 4, the problem solver had access to the complete state of a
problem, and had complete control of changes to the current state. These changes could be
made instantaneously, with complete certainty. Moreover, if the problem solver ever found
itself in an undesirable state, it could always backtrack to some earlier state and continue
from there.

In contrast, interaction with external environments violates many of these assumptions.
In general, the problem solver can perceive only a limited portion of the current state of the

problem and the data it receives may have errors. The problem solver has only limited ability
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originally every six months, and now every eight months so that by the spring of 1994 there
have been a total of thirteen Soar workshops.

With the increase in the number of users, there was significant activity in creating new
applications of Soar. On the AI side this included applications such as algorithm design
(Designer-Soar and Cypress-Soar [Steier and Newell, 1988; Steier, 1987]), medical diagnosis
[Washington and Rosenbloom, 1989], blood analysis [Johnson et al., 1992], production line
scheduling [Hsu et al., 1989], chemical process modeling [Modi and Westerberg, 1989], natural
langnage understanding [Lehman et al., 1991], and intelligent tutoring [Ward, 1991].

1986 was also the start of one of the major research directions of Soar. It was during this
time that Allen Newell proposed that many of the assumptions embedded in Soar were an
appropriate basis for modeling human cognition. Newell’s proposal was also based on the
assumption that the time had come to consider unified theories of cognition (UTC), that is,
theories that attempt to cover a broad range of psychological behavior. He proposed that
the basis of such theories would be architectures, such as Soar or ACT* [Anderson, 1983].
The investigation of Soar as a UTC was spurred by Newell’s presentation of the William
James Lectures at Harvard in 1987 [Newell, 1987]. In preparation for these lectures, the
Soar group set out to model a variety of human behavior in Soar. Newell’s book, Unified
Theories of Cognition (1990), captures his vision of a unified theory, and proposes Soar as a
candidate. Work on Soar as a UTC has continued and has become one of the major thrusts
of research within the Soar community [Lewis et al., 1990; Newell, 1992]. Areas of research
include immediate reasoning tasks [Polk et al., 1989], syllogisms [Polk and Newell, 1988],
verbal reasoning [Polk, 1992], number conservation [Simon et al., 1991], problem solving
[Ruiz and Newell, 1989], instruction taking [Lewis et al., 1989; Huffman and Laird, 1993],
visual attention [Wiesmeyer, 1991; Wiesmeyer, 1992], concept acquisition [Miller and Laird,

1991], and natural language understanding [Lehman et al., 1991; Lewis, 1993].

7 Soar 5 (1989)

Although Soar 4 led to a greater use of Soar, it still had significant weaknesses. One was
that for problem spaces with large state descriptions, the application of an operator, and the

ensuing creation of a new state would require computationally expensive copying of all of the
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advantage of this approach is that there is transfer of subparts of some macro-operators to
other macro-operators, thus decreasing the number of cases that must be learned [Laird et
al., 1986a).

The last demonstration of chunking in Soar 3 was within the context of R1-Soar, a re-
implementation of part of the original R1 expert system for computer configuration [Rosen-
bloom et al., 1985]. R1-Soar was the first knowledge-rich task encoded in Soar. In R1-Soar,
the knowledge for configuring computers was encoded within a hierarchy of problem spaces.
Through chunking, the system was able to reduce the time to configure computers, not only
for later runs, but also for the initial run. The reason was that some of the configuration
work was duplicated during a single run, and chunks learned during the initial part of the
configuration transferred to later parts. One way to describe the action of chunking is that it
compiled the deep general knowledge encoded in the hierarchy of problem spaces into more
specialized, but efficient surface knowledge.

Since Soar 3, chunking has been an inherent part of Soar, with many systems using it for a
variety of purposes. Some of the types of learning that have been demonstrated via chunking
include strategy acquisition, macro-operator acquisition, learning from advice [Golding et al.,
1987; Laird et al., 1990b], learning from instruction [Huffman and Laird, 1993; Huffman and
Laird, 1994], learning from abstraction [Unruh and Rosenbloom, 1989], task acquisition [Yost
and Newell, 1989], inductive learning [Rosenbloom and Aasman, 1990; Miller and Laird, 1991;
Miller, 1988], constraint compilation [Newell, 1990], explanation-based learning [Rosenbloom
and Laird, 1986], learning by analogy, and recovery and relearning [Laird, 1988]. The early

work on these was summarized in Steier et al. (1987).

6 Soar 4 (1986)

The goal of Soar 4 was to create a version of Soar that could be released to users outside
of the development group. This involved porting Soar to Common Lisp, fixing lots of bugs,
improving the interface, and writing a manual [Laird, 1986]. Although Soar continued to
be relatively hard to use and learn, the number of applications and users grew rapidly, so
that by 1988 there were approximately 50 users of Soar 4. To maintain cohesion, especially

since the project had become distributed across the country, workshops on Soar were started,
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the correctness of a result; for example, a rule that prefers the cheaper of two partial
computer configurations could be used to drive the system towards the goal of a cheap
full configuration, rather than explicitly comparing the costs of the full configurations
as part of the goal test. In response to this, we introduced two additional preferences:
require and prohibit. The semantics of require were that the object (usually an op-
erator) must be selected for the goal to be achieved. If the object cannot be selected
(because there is more than one required, or it is also prohibited), then there is an
impasse. The semantics of prohibit were that the object must not be selected for the
goal to be achieved. The traces for these productions were included in deriving chunks

because they encoded goal completion knowledge and not just efficiency knowledge.

Match cost:

As more and more productions are learned, a serious issue is whether Soar’s matcher
slows down. This has been called the utility problem [Minton, 1990]. In response,
the development of efficient, and bounded, matching strategies has been a significant
path of research within Soar [Gupta, 1986; Gupta et al., 1988; Tambe et al., 1988;
Tambe et al., 1990]. Most recently, Bob Doorenbos has been studying systems that
learn large numbers of productions (100,000) and has demonstrated for some tasks,

there is no utility problem [Doorenbos and Tambe, 1992; Doorenbos, 1993].

5.4 Implementation Level

Little changed at the implementation level in moving from Soar 2 to Soar 3 other than

porting it to additional versions of Lisp, thus allowing it to run on a broader set of machines.

5.5 Results

The major result of Soar 3 was the integration of chunking with Soar. The demonstration

of transfer with chunking in Soar was done for simple toy tasks, such as the Eight Puzzle,

Tower of Hanoi, and TicTacToe [Laird et al., 1984]. We also demonstrated that chunking

could learn macro-operators similar to Korf’s work [Korf, 1983]. One interesting result was

that instead of representing macro-operators as monolithic structures as in a macro-table,

each macro-operator was composed of chunks that selected each substep of the macro. The
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tion firing within a subgoal were saved. We also separated the results into groups that
were independent so that more than one chunk could be learned for a subgoal. The
conditions of productions were then determined by tracing back from results, through
the production traces, to those working memory elements that were connected to a su-
percontext. This increased the generality of the chunks by eliminating conditions that

were not necessary for generating the results that became the actions of the chunk.

Condition Ordering:

The order in which the conditions of a production are matched can have an enor-
mous impact on the cost of the match (as with other systems that perform conjunctive
queries). In standard production systems, all productions are written by hand, so the
programmer has the opportunity to his or her knowledge to provide an appropriate or-
dering on the conditions of the productions they write. With chunking, we were faced
with productions that were created automatically. Initial implementations ordered the
conditions of learned productions arbitrarily, and very quickly led to severe performance

problems. In response, an automatic condition reorderer was developed to attempt to

minimize matching time [Scales, 1986].

Incremental Chunking:

Chunks were originally built only upon subgoal termination, but there was actually no
functional restriction that forced this approach. We modified chunking so that chunks
were built for a result as soon as it was generated in a subgoal. This led to increased
transfer because some chunks could fire immediately, eliminating the need for further

duplicate problem solving within a subgoal.

Incorporation of Path Constraints:

One issue that arose with EBL-style chunking was whether all productions that con-
tributed to producing a result should be included in the dependency analysis. The
final decision was that search-control productions, those that created desirability pref-
erences, would be not be included in the backtrace. These productions should affect
the speed with which a solution is found, but not the correctness of the results. How-

ever, we also recognized that sometimes control knowledge might be used to influence
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1. Problem space proposal and selection.
2. Initial state proposal and selection.
3. Operator proposal, selection and application.

Moreover, separate learning mechanisms are not required for learning control knowledge,
operator creation and application knowledge, or problem formulation knowledge. However,
knowledge must be encoded within the system as problem spaces that can generate the
appropriate results, either from underlying domain knowledge, or from generation spaces
constrained by external observations. The result of a subgoal can be success, failure, or
some intermediate data structure. Chunking captures the processing leading to the result,

independent of the semantic content of the result.

5.3 Symbolic Architecture Level

At the symbol level, the challenge is to create an architecture in which the processing of
any subgoal can be captured by a production and conversely, anything represented in a
production can be learned through chunking the problem solving of a subgoal. Over the
years, there has been significant refinements of chunking and other aspects of the architecture
to eliminate most of the cases where the processing in a subgoal can not be accurately and
precisely represented within productions and vice versa.

Below is a chronology of some of the early developments in chunking.

¢ Initial Implementation:
The first implementation of chunking in Soar kept track of all production firings dur-
ing a subgoal, as well as all results produced during the subgoal. When the subgoal
terminated, all working memory elements that were tested by productions that fired
in the subgoal, and existed before the subgoal, became the basis for conditions. These
working memory elements, together with the results (which became the actions), were

variablized and then reordered to form the conditions and actions of chunks.

¢ Backtracing:
Based on a talk by Tom Mitchell on goal-dependent learning, which would later become

explanation-based generalization, we modified chunking so that traces of each produc-
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strings of English) then experience can determine which of these structures are actu-
ally useful and should be learned. If it is possible to distinguish what has been learned
(and thus experienced) versus what could possibly occur, then this splits the implicational
closure into a segment encoding knowledge (because it has been experienced) versus a seg-
ment that does not. Chunking over experiences moves knowledge from the latter segment
to the former, thus performing learning at the knowledge level [Rosenbloom et al., 1987;

Rosenbloom and Aasman, 1990].

5.2 Problem Space Level

Within the problem space computational model, learning plays a communicative role. It is
not one of the basic functions required for making progress, but instead moves knowledge
into a problem space from the world and from other problem spaces (in subgoals). It thus
enables direct performance of problem space functions that previously required consulting the
world or other spaces. For example, if there is a subgoal to select an operator, the subgoal’s
problem will be to determine which operator is the best for the current situation. Once a
determination has been made, a preference will be created to select the best operator. A
chunk will be built that summarizes the processing in the subgoal and creates the appropriate
preference. The chunk encodes search control knowledge which, in the future, can directly
contribute to operator selection. In similar situations, a subgoal will not arise because the
chunk will fire and create the preference, thus avoiding any impasse.

A central aspect of the design of chunking in Soar is that it does not interfere with
the regular problem space functions. Instead, it is a background process that is invoked
automatically whenever a subgoal result is produced, The problem solving has no direct
control or sensing of chunking — learning occurs in parallel with problem solving. The
intent is for Soar to learn unobtrusively, incrementally and continually on all tasks.

Although chunking is a fixed architectural mechanisms, the actual semantic content of
what is learned can be as varied as the types of reasoning and problem solving that can be
encoded in the problem spaces of subgoals. Also, because chunks arise from subgoals, and
subgoals themselves can arise for any problem space function, chunks can encode any of the

problem solving functions. Thus, chunks can be learned for the following:
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1983; Laird et al., 1986b]. This extended, task-independent chunking model was implemented
as part of a new productions system architecture that was designed specifically to support it
— XAPS3. During the summer and fall of 1983, we discussed how to incorporate chunking
into Soar, and finally in January of 1984, we extended Soar 2 to include chunking [Laird
et al., 1984]. At the time, the modifications to the architecture were minor and thus did
not lead to a new version of Soar. Soar 3, implemented during the summer of 1984, was a
partial rewrite of Soar 2, refining the subgoaling scheme, eliminating decision productions
and moving the decision procedure into the architecture (were it was more efficient). For
this paper, we will take a revisionist approach and consider the major contribution of Soar 3

to be the addition of chunking, which is described in Laird, Rosenbloom and Newell (1986) .

5.1 Knowledge Level

At the knowledge level, learning is only relevant if it changes the knowledge available to
the agent as it attempts to select actions to achieve its goals. Chunking, as it was origi-
nally formulated, cached the results of subgoal-based problem solving as productions. The
productions, called chunks, summarized the problem solving of the subgoals, and in the fu-
ture, the chunks would fire in situations that previously would have led to subgoals. Thus,
chunking is a form of speed-up learning, moving knowledge from where deliberation in a
subgoal is required, to productions, where it is directly available. Although this type of
learning affects performance at the problem space and symbol levels, it has been argued that
along with explanation-based learning (EBL) [Mitchell et al., 1986; DeJong and Mooney,
1986], to which chunking is closely related [Rosenbloom and Laird, 1986], it does not pro-
duce learning at the knowledge level [Dietterich, 1986]. However, the argument is based
on the mistaken notion that, at the knowledge level, a system “knows” everything that
it can derive at the symbolic architecture level from its symbol structures and the pro-
cesses that can operate on them (i.e., everything in the “implicational closure”). If, at
the symbolic architecture level, the system can generate a wide variety of structures that
the system doesn’t necessarily know represent true knowledge about the world — for ex-
ample, imagine that it can generate all possible representational structures within some

language (just like the Monkeys in the British Museum algorithm can generate all possible
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Figure 5: Structure of the Weak Methods
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subcontext was removed from working memory as well as any structures that were not

accessible to higher contexts.

4.4 Implementation Level

Soar 2 was implemented as a modification to OPS5 [Forgy, 1981], which was implemented in
Lisp. The major changes centered on the conflict resolution scheme of Ops and the addition
of the preference and decision schemes. There were no changes made to the Rete production
matcher. Using the Rete matcher greatly improved the efficiency of matching productions

in Soar.

4.5 Results

In Soar 2, the set of weak methods and tasks were expanded. Figure 5 shows the relationship
among these methods. The lines indicate that a method was derived from an earlier method
by adding more knowledge.

Also in Soar 2, programs were built to demonstrate the coverage of universal subgoaling.
More important, the first large task, R1-Soar was built in Soar 2. R1-Soar was developed to
demonstrate that Soar was sufficient for expert-level performance. We analyzed the knowl-
edge in a key fragment of R1, the computer configuration expert system developed by John
McDermott for Digital Equipment Corporation, and developed a system in Soar that had

the same functionality. This will be discussed in more detail under Soar 3.

5 Soar 3 (1984)

In parallel with the development of Soar 1 and 2, Paul Rosenbloom and Allen Newell were
creating computational theories of learning. The original goal was to model the ubiquitous
power law of practice [Newell and Rosenbloom, 1981]. By the beginning of summer in 1982,
they had built an initial task-specific model of procedural “chunking”, where processing in
a goal would be summarized by a set of three productions [Rosenbloom and Newell, 1982].
This model was implemented in the XAPS2 production system architecture; that is, the
same architecture upon which Soar 1 was based. Over the next year the model was extended

and made task independent, and became a central part of Rosenbloom’s thesis [Rosenbloom,
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All of these impasses can be resolved by creating new preferences for the impassed decision.
For example, if there is a tie among three operators, creating reject preferences for two of
the operators will break the tie. These impasses can also be resolved by changing a decision
higher in the context stack. For example, if there is a tie for the operator, the selection of a
new state will eliminate the current preferences for the operator slot and lead to the creation

of new preferences for operators relevant to the new state.

4.3.3 Subgoals

The symbol level implementation of automatic subgoaling was straight-forward given the
scheme developed for Soar 1. There were four major changes. The first three were imple-

mented in Soar 2, with the last being part of Soar 3.

1. The architecture automatically created new contexts when an impasse was encountered.
Thus, instead of a production voting for a new goal, the architecture would automati-

cally create a context whenever there was an impasse in the decision procedure.

2. Multiple contexts were represented in working memory at the same time. Thus, when a
new context was created, the context that gave rise to it would stay in working memory.
In Soar 1, there was only a single context, and when a new goal was suggested it would
replace the current goal. When a subgoal terminated, the original context had to be
reconstructed. In Soar 2, the original context was maintained and the subgoal had
a pointer back to it. By maintaining the complete context stack, subgoals had much
better access to the state of problem solving that led to the impasse, and returning to

the original context no longer required any reconstruction.

3. The results of a subgoal were determined automatically by the graph structure in work-
ing memory. If a working memory element was created in the subgoal, but was linked
through other working memory elements to a supercontext, it was a result and would

be maintained after the subgoal terminated.

4. The architecture continually monitored the decisions for all context slots in working
memory. Whenever a preference was created for a context slot, during the next decision

phase, the decision procedure would redecide that slot. If that resolved an impasse, the
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e Worst: The object mentioned should not be selected unless there are no other viable

alternatives.

e Indifferent: The object mentioned can be selected at random in comparison to other

indifferent objects.

In Soar 2, decision productions would interpret these preferences and translate them into a
voting scheme that selected the appropriate object. In later versions of Soar, the processing
of the decision productions was incorporated directly into the architecture and decision
productions were eliminated. This was possible because the semantics of the preferences are
fixed and do not change, even when learning was introduced.

Given the semantics of the preferences, four types of impasses could arise for each of the
four types of context slots (goal, problem space, state, and operator). These corresponded

to different types of incomplete or conflicting knowledge:

1. Tie: The control knowledge is incomplete as to which object is the appropriate selection.
For example, if three operators are acceptable without any other preferences, there
would be a tie. (Note: if there is knowledge that a choice can be made freely among the
three operators, there would be indifferent preferences.) This impasse can be resolved
by preferences that cause one choice to dominate (such as by rejecting the alternatives

or preferring a single choice), or by making the tieing candidates indifferent.

2. Conflict: The control knowledge is conflicting. For example, if there are two acceptable
operators, A and B, and there is one preference that A is better than B, and a second
preference that B is better than A, then there is a conflict. This impasse can be resolved

by rejecting one of the alternatives.

3. All-Rejects: The control knowledge is incomplete in providing a viable alternative. All
acceptable candidates are also rejected. This impasse can be resolved by the creation

of an acceptable preference for another candidate object.

4. No-change: No new candidates are suggested, so no new decision is made. This impasse
can be resolved by the creation of an acceptable preference for another candidate object.
This impasse typically arises when new objects must be generated, such as generating

a new state when applying an operator.
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result is known before the procedure is called. In Soar, a subgoal can create any type of
result it deems necessary. For many impasses, preferences will be created as results to
resolve the impasse. However, other structures can be created as results, which in turn
trigger the creation of preferences in the supergoal that resolve the impasse. Similarly,
it may be “expected” that a subgoal return as a result a preference that allows selecting
between two alternative operators, whereas the subgoal may actually return results that
reject both of the existing alternatives and generate a new operator, which may then

be selected.

These properties of Soar’s subgoaling allow the problem solving in the subgoal free range as
to how the subgoal is achieved and the impasse is resolved. In actuality Soar’s subgoals act
more like open calls to the meta-level then restricted calls to subprocessing [Rosenbloom et

al., 1988].

4.3 Symbolic Architecture Level
4.3.1 The Basic Problem Solving Cycle

The basic problem solving cycle of elaboration-decision-application in Soar 1 was simplified
in Soar 2 to be just elaboration-decision. Application was eliminated as a separate phase.
The creation of a new state by an operator was performed during the elaboration phase

following the selection of the operator.

4.3.2 Preferences and the Decision Procedure

The symbolic preference scheme developed for Soar 2 had the following types of preferences:

Acceptable: The object mentioned is a candidate for selection.

Reject: The object mentioned must not be selected.

Better (Worse): The first (second) object mentioned should not be selected if the second

(first) object mentioned is a viable candidate.

Best: The object mentioned should be selected unless it is rejected or worse than some

other object.
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individually, that would be cast as a goal with a problem space that had operators for each
of the conjuncts. When a conjunct was selected, it would then lead to the creation of a goal,
unless it was so simple that it could be performed directly. The functions of generating and
selecting between the conjuncts map directly onto generating and selecting the operators
that represent the conjuncts. Thus, Soar replaces deliberate subgoals with operators. What
is the advantage of Soar’s approach? In addition to having a uniform approach to execution
control and goal management, Soar provides a graceful path from a knowledge-lean system
with lots of goals, to a knowledge-rich system with lots of rules. If knowledge is available to
perform the operator/deliberate-goal directly, no goal has to be created. This becomes more
important when learning is added so that an operator that originally requires problem solv-
ing as a goal becomes one which the agent is able to perform directly without any problem
solving.

This combination of universal and automatic subgoaling leads to two hypotheses about

the relationships among goals in an intelligent agent:

1. The relationships between goals and subgoals is that of lack of knowledge. A subgoal

is created to obtain knowledge so that problem solving in the goal can continue.
2. The functions for creating and selecting goals are embedded within the architecture.

In addition to automatic and universal subgoaling, Soar’s subgoaling has many unique

properties.

1. Subgoals and goals are simultaneously active. Thus, if some changes are made in a
supergoal, possibly through perception or through intermediate results of a subgoal,
the problem solving in the supergoal can precede immediately without waiting for a

termination signal from the subgoal.

2. The parameters to a subgoal are not prespecified. Unlike a procedure call, where the
parameters to a procedure must be specified in advance, the exact set of parameters
is determined dynamically by the needs of the problem solving in the subgoal. Thus,
the supergoal does not need to know what information is going to be relevant to the

subgoal.

3. The results of a subgoal are not prespecified. In a traditional procedure call, the type of
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Figure 4: Soar 2 Search Control and Planning Subgoals.

for a single problem, many different types of subgoals and problem spaces may be generated
and used.

How does Soar 2’s approach to subgoals differ from Al systems that deliberately create
goals? In Soar 1, and for many of the initial versions of Soar 2, goals could be deliberately
created by productions suggesting new goals and having them be selected. In the final ver-
sions of Soar 2, this was eliminated so that all goals had to be generated by the architecture.
It took us a long time to convince ourselves that the impasse-driven subgoaling mechanism
in Soar 2 was sufficient by itself, for it eliminated deliberate goals. Where would such func-
tionality now come from? The answer turned out to be simple. When the agent attempts to
apply an operator, but is unable to do it directly, that is the same as a deliberate goal. Thus,

if an agent wants to decompose a single goal into a set of conjuncts and attempt each one
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Figure 3: Soar 2 Hierarchical Execution Subgoal.

is to get the blocks stacked in alphabetical order (A on top of B, which in turn is on top
of C). The other problem space has operators that pickup, move, and put down a specific
block. We assume that there is sufficient knowledge to select and apply of operators in this
space (pickup, move, put down) directly.

At the top left of Figure 3, the initial state is shown, followed by the selection of MOVE-
BLOCK(A,B). Once MOVE-BLOCK(A B) is selected, it can be applied, but in this case,
there is no directly available knowledge for performing the operator. It must be decomposed
into simpler steps. Thus, there is an impasse. To resolve this impasse, the second problem
space is selected, and its operators are applied to implement MOVE-BLOCK(A B).

If we remove the assumption that there is sufficient search-control knowledge for the sub-
goal, we could get the trace shown in Figure 4. Here, the candidate operators are generated,
but there is insufficient knowledge to select between them, leading to another impasse. In
response to this impasse, the goal becomes to select the best operator. This is a control
or meta-subgoal. The operators for the selected problem space evaluate and compare the
task operators. In the example, an operator (evaluate) is selected to evaluate the operator
PICK-UP block. The evaluation is computed in a subgoal. In general, any method for
gaining more knowledge could be used, and in this case a limited lookahead is employed to

determine how well PICK-UP contributes to the original task goal. This demonstrates how
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generated. That is, the subgoals have to be generated in situations that can be detected
in a domain independent manner, no matter what knowledge is available for the task. For
example, in GPS, the architecture could automatically detect when the preconditions of an
operator did not match the current state and create a subgoal. In contrast, operator selection
could never fail — the table of connections was always available to determine which operator
should be selected. Similarly, every operator had a directly executable definition, so it was
never problematic to implement an operator. Thus, GPS supported automatic subgoaling,
but only for a single problem space function. Most problem space functions were never
problematic, and functions were never open to new knowledge. As a result, GPS could only
be applied to tasks with a single problem space that had simple operators and for which
there existed a complete table of connections.

Soar expands automatic subgoaling to universal subgoaling because every problem space
function is an open decision that is made while the task is being performed. The knowledge
for these decisions, such as operator selection, is not pre-compiled into a table of connec-
tions before the task is attempted. Instead, the decisions are made based on the preferences
retrieved during the elaboration phase. Ironically, opening up the decision procedure at
run time to more knowledge also opens up the possibility that the knowledge will be in-
complete or inconsistent and that more knowledge will be required before a decision can be
made. We called the situations under which progress cannot be made because of incomplete
or inconsistent knowledge, impasses.! In Soar 2, the architecture automatically created a
subgoal whenever an impasse arose. In later versions of Soar, the architecture would also
automatically terminate the subgoal when the impasse was resolved.

Figure 3 shows a graphical trace of Soar as it encounters impasses in applying operators,
leading to hierarchical execution. The task is to stack blocks, where multiple problem spaces
are used to control the problem solving. The top problem space has a single operator for
moving blocks. It has two parameters, the first being the block being moved, and the second
being the location of its destination (either the top of another block or the table). For a

given state, this operator may have many instantiations. For this specific example, the goal

!They were originally called difficulties, but we then adopted the word “impasses” from Brown and
VanLehn’s work (1980). Recently it became clear that VanLehn meant dead-ends in problem solving, as
opposed to architectural inabilities to make progress.
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in one space with the control of an operator selection in another.

4.2 Problem Space Level

The major thrust for change at the problem space level was the desire to introduce subgoals
into Soar. We knew when writing Soar 1 that subgoals were necessary, but we delayed
introducing them until we understood the basics of integrating production systems and
problem spaces.

The guiding principles behind introducing subgoals are quite similar to the ones we used
for developing the universal weak method: Soar should be able to generate any and all types
of goals. That is, an agent should be able to create goals for achieving operator preconditions,
as in GPS and STRIPS. It should also be able to create goals for performing operators. It
should even be able to create goals for deciding which operator to select, so-called meta-goals.
Thus, the agent should be able to create all types of goals. We called this property universal
subgoaling.

A related but separable property is the way in which goals are created and terminated.
We posited, in parallel with actually building the agent, that it is possible to create an agent
that generates its goals automatically when they are required by problem solving. An agent
that creates goals automatically does not have to encode knowledge about when to generate
goals, but instead bases the creation of goals on an inability to make progress on its task.
We called this property automatic subgoaling. GPS had automatic subgoaling, but for only
a limited class of goals.

Universal subgoaling and automatic subgoaling are obviously desirable properties, but
how is it possible to build an agent that incorporates them? For universal subgoaling, what
is the space of all possible goals? For automatic subgoaling, how can we insure that goals are
generated whenever they are required? The answers to both of these questions came from
using the problem space computational model (PSCM) as a framework for problem solving.
The PSCM defines a set of functions — generation, selection, and application — from which
all behavior is constituted. These functions in turn determine the types of subgoals that can
be generated by the agent.

For the agent to support automatic subgoaling, the goals have to be architecturally
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4 Soar 2 (1983)

The big conceptual advance in going from Soar 1 to Soar 2 was adding subgoaling. Once
this was in place, Soar’s fundamental problem solving structure was set. The next ten years
were spent refining this structure, and combining it with learning abilities (in Soar 3) and
an ability to interact with external worlds (Soar 5). Soar 2 is described in detail in Laird

(1984).

4.1 Knowledge Level

The advances of Soar 2 were mostly at the problem space and symbolic architecture levels.
However, Soar 2 did expand the range of control knowledge that could be encoded for a task
in two ways. It expanded the expressiveness of knowledge for selecting context objects as
well as allowing for the expression of general meta-knowledge.

The Soar 1 decision scheme restricted the expression of knowledge about making decisions
to simple votes for or against proposed alternatives. Many types of knowledge are not
expressible in this language, such as partial orderings where it is known that one candidate
should always be preferred over another. Although knowledge can be added in Soar 1 to vote
for a choice, say A, and vote against another choice, say B, in an attempt to prefer A over
B, there is no guarantee that other knowledge will not contribute enough votes for B so that
it is selected. Thus, the voting scheme might not always maintain the underlying semantics
behind why a vote might be made (or more accurately, the actual semantics of a vote were
unclear). To remedy this problem, the representation of selection knowledge was changed so
that it corresponded more closely to the semantics of preference and goal achievement.

A second restriction in Soar 1 was that all of the knowledge was directly related to the
generation or selection of objects for the task. It was not possible to encode knowledge about
general (meta-level) principles for generating operators or determining which operator was
best, such as by making analogies with similar cases, or by performing a look-ahead search.
Although Soar 1 allowed multiple goals and problem spaces, it lacked the key reflective ability
of allowing the processing in one goal/problem-space to examine and modify the processing

in another. Thus, for example, it was not possible to link the results of a lookahead search
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Task ExS ADSHS MEA BrFS DFS SHC SAHC BFS MBFS A*
Eight Puzzle + + + + 4+ + + o+ + + +
Tower of Hanoi + +  + + 4

Missionaries and Cannibals + + 4+ + + + 4+ o+ + o+ 4
Water Jug + +  + + +

Picnic Problem I +

Picnic Problem 11 + +  + 4+ + + o+ 4+ 4+ 4+ +
Picnic Problem III + + + + + + 4+ 4+ 1+ 4 4
Syllogisms + +

Wason Verification + +

Three Wizards + +

Root Finding I + + + + + 4 +

Root Finding I1 +

Figure 2: Soar 1 Methods versus Tasks

decisions when there was no other knowledge available. These productions, together with
the architecture, provided the essence of the universal weak method. Additional control
knowledge was then encoded as elaboration and decision productions. These productions
encoded additional knowledge about the task, such as when one state or operator was more
desirable than another. We called these productions method increments because they could
be freely added in combination for a given task and together they determined the method

performed on a task. For example, the method increments for simple hill climbing were:

o If the current state is not acceptable or has an evaluation worse than the ancestor state,

vote for the ancestor state.

e If the current state is acceptable and has an evaluation better than the ancestor state,

vote for the current state.

Not all methods arise for all tasks. For example, many of the tasks do not demonstrate
means-ends analysis. This is because there is no available means-ends knowledge for the
task. Similarly, knowledge about comparing intermediate states can be formulated for only
a subset of the tasks (Eight Puzzle, Missionaries and Cannibals, the Picnic Problem, and

Root Finding).
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during elaboration of possible problem spaces. Decision productions cast votes that lead to
the selection of a current problem space, followed in turn by the generation and selection
of an initial state. Once the state is selected, operators are suggested during elaboration,
followed by the selection of one based on votes by decision productions. This selection can be
based on means-ends knowledge or other heuristics that are encoded in long-term memory.
Following the selection of the operator, the application phase is entered and a new state is
created and added to the stock. At this point, knowledge can be used to select between the
various states in the stock. Once one is selected, operators are suggested and the search
continues. If a state is ever reached that achieves the goal, elaboration productions can
recognize this fact, augmenting the goal appropriately, and trigger decision productions that

can select a new goal to work on.

3.4 Implementation Level

Soar 1 was implemented in XAPS2[Rosenbloom and Newell, 1987], a parallel production
system implemented in Lisp. XAPS2 also supported activation-based matching, and an

early task-specific version of chunking, but these features were not used in Soar 1.

3.5 Results

The major success of Soar 1 was its ability to support a Universal Weak Method for a
variety of simple puzzles and tasks. The UWM was demonstrated by encoding nine different
tasks in Soar 1, and then demonstrating that as knowledge was added about the tasks, the
behavior of the agent changed and was consistent with well-known weak methods. Figure
2 summarizes these results. The methods demonstrated include exhaustive search (ExS),
avoiding duplicate states (ADS), heuristic search (HS), means-ends analysis (MEA), breadth-
first search (BrFS), depth-first search (DFS), simple hill climbing (SHC), steepest-ascent hill
climbing (SAHC), best-first search (BFS), modified best-first search (MBFS), and A*.

The tasks were encoded as productions that generated the appropriate goals, problem
spaces, initial states, and operators. The knowledge encoded in these productions was nec-
essary to even attempt the problem and did not include any control knowledge. In addition

to these tasks productions, there was a set of productions for default control — making
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Figure 1: Processing Cycle of Soar 1

cation productions. In contrast to STRIPS-like operators, this approach allows for a
continuum of declarative representation of operators. It is possible to have produc-
tions that interpret a general declarative representation of the operator; for example,
operators can be generated with explicit declarative lists of preconditions, additions
and deletions. It is also possible to have ad hoc representations for operators in work-
ing memory, in which case the vast majority of the knowledge about performing the
operator is represented as productions that are sensitive to the name of the selected

operator.

The basic processing cycle consists of elaboration, followed by decision as shown in Figure
1. If there is no operator selected, the cycle repeats with elaboration. Once an operator is
selected, an application phase occurs so that a new state is generated. Then elaboration
begins again. Elaboration provides the agent with the ability to perform limited, monotonic
inference, and consists of firing all matched productions in parallel. Elaboration continues
as long as new productions are matched. Although this could be unbounded in theory, in
practice, elaborations last only 2—3 production cycles.

With this architecture, the selections of the goal, problem space, state, and operators are
open at each step of the problem solving to the agent’s long-term knowledge. The typical

trace of problem solving starts with the initial goal being selected, followed by the creation
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also have attributes and values, providing a semantic network representation for objects and
their substructures.

These working memory structures support the problem space functions of generation,
selection, and application by explicitly representing the generated candidates and the current
selections. But how are the problem space functions performed? In Soar 1 we supported the

different functions by functionally distinct types of productions.

1. Generation corresponds to the addition of new candidate objects to the available stock.
Productions match against the current context and can create new objects for the stock.
For example, a means-ends production can test the current state and goal, and retrieve
into working memory an operator that reduces the difference between the state and
the goal. Productions that perform generation are called elaboration productions, and
they fire in parallel because they only add objects to working memory. In addition
to creating new objects, elaboration productions can also augment the objects in the

current context with additional information, such as computing an evaluation of a state.

2. Selection corresponds to the replacement of an object in the current context slot. Re-
placement is guided by decision productions which cast votes for or against objects in
working memory. Thus, search-control knowledge is encoded as decision productions.
The votes for the context slots are totaled starting with the goal, then problem space,
state, and operator. If the votes suggest a change to the context, the new object is
installed and the remaining slots are emptied. For example, if the goal changes, the
current problem space and all the candidate problem spaces are possibly no longer
appropriate. The same is true when a new state is selected — the existing operator
and the candidate operators may not be appropriate. Therefore, in Soar 1, all of the
unprocessed slots and proposed objects are emptied, to be rebuilt with appropriate can-
didate and selected objects through future elaboration and selection. Ties are broken

arbitrarily if they arise.

3. Operator application corresponds to the creation of a new state. Application is per-
formed by application productions which are sensitive to the current context state and

operator. Thus, knowledge about the execution of the domain is encoded as appli-
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include using activation schemes as in ACT* [Anderson, 1983] or meta-rules additional
rule bases which match against the competing rules and pick the best one [Davis, 1980;
Genesereth, 1983]. However, all of these schemes identify the state of the problem solving
as the complete working memory, and thus do not support multiple goals, multiple problem
spaces, or the various search methods that require multiple states.

The list of problem space functions suggests another approach to integration. In our
earlier list, there are two basic functions: generation and selection. These two functions are
applied uniformly to the four types of problem space objects: goals, problem spaces, states,
and operators. The generation function is a recall from long-term memory of candidate
objects. Selection then uses additional knowledge to decide on the current goal, problem
space, state, or operator. Thus, the agent must be able to represent candidates, as well as
the current selections. There is one additional function, which is that of applying operators
to states to generate new states.

In Soar 1, we took what now seems to be the obvious approach of supporting generation
and selection by having a special data structure in working memory called that current
contextthat has slots to hold symbols representing the current selections for the goal, problem
space, state and operator. Thus, these object became “first-class” objects that would be
explicitly generated and selected. In addition, there was a stock of generated candidate
operators, states, problem spaces, and goals. Below is an example of the stock and current

context for Soar 1.

Current Context: Goal Problem Space State Operator

goalyg problemspaces stateig;  operatorg
Stock: goaligs  problemspaceyy statesy operatorzy

goals problemspacess statezgy  operatorsg

goalsz;  problemspace, stateqg operatorsgs

Each object in working memory could have additional attributes and values, which could
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This formulation of problem spaces is extremely flexible, allowing knowledge to be used to
generate and select any problem space objects. It is possible to encode the operator selection
methods of GPS and STRIPS, as well as state selection methods, such as depth-first search,
best-first search, or even alpha-beta and A*. However, This flexibility comes at the cost of
requiring that knowledge be available for all of these functions for every problem the system
attempts. This requirement was partially ameliorated by providing default knowledge to

control for those decisions in which no domain-specific knowledge was available.

3.3 Symbolic Architecture Level

Given the prior formulation of the problem space level, how is it realized in a symbolic
architecture? Our initial inclinations for building a problem space architecture were to avoid
production systems, thinking that they would only complicate the project, and thus we
developed a Lisp based system called the Task Experimenter (TEX). TEX provided us with
immense experience in problem spaces and methods, but it was obvious that Lisp did not
provide the appropriate control structure for incrementally adding more control knowledge.
To achieve the desired flexibility we would need to build a second representation of knowledge
on top of Lisp, possibly similar to production systems.

After abandoning Lisp, we needed to identify the appropriate role for productions within
a problem space. The standard view at the time, and one that seems to still be ubiquitous in
Al and Cognitive Science, is that productions are to be mapped onto operators in problem
spaces. Thus, the selection and firing of a production is equivalent to taking a step in
problem solving. Under this view, the problem state is the complete working memory,
the operators are productions stored in long-term memory, and the control of the problem
solving corresponds to conflict resolution: finding the right production to fire for the current
situation.

Unfortunately, this integration of problem spaces and production systems greatly restricts
the types of methods that could be used for problem solving. In most approaches, such as
OPS5, the selection of the next production/operator is fixed by the syntax of the productions
and the recency of the working memory elements it matches. This provides a depth-first style

to problem solving and it cannot be influenced by additional knowledge. Other approaches
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Ut

goal that is most appropriate for the current situation. This includes detecting success

or failure for the current goal.

. Problem space generation and selection. The agent can generate problem spaces

that are appropriate for a given goal, and select the one most appropriate. It should
also be possible to change problem spaces during work on a goal if, for example, the

current problem space is exhausted without achieving the goal.

State generation and selection.

The agent can generate the initial state of the problem, thereby partially instantiating
the goal within the current problem space (the description of the desired state is often
left on the goal itself). It should also be possible to freely select from previously
generated states during the search, so that the agent can use methods that require

selections of prior states, such as best-first search or depth-first search.

. Operator generation and selection.

The agent can generate the operators of the problem spaces that are appropriate for
the current state (or all of the operators in the space) and use knowledge to select the

one most appropriate for achieving the goal.

Operator application.

The agent creates new states through operator application. These new states then
become candidates for state selection. Although this function is a state generation
function, we distinguish it from state generation, because it is based on the current

state and operator.

Under this approach, the operators create completely new states. Progress is made in
the problem space by jumping from one state to the next, possibly backing up to a
state generated earlier; i.e., one that is available from the stock of previously generated

states.

Our formulation assumed that the agent is serial at the problem space level, in that there is

only a single current goal, problem space, state, and operator at any time. For Soar 1, there

was also an unlimited stock of states that could be generated during problem solving and

the current state was selected from that stock.
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GPS or STRIPS. Their second weakness was that they could support only a single problem
space. Thus, they could not use different problem spaces, that is different sets of operators
and different representations, for different problems. GPS could be “programmed” with
different tasks, but it could encode only a single problem space at a time. Similarly, these
system could not switch problem spaces, nor could they use specialized problem spaces for
subproblems.

If problem spaces are to be a distinct computational level, it is necessary to precisely
define the processing that occurs within problem spaces and the types of objects that are
manipulated. The objects include goals, problem spaces, states, and operators. The exact
structure of these objects are unspecified at the problem space level, and their semantics
are defined in terms of the functions that apply to them. During the construction of the
first Soar implementation, it was unclear what functions were required at the problem space
level. We were driven by a combination of concerns, some arising from behavior we wished
the agent to exhibit (the UWM) and some from what had been learned about search and

problem spaces in AL The original set of functions proposed by Newell (1980), included:
1. Decide on success (the state is a desired state).
2. Decide on failure or suspension (the goal will not be achieved on this attempt).
3. Select a state from those directly available (if the current state is to be abandoned).
4. Select an operator to apply to the state.
5. Decide to save the new state for future use.

One of the breakthroughs in Soar 1 was to move to a more uniform list that arises from
the acts of generation and selection. Some of the original functions are subsumed by more
general functions (goal success and failure become selection of new goals), while others were
eliminated and assumed to happen automatically (saving a new state for future use). The
Soar 1 scheme assumes that there are two basic functions of generation and selection that
can be applied to any problem space object (goal, problem space, state, and operator), plus

there is operator application.

1. Goal generation and selection.

The agent can generate new goals for itself, and can also use knowledge to select the

11



1. Different methods are used for different tasks.
2. Different methods are used on the same task.

3. The methods arise from whatever knowledge is available at the time, without explicit

programming.

In sum, the idea was that the agent would behave as if it had every weak method, and that
the method that was most appropriate to the current task would be applied automatically.
With little or no knowledge about the task, the method would resemble the weakest of the
weak methods, exhaustive search. As more knowledge was added, the behavior of the agent
would change, and the method would evolve to more powerful methods. This required an
architecture in which knowledge can be added incrementally, and there is no precompiled set
of methods, but instead the methods emerge from the available knowledge. An agent that

behaved in this way was said to have a Universal Weak Method (UWM).

3.2 Problem Space Level

Given a desire to support the knowledge level and a universal weak method, it was critical
that our formulation had a flexible control scheme that allowed many different methods to
be specificed, as well as allowed a variety of knowledge to be used in controlling the problem
solving. Based on our experience with the IPS project, we realized that trying to achieve
a knowledge-level agent without an intermediate organizational framework would be futile.
This led Newell to consider problem spaces as a possible intermediate level of computation
[Newell, 1980], and in turn, led us to use problem spaces as a separate computational level
within Soar 1.

Many previous Al systems solved problems by casting them as search within a problem
space. LT, GPS, and STRIPS [Fikes and Nilsson, 1971] are canonical examples. However
they all had two basic weaknesses. Their first weakness was that they all used a single method
to control all problem solving, independent of the task. (In fact, one of the contributions
of GPS and STRIPS was that they demonstrated the usefulness of means-ends analysis.)

This restricted the types of knowledge they could encode. For example, it was not possible

to encode goal-independent operator selection heuristics, or state evaluation knowledge in
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duction systems, but still had a variety of scaling and efficiency problems, particularly

when rules were being learned automatically.

3 Soar 1 (1982)

Soar 1 arose out of two intertwined goals. The first was to create an architecture that sup-
ported problem spaces where production systems were used as the underlying representation
of knowledge. The second was to create an architecture that could support many different
weak methods. Both goals had existed in some form since the early seventies when the
importance of weak methods, problem spaces, and production systems were identified. How-

ever, their integration was to wait for at least a decade and the development of Soar 1. Soar

1 is described in Laird and Newell (1983a) and summarized in Laird and Newell (1983b) .

3.1 Knowledge Level

An analysis of architecture at the knowledge levels starts with considering the goals, physical
body (for actions and perception), and knowledge that are supported by the architecture. As
mentioned earlier, a knowledge-level agent will act in a way that is consistent with its goals
and knowledge. This abstracts away from the internal structures and processes of the agent,
which are exactly what must be determined in constructing Soar 1 as a production system.
However, by viewing the system at the knowledge level, we can confront issues concerning
the generality and acquisition of the system’s knowledge, independent of the underlying
structure.

Soar 1 was based on the observation that humans — our best example of knowledge-
level agents — can use many different methods for solving problems. The key question was
whether getting an agent to use such a range of methods required adding explicit knowledge
about the methods — as, for example, a library of methods — or whether just adding task
knowledge by itself can be sufficient to result in behavior that follows these methods. If task
knowledge alone is sufficient, the agent approaches a knowledge-level agent.

Our approach to this problem was to identify the following capabilities we wanted our

agent to support.



failure was that there was no overall framework for organizing tasks or control knowledge.
The concept of a production system as a model of memory was carried over verbatim to
Soar, as was the RETE match algorithm. However, their direct use as a control structure

was not.

2.5 Review

Newell and Simon’s work prior to Soar provided strong direction at all four levels of descrip-

tions, but still left much remaining to be done:

1. Knowledge Level
The idea of the knowledge level was proposed, but it was not yet clear how to apply it

constructively to the development and analysis of intelligent systems.

2. Problem Space Level
The basic concept of the problem space developed from LT, through GPS, and on to
the Problem Space and Weak Methods Hypotheses. So it was well defined prior to
the development of Soar. However there was little agreement as to the details of the
structure of the objects involved (goals, problem spaces, states, operators), the control
mechanisms for them (the weak methods), or the representation of knowledge. Also,
most systems that were created using the problem space paradigm were one of a kind,

with only a single problem space, and only limited types of goals and subgoals.

3. Symbolic Architecture Level
Symbolic representations and architectures, as developed in LT and GPS, are foun-
dational concepts in Soar. In addition, automatic subgoaling (as existed in a limited
manner in GPS), and the OPS production system languages [Forgy and McDermott,
1977] provided initial models of subgoaling and memory for Soar. However, the former
doesn’t specify how all of the other types of subgoals needed by an intelligent system
are to be created, while the latter requires significant adaptation for it to support the

problem space computational level.

4. Implementation Level

The RETE match algorithm provided an efficient algorithm for pattern matching in pro-



specific knowledge available, were not just a random collection, but instead a family, which
he termed “weak methods” [Newell, 1969]. (From here on in we’ll refer to this as the Weak
Methods Hypothesis, though Newell did not explicitly so name it). The weak methods were
weak, not because they failed to tightly constrain the search, but because they made weak
demands on the knowledge about the task required to apply the method. Many different
tasks could use hill climbing. All that is required is the ability to compare neighboring states
and select the best. Thus, the weak methods are exactly those methods that get used when
there is not “strong” knowledge available to solve a problem directly. They are the methods
of last resort, but they are also the methods that provide robustness in the face of novelty.
Thus, an understanding of the weak methods may provide an understanding of important
classes of control.

Both the Problem Space and Weak Methods Hypotheses were foundational in the devel-

opment of Soar.

2.4 Production Systems

In the late sixties, Newell and Simon began to recognize that the control structure for GPS
was too inflexible to capture of all of the variety of human behavior. Specifically, the table
of connections underlying means-ends analysis was only a part of the knowledge that the
subjects were using. They would also use knowledge that seemed specific to the situation,
and not necessarily goal-directed. This led Newell and Simon to consider production systems
as the underlying representation of knowledge for intelligent systems. Newell experimented
with a variety of production system langnages [Newell, 1972; Newell and Simon, 1972; Newell,
1973] in the late sixties and early seventies. In 1975, he formed a group to investigate
building large production systems, which evolved into the Instructable Production System
(IPS) project [Rychener and Newell, 1977]. During the lifetime of this project, the OPS
family of languages was developed — with OPS5 eventually becoming a de facto standard
for much of the expert systems community [Forgy, 1981] — along with the RETE match
algorithm [Forgy, 1982]. Although IPS led to the creation of the OPS languages, the RETE
match algorithm, and indirectly the creation of R1 [McDermott, 1982], it failed at its main

mission which was to create large, instructable production systems. One diagnosis of its



techniques, in which an architecture automatically generates subgoals based on an in-
ability to make progress. All versions of Soar, except for the very first, depend heavily

on automatic subgoaling.

2.3 Problem Spaces and Weak Methods

In both LT and GPS, a problem was represented as an initial state and a set of desired states
to be achieved by applying operators. Newell and Simon recognized this and proposed that
a general way to formulate tasks was in terms of a problem space. The problem space is the
set of states and the set of operators in which a problem can be attempted. The complete
set of states can either be pre-enumerated, or can be generated by applying operators to
existing states. Problem spaces provide a framework for organizing knowledge in terms of
operators, states, and control knowledge.

A given problem space can be used for many different problems. For each problem
there would be different initial state and desired states. Likewise, a given problem can be
attempted in different problem spaces, where different operators are possible and different
states could be generated. The difficulty of a problem, as formulated in a particular problem
space, is determined by the difficulty of transforming the initial state into one of the desired
states, which in turn is determined by factors such as the number of operators available
at each point of the search (the branching factor), the number of operators that must be
applied to achieve a desired state (the depth), and the knowledge available to control the
problem solving.

As work in Al progressed during the sixties, Newell was struck by the fact that many
systems and not just LT and GPS were based on search in problem spaces. This
observation led to the Problem Space Hypothesis, that all symbolic goal-oriented behavior
takes place in problem spaces [Newell, 1980]. This hypothesis promised to provide a uniform
structure for casting all problem solving. The observation also led to an attempt to char-
acterize the types of methods being used to control search in problem spaces. In analyzing
various Al systems of the era, Newell noticed that many of them shared the same methods,
such as means-ends analysis, generate and test, hypothesize and match, and hill climbing.

He hypothesized that these types of methods, which were used when there was little task-



operators to apply to a state to transform it step by step until a proof was constructed.
Although the term problem space would emerge years later, this was the first program
to formulate a task in terms of a problem space. The selection of operators was guided
by heuristics, and the complete process was called heuristic search. Heuristic search
introduces a framework for problem solving (operators applied to states to achieve a

goal) controlled by knowledge.

2.2 GPS

Following the stuccess of LT and some related work on chess [Newell et al., 1958], Newell,
Shaw, and Simon attempted to generalize the concepts of heuristic search and symbol systems
so that they could construct a single program that could solve many different problems. They
were guided in their work by comparisons between LT’s behavior and the protocols of humans
attempting to solve similar problems. The humans used a more goal-directed approach,
where operators were selected based on how well they reduced the difference between the
current state and the goal. This method, called means-ends analysis was ubiquitous in the
human protocols. Another observation was that humans created their own goals to help
them break the problem up into simpler problems. They did not restrict themselves to
just the goals of the task, but instead would create goals to achieve situations in which they
could apply operators that could not apply in the current situation, a method called operator
subgoaling. The system based on this insight was called the General Problem Solver (GPS),
because it was not limited to working in just a single domain [Newell and Simon, 1961].

As with LT, GPS also contained two key innovations that would later show up in Soar.

1. Symbolic Architecture:
Although means-ends analysis and operator subgoaling are powerful methods for prob-
lem solving — and are used in Soar applications — the most important lesson to be
taken from GPS is the separation of the fixed underlying control structure of the pro-
gram from the operator and control knowledge about the task: i.e., the separation of

architecture from knowledge. Thus, GPS was the first real symbolic architecture.

2. Automatic Subgoaling:

Operator subgoaling was the first example of a general class of automatic subgoaling



be matched with a time complexity independent of the number of productions. Does there
exist an implementation that supports this assumption? Thus, this level is an important

level both practically and theoretically.

2 Pre-Soar

Although Soar has evolved significantly over the last twelve years, its central intellectual core
still can be traced to a range of research done earlier by Allen Newell and Herbert Simon.
In this section we review the key developments that set the stage for Soar before launching

into the evolution of Soar.

2.1 LT

In 1954, Newell, Shaw, and Simon considered the possibility of creating a program that
could solve problems that required complex thought processes. Newell initially worked on a
chess machine [Newell, 1955] and then after considering geometry as a domain, settled with
Shaw and Simon on trying to construct a program that could prove some of the theorems
in Whitehead and Russell’s Principia Mathematica. On August 9, 1956, the Logic Theorist
(LT) created the first mechanical proof of a theorem [Newell and Simon, 1956; Newell et al.,
1957].

LT contained two innovations that would later show up in Soar.

1. Symbolic Representations:
All of the knowledge in LT was represented by symbol structures and all of the cognitive
processing occurred by symbol manipulation. This was in sharp contrast to the numeric

processing that was (and often still is) standard in computer programming.

2. Heuristic Search:
To build the proofs, LT created an initial data structure containing the initial axioms
and theorem to be proved. It then had discrete transformations that it could apply
to data structures to create new theorems by combining, modifying or decomposing
existing axioms and theorems. The data structure was called the state and the trans-

formations were called operators. A problem was solved by selecting the appropriate



the limitations on space and time imposed by the real world imply that this ideal can never
be completely achieved for sufficiently broad and complex combinations of knowledge and
goals. Here we will trace the expansion of types of goals and knowledge accessible to Soar
through the sequence of versions. For the reader who just wishes to get a flavor of “what
Soar can do.” this is the level on which to concentrate; however the emphasis of this paper
will be on the evolution of the other levels.

The problem-space level characterizes the structure of problem solving and reasoning in
an intelligent agent. It is intended to provide a physically realizable approximation of the
knowledge level. In general, it is concerned with the characterization of operators, states,
and problem spaces, plus the relationships between goals and subgoals. It sits between the
knowledge level, which abstracts away from all internal processing considerations, and the
symbolic architecture level which includes details of control low and memories. One hypoth-
esis underlying the research on Soar is that the problem-space level is a real computational
level with its own types of processing and media [Newell et al., 1991]. In Soar, the problem
space level determines how tasks are formulated. In many ways it is the level at which Soar
is most firmly entrenched and where it is the most unique (sic). Major changes could be —
and are — made to the lower levels, and as long as they continued to support the problem-
space level, Soar would still be Soar. Of course, evolution does also occur at this level as our
understanding of problem spaces increases, particularly as driven by a continuous expansion
of the range of tasks that we attempt to formulate in problem spaces.

The symbolic architecture level provides the basic control structure, memory organiza-
tion, and processing structure to support the problem-space level. Just as the task of the
problem-space level is to support the knowledge level, a major task throughout the devel-
opment of the Soar architecture has been to derive a symbolic architecture level that can
support the required flexibility of the problem space level.

The implementation level is the underlying technology that provides the symbolic ar-
chitecture level. For the most part, the details of the implementation are irrelevant to the
Soar architecture. The implementation does show through though in terms of the efficiency,
boundedness, and correctness of executing the various processes of the symbolic architecture

level. For example, at the symbolic architecture level, Soar assumes that productions can



4. Public distribution, via robustification and documentation.
5. External interaction, via destructive state modification.

6. Speed, portability, and maintainability, via formal specification and reimplementation
in C.

To improve the conceptual coherence of the presentation, we will occasionally “rational-
ize” history by moving the discussion of some capabilities forward and/or backward in time
(i.e., to an earlier or later version). For example, chunking was first developed in Soar 2, was
the major focus of Soar 3, and a continued locus of development in Soar 4 and (to a lesser
extent) in subsequent versions. For conceptual coherence, we will focus on chunking during
the discussion of Soar 3.

Within each major version of Soar, the presentation will be organized around four levels
of description: the knowledge level, the problem space level, the symbolic architecture level,
and the implementation level. The notion of levels of description first shows up in com-
puter science in Newell’s work with Gordon Bell on computer structure [Bell and Newell,
1971]. The levels for computer structure start with electronice devices and move up through
electrical circuits, logic circuits, register transfer systems and ultimately provide program
level-systems. Our analysis of Soar has the symbolic architecture level which corresponds
to the programming level, but the implementation level covers important details below the
symbol level that can not be directly mapped on to the register transfer level. The knowledge
level and problem space level are higher levels of description, both of which were articulated
recently by Newell.

The knowledge level is the most abstract level used to characterize the behavior of an
intelligent agent. It was originally proposed by Newell [Newell, 1982] as an analysis tool. At
the knowledge level, an intelligent agent is described only in terms of its knowledge, goals,
and body (perceptions and actions). The agent is considered to be a knowledge-level system
if it behaves according to the Principle of Rationality: the actions it intends are those that
its knowledge indicates will achieve its goals. One of the central goals of the Soar project is
to create agents that provide a good approximation to the knowledge-level ideal of rational

behavior across a wide range of knowledge and goals [Rosenbloom et al., 1991]; however,



1 Introduction

In the Spring of 1976, while trying to decide on which computer science graduate school to
attend, we (John Laird and Paul Rosenbloom) independently visited the Computer Science
Department of Carnegie Mellon University (CMU) in Pittsburgh. We were both interested in
artificial intelligence (Al) as our field of study, so we naturally met with Allen Newell. Newell
was fully immersed in production systems at the time, and was in the process of starting the
Instructable Production System project. His boundless enthusiasm was infectious, and we
decided independently — we did not meet each other until the first day of graduate school
— to attend CMU and work with Newell. That was undoubtably the best decision of our
professional careers.

In deciding to work with Newell, we had been captivated by the concept of creating
architectures in which Al systems could be built. Not necessarily hardware, but cognitive
architecturein the sense of the the fixed structures underlying intelligence [Newell et al., 1989;
Rosenbloom and Newell, 1993]. We saw this as a way of studying the properties of intelligence
in general, not just specific algorithms for specific problems, but architectures that could
support the variety of behaviors so characteristic of humans.

Over the next six years, there were many stops and starts in our research. For example,
during our first year, Newell was on sabbatical and both of us worked on other research
projects. Also both of us left Pittsburgh at different times in the middle of graduate school
to take a year off. However, by 1982, the first version of Soar was up and running. During
the next twelve years, Soar evolved through six different major versions, and by 1994, over
100 researchers were using Soar worldwide.

This paper is the story of the evolution of the Soar architecture, structured according
to its major versions, 1-6. Roughly, the major contributions of these six versions can be

characterized as follows:
1. Combining flexible search and knowledge, via problems spaces and productions.

2. Universal automatic subgoaling and reflection, via impasse detection and subgoal gen-

eration.

3. Learning, via chunking.
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Abstract

The origins of the Soar architecture can be traced back to the seminal research of
Allen Newell and Herbert Simon on symbol systems, heuristic search, goals, problem
spaces, and production systems. Since its official inception in 1982, Soar has evolved
through six major releases, as both an Al architecture and as the basis for a unified
theory of cognition. This paper traces this evolutionary path, starting with Soar’s
intellectual roots, and then proceeding through the stages defined by the six major
system releases. Each stage is characterized with respect to a hierarchy of four levels
of analysis: the knowledge level, the problem space level, the symbolic architecture

level, and the implementation level.



