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Optimization is often a question of wa@me should put oreemoney in immving performancéAs far as

large storage hierahies go, intuition suggests (and common practice stppadding as much as is
affordable of the fastest technology available. Many cache hilkysstudies have shown that this is often

not the optimal apmrach, and we show that for mass storage hirs it always tends to be theong
appmoach. For lage data sets, as is the case for netwdeksivers, a machine with no RAM and several
gigabytes of disk performs 30% faster than a machine with no disk and a cost-equivalent amount of RAM.

This paper pesents a mathematical analysis of the optimization of an I/O bleyas well as trace
driven simulations of a networltefiserer in suppat of the analysis.

1.0 Introduction

Over the past several years, there has been a substantial increase in the speed and capacity demands placed on comp
memory systems. Great strides have been made in the capacity of mass storage devices such as magnetic disk, tape, ¢
optical media, but improvements in the speed of these devices has not kept up with the improvements in CPU speeds ai
semiconductor memorgZaching is used to hide the d&incy but the widening gap between semiconductor memory and
magnetic storage is making it easy to lose much performance through poor systgaoratiotii Lager miss costs need

to be ofset by higher hit rates, inducing system administrators to buy more and more main memory for workstations; this
is not necessarily the correct thing to do, especially in the cade séifvers. In this environment, it is very important to
spend ona money wiselyas the costdiures are staggering and $5,000 misplaced can result iiei@dde in perfor

mance of more than a factor of two.

Historically, much emphasis and attention has been paid to optimizing cache hierf&i¢a]gkl][14][19], to managing
large stores of data, and to having enough memory in a sy@lehowever little attention has been paid to how all the
optimizations fi togetherPrevious studies have demonstrated that the optimadisizaumber of cache levels increase
with an increasing data set s{8[6][14], and yet as our systems growgkar we continue to pour RAM into systems
instead of adding to the caches on disk, or even more levels in the hierarchy




Typically, system administrators play a reactive game, adding more RAM when the system is thrashing, and adding more
disk when the users complain of too littlle fspaceWe demonstrate that this technique can cost over 30% inperfor
mance, and most system cgpuifiations tend to sit in the worst-case region.

1.1 Direction

The goal is to optimize the mass storage hierarchy under given cost constraints as well as reality constraints; for instance,
DRAMs are not available in a continuum of speeds and sizes, but instead come in a few different speeds and only a few
different cost-effective sizes.

Already, much research has gone to optimizing single-user workstation-class machines on a network, and the results are
largely buy more RAM. The focus of this paper is insteaw to optimize machines connected to mass stofdgse

few but important machines are typically file servers, with allotted budgets large enough to allow an administrator to have
possibly too many configurations to choose from.

1.2 Background

Caching is used to mask the unacceptable latency of accessing slow déhedesrd disk, which was once used as the

mass store, is now used as a cache to evgerltertiary storage, and the semiconductor memory becomes merely a
higherlevel cacheThe enormity of I/O space is changing the way computer systems are being used, designed, and opti-
mized.

There have been a number of research projects exploring this new frontier of computing. Nakagda] suglgested
replacing the entire hierarchy with a singlegrfast magneto-optical arrayading the top level access time for a much
higher bandwidth. In addition, less burden would be placed on the server machine due to a reduction in the overhead of
copying data back and forth between several levels of storage devices. SeverdBHap@@] suggest the use of non-

volatile RAM to improve 1/O performance by providing a reliable writefdrufo reduce physical write tfed and

improve response time. Finglligture devices such as holost{it@] are projected totfnicely in between semiconductor
memory and magnetic disk in the storage hierarelojostore technology fdrs capacity that approaches the density of
magnetic disks with access times closer to semiconductor memory

Another class of research involves the re@anfihg of traditional I/O devices in novel ways, rather than adding new
types. Combining devices such as magnetic disk drives into disk arrays exploits parallelism yielding an increase in band-
width [10]. Tape striping performs a similar optimization for magnetic tape di8les

However in the many papers on makingdarstorage systems fastrere has been little mention of the enormous wealth

of research done to optimize cache hierarchies. Most of the research mentioned looks at improving a single level of the
hierarchy or reducing the number of levels in the system. It is perhaps an obvious point, but one which hagaheen lar
ignored; the work done inrfiling optimal memory hierarchies is very applicable to the area of mass storage hierarchies.

1.3 Results

This paper presents a new twist on old models for cache hierarchies, as applicable to mass storage fikeanubikss.
uses a measure of program traces that is independent of cache sizes gathtion8; something lacking in many cache
analysis reportsThe model is used to predict hierarchy cgafation behavior in the face of cost constraints, and simula-
tions of a network e server are used to check the model.

The results are that finding an optimal configuration at some cost point is partly a function of finding the optimal configu-
ration at a smaller cost point, i.e. the optimization problem has optimal subproblems. This is good news to system admin-
istrators; it suggests that if a certain amount of money is spent creating an optimal system configuration, that money will
not be wasted when it comes time to upgrade the system (as long as the technologies involved do not change radically).
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An optimal configuration at a higher cost point will not hlagsof anything than the original configuration; it will never
make sense to take some memory and trade it in for disk, or vice versa.

A surprising result is that a balanced system is one with several gigabytes of disk caath&AMIRemember that this

paper is concerned with server machines, which is analogous to looking at level-2 caches; the program traces seen by a
cache have been filtered by the L1 cache and exhibit less locality of reference, driving miss ratios up by lariefactors

It is not surprising, then, that in order to improve performance of a server machine, size counts more than speed. A simile
result is championed throughout the literature; when you haven’'t much money to spend, or when the locality is poor, large
and cheap is better than small and fa8{[18].

A performance ratio is presented which appears in many of the calculations. It is derivable from the base equations and
independent of cache sizes, hierarchy configurations, and process traces. It is a characterization of how the technologies
the hierarchy interact, in terms of performance as well as cost.

The performance ratio is used to predict behavior and where optimal configurations lie. A very simple heuristic is pre-
sented which uses the ratio and for any size of the L1 cache produces the optimal size for the L2 cache, and vice versa.
Results are calculated based upon a given workload and are specific to that workload, however that and the technology
specs (cost per bit, access time) are all that the model depends upon.

The main conclusion drawn is that you can never have too much disk. As file sizes grow, as the number of users grows, ¢
the number of files per user grows, the importance of large on-line storage will grow. Typical client-side disk caches are
on the order of several to several dozen megabytes in size, so a server-side L1 RAM cache of this size or less is a waste
valuable funds. However, as most network file systems have some sort of write-through policy to guarantee consistency
writes tend to make the client-side cache look smaller, so several megabytes of RAM will not be useless.

Regardless, a fundamental result is that there should be several gigabytes more disk cache than RAM cache in a syster
which is not to be confused with simply attaching disk to a system. Disk cache is to eatiredgas cache to the file

system; it is not meant to simply contain the file system. Performance numbers indicate that a poorly configured system
can be several times slower than the optimal configuration at the same cost, so the distinction is critical.

1.4 Overview of Paper

Section2.0,Mass Storage Hierahies,describes mass storage hierarchies and the technologies that comprise them,
Section3.0,MathematicalAnalysis presents a model of such hierarchies and analyzes the model to determine iaw to fi
optimal confgurations at given cost constrairgction4.0, Simulationsdescribes the simulator and program traces used
to check the validity of the model, whifection5.0, Comparison of Simulated addalytical Resultscompares the

results of the simulations with the conclusions drawn directly from the model.

2.0 Mass Storage Hierarchies

A typical mass storage hierarchy consists of semiconductor memory used a$df@dmlé by the operating system, one
or more magnetic disks, and agartertiary storage device such as a cartridge tape or optical disk caksusterage
requirements become greatifie use of more costfettive storage media, such as magnetic tape and optical disks,
become an integral part of the storage hierarthig paper assumes a system gpnfition similar to that described in
Antonelli, et al [2]; a lage tertiary storage device housing the entieesfystem, with RAM and magnetic disks acting as
L1 and L2 caches on top.

The following sections describe the various technologies used in storage hierarchies, including their strengths, their weal
nesses, their costs and their performance numbers.

Optimization of Mass Storage Hierarchies 3



2.1 Volatile Semiconductor Memory

Volatile semiconductor memartypically DRAM, is what is primarily used as the top level of the storage hierarchy
DRAMs can be accessed in tens to hundreds of nanoseconds (typically 80), and cost approximately $30 peflhegabyte
DRAMS have a transfer rate of roughly 160 MB/s, derived from a latenagt@adicess on a page of 80 ns and subse-
guent accesses to the same page are on the order of12%.ns

DRAM is very good at improving I/O read performance butesaffrom its volatility; it does little good in speeding up
writes, as in order to maintain consistency and integrity writes must often pass immediately through the volatile RAM
cache to some non-volatile storage (typically disk) at a lower level.

2.2 Non-Volatile Semiconductor Memory

Several types of devices finto this categoryCurrently NVRAMs have similar access times to DRAMs, but slightly

higher costs per megabyfhe most common type of NVRAM is battery-backed DRAMis confguration obviously

has the same access latency of regular DRAM, but with the additional cost of the battery or uninterruptible power supply
Safe RAM[7] is implemented in this form of NVRAM.

The advantage that non-volatile memory holds over volatile RAM is that it can truly be used in place of disk. Once an
item of data is in non-volatile RAM it is as safe as on disk and need noshedlout just to ensure its integrithe

result is faster writes through the use of NVRA®|. Also, Flash RAM (a type of NVRAM) has cells that tend to be

much smaller than DRAM cells, indicating a possibility that Flash will in the future become cheaper than DRAM.

2.3 Volume Holographic Storage

Volume holographic storagbdlostog) is a page-oriented device that writes and reads data in an optical fermata
consists of a 2-D array of spots called a pape. storage medium for a read-write holostore subsystem can be a photo-
refractive crystalThe device is called holostore is because the Fourier transform of the data spot array is a hologram.
Pages are placed in the photo-refractive crystal as a 2-D array of stacks and are accessed by a lighadiedm dif
through the crystal at dé@rent angles.

The advantage to holostore is that the access time for data is projected to be on the order of a few microseconds, and all
data on a page is retrieved simultaneously (which is not meant to imply that it all arrives into main memory or the proces-
sor cache simultaneouslyihe storage capacity of holostore is competitive with magnetic or optical disk; since itis a 3-D
storage media, its volumetric storage density is extremely[hifjhUnfortunatelyit is not yet available.

2.4 Magnetic Disk

Magnetic disks are most commonly used for on-line storegeess latencies for magnetic disks make them barely fast
enough to be considered “on-line,” and they are still far too slow to communicate directly with a prélisksocess

times are typically in the tens of milliseconds, and for this reason magnetic disks would typically be used as a second-
level cache (below the I/O Bigi Memory) in the storage hierarciyost installations actually use magnetic disks not as

a cache to thel& system but to store the entire ffystem itselfAs suggested if2] and in talks given bgntonelli this

tends to be an increasing waste of precious resourcés sygstems get lger.

Although the access time for magnetic disks have been improving at a very slow rate, capacity continues to grow rapidly
Striping data among several disks in a disk agagh as in RAI10] can improve the bandwidth of magnetic disk

devices, but the single-request latency remains high for small regygstsl bandwidth numbers for disk are around 10
MB/s, average latencies are around 10 ms, and fge @nives the cost is $0.50 per NIB.
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2.5 Magnetic T ape

Traditionally, magnetic tape has been used as a badeugyitem not very well integrated with the rest of the devices in

the hierarchyThe lage storage capacity and low price-b@rmakes this medium very attractive for tertiary storage as

user fie spaces continue to gro®ince tape is a serial device, the latency for accessing data on a tape can be very long
due to the time to serially search through the tape for the correct data. In addition, writes may only be done in an appent
only fashion.

If properly placed into a storage hierarchgwever magnetic tape can beedtively usedAssuming the higher levels of

the hierarchy service most of thiefaccesses, the average access time for accessing data in a storage system backed by
magnetic tape can remain reasonable. Similar to magnetic disks, tape striping has been proposed to improve the band-
width of magnetic tape devic§g].

Bandwidth numbers for cartridge tape drives range from 100 KB/s to 50 MB/s, average seek times are around 10 sec to £
sec, depending upon the technology and capacity of the cafigidge

2.6 Optical and Magneto-Optical Disk

Slow to become mainstream for a variety of reasons, optical disks nevertheless have the potential to replace magnetic ta
as the tertiary storage media of choice. Optical disks have a pritx-pamilar to magnetic tape and allowiefent, ran-

dom access to lge volumes of data and could very well prove to be the mfwetiee of the twd15]. In fact, Nakagomi,

et al.[13] suggest replacing everything from the magnetic disk array on down to the tape backup devices wigh one lar
(terabyte-sized) magneto-optical device.

Optical disk bandwidth diures range from less than 1 MB/s to just over 10 MB/s, average seek times range from 60 ms
for smaller drives to 7 seconds fordarjukeboxe$16].

3.0 Mathematical Analysis

Quite a bit has been published on the optimization of cache hierarchies. Chow showed that the optimum number of cact
levels scales with the logarithm of the capacity of the cache hiergj{6}. Rege and Garcia-Molina demonstrated that

it is often better to have more of a slower device than less of a faster [@\i8¢ Welch showed that the optimal size of

each level must be proportional to the amount of time spent servicing requests out of tiE@]evel

This paper builds upon previous cache studies with one major twist. Previous studies have been able to find solutions fc
optimal hierarchy configurations, but the results contained dependencies upon the cache configuration; the number of le
els or the sizes of the levels or the hit rates of the levels. This paper presents a model for a cache hierarchy that is depe
dent upon the characterization of the technologies that make up the hierarchy as well as a characterization of the
application workloads placed upon the hierarchy and nothing else. This makes it very easy to find closed form solutions tc
the optimization problem.

3.1 Welch’'s Analysis

Welch took a model of a memory hierarchy from CH6jvand concluded that if you have xefil budget and a known set

of probabilities of hitting any given level of a memory hierargtop can find the optimal appropriation of funds to the
various hierarchy levels, so that the averafgctfe access time is minimizethis optimal appropriation leads to such a
balancedmemory hierarchy when the proportion of money spent at a given level is equal to the proportion of time spent
at that level servicing reque$i®].
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Formally, if every hierarchy leveil has probability?, of being accessed, every level has a total Bogqual to cost/byte
times capacity), and the time to access hierarchy leid], then for every fed total system cost = z B, the average
time per access,, = 2 B,t; is minimized when

avg S
which is when the proportion of dollars spent at each level is equal to the proportion of time spent at ed¢hweuadl
like to be able to rearrange this to get

S
Tag  Pili

which would suggest that to minimize the average accessTg\rlgethe fractions/ T, should be conserved across all
levels of the hierarchyor a given system cost If this were true, then to maintain a balanced memory hierarchy when
you increase the capacity of the hierar¢hg amount speit each leveheeds to increase, proportional to the technolo-
gy’s performance and inversely proportional to the amount of time spent at théésushing that the probability distri-
butions do not change by an enormous amount for small changethmsimple result is that one should add a little to
every level in the hierarchy when spending money on upgrading.

The problem is that the probability distributiatschange; eacR, is a function of the memory hierarchy capufiation
and of the workload placed upon it, which is why the variable shows up in the results; you cannot gefTitie @faty
Welch’s theorem stands, you can know when you have reached an optimgliaiidin, but solving for one gets a little
tricky.

3.2 Present W ork: The System Model

The problems with previous analytical cache studies are that in order to make the analysis tractable, they often make a
number of assumptions which make the analyses less redlistige assumptions include

* the availability of a continuum of device technologies,

* that the fault probabilities (miss ratios) of the individual hierarchy levels obey a power function,
* that the cost per bit of a technology is derivable from its speed, and

* that every technology obeys the same cost-speed relation.

This analysis depends only upon the cost per bit and access times of the technologies that make up the hierarchies, and a
characterization of program trac@ie assumptions are that cold start and compulsory misses can be ignored for the
moment (compulsory misses in a netwohk §ierver on a scale of months are constant, and so disappearndhentfie

minimum), and so can write behavi®his last assumption is a rathergarone, and is the subject of our ongoing

research.

3.2.1 Stack Distance Curves

In this analysis, we make use of two related characterizations of program traces; the stack distance curves (the cumulative
reference curve and its derivativéhey give an insight into the locality of a program trace by measuring the LRU stack
distance between successive references to the same item; i.e. if an LRU stack were being maintained (as it would in the
case of a cache), how far down the item would be on its next refefdmnegives a good indication of how well any

given trace would perform with a cache of a spediize; if you know that 80% of all requests are within 64K of their
previous reference, then a 64K cache would have a hit rate of 80% on thattira@xample makes use of thesffi

curve, the cumulative reference curve; it plots the cumulative number of references against the stack depth (it becomes a
cumulative probability curve if it is normalized by the number of references).
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The second graph is the derivative of thstfiit efectively plots the change hit rate as a function of the cacheAsize.

small values of x (cache size), small changes mage Hiferences, and further out, ¢gar changes in cache sizes are
necessary to account for the saméedénce in hit rateThe result is the number of references at a given stack depth (alter
nately the probability of each stack depth, if normalized) plotted against the stack depth in bytes, and the area under the
curve represents the number of references that are hits to a given cache size.

We expect the graphs to look something like the following:

\%

Qumul ati ve Reference Qurve Dfferential Qurve

FIGURE 1. The two stack distance curves :the cumulative probability curve and its differential, the byte
distance probability curve. Each plots stack distance against number of references, or, if
normalized by the total number of references, the probability of each reference. If the curves are
normalized, the cumulative probability tops out at a value of one, meaning that the area under
the differential curve is defined to be 1.

In this paperwe will use normalized graphs so that the y-coordinate can be interpreted as a probability per reference, anc
the area under the tBfential can be defed to be 1.

3.2.2 The Analytical System Model

The stack distance curves are useful in the following way: tferelittial curve represents the number of references at any
given stack depth, so a cache hierarchy can be modeled in the following riiaieriet cache has a sizegf and a time

to reference of, . Itis hit on every reference (whether the referencénisa@ not) and so each reference requires at least

timet, ;. Thetotal number of accesses is the area under the curve, so the total time spent in the L1 cache is given by

9]

tLlI p(x)dx
0

wherep(x) is the diferential.

The number ohits to the L1 cache is equal to the area under the curve frorg 0,teo the number of misses is the rest
of the areaThis, then, is the number of requests that will be seen by the L2 cache. If the size and access time of the L2

cache are defed ass , andt, ,, the total time spent by the L2 cache will be

00

tLZJ’ p(x)dx
St1

Since we have normalized the graphs to represent probaiéitgrea frons , to infinity is the L1 missatio rather than

the misscount and the equations become a measure of time per reference, instead of the total running time of the entire
trace.The average time per reference of the whole hierarchy is the sum of the average times spent in each of the hierarct
levels; the general time formula is given by
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Tavg = tLlj'p(x)dx+tL2J’ p(x)dx+tL3J' pEYdX+ ...+t I p(x)dx (EQ1)
0

Si1 Si2 Stn-1

which is very like Chows formula (also used By/elch)
Tavg = ZHiti
1

where the time to access is the sum of the access times of each level scaled by the hit rates which are (equal to the miss
rates of the next highest lev§b)][6][19].

3.2.3 Defining the T radeoffs

In this paperwe are interested in hierarchies consisting of RAM, Disk,Teniiary Storage, and will concern ourselves
with the following instance dEquationl:

Tavg = tRAMJ-p(X)dx-"tDisk I p(X)dx-"t‘]ukebox _[ p(X)dX
0 S S

RAM Disk

Since the probability integral from 0 to iniiy is defned to be 1, we get

Tavg = tRAM +tDisk I p(x)dX+tJukebox _[ p()dx (EQ2)
Sram Sbisk

Note the absence of any reference to the size of the tertiary stbnégis as it should be, since if the bottom level of the
hierarchy did not contain everything referenced, it would be considered a cache to the lowEhéetiele to reference

the tertiary storage does show up in the formula, scaled by the miss rate of the Disk level, which also makes intuitive
sense.

We wish to know the behavior of the optimal cgofation given a fied cost constraintVe are only concerned with the
cost of the cache system, so if the total system budget is giverabyg the costs per bit of RAM and disk are given by
Cram @Ndcp, g, We have

B=c S

RAM c

rRaM * CpiskSpisk (EQ3)

We can use these equations talfivhere the tradeibpoints in the confjuration lie Assume for the moment that as the
system budget increases, the optimal gurfition will not rearrange the previous cgnfiation; that as more money is
allotted to the system it will not become advantageous to throw away some amount of disk for RAM or vice versa (this
will be shown to be the case latek).any point, we can add a cost-equivalent amount of RAM or disk, and all we need to
do is determine which addition will make the entire system fdstéus say that we have an arbitrarfetiéntial curve

for p(x) that looks like the following:
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wherea = s.,,, andb = s, . Then the expected average time per access is givegqustion2. At this point, we can
add an amoumta of RAM to the system,

a+Aa

and obtain a savings in time per access by reducing the number of accesses that misst Ie\thedf the hierarchiyhis
savings is equal to the time to access the Disk level multiplied by the number of accesses saved; the area under the cur
gained in RAM by adding\a.

a+Aa

Tavgsaved = tDisk I pO)dx (EQ 4)
a

Alternately we can add a cost-equivalent amount of disk to the syatiemyheredacg,,, = Abcy, o,

b+Ab

and obtain a savings in the average access time of

b+ Ab

Tavgsaved = tJukebox I p(X)dX (EQ 5)
b

The amount of disk or RAM one can add to the system, the shape of the probability curves, and the existing hierarchy
setup are all completely independent of each oftterefore the optimization question is whether the horizontal change

of adding a chunk of disk buys more accesses (scaled by the time to access tertiary storage) than adding a sliver of RAI
(scaled by the time to access didK)e area under the disk portion of the curve cfordito be much smaller than the

area under the RAM portion of the curve, as it is scaled by an access time that is typically 100gemtsalathe access

time scaling the area under the RAM portion of the curve, and the tré&leqtial when the ratio of the areas is equal to

the ratio of the access times. Since the sizes of RAM lie in the steep portion of the curve, while the sizes of disk are out
where the curve probablyaftens out, one can easily see this being the case, and so the answer to the optimization ques-
tion is certainly not obvious.

3.3 Present Work: The Analysis

In this section the following topics are cover8egction3.3.1,Finding Optimal Confjurations,analyzes the equations
from the previous section, alction3.3.2, The Cossover Pointdetermines where thedt dollar should go in and at
what point it makes sense to add thst foit of RAM or disk. FinallySection3.3.3,Modeling the Diffegntial as an Expo-
nential,andSection3.3.4,Modeling the Diffeential as a Polynomiahssume the shape of the probability curve follows
some well-defied functions and the sections predict where the interesting things happen.
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3.3.1 Finding Optimal Confi gurations

We can now fid the optimal condjurations for all values of the system budget. In the following sectiors,|ef s .
and Sukebox represent the sizes (_)f the Igvels in the hierarchy (units = MBJel, to g andt; . pox represenF the .
access time for those technologies (units = sec), argd Jgtandc,, represent the costs of those technologies (units =

dollars/MB). B represents the total system budget, in dollars.

Let us assume that the féifential curve has no local minima (which is intuitively realistic for average workloads; remem-
ber that we are intent on optimizing a sergereven if the original full trace has a curve that looksthikeollowing:

size of client cache

we only see the portion of the traces which reaches the server; that portion which spills out of the client-sidéeache).
spillover portion is represented by the tail of the curve to the right of the vertical line in theTdrispas some interest-
ing implications concerning the size of client-side caches; for example if thesctiantie is too small and the portion of
the 1/0 requests that spills out to the server has a locality curve with local maxima and minima, then the server could
believe there to be global minimums in access time where in fact there are only local minimums.

We have an optimal cogfiiration WhenTan is minimized. Usindgequation2 andEquation3 and remembering that

d d?f o f
£B; (X)dXE = —f(a)

oT
we allows,,, to vary with each given system budget and fninimums when 2% = 0;
Sram
oT c B-s,,,,C
avg _ RAM RAM “"RAM
as “toiskP(Sram) * Liukebox - Ch( c )
RAM Disk Disk

giving solutions where

P(Sram) _ LiukeboxCrAM (EQ6)
P(Spigid) tpiskCoisk

The ratio on the right hand side turns out to be a recurring theme, so we assign it adghibegferformance ratio.

U5 ukeboxCrAM

vy=- — —— (EQT7)
t (o

Disk~Disk
The ratio of the values of the fifential ats;,,, ands;,;, is @ measure of the &fence in hit rates; each value represents
the number of references that would hit in the cache if the cache were increased by a small (essentially zeroh@amount.
performance ratio gets tgar as disk performance increases relative to tertiary storage, and as the price of disk decreases
relative to the price of RAMWe find the optimal condjuration point where the number of reference hits gained by
increasing the amount of RAM by some small amount, compared to the number of reference hits gained by increasing the
amount of disk by some small amount, is equal to the performanceWwaa measure of thefettiveness of the disk
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cache level; it represents the time saved by adding more disk to the system (by taking the time away from the tertiary stc
age system) and it represents the cdstet¥eness of disk as compared to RAM.

Equation6 is therefore a method offiling the optimal solution; given a probability curve that represents the expected
workload, for any value of;,,, we can fnd the corresponding optimal amount of disk that should be in the system, and
for any value ofs,,,, we can fnd the corresponding optimal amount of RAM that should be in the syéterishall see

that it is not quite this simple because at small values of disk the optimal amount of RAM is often a negative value, but
this obviously is easily overcome.

3.3.2 The Crossover Point
One of the simplest questions to ask at this powhise should the fst dollar go?

It is not quite as simple as compariguation4 to Equation5, as we also need to account for the addition of a new level

in the hierarchy (at dollar $0, the only thing in the system is the tertiary storhgegmount of time saved per reference

by addinganythingto the system is equal to the time to reference the jukebox multiplied by the expected number of refer
ences that will be hits in the new level added (those that will not have to go to the tertiary storage), with the additional
expense of having to access the new technology on every refaMmsball see that the$t dollar will always be spent

upon disk:This agrees with results frofh0], [18], and[19]; when the amount of money to spend on the cache is small,
capacity counts for more than speed.

Assuming for the moment that RAM will not be part of the optimal gonéition until system budget numbers gegdar
another question that we can asliee is the anssover point®e will answer the question, and in doing sod fat an
alternate way of arrivingt (and explaininglEquation6.

At what cost point does it makes sense to addstedibllar of RAM; at what system budget is the performance gained by
adding a dollar of RAM equal to the performance gained by adding a dollar ofTtislc?ossover point is the cost point
at which it makes just as much sense to add the next bit of RAM as it does to add the next bit of disk.

Consider the following scenario:

a b b+Ab

We have a system with only disk in it; the disk has bized for the same amount of money we can add an amaafnt
RAM or an amounib of disk.We wish to find the point at which the area under the curve fromalisoequal to the area
under the curve frorb to Ab, where the area from 0 tois scaled by the time to reference the disk level, and the area
from b to Ab is scaled by the time to reference the tertiary storage level.

We have the following relations:

Sram

TsavedbyaddingRAM = tDisk J- p(X)dx_tRAM (EQ 8)
0
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Spigk T ADIsk

TsavedbyaddingDisk = tJukebox I p(X)dX (EQ9)
Spisk

CramSram = CpiskdDisk (EQ 10)

We find the crossover point whé&mguation8 andEquation9 are equal, and if we let the sizes of each incremental amount
to add to the system approach zero, we & solution when

0 Sram 0 0 Spisk * ADisk 0
im Q.. X)dx—t,,,O0= lim x)dx
Soant — ODDlsk I P(x) RAMD Adisk O%Jukebox I P(X) %
0 Spisk
This yields
lim 0(tDiskp(sRAM)ADisk—tRAM) = AD!LT 0(tJukebOXp(ADisk)ADisk) (EQ 11)
AM T -
Sincetg,y, «tpiq We lose the,, ., term and approximate this as
p(So 0 O IS t 0
lim RAM _ lim Disk |]JukeboxD (EQ 12)

ADisk Sppy ~ 0CP(Spjg) 0 ADisk Sppy = 0C8ram  tpisk U

Using Equationl0, this yields something that looks very similaBguation®6:

p(0) _ Liukebox®ram

= (EQ 13)
P(Spi k) piskCpisk

The right hand side is the performance ratipand the relation says that the crossover point occurs farther out when the
effectiveness of disk is high, and closer in when tifecgéfeness of disk is law

In general, every optimal point is a kind of crossover point; it is a point at which (as the amounts approach zero) it makes
as much sense to add an amount of RAM as it does to add an amount of disk to the system. If it were otherwise, the solu-
tion would not be optimal; if there were an advantage to adding zero RAM over adding zero disk, then the optimal solu-
tion at that cost point would instead have more RAM and less disk in it.

This being the case, we can think of the entire crossover point discussion as a methdoh@arfy optimal point after
the crossover poinThe starting value for RAM would be,,,, instead of 0, and thet_, . term would not appear in
Equation7 (which is fhe, since the term was dispensed witEdguation12). The result would be an alternate derivation
of Equation6.

3.3.3 Modeling the Differential as an Exponential
If we assume thai(x) looks like ae " for somea, we have

_ In(¥)

S S =
of

Disk  “RAM (EQ14)
Combining withEquation3, we conclude that for that optimal canfrations at each budget the sizes of RAM and disk

are given by
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[ o O
Disk n(W¥)
d"®-

Sra = - (EQ 15)
Cram T Cpisk  PramtCpisk @ L
and
O c¢ O
RAM n(¥
Spisk = n + 3 . DI ( )D (EQ 16)
Cram * Cpisk  Fram T Cpisk o L

This tells us several things.

1. The amount of disk for the optimal cagiiration can never be less than the amount of RAM, in particular there can be
no 0-disk system besides the initial state (where there is nothing but the tertiary storage).

2. The sizes in megabytes of RAM and disk (at least gelaudget values) increase at the same rate, which actually sug-
gests that at some point anyfdiEnce between the two amounts will be meaningless (remember that this section
assumes the dérential is of the formue ).

3. The disparity between the amounts of RAM and disk gegefarsW increases; as the cost of RAM increases relative
to disk and as the speed of disk increases relative to the speed of tertiary devices, the gap between the sizes of the |
els must also grovAlternatively, as these ratios decrease, the disparity between RAM and disk shrinks; disk starts to
buy you less when its cost approaches that of RAM or its speed approaches that of tertiary devices.

4. The amounts of disk and RAM are monotonically increasing as functions of the system Dloidgatans that a hill-
climbing approach can in fact be used tmfoptimal points; it also means that whatever money you invest in obtain-
ing an optimal congjuration will not be wasted should you decide to invest more in the system at a later point.

The equations are a reminder that some mathematical solutions may lie outside the range of valid states; we cannot ha\
negative values of RAM, as is suggested by the equations at small budget values. If the equations suggess,ygjues for
that are outside the allowable range, we can always pick one of the boundary conditions (the boundary condition closest 1
the theoretical minimum). Since the equations will never suggest a valgg, fpwhich is greater thaB/c,,, (the

maximum amount of RAM you could buy if you spent the entire budget on RAM), we only need to worry about values
less than zero and use zero RAM for these garditionsThis happens wheBquationl5 yields a negative value; when

BY i)

Cpisk

B/cpi« IS the amount of disk you can buy if you spend the entire budgetwe ftave valid minimum solutions when

this amount is greater than or equal to the right hand side, implying that the budget needs to grow as the cost of disk
improves in relation to RAM; if RAM gets more expensive, then the budget point at which it makes sense toratld the fi
megabyte of RAM increases. Similars the performance of disk increases relative to tertiary storagédtivehess at
speeding uphe system access time (by taking some of the burdéheofertiary storage) increases, and this also drives
up the initial cost point where it makes sense to add RAM to the system.

There is also the term scaling the cost point downward as it getgelarthis makes sense, as géavalue ofa makes
the probability curve steeper near the y-axis, allowing a smaller amount of RAM to coygaranlanber of references.

As a gets lage (in comparison to 1) the curve is very steep and lies close to the y-axis, decaying rapidly towginészero.
would suggest a program trace with a high degree of locatity approaches 0, the curve looks more and more like the
constant functiory = 1; a curveless curve, suggesting a program trace with virtually no localityAawallie of a bit less

than 1 fora yields a moderately decaying function without an enormously high y-intercept; this suggests a program trace
showing a moderate degree of locality

If we assume for the moment thiat= 0.01, we find the crossover point (the point at which it makes sense to add RAM to

the system) wheB = 100c,In(¥). If we assume that RAM costs about 60 times as much as disk and that magnetic disk
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devices are 100 times faster than tertiary storage, the crossover point is where the system has about 800 megabytes of
disk. From here on, we add a megabyte of RAM for every megabyte of disk.

3.3.4 Modeling the Differential as a Polynomial

a-1

(x+1)°

If we assume instead that thefeitntial curvep(x) looks like for somea, we fnd minimums inTa\/g when

5., +1Cf
Disk 0= (EQ 17)

(Bpam * 10

whereW is the performance ratio froEquation?:

tJukeboxCRAM

t

Y =
Disk®Disk

This gives us

Spisk T 1

ot =+ (@) (EQ 18)
M

but since a negative value for the sizes of RAM and disk makes no sense, we only need to worry about the positive version
of W, Combining withEquation3, the sizes of RAM and disk for optimal canfrations at each budgetare then
given by

v
B Cpisk (¥ ‘-1
s = - EQ 19
RAM N qJ1/0( N qu/a (EQ19)
Cram ¥ Cpisk Cram ¥ Cpisk
and
v
By Cram (¥ ‘-1
Spisk = + (EQ 20)
1/a 1/a
Cram * Cpisk¥ Cram * Cpisk¥

This tells us several things.

1. Just as in the previous section where the function was assumed to be exponential, the amount of disk for the optimal
configuration can never be less than the amount of RAM, and there can be no 0-disk system besides the initial state.

2. Unlike the results for the exponential, the sizes in megabytes of RAM andadiskincrease at the same rate, but
instead maintain a constant ratio at all times. If werlet 1, then the ratio is around 6000; there should always be
about 6 gigabytes of disk for every megabyte of RAMalue of 1 yields a curve that is symmetric about the line
y = x; it is a compromise between having most of the area under the curve between 0 gedval(les ofx) and
having the area spread nearly evenly across all valuegvdfiena approaches 0).

3. Similar to the results for the exponential, the ratio of the amount of disk to the amount of RAMggztadar
increases; as the cost of RAM increases relative to disk and as the speed of disk increases relative to the-speed of ter
tiary devices, disk looks like a winning technology and it makes sense to have more of it in the/sy#tese per
formance and cost ratios decrease, the ratio of amounts of disk to RAM also decreases; disk starts to buy you less
when its cost approaches that of RAM or its speed approaches that of tertiary devices.

4. The amounts of disk and RAM are monotonically increasing as functions of the system Bhidgesult is identical
to the conclusions drawn from the exponential curve.
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There is also the term scaling the ratio iBquationl5 downward ast gets lager; this makes sense, as géavalue for

o makes the probability curve steeper near the y-axis and decays to zero veryatipwilyg a smaller amount of RAM

to cover a lager number of references. On the other hand, a small valae(fox a < 1) makes the function decay very

slowly, with very little area under the curve near the y-axis; this make$ dudtiffor a small amount of memory to cover
a substantial amount of references, and gelaalues of cheap storage become necessary

W will always be greater than 1, so we do not need to worry &wpution20 giving us invalid solutions fos,, . How-
ever Equationl5 can have solutions that lie outside the valid rampé occurs when

B
B _yvo_y

Cpisk

B/ ¢, IS the amount of disk one could buy if the entire budget is spent off esknequality suggests the same conclu-

sion that was drawn from the exponential model; that the crossover point scales wiiictheeréss of the disk system.

The crossover point is where the minimum solutionsfgr, goes from being negative to positive; when the amount of

disk you can buy with the budget is greater than or equal t thet of W. If we assume for the moment that= 1, that

RAM costs about 60 times as much as disk and that magnetic disk devices are 100 times faster than tertiary storage, th:
crossover point is wheB/cy,, = W - 1; when the amount of disk in the system reaches roughly 6 gigabytes. Unlike the
exponential example, the polynomial does not have identical slopes for the addition of RAM and disk to the system; here
the amount added will always be in the same ratio but will favor disk.

3.3.5 Conclusions
The following table summarizes the results of the cuttiadiexpedition:

TABLE 1. Comparison of modeling the differential as an exponential and a polynomial curve.

Approximation Crossover Point Optimal Size of RAM
Function for p(x) fora =1 (only valid after crossover)

—ax B = Cram!N(¥), ~ B 0 Cpig DIn(LIJ)Ij
ae SraM = -0 O

B 0256 Cram * Cpisk [Fram " Cpisk & DU
— a
a-1 B = Cpig(¥—1), B Cois (W 1)
a SrAM = va 1o

(x+1) B 03000 Cram ¥ Cpisk¥ Cram T Coisk

A few things seem to be independent of our choice for a welledbfipproximation of the locality curve:

* the amount of disk in the optimal solution will never be less than the amount of RAM,
* the amount of disk will never be zero,
* the disparity between disk and RAM increase¥adacreases
(whether it be in a ratio between the two or in a constafetrdifce), and, of course,
* the ratio of the values of the locality function at the size of RAM and disk are equal to the performance ratio.

A few things seem at least asfiglance to be very dependent upon our choice of approximations, and therefore weaken
the model somewhat:

* the rate at which RAM and Disk levels grow
(parallel lines in exponential approximation, dgieg lines in polynomial approximation), and
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* the efect the performance ratio has upon the crossover point

(for the exponential curve, the crossover point increases with the lBgfof the polynomial curve, the crossover
point is proportional tav).

It seems to be a fairly robust model, although seemingly small changes in the modeling of the locality curve pgeduce lar
changes at the other end.

4.0 Simulations

In order to check the validity of the model, we present a trace-driven comparison ééthigeafess of a number of dif-
ferent I/O hierarchies, given a set of cost valWés decided that the minimum increment to spend on an upgrade would
be $256, which should buy roughly 1/2 GB of disk space or 8 MB of RAM.

4.1 Workload Description

The data that was used for the workload in the trace-driven hierarchy simulations was collected by CITI via their logging
AFS servef4]. The only data that the server sees are those accesses not serviced from thiochéntche.

We use approximately one morghvorth of trace data captured from a server namedgeih&omApril 14, 1992

through May 8, 1992The full traces represent over 20 million records of severf@rdiit types oAFS server requests.
The commands that we are interested ifei@hdata, st@data, emovefe, createfie, removedirandmakedir The rest

of the commands do not actually read and write data; they are used to synchronize the local cache with ihéhserver
case ofetchstatusetc.

The environment in which the traces were captured was the University of Michigan Institutional File Systefh@FS).

IFS consists oAFS servers and clients running on various platforms scattered across the U-M ddragypes of

applications span a wide range, including general-purpose computing such as e-mail and text-editing as well as software
archives and traditional engineering type joli®e fie sizes range from very small (less than one KByte) to fairyelar

(several megabyted)Ve believe that the traces accurately portray typiteatérver activity

4.2  Simulator Description

Our simulator is a combination of a number of similar modules that implement objects such as, miskndrives, and

automated tertiary storage devices such as MO jukeboxes or cartridge tape autoloaders, and a skeleton frame that connects
object modules togethérhe object modules follow the same interface so they are completely interchangeable and new
modules can be implemented and inserted into the hierarchy with minforal ef

TABLE 2. Summary of specs used for simulator
Technology Capacity Block Size Cost per MB Latency Bandwidth
DRAM 8MB-64MB, 8 KBytes $32.00 negligible 160 MB/sec
file bufiers in increments ($256 buys
of 8MB 8MB)
Magnetic 512MB-6GB, | 16 KBytes $0.50 10 ms, plus a | 10 MB/sec
Disk in increments ($256 buys rotational
of 512MB 0.5GB) delay of 5 ms
Tertiary 100 GB 64 KBytes $0.001 1sec 1 MB/sec
Storage
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The object modules are responsible for implementing the various caches and keeping track of the usagAtstatistics.
level, if the item requested is not present it is requested from the next levelld@wost per megabyte, transfer time,
and latency fjures are the same as those describ&dtion2.0.

The running times reported by the simulator are an upper bound, in that the time taken at a given level depends upon th
number of hits as well as the number of misses; if there is a miss at a level, time is tdkend@fefetch; it is not the
case that misses are handled entirely as a hit at the next lower level.

In order to simplify implementation, writes were treated similarly to reads in a read-modify-write niartoes studies
will deal more with this issue. Przybylski ignores writes altogether in his cache afiedystsut it is not the case that
writes can be simply dispensed with in an I/O hiergraekythe cost must be accounted for somewhere.

4.2.1 Memory Object

The memory module keeps lists of blocks of user data in a roughly LRU-type set associative capinaionfiFor all
accesses, the time spent is equal to the number of blocks requested divided by the transfer rate.

4.2.2 Disk Object

The disk module assumes xefil number of cylinder groups, with an essentiallynitdinumber of platters - no matter

how lage the disk is defied to be, it is still considered one physical disk drive; the size of each cylinder group (the num-
ber of blocks allowed in each grospinked list) is determined by the disl¢apacityThe group in which a givenldiis

placed is determined by a hashing function based upon the user numbkr aunchffier so that a usés files tend to be in

or near the same cylinder group.

The latency is the approximate time to move the “head” of the disk to the requested cylinder group from the group of the
previous request. It is calculated to be the distance in cylinder groups times the given diatetecy by the number of
groups.The total transfer time is the latency plus the number of blocks requested divided by the given transfer rate.

4.2.3 Tertiary Storage Object

The tertiary storage module is an approximation of a cartridge tape autoloader or magneto-optical jukebox. Each storag:
unit is defned to hold 5 GB of data, and the module can read several units aTl@adetal transfer time is calculated

similarly to the disk object in that each reader remembers where the last request was and calculates latency by multiplyin
distance by the given latency divided by the number of regidvestotal transfer time is this latency plus the number of
blocks requested divided by the given transfer rate.

The tertiary storage module is always the lowest level of the storage hietartshg data access never misses thée.
only reason this module is instantiated in the hierarchy is to compute miss times when the data is not present in the nex
higher level of the hierarchy
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Config: 48 MB bufcache -> 100 GB jukebox

- buffercache: 133.48 secs, 2090254 hits, 943517 m sses, 49152 KB => $1536. 00
- jukebox: 57371.71 secs, 943517 hits, O msses, 0 MB

Total Time: 57505 secs spent Total Cost: $1536

Config: 40 MB bufcache -> 512 MB disk drive -> 100 GB jukebox

- buffercache: 134.17 secs, 1380374 hits, 1653397 m sses, 40960 KB => $1280. 00
- diskdrive: 12372.24 secs, 958016 hits, 695381 misses, 524288 KB => $256. 00

- jukebox: 47970.83 secs, 695381 hits, O msses, 0 MB

Total Tinme: 60477 secs spent Total Cost: $1536

Config: 32 MB bufcache -> 1024 MB disk drive -> 100 GB jukebox

- buffercache: 134.83 secs, 1356336 hits, 1677435 mi sses, 32768 KB => $1024. 00
- diskdrive: 12560.64 secs, 1139927 hits, 537508 m sses, 1048576 KB => $512. 00
- jukebox: 42409.36 secs, 537508 hits, O msses, 0 MB

Total Tinme: 55104 secs spent Total Cost: $1536

Config: 24 MB bufcache -> 1536 MB disk drive -> 100 GB jukebox

- buffercache: 135.58 secs, 1330944 hits, 1702827 m sses, 24576 KB => $768. 00
- diskdrive: 12761.52 secs, 1265990 hits, 436837 m sses, 1569520 KB => $768. 00
- jukebox: 37913.68 secs, 436837 hits, 0 msses, 0 MB

Total Tinme: 50810 secs spent Total Cost: $1536

Config: 16 MB bufcache -> 2048 MB disk drive -> 100 GB jukebox

- buffercache: 136.47 secs, 1300941 hits, 1732830 mi sses, 16384 KB => $512. 00

- diskdrive: 12999.23 secs, 1355938 hits, 376892 m sses, 1973072 KB => $1024. 00
- jukebox: 34317.64 secs, 376892 hits, O msses, 0 MB

Total Tinme: 47453 secs spent Total Cost: $1536

Config: 8 MB bufcache -> 2560 MB disk drive -> 100 GB jukebox

- buffercache: 139.73 secs, 1206190 hits, 1827581 mi sses, 8192 KB => $256. 00

- diskdrive: 13753.91 secs, 1483685 hits, 343896 m sses, 2311552 KB => $1280. 00
- jukebox: 31880.61 secs, 343896 hits, O msses, 0 MB

Total Tinme: 45774 secs spent Total Cost: $1536

Config: 3072 MB disk drive -> 100 GB tape drive

- diskdrive: 15315.49 secs, 1712675 hits, 320448 m sses, 2609408 KB => $1536. 00
- jukebox: 30345.12 secs, 320448 hits, 0 nmisses, 0 MB

Total Tine: 45660 secs spent Total Cost: $1536

FIGURE 2. An example of the simulator output , for the cost point of $1536, which can be partitioned 7
ways between Disk and RAM.

4.3 Results of Simulations
Figure2 is an example of what the simulator produces as output.

TheTotal Cost of a cordjuration is the sum of the costs of thefbutache and the disk drives. It does not include the cost
of the tertiary device, as that appears in every singlegroation.

The capacitysedat each level is in the leveKB field; this is the capacity currently being used by the simulation. It is

less than or equal to the total defil capacity due to the fact that we divide the capacity into a number of equal-sized
blocks and if the blocksize does not divide evenly into the capacity we waste theTgpaae block sizes were high

(around 8 KB or 16 KB) in order to provide realistic numbers (AFS chunking is in 64K blocks), as well as make the sim-
ulations faster

The number of hits plus the number of misses is not necessarily the same frguratiafi to confjuration; this is to be
expected when the shape of the hierarchy chaldiesn the simulator misses at a given level, it brings in the entire page
from the lower level that the data resides upon; if, for example, the page size oféhedelie is 4KB and the page size

of the disk is 16KB, then every miss in thefbufcache brings in 16KB, or 4 Haf cache page$hese prefetches are

tagged as hits in the simulatarhether the pages are later referenced or not, and so the totals may not be the same across
different confyurationsThis will be fixed in future versions of the simulator

Note that for every cost point, a number ofefiént confjurations are run, and the optimal one is taken to represent that
cost point; in the §ures, the corduration that shows up is the optimal of gg&anumber of dferent confjurations At

18 Optimization of Mass Storage Hierarchies



Performance Results for Derent Confgurations
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FIGURE 3. The confi guration curves for four different budgets ($1280, $1536, $1792, and $2048).
Each point represents a run of the simulator; its x-coordinate is the proportion of the total

budget devoted to RAM and its y-coordinate is the total running time of the configuration. The
fastest running times for each budget are highlighted by darkened polygons.

small cost points, every possible combination was simulated, but as the cost pointsggethidanumber of 10-hour
simulations grew too lge to continue this practice, and so only four e fiifferent confjurations are compared.

Figure3 shows the performance variations over a number ofgumation costs. Each of the curves corresponds to one
running of a simulation, as FFigure2 above.

It is interesting to note that the worst case happens when there is all RAM except for one 1/2 GB disk cache, and the pe
formance does not seem to get any better as more space is added to the L1 RAM cache. The optimum point moves fror
the boundary condition (zero MB RAM) to 8MB at cost point $1536. This is the crossover point, and at larger budget val-
ues the minimum should keep moving to the right.
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Performance Breakdowkcross Hierarchy Levels
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FIGURE 4. The total running times of optimal confi  gurations for different system costs . The running
times are broken down by technology; for instance at cost point $256, the total system running
time is decreased roughly %15 by adding 512MB of disk, which now accounts for roughly one
fourth of the total time. The running time of any given level decreases whenever an amount is
added to the level immediately above. The slivers that represent RAM time are difficult to see,
but can be detected because of this behavior; for instance, between cost points $1536 and
$1792 the time for Jukebox does not decrease, but the time for Disk does. Here is where the

first 8MB of RAM is added.

Figure4 shows the effect of adding more and more cost to the hierarchy, and shows within each cost point the perfor-
mance break-downs of RAM, Disk, and tertiary storage.

This shows the expected asymptotic behavior of adding memory to the hiehaiximteresting to point out that the run-
ning time drops by almost a factor of two when 3 gigabytes of disk are added to the system, at a cost of about $1,500.
From then on, three times that dollar amount worth of RAM and disk is added to the system for a performance increase of

only another 10-15%.
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Optimal Size-Cost Relationships
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FIGURE 5. The sizes and costs of RAM and Disk  for the optimal confi gurations . Note that the MBytes
RAM curve is a constant multiple of the Cost RAM curve; the Disk curves are similarly related.
Thus the MBytes RAM curve which is lost down near the x-axis is shaped exactly like the Cost
RAM curve higher up. This is where the linear nature of the Size/Cost relation is evident; while it
still makes sense to add disk to the system (while the size of the disk is still less than the size of
the data set in the traces) the optimal amount of RAM and Disk both increase linearly as a
function of System Cost. As soon as there is enough disk to cover the data in the traces, no
more disk needs be added to the system and all future increments in system budget go toward
RAM. It is very important to note that this curve contains the effect of all cold start misses as
well as all compulsory misses; nothing has been removed; the performance is very pessimistic.

Figure5 plots the RAM costs ot the optimal caydrations for each cost point, as well as the scaled performance of the
system (proportional to 1 over the running tinié)e step-wise nature of the cost and size curves is due to our restriction
that we only allow additions of 8MB RAM or 512MB disk at a time.

At the start, there is a question of whether to add disk or RAM. Since theAdfiSrdaches havdtired out much of the
available locality before it gets to the senasmall amount (8MB) of RAM will not achieve a high enough hit ratefto of
set the fact that we would be going to tape oftére half-gigabyte disk drive, howeyevill show a much better hit rate,

and this serves tofskt the disks much lower access timEhe crossover point is seen to be somewhere between $512 an
$1536.

The graph demonstrates afeef not predicted by the analysis; at a point, the disk curves top out and no longer increase,
while the RAM curves increase rapidly since every dollar after that point is spent onTRANE due to the fact that the
traces are fite and so cannot be approximated by a real function that asymptotes to zero; here, the tracesadtually

zero and as a result once the disk size increases to the value wheretaetidif curve hits the x-axis, there are no more
references that can be used to reduce the running time of the tertiary device (by turning them into hits at the disk level).

We believe that this is what is happening around the $4,000 cost point; from here on it seems that there is no more bene
to adding any more disKhis would suggest that thefedtive working set size of thFS traces is somewhere around six
gigabytes; for lager working sets, the point would be appropriately pushiet dtfie right.
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FIGURE 6. Fitting curves to the observed differentials. The graphs plot the locality behavior observed in
the simulator. The first graph is fit with an exponential function, the second with a polynomial.
The fitted curves are used for the values of a that they produce, in order to verify the analysis.

5.0 Comparison of Simulated and Analytical Results

The traces used iBectiond.0 were analyzed for their locality behaviproducing the curves shownkigure6. The
analysis produced the cumulative probability curve and itsrdifitial, and the diérential was fiby the two functions

used inSection3.3.1
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FIGURE 7. Calculated values for optimal confi  gurations as a function of cost . Using the measured
values for a, these curves were produced, showing the expected crossover points, ratios
between RAM and Disk cache sizes, and the expected performance curves for each budget.
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As a result, we can now graph the equations f8attion3.3.1using the measured values for theonstants. For the
exponential curve, we calculate the sizes and costs depidigglire 7, and plot the scaled performanagufies as well.

Note that the slopes of the MBytes RAM and MBytes Disk curves are parallel after the crossover point at around $1000.
This crossover point agrees well with the simulations Kggere5), but the slopes of the lines do nbtis is likely due to

the fact that the exponential curve has the bulk of its area near the y-axis, and decays to zero vegimiagitine

higher levels in the hierarchy the advantage, as it makes it easier to capture many references in a small amount of stora

The results from using the polynomial curve are also showigimmre7. The shapes of the curves look similar to the
curves produced by the simulatbut the scale is hthe amount of disk in the system greater than the amount of RAM in
the system by a factor of almost 10,000, while the simulated curwethin the same scal@he performance numbers

are more realistic; for instance, they do not start as near to zero in the initiglicatidin.
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FIGURE 8. Access times for different confi  gurations of system budget , based upon the observed
values for a in the simulations. These graphs are similar to the one shown in Figure 3.

We can also plot the analytical curves for the expected running times of all the possilglgratafis for each budget.
These curves are analogous-tgure3, and are shown iRigure8.

Each line in the graphs is derived from a single cost point; the curve representietbatdifays of appropriating the
budget between RAM and diskhe lines toward the top of the graphs represent smaller system budgets; the lines toward
the bottom represent e&r onesThe budgets range from $256 to $5120, in increments of $256.

The graph based upon the polynomial is very interestingsagfance, it appears to indicate that for every budget the
optimal confguration has no RAM whatsoevétowever remember that iSection3.3.1andFigure? the polynomial
approximation had almost 4 orders of magnitude more disk then RAM in the sy&eourves in the polynomial-based
graph ofFigure8 doin fact have local minimums once the system budget geggs ¢arough; they are simply very hard to
see as they are quite close to the y-axis.

The graph based upon the exponential curve appears to have either no minima on the individual curves or minima when
the proportion of RAM is zerdctually, the curves quickly start bottoming out at a non-zero RAM value, and by the time
the last cost curve is reached ($5120), the minima are almost at the lower right corner

There are a number of inaccuracies in the graphs, but the overall trends are represented. It seems that much of the error
can be attributed to two things. First, thteefi curves were not especially godd;fiew curves are being plotted as this is
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being written. Second, and maybe more importattily simulator made a number of assumptions that the analytical
model did not. For instance, the model ignores tfextsf of cold start and compulsory missdse simulator did not, and
the graphs demonstrate this (the performance curves are prettjilbad)he model ignores writes for the moment; this
allows for a cleaner set of equations, but causes problems when the simulated results (adtigindce writes, but
rather treat them like reads) are compared against the calculated ones.

6.0 Conclusions and Future W ork

We have demonstrated the comparativeativeness of adding disk bafs or RAM bufers to a given systeriithe stack
distance curves are an invaluable tool for doing experimental cache work; they are independent of the cache size and cc
figuration and yet can be used to predict cache performaueedj as they are thfentiable.

We have found a closed form solution for determining the optimalgroation of a two-level hierarchgince we have
restricted focus to dealing with machines connected to mass storage devices, we are typically dealing with servers, whos
file request streams exhibit a lower degree of locality than most people are used to thinkinthébatrangement

yields a number of surprising results, like the fact that disk is far more important to systems than most people believe; a
system with a few gigabytes of disk acting solely as a cache fotetsy$tem will perform better than a system with a
cost-equivalent amount of RAM instead.

In the derivation of the solution for optimalitye present the performance ratio; a characterization offéaieéness of
the disk levelThe ratio is used in calculating the optimal cgufation for a given workload, scaling upward the point at
which RAM should be added to the system, as the value of the ratio increases.

As far as future work goes, there are a number of items to work upon. Since the hierarchy model does not consider write:
this needs to be added and its effect upon the results needs to be measured. Along the same lines, the simulator needs t
rewritten to ignore compulsory and cold start misses in order to make the comparisons fair.

There have been a number of studies that suggestthieerof levels in the hierarchy must grow as the size of the hier-
archy grows. This makes intuitive sense, and should be investigated.
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