
Wrong-Path Instruction Prefetching

Jim Pierce1 and Trevor Mudge

Department of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor

1. Jim Pierce was supported in this work by a grant from the Intel Corp.

Abstract

Instruction cache misses can severely limit the performance of both superscalar
processors and high speed sequential machines. Instruction cache prefetching
attempts to prevent misses, or at least reduce their cost, by bringing lines into the
instruction cache before they are accessed by the CPU fetch unit. There have been
several algorithms proposed to do this, most notably next-line prefetching and
table-based target prefetching schemes. A new scheme called wrong-path
prefetching is proposed which combines next-line prefetching and target-always
prefetching. Surprisingly, a large part of its performance is based upon prefetching
the not-taken path of conditional branches. Not only does wrong-path prefetching
achieve higher performance than next-line or table-based prefetching schemes, the
amount of additional hardware required is roughly the same as next-line and con-
siderable less than table-based implementations. When compared with no
prefetching, wrong-path prefetching can reduce the cache miss penalty by as much
as 70%. As with all prefetching methods, performance comes at the cost of addi-
tional memory traffic. The amount of traffic generated by wrong-path prefetching
is similar to that of the other schemes.

2 Wrong-Path Instruction Prefetching

1 Introduction

Instruction cache misses are detrimental to the performance of high-speed microprocessors.
As the differential between processor cycle time and memory access time grows and the degree of
instruction-level parallelism increases in superscalar architectures, the performance degradation
of cache misses will become even more apparent. Conventional cache designs will not satisfy the
processor’s growing demand for instructions. There are several strategies for improving cache
performance. The most common method, increasing the cache size and/or its associativity, con-
sumes additional chip area and becomes less effective as caches get larger. Compulsory misses
will not be reduced by the even the largest cache. In addition, increasing the cache associativity
lengthens the cycle time and could adversely affect the chip’s overall cycle time. To improve per-
formance while retaining the small size and speed of a direct-mapped cache, Jouppi proposed
adding a small buffer called a victim cache to a conventional direct-mapped cache design to
improve performance [4]. Victim caching reduces the number of conflict cache misses by holding
onto recently displaced lines. When a conflict miss occurs, the displaced line is stored in the small
(1 to 5 entry) fully-associative victim cache. A cache lookup then involves a parallel check in the
main cache and the victim cache. If the access hits the victim cache, the lines in the main victim
caches are swapped and a conflict miss is avoided.

 Cache prefetching is another method to increase cache performance and has been widely
studied. Prefetching is an attempt to fetch lines from memory into the cache before their instruc-
tions are required by the execution unit. To be effective, the prefetch strategy must accomplish
two things. It must be able to guess which cache lines will soon be needed by the fetch unit and it
must initiate the prefetch requests long before the instructions are needed so that miss latencies
can be reduced or eliminated completely. Theoretically, an optimal prefetch algorithm could
remove all cache misses by prefetching all instructions right before they are needed. Unfortu-
nately, non-sequential program flow makes it impossible for the prefetcher to always predict the
correct execution direction. Much work has been done to develop methods which anticipate the
direction of program flow and to prefetch instructions in this direction. This paper proposes a new
prefetching algorithm which makes no attempt to predict the correct direction. In fact, it relies
heavily on prefetching the wrong direction. Not only does this method outperform previously pro-
posed prefetching schemes, but it does so at a lower hardware cost.

The word prefetch can be found in several different contexts in current computer literature
and it is important we clarify exactly what we mean by cache prefetching and what problem this
paper intends to address. We are studying cache prefetch algorithms which reduce instruction
cache misses by prefetching instruction lines from memory into the cache. A source of confusion
is that the term prefetch is also used to denote the act of fetching multiple words from the cache
into the fetch unit of the execution pipeline. The goal of cache prefetching is to reduce cache
misses. The goal of what we will call instruction prefetching is to assist in instruction decode or to
increase the instruction issue rate. The Intel Architecture processors (i486 and Pentium) utilizes
cache-to-buffer prefetching to alleviate the decode problems associated with variable instruction
size and complex encodings [1]. Superscalar processors like the Alpha or Power2 architectures
prefetch multiple lines from the cache so that multiple instructions can be issued per cycle even
during branch conditions [7][13]. The PowerPC also prefetches multiple instructions from the
cache into prefetch buffers. It does this primarily because the instruction fetch must share a single

Wrong-Path Instruction Prefetching 3

port to the unified cache with data memory requests and thus it cannot fetch an instruction from
the cache every cycle. What is important to note here is that these four processors (and others like
them) perform instruction prefetching and not cache prefetching. In all the above examples,
instruction prefetching never initiates requests to memory. Instruction prefetching stops if the cor-
rect lines are not found in the cache. Finally, another use of the term prefetching applies to data
prefetching. Data prefetching attempts to reduce data cache misses by exploiting a program’s data
access patterns in order to prefetch data from memory [2][5]. This paper does not address data
prefetching issues.

2 Instruction Prefetching

Instruction prefetching can be done passively by modifying the cache organization to pro-
mote prefetching or by including additional hardware mechanisms to execute an explicit prefetch-
ing algorithm.

Long Cache Lines

The simplest form of prefetching is the use of long cache lines [11]. When a line is replaced,
new instructions are brought into the cache in advance of their use by the CPU, thereby reducing
or eliminating miss delays. The disadvantages are that longer lines take longer to fill, they
increase memory traffic, and they contribute to cache pollution due to the larger replacement gran-
ularity. A long instruction line which is only partially accessed will displace many existing
instruction words which may be needed in the future.

Next-Line Prefetching

Another approach to instruction prefetching is next-line prefetching. It tries to prefetch
sequential cache lines before they are needed by the CPU’s fetch unit. In this scheme, the current
cache line is defined as the line containing the instruction currently being fetched by the CPU. The
next line is the cache line located sequentially after the current line. Next-line prefetching works
in the following manner. If the next line is not resident in the cache, it will be prefetched when an
instruction located some distance into the current line is accessed. This specified distance is mea-
sured from the end of the cache line and is called the fetchahead distance, see Figure1. Next-line
prefetching predicts that execution will “fall-through” any conditional branches in the current line
and continue along the sequential path. The scheme requires little additional hardware since the
next line address is easily found. Unfortunately, next-line prefetching is unlikely to reduce misses
when execution proceeds down non-sequential execution paths caused by conditional branches,
jumps, and subroutine calls. In these cases, the next line guess will be incorrect and the correct
execution path will not be prefetched. Performance of the scheme is dependent upon the choice of
fetchahead distance. If the fetchahead distance is large, the prefetch is initiated early and the next
line is likely to have been received from memory in time for CPU fetch. However, increasing the
fetchahead distance increases the probability that a branch will be encountered and execution will
continue in a non-sequential direction rendering the next-line prefetch ineffectual. This useless
prefetch increases both memory traffic and cache pollution. In spite of these shortcomings, next-

4 Wrong-Path Instruction Prefetching

line prefetching has been shown to be an effective strategy, sometimes reducing cache misses by
20-50% [3].

Target-Line Prefetching

Target-line prefetching addresses next-line prefetching’s inability to correctly prefetch non-
sequential cache lines. When instructions in the current line are being executed, the next cache
line accessed might be the next sequential cache line or it might be a line containing the target of
a control instruction found in the current line. Since unconditional jump and subroutine call
instructions have a fixed target and conditional branch instructions are often resolved in the same
direction as they were when last executed, a good heuristic is to base the prefetch on the previous
behavior of the current line. Target-line prefetching uses a target prefetch table maintained in
hardware to supply the address of the next line to prefetch when the current line is accessed. The
table contains current line and successor line pairs. When instruction execution transfers from one
cache line to another line, two things happen in the prefetch table. The successor entry of the pre-
vious line is updated to be the address of new current line. Also, a lookup is done in the table to
find the successor line of the new line. If a successor line entry exists in the table and that line
does not currently reside in the cache, the line is prefetched from memory. By using this scheme,
instruction cache misses will be avoided or at least their miss penalty will be reduced, if the exe-
cution flow follows the path of the previous execution.

Hybrid Schemes

A hybrid scheme which combines both next-line and target prefetching was proposed in [3].
In this scheme, both a target line and next line can be prefetched, offering double protection
against a cache line miss. Next-line prefetching works as previously described. Target-line
prefetching is similar to that above except that if the successor line is the next sequential line, it is
not added to the target table. This saves table space thus enabling the table to hold more non-
sequential successor lines. The results are impressive: miss rates are reduced by a factor of 2 or 3.
In addition, the results in [3] show that the performance gain of the hybrid method is roughly the
sum of the gains achieved by implementing next-line and target prefetching separately.

Instruction currently being fetched Fetchahead Distance

Cache line

Beginning End

FIGURE 1. In next-line prefetching, once instruction fetch occurs within the fetchahead distance. the next
consecutive cache line will be prefetched.

Wrong-Path Instruction Prefetching 5

Performing target prefetching with the help of a prefetch target table is not without disadvan-
tages, however. First, significant hardware is required for the table and the associated logic which
performs the table lookups and updates. This uses additional chip area and could increase cycle
time. Second, the extra hardware has only limited benefit. Table-based target prefetching does not
help first-time accessed code since the table first needs to be set up with the proper links or cur-
rent-successor pairs. Thus compulsory misses are unaffected by target prefetching. Furthermore,
unlike a branch prediction table, even when the correct information does exist in the table it can-
not always be utilized. Upon re-execution of the code when the links are properly set, prefetching
will only occur if the target line has been previously displaced from the cache. In the likely event
that the line is still in the cache, the table entry space and lookup are wasted because prefetching is
not needed. This suggests that target prefetching using a table is best suited for small caches with
low associativity where lines are often displaced and then rereferenced. This was the proposed
application environment in [3].

It is interesting to note several points common to the above schemes. One is that prefetch
decisions are made at the cache line level. No instruction-specific information is used. This makes
sense because a prefetch decision must be made early and several cycles may pass before instruc-
tion recognition can take place in the decode stage of the pipeline. Another point is that the above
schemes try to predict the correct execution path and then prefetch only down the predicted path.
For instance, using a small fetchahead distance will bias the next-line prefetching scheme toward
the correct path by lowering the probability of a control instruction being within the fetchahead
distance. Target prefetching predicts that the correct direction in which to prefetch is the direction
of the previous execution. Even though the hybrid algorithm may prefetch lines down the wrong
path since it sometimes prefetches both a next line and a target line for the current line, such
actions are unintentional and rarely occur. Prefetching the correct path satisfies intuition since
only lines soon to be executed should be prefetched. The alternative, fetching wrong path lines
into the cache, will likely increase memory traffic and cause cache pollution.

3 Wrong-Path Prefetching

A recent study of ours showed that the intuition expressed above is partially false [9]. The
work primarily studied the effects of speculative execution on data cache performance. In particu-
lar, it focused on how data brought into the cache during speculative execution down what later
turned out to be a mispredicted path affected the cache miss rate and memory traffic. The results
showed that memory traffic increased due to additional speculatively executed instructions, as
might be expected. However, the data cache miss ratio did not increase significantly. In fact, the
number of data misses generated during the execution of correctly predicted paths decreased. In
other words, the mispredicted or wrong path data references acted as data prefetches for later cor-
rectly predicted path data accesses. In addition to data cache studies, the work also revealed that
on the benchmarks tested, over 50% of instructions accessed on mispredicted paths were later
accessed during correct path execution. This suggests that prefetching down wrong paths may
have some advantages and led to the development of a new prefetching strategy.

We propose a new algorithm calledwrong-path prefetching which is similar to the hybrid
scheme in the sense that it combines both target and next-line prefetching. The next line is
prefetched whenever instructions are accessed inside the fetchahead distance as described earlier.

6 Wrong-Path Instruction Prefetching

The major difference is in target prefetching. No target line addresses are saved and no attempt is
made to prefetch only the correct execution path. Instead, in the simplest wrong path scheme, the
line containing the target of a conditional branch is prefetched immediately after the branch
instruction is recognized in the decode stage. Thus, both paths of conditional branches are always
prefetched: the fall-through direction with next-line prefetching, and the target path with target
prefetching. Unfortunately, because the target is computed at such a late stage, prefetching the tar-
get line when the branch is taken is unproductive. A cache miss and a prefetch request would be
generated at the same time. Similarly, unconditional jump and subroutine call targets are not
prefetched since the target is always taken and the target address is produced too late. The target
prefetching part of the algorithm can only perform a potentially useful prefetch for a branch
which is not taken. If execution returns to the branch in the near future, and the branch is then
taken, because of the prefetch the target line will probably reside in the cache.

The obvious advantage of wrong-path prefetching over the hybrid algorithm is that no extra
hardware is required above that needed by next-line prefetching. All branch targets are prefetched
without regard to predicted direction and the existing instruction decoder computes the address of
the target. There are several reasons to believe that the performance of wrong path prefetching
might also compare favorably with other schemes. Wrong-path prefetching can prefetch target
paths which have yet to be executed unlike the table-based schemes which require a first execu-
tion pass to create the cache line links. In addition, wrong-path prefetching should perform better
than correct-path only schemes when there exists a large disparity between the CPU cycle time
and the memory speed. This is because other algorithms try to prefetch down target paths which
will be executed almost immediately, and if memory is slow the prefetch may not be initiated
soon enough. On the other hand, wrong-path prefetching prefetches lines down a path which is
not immediately taken thus it has more time to prefetch the line from a slow memory before the
path is executed. However, the performance of wrong-path prefetching does not come without
cost. Unavoidably, prefetching down not-taken paths will put lines into the cache that are never
accessed. This will increase both memory traffic and cache pollution. For the algorithm to be suc-
cessful, the benefits of prefetching must overcome the added pollution misses. The extra traffic
cannot be reduced, but memory bandwidth can be viewed as a hardware resource to be utilized to
reduce the performance degradation caused by instruction cache misses.

Again, it should be emphasized that wrong-path prefetching is fundamentally different from
the both path instruction prefetching done in some current superscalar processor designs. In these
architectures, words from both paths are copied from the cache to the prefetch buffer. After one of
the paths is executed, the wrong path words are removed from the buffer. Instruction prefetching
never causes a memory-to-cache transfer so the number of cache misses will not be affected. In
the proposed wrong-path prefetching scheme, lines containing instructions from not-taken paths
are routinely fetched from memory and stay resident in the cache.

One way to improve the performance of the wrong-path prefetching scheme would be to ini-
tiate target prefetches earlier. This would then remove misses or reduce miss latencies on target
paths which are taken. One way to do this would be to add a prefetch buffer which has the ability
to partially decode the instructions as they are stored there. When the buffer is filled, all control
instructions would immediately be detected and the target addresses would be queued for possible
prefetching. This would be beneficial in several ways. First, prefetches of taken branch paths

Wrong-Path Instruction Prefetching 7

would be initiated several cycles before the target instruction is actually fetched by the CPU. Sec-
ond, prefetching the targets of jump and subroutine call target would beneficial for the same rea-
son as taken branches. Thus, the earlier prefetch initiation will at least reduce miss latencies
caused by misses on taken target paths. Adding the hardware to detect control instructions in the
prefetch buffer allows wrong path prefetching to begin at most one cycle later than the table-based
target prefetching’s optimal case. Furthermore, wrong-path prefetching can prefetch multiple tar-
gets found in the same cache line which almost guarantees that the successor line will be cache
resident or prefetched. Adding a prefetch buffer with partial decode would only be practical with
fixed-length instructions using simple encoding and target address generation schemes. To reduce
the hardware complexity, the number of instructions decoded in the buffer could be limited. For
instance, only instructions in the last half of the buffer might be examined for control types.

4 Preliminary Experiments

Since the wrong-path prefetching algorithm relies on prefetching target lines that are not
taken, we first performed experiments which isolated the effects of prefetching lines only down
not-taken paths. The experiments were done on an i486 SysVR4 Unix platform using the SPEC
benchmarkgcc as the workload. Traces were generated usingIDtrace and then fed into a
prefetch/multi-cache simulator. IDtrace is a binary instrumentation tool for the Intel architecture
[8]. The prefetch simulator was programmed to prefetch lines from only not-taken paths of condi-
tional branches. Therefore, a not-taken branch causes the cache line containing the fall-through
address to be prefetched. A taken branch causes the target line to be prefetched. No other lines are
prefetched. Figure2 compares the number of cache misses when no prefetching is performed with
the miss performance of 4 variations of the described wrong-path-only prefetching algorithm. The
WPO-1, 2, and 3 algorithms represent prefetching 1, 2, and 3 consecutive wrong path lines
respectively. For instance, the WPO-2 algorithm would prefetch two cache lines down the not-
taken direction of every conditional branch. The profile algorithm, PROF-1, will be explained
later. It can be seen that prefetching only the lines from paths not immediately executed exhibits
surprisingly good results. The prefetching effect far outweighs the extra pollution generated by
sometimes prefetching unused cache lines.

One problem with this prefetching approach is the large amount of extra traffic generated, as
shown in Figure3. A way to reduce this traffic would be to eliminate prefetches of paths which
are never taken. Prefetching these paths cause extra traffic and contribute to cache pollution. Thus
wrong-path prefetching should not occur for conditional branches which are always taken or
always not-taken. To examine the effects of removing these wasted prefetches,gcc was profiled
to create a list of the conditional branches in which both the target and fall-through paths are taken
sometime during execution. The program was reexecuted using the Prof-1 prefetch algorithm.
Prof-1 uses the profile data to decide when to prefetch. It prefetches a cache line from the not-
taken path of a conditional branch only if the branch is in the profile list, i.e., if both directions of
the branch are taken sometime during program execution. This reduces the number of prefetches
since some branch paths are never taken but should not degrade the overall performance since the
removed prefetches prefetched only non-taken paths. In fact, Prof-1 should have better perfor-
mance than WPO-1 because of a reduction in cache pollution. Surprisingly, comparing the WPO-
1 and Prof-1 results in Figure2 and Figure3 shows that the expected traffic reduction was accom-
panied by an unexpected increase is cache misses. The unanticipated poor performance has two

8 Wrong-Path Instruction Prefetching

FIGURE 2. Instruction misses resulting from prefetching lines down only the mispredicted direction of conditional
branches. The benchmark was gcc run to completion on an i486 Unix machine. The cache was direct
mapped with a line size of 32 bytes.

4K 8K 16K 32K
0

500

1000

1500

2000

2500

3000

3500

4000
M

is
se

s
in

 t
h

o
u

sa
n

d
s

No Prefetch

WPO-1

WPO-2

WPO-3

Prof-1

FIGURE 3. Traffic generated by prefetching lines down only the mispredicted direction of conditional branches.
The benchmark was gcc run to completion on an i486 Unix machine.

4K 8K 16K 32K
0

50

100

150

200

250

M
e

m
o

ry
 tr

a
ffi

c
in

 m
ill

io
n

s
o

f b
yt

e
s

No Prefetch

WPO-1

WPO-2

WPO-3

Prof-1

Wrong-Path Instruction Prefetching 9

possible explanations. One is that the not-taken cache line contains more than just the not-taken
path instructions. The relatively long 32-byte line contains other paths which are soon to be
accessed. The other reason is that multiple branches can have the same target and different
branches can prefetch for each other. For instance, say that branch A and branch B have the same
target address but branch A never executes the target path and branch B does. The situation could
occur in which prefetching the wrong-path of branch A, the target path, prevents a miss from
occurring during the later execution of branch B’s target path. In these ways, prefetching never
executed branch directions has a positive effect on cache performance.

These preliminary experiments show that prefetching down not-taken paths can significantly
reduce cache misses at the cost of higher memory traffic. Methods which attempt to select which
branches to prefetch reduce the memory traffic but can also impair the algorithm’s ability to
reduce cache misses.

5 Algorithm Comparisons

5.1 Benchmarks and T ools

Experiments to evaluate prefetching algorithms were done using two different architectures:
an Intel i486 SysVR4 Unix system and a DECstation 5000 with a MIPS R3000 processor. The rel-
ative results were similar on each architecture and for brevity, only the MIPS results are shown
here. Traces were gathered usingIDtrace on the i486 andpixie on the DECstation [8][12].
The benchmarks used are listed in Table1. They currently consist of several C integer SPEC
benchmarks. The benchmarks were all run to completion.

The cache simulator allows variation of many cache parameters. We studied a range of cache
configurations including line sizes of 8, 16, 32, and 64 bytes, set associativities of 1, 2, 4, and 8
way, set sizes of 128, 256, 512, and 1024, and fetchahead distances of 1/4, 1/2, and 3/4 of the line
size. A representative subset of these results are used in the illustrations in this paper.

5.2 Hardware Considerations

A trace driven prefetch simulator models the performance of various algorithms observing
somewhat conservative hardware restrictions. An attempt was to make an accurate comparison by
basing the simulator on realistic and achievable hardware configurations. The simulator limits the
number of memory references per cycle, the number of tag lookups possible per cycle, and con-

10 Wrong-Path Instruction Prefetching

strains the ordering of prefetch requests.One hardware feature utilized in this study but not yet

found in general purpose microprocessors is a non-blocking instruction cache [2][6]. This allows
a memory request to be issued (but not completed) in each clock cycle. While this is not a neces-
sity for instruction prefetching, it allows a great deal of independence between the prefetch and
the fetch units. Other hardware and algorithm assumptions include:

• Two sets of cache tags. One is for regular instruction fetches and the other is for prefetch
checking. This enables instruction fetching and cache line prefetching to occur simulta-
neously.

• A limit of only one memory access per cycle. Depending upon the algorithm, multiple
prefetch requests might be generated per cycle and the CPU’s fetch unit might also issue a
request due to a cache miss. Requests not granted permission during a cycle are queued for
subsequent cycles. A cache miss takes precedence over any other request. Currently, the
order of precedence of the remaining requests is target prefetch, queued prefetch, and then
next-line prefetch.

• If multiple prefetch requests are generated, only one request can check the tags for cache res-
idency. Using the same precedence order, one (target or queued request) can check the tags,
the other (next-line request) is queued. Thus the queue may contain prefetch requests for
lines already resident in the cache.

• A queued prefetch ready to be initiated checks the cache tags before it initiates a memory
request since the cache may have changed since the request was queued and not all queued
prefetches are valid.

We expect that the performance of the prefetch algorithms could be improved by issuing
multiple memory requests through memory interleaving or by performing multiple cache tag
checks with higher tag replication. However, our conservative study puts all algorithms on an
equal footing for comparison and generates results which are achievable with today’s processor
technologies.

5.3 Performance Measurement

Most cache studies use the number of cache misses as their performance measure. Miss
reduction alone is not a sufficient measure of the performance of cache prefetching algorithms
because it does not account for differences in prefetch initiation times. For instance, suppose the

Program Description

Number of
MIPS
Instructions
(million)

Miss
Index

(misses
per thous.

instr .)

Traffic
Index

(bytes per
instr .)

gcc Gnu C compiler 83 74 2.4

sc spreadsheet program 1438 19 0.6

xlisp XLISP interpreter solving 8 queens problem 1028 35 1.2

TABLE 1. The benchmark set used our experiments. The last two columns give a measure of the instruction cache
load caused by the benchmark. The number are found using a 8K, 32-byte line, direct-mapped cache.

Wrong-Path Instruction Prefetching 11

miss latency for a processor is 5 cycles and one algorithm initiates a prefetch 3 cycles before the
fetch while the other only 1 cycle before the fetch. An instruction miss will occur in both cases but
the first prefetch algorithm will have reduced the miss penalty by more cycles thus giving better
performance. To account for both misses and timing differences in prefetch algorithms we define
a new measure called thepenalty index. It can be thought of as an approximation of the number of
cycles wasted due to cache misses assuming that no instruction reordering or other work is done
during these cycles to hide the delay cost. If an instruction miss occurs, we assume the memory
system has the ability to return the missed instruction word first so thatML, the miss latency, is
the miss delay. If, however, the first word in the cache line is the first word returned from memory,
our measurements will be a lower bound for the delay caused by instruction misses. With no
prefetching, the penalty index for some program and cache configuration is just

Thus, the penalty index is just the number of delay cycles caused by instruction cache misses. To
measure the wasted cycles when using a prefetching algorithm, the time between a line prefetch
and the first access of the line must be calculated. To do this, the simulator computes the prefetch
distance, which we define as the number of cycles between the prefetch and the first access of the
prefetched line. If the prefetch distance is greater than the memory latency, the prefetch is perfect
and there are no wasted cycles. On the other hand, if the prefetch distance isn, wheren is less than
the latency, then (ML - n) cycles are wasted. The following equation computes the penalty index
using a prefetch algorithm wherePDi is the number of prefetches with prefetch distance i.

To arrive at one penalty index number for the whole benchmark suite, the penalty index for each
benchmark was normalized by dividing by the number of instructions in the benchmark. The nor-
malized penalty index for the suite is then the average over all benchmarks.

5.4 Results

Figure4 compares the penalty index of the different algorithms described in the previous
sections. WP-1 is a wrong-path algorithm which prefetches 1 target line of each conditional
branch while the WP-2 algorithm initiates the prefetch of the target line in one cycle and the next
cache line following the target line in the next cycle. Similarly, WP-3 prefetches the target line
and the next two lines following the target line. The hybrid scheme always uses a direct-mapped,
32 entry target buffer except where noted. Fetchahead distances were 3/4 of the line size except
where noted. The wrong-path algorithms achieved the highest performance all the algorithms
studied. The next-line and the hybrid schemes reduced the penalty index by as much as 51% com-
pared to no prefetching. WP-1 reduced the penalty by 61% and WP-2 performed the best, reduc-
ing the penalty index by as much as 64%. The results of using WP-3 shows that it is possible to
get carried away with prefetching consecutive lines. The pollution costs are too high and the per-
formance is degraded after prefetching 2 consecutive target lines. We compared the algorithms

Penalty Index ML() # of misses() ML×=

Penalty Index ML() PDi

i 1=

ML

∑ ML i−()×=

12 Wrong-Path Instruction Prefetching

over many cache configurations including different line sizes, associativities, and fetchahead dis-
tances. The results shown are representative of all the cache configurations we studied.

As was expected, the wrong-path algorithms generate more traffic than the other schemes, as
shown in Figure5. WP-3 was the worst offender, again showing the pollution effect of prefetch-
ing too many consecutive lines. For these benchmarks, the hybrid algorithm performed little bet-
ter than next-line prefetching. The simulator was modified to show which types of prefetches
were most productive. To do this a prefetch gain was defined to be a prefetch which removes one
cache miss, i.e., had their been no prefetch, an instruction miss would have occurred. Figure6
shows the breakdown of which prefetches remove the cache misses. Next-line prefetching, of
course, does no target prefetching so has no target prefetch gain. In the wrong path algorithms,
target prefetching sometimes prefetches lines which would have been prefetched by the next-line
mechanism. This explain why the next-line gains are not as high as in pure next-line prefetching.
It is interesting to note that the hybrid scheme receives little benefit from its target buffer; almost
all its performance is gained from its next-line prefetching component. This is not the result found
in [3] where the benefits from next and target prefetching were shown to be about equal. We re-
ran the experiments using 64 and 128 entry target buffers but the results varied little from those
using the 32 entry buffer. This implies that the lack of target prefetching is not due to table entry
contention. We believe that the lack of target prefetching we see is due to our larger cache sizes.
In [3] the caches were quite small. With larger caches, once the line is brought into the cache, it is
more likely to be there on subsequent executions. As we noted earlier, table-based prefetching
will not occur during first time code execution because the links are not set up in the table. During
subsequent executions of the same code, the lines will still be resident in a large cache and again

FIGURE 4. Penalty index comparison of different prefetch algorithms. Each cache is direct-mapped with line size
of 32 bytes. Miss latency is 5 cycles.

4K 8K 16K 32K
0

50

100

150

200

250
P

en
al

ty
 c

yc
le

s
pe

r
th

ou
sa

nd
 in

st
ru

ct
io

ns

Cache Size (bytes)

No
Prefetch

Next Line

Hybrid

WP-1

WP-2

WP-3

Wrong-Path Instruction Prefetching 13

FIGURE 5. Traffic comparison generated by different prefetch algorithms. Each cache is direct-mapped with line
size of 32 bytes. The fetchahead distance is 24 bytes.

4K 8K 16K 32K
0

500

1000

1500

2000

2500
M

e
m

o
ry

 t
ra

ff
ic

 in
 b

yt
e

s
p

e
r

1
0

0
0

 in
st

ru
ct

io
n

s

Cache size (bytes)

No
Prefetch

Next Line

Hybrid

WP-1

WP-2

WP-3

FIGURE 6. Prefetch breakdown for different algorithms. The fetchahead distance is 24 bytes.

Next Line Hybrid WP-1 WP-2
0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

p
re

fe
tc

h
 g

a
in

s
 i
n

 t
h

o
u

s
a

n
d

s

Next Prefetch Gain

Target Prefetch Gain

14 Wrong-Path Instruction Prefetching

no prefetching is done. Thus the prefetcher has little occasion to benefit from the target buffer.
Other differences in our results and those found in [3] could stem from our having different hard-
ware considerations (e.g., allowing only one memory access initiation per cycle) or our use of dif-
ferent architectures and benchmarks.

Our results also show that prefetching algorithms become less effective as the miss latency
increases. Figure7 shows that for a 5 cycle miss latency, the 1 line wrong-path algorithm reduces
the misses by over 50%. When the latency increases to 10 cycles, the reduction is around 30% and

at 15 cycles it is down to around 20%. The other algorithms showed a similar performance decline
with increasing latency. The relative difference in performance between the wrong-path and
hybrid algorithms remained about the same for different latencies. We expected to see wrong-path
prefetching perform better relative to the other algorithms as the miss penalty increased. Our rea-
soning was that there is more time between a wrong-path line prefetch and its execution than
between a correct-path line and its execution. This greater time between prefetch and execution
would absorb a longer memory latency. Our results do not show this however, and it is unclear
whether our intuition was wrong or something else is going one which offsets the prefetch time
gained by prefetching the wrong path.

Another unexpected result was the unattractiveness of the decode buffer versions of wrong-
path prefetching. The decode buffer algorithms require additional hardware to partially decode
instructions in a prefetch buffer. Branch and jumps are detected and their targets are then calcu-
lated before the execution pipeline decode stage. This allows a target prefetch to be initiated a few
cycles before the target instruction is fetched. The WP-FD algorithm uses a decode buffer the
same size as the line size. Thus, if the line size is 8 words and instructions are one word long, 8

FIGURE 7. Prefetch performance for different miss latencies. The cache is 16K, direct-mapped, with a line size of
32 bytes.

5 10 15
0

50

100

150

200

250

300

P
en

al
ty

 c
yc

le
s

pe
r

th
ou

sa
nd

 in
st

ru
ct

io
ns

Miss Latency (cycles)

No
Prefetch

Next Line

Hybrid

WP-1

WP-2

WP-FD

Wrong-Path Instruction Prefetching 15

instructions are partially decoded in parallel. The control instruction target addresses are queued
for possible prefetch. During each subsequent cycle, if the memory bus is free, the cache line cor-
responding to the first queued target address is checked for residency and is prefetched if neces-
sary. WP-HD is similar except that only the last half of the words in the decode buffer are
decoded. This is a cost-saving implementation since less hardware is required than full buffer
decode yet many targets can still be prefetched in advance. However, as shown in Figure8, it
never performed as well as even the WP-1 version which requires much less hardware. WP-FD is
not a clear-cut winner either. It does perform better than WP-1 but only when the cache is large
does it do better than WP-2. When implemented with a 32K cache, WP-FD performed best over
all the experiments with a penalty index reduction of 70%. Since WP-2 requires much less hard-
ware, the best choice between the two algorithms depends upon cache size and hardware cost.

Since WP-FD’s relative performance improves with increased cache size, it would appear to suf-
fer from the pollution caused by the prefetching of many targets. As the cache gets bigger or asso-
ciativity increases, the pollution effect is hidden and its earlier prefetch initiation becomes evident
in a slightly reduced number of penalty cycles.

6 Conclusions

Wrong-path prefetching combines next-line prefetching with the prefetching of all branch
targets regardless of the predicted direction of branches. The algorithm substantially reduces the
cost of instruction cache misses while somewhat increasing the amount of memory traffic. A mea-
sure called the penalty index is introduced to compare the performance of various prefetching
algorithms. For all the cache configurations and benchmarks we studied, wrong-path prefetching

FIGURE 8. Penalty index comparison of more hardware intensive algorithms. All caches are direct mapped with
line size of 32 bytes. The fetchahead distance is 24 bytes. Miss latency is 5 cycles.

4K 8K 16K 32K
0

10

20

30

40

50

60

70

80

90

P
en

al
ty

 c
yc

le
s

pe
r

th
ou

sa
nd

 in
st

ru
ct

io
ns

Cache Size (bytes)

WP-1

WP-2

WP-3

WP-FD

WP-HD

16 Wrong-Path Instruction Prefetching

achieved higher performance than the other simulated prefetch algorithms. In addition, its hard-
ware requirements are no greater than that of next-line prefetching and substantially less than
table-based methods. If the cache is large, a slight performance gain can be acquired by using
additional hardware to implement a partial decode prefetch buffer which enables target prefetch-
ing to be initiated earlier. In short, wrong-path prefetching is a surprisingly attractive method to
reduce the detrimental effects of instruction cache misses.

Acknowledgments

We would like to thank Konrad Lai of the Intel Corp. for the ideas initiating this work and
his continued support. We would also like to thank David Nagle for his careful proofreading and
thoughtful suggestions.

References

[1] D. Alpert and D. Avnon, “Architecture of the Pentium Microprocessor,” IEEE MICRO, June 1993, pp. 11-21.

[2] T. Chen and J. Baer, “Reducing Memory Latency via Non-blocking and Prefetching Caches,”Proc. of the 5th
Int. Conf. Architectural Support for Programming Languages and Operating Systems, Oct. 1992, pp. 51-61.

[3] W.-C. Hsu and J. Smith, “Prefetching in supercomputer instruction caches,”Supercomputing ‘92, Nov. 1992,
pp. 588-597.

[4] N. Jouppi. “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache
and Prefetch Buffers,” Proc. of the 17th Int. Symp. on Computer Architecture, Aug. 1990, pp. 364-373.

[5] A. Klaiber and H. Levy, “An Architecture for Software-Controlled Data Prefetching,”Proc. of the 18th Int.
Symp. on Computer Architecture, May 1991, pp. 43-53.

[6] D. Kroft, “Lockup-free Instruction Fetch/prefetch Cache Organization,” Proc. of the 8th Int. Symp. on Com-
puter Architecture, May 1981, pp. 81-87.

[7] E. McLellan, “The Alpha AXP Architecture and 21064 Processor,” IEEE Micro, June 1993, pp. 26-47.

[8] J. Pierce and T. Mudge,IDtrace: A Tracing Tool for i486 Simulation, Technical Report CSE-TR-203-94, Dept.
of Electrical Engineering. and Computer Science, University of Michigan.

[9] J. Pierce and T. Mudge, “The Effect of Speculative Execution on Cache Performance,”Proc. of the Int. Paral-
lel Processing Symposium,April 1994, pp. 172-179.

[10] J. Quinlan and K. Lai,Tynero: A Multiple Cache Simulator, Technical Report, Intel Corp., Hillsboro, OR, May
1991.

[11] A.J. Smith, “Cache Memories,”ACM Computing Surveys, Sep. 1982, pp. 473-530.

[12] M. Smith,Tracing with Pixie, Technical Report, Center for Integrated Systems, Stanford University.

[13] S. Weiss and J. Smith,Power and the PowerPC,San Mateo, CA: Morgan Kaufmann, 1994.

Wrong-Path Instruction Prefetching 17

