Aggressive Centralized and Distributed Scheduling
of Disk Requests

by

Bruce L. Worthington

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1995

Doctoral Committee:
Professor Yale N. Patt, Chair
Professor Edward S. Davidson
Professor Trevor N. Mudge
Professor Kensall D. Wise

Richie Lary, Storage Architect, Digital Equipment Corporation



Copyright June 1995



ABSTRACT

Aggressive Centralized and Distributed Scheduling
of Disk Requests

by
Bruce L. Worthington

Chair: Yale N. Patt

Disk request scheduling is a critical element of high-performance computer system de-
sign. Previous disk scheduling research is insufficient because it uses simplistic or outdated
disk models, unrepresentative workloads, and inadequate performance metrics. This disser-
tation explores the disk scheduler design space and provides guidelines for computer system
engineers. Host-based and disk-based centralized scheduling are compared with distributed
scheduling, a new paradigm with cost, complexity, and performance advantages. In dis-
tributed scheduling, individual disk schedulers located at multiple points along the 1/O path
cooperate to make scheduling decisions.

Scheduler implementations are evaluated using a detailed simulator containing validated
models of state-of-the-art host systems, controllers, buses, and disk drives. The simulator
is driven with extensive traces of real-world system and disk activity, and it reports system
performance metrics (e.g., application run times) in addition to traditional disk subsystem
metrics (e.g., mean request response times).

It is shown that for the best system performance, scheduling algorithms must incorporate
system-level information (e.g., request priorities). Scheduling algorithms that focus on re-
ducing seek delays do not need extensive disk-specific information. Finally, algorithms must
exploit a disk’s on-board cache to achieve the lowest disk service times.

Additional guidelines are provided for dealing with disk drive command queues, sequential

disk request optimizations, and different on-board cache configurations.



To my father, Donald, for teaching me to always finish what I start;

to my mother, Margie, for her example of a life filled with compassion;

to my sister, Elizabeth, for being my truest friend;

to my aunts, Marilyn and Beverly, for their continual guidance and enthusiasm;

and to my wife, Janet, for holding my hand until the end of time.

i



ACKNOWLEDGEMENTS

My friends and labmates at the University of Michigan have been the single best aspect
of my graduate school life. T am deeply thankful to my advisor, Dr. Yale Patt, for making
me a part of his tightly-knit research group. I have thoroughly enjoyed my personal and
professional association with the members of the group, including Mike Butler, Po-Yung
Chang, Chris Eberly, Carlos Fuentes, Greg Ganger, Eric Hao, Robert Hou, Lea-Hwang Lee,
Dennis Marsa, Sanjay Patel, Eric Sprangle, Jared Stark, and Tse-Yu Yeh. In particular,
Greg Ganger has been instructor, pupil, and friend to me throughout our joint PhD quest.

Our administrative assistant, Michelle Chapman, has provided excellent support and
never-ending patience during the last few years. Paula Denton, Denise Du Prie, and Jeanne
Patterson formed a skilled second line of defense against general confusion and red-tape.

Edward Davidson, Richie Lary, Trevor Mudge, and Kensall Wise have my sincere grati-
tude for serving on my doctoral committee. Their comments and suggestions undoubtedly
improved the quality of my dissertation.

I would like to thank John Fordemwalt, Richard Golding, Richie Lary, Mike Leonard,
Chris Ruemmler, Carl Staelin, Tim Sullivan, Doug Voight, and John Wilkes for their profes-
sional guidance and insights. Ithank Jim Pike of AT&T/GIS for providing the initial funding
for my research at the University of Michigan. I also thank Hewlett-Packard, AT&T/GIS,
Scientific and Engineering Software, and Digital Equipment Corporation for providing addi-
tional equipment and financial support.

Finally, I would like to thank the various animated and comic characters that have kept
me sane: The Tick, Arthur, and all the other superheroes in The City; Calvin and Hobbes;
Dilbert, Dogbert, Catbert, Ratbert, and Wally; The Uncanny X-Men; Brue Spluce (my
X-Pilot alter-ego); Opus, Bill the Cat, and the rest of the Bloom County/Outland gang;
Bugs Bunny; Daffy Duck; and Two Stupid Dogs.

1l



TABLE OF CONTENTS

DEDICATION . . . . . . . et

ACKNOWLEDGEMENTS . ... ... ... .........

LIST OF TABLES . . . . . . . .. ... ... .. ... .....

LIST OF FIGURES . . . . . . .. ... ... ... .......
CHAPTERS

1 Introduction . .. .. ... ... ... ... ... ...

1.1 Overview . . . . . .. . . . . .

1.2 Thesis Statement . . . .. .. .. .. ......

1.3 Accomplishments of this Dissertation . .. . ..

1.4 Organization of this Dissertation . . . . . . . ..

2 Useful Scheduling Information . . ... ... ... ...

2.1 Information From “Below” the Scheduler . . . .

2.1.1 The Modern Disk Drive . . . . ... ...

2.1.2  Other I/O Path State . . . . . ... ...

2.2 Information From “Above” the Scheduler . . . .

2.2.1 Application and File System Information

2.2.2  Resource Utilization . . . . .. ... ...

3 Related Work . . . . . ... ... ... .. ... .....

3.1 Scheduler Implementations . . . . .. ... ...

3.2 Scheduling Algorithms . . . . .. .. ... ...

3.2.1 Scheduling with Information from “Below”

3.2.2  Scheduling with Information from “Above”
3.3 Significant Room for Improvement . . . . . . ..
4 Methodology . . . . . .. . ...
4.1 The Simulation Model . . . . . . ... ... ...
4.1.1 Host Models . . .. .. ... ... ....
4.1.2  Disk Drive Models . . . . . .. ... ...
4.2 Workloads . . .. ... ... L.

v

........... i

W W N = =



4.2.1 Disk Request Traces . . . . . . .. ... .. ... ... ... . 25

4.2.2  Full System Traces . . .. .. .. ... .. ... 26

4.3 Scheduling Algorithms . . . . . . .. ... oo o oL 27

4.3.1  Scheduling with Information from “Below” . . .. ... ... 27

4.3.2  Scheduling with Information from “Above” . . . . ... ... 27

4.3.3 Sequential Stream Optimizations . . . . . . .. .. ... ... 28

4.4 Metrics . . . . Lo 29

5 Centralized Scheduling at the Host . . . . . . ... .. .. ... .. ..... 30
5.1 Scheduling with Information From “Below” . . . . . ... ... ... 30

5.1.1  Synthetic Workloads . . . . . . .. ... ... ... ... 30

5.1.2  Disk Request Traces . . . . . . . . ... ... ... ... ... 34

5.1.3  Full System Traces . . . . .. .. ... ... ... ...... 70

5.1.4  Summary of Conclusions . . . . . .. ... ... ... .... 86

5.2 Scheduling with Information From “Above” and “Below” . . . . .. 88

5.2.1 Disk Request Traces . . . . . . . . ... .. ... ... .... 88

5.2.2  Full System Traces . . . . .. .. ... ... ... ... ... 89

5.2.3 Summary of Conclusions . . . . . ... ... ... ... ... 94

6 Centralized Scheduling at the Disk . . . . .. ... ... ... ... ..... 101
6.1 Scheduling with Information From “Below” . . . . . ... ... ... 101

6.1.1 Disk Request Traces . . . . . . . . . .. .. ... ... .... 101

6.1.2  Full System Traces . . .. .. .. ... ... ... ...... 114

6.1.3 Summary of Conclusions . . . . . ... ... ... ... ... 123

6.2 Scheduling with Information From “Above” and “Below” . . . . .. 123

6.2.1 Disk Request Traces . . . . . . . . ... .. ... .. .. ... 123

6.2.2  Full System Traces . . .. .. .. ... ... ... ... ... 130

6.2.3 Summary of Conclusions . . . . . ... ... ... ... ... 141

7 Distributed Scheduling . . . . . . ... oo oo 142
7.1 Scheduling with Information From “Below” . . . . .. .. ... ... 143

7.1.1 Disk Request Traces . . . . . . ... ... ... ... ..... 143

7.1.2  Full System Traces . . . . . . ... .. .. ... ... ... 169

7.1.3 Summary of Conclusions . . . . .. .. .. ... .. ..... 169

7.2 Scheduling with Information From “Above” and “Below” . . . . .. 176

7.2.1 Disk Request Traces . . . . . . ... .. ... ... ...... 176

7.2.2  Full System Traces . . . . . . ... ... .. ... ... 176

7.2.3 Summary of Conclusions . . . . .. .. ... ... ...... 185

8 Concluding Remarks and Future Directions . . . . . . ... ... ... ... 193
8.1 Future Work . . . . .. ... 196
APPENDIX . . . . . e 198
BIBLIOGRAPHY . . . . . e 204



Table
4.1
4.2
5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
7.1
7.2
7.3
7.4
7.5
7.6
1.7
7.8
Al
A2
A3
A4
A5

LIST OF TABLES

Basic Characteristics of the HP C2247 Disk Drive . . . . . . . .. ... ...
HP and DEC Disk Request Trace Characteristics . . . . . . ... ... ...
Sample Mean Response Times for LBN-Based Algorithms . . . . ... ...
On-board Cache Read Hit Percentages for LBN-Based Algorithms . . . . . .
On-board Cache Read Hit Percentages for Full-Knowledge Algorithms . . . .

Percentage Reduction in Total Requests Serviced due to Sequential Request
Concatenation . . . . . . . . ..

Mean Response Times for Centralized Schedulers . . . . . .. .. ... ...
Mean Non-Compute or Run Times for Centralized Schedulers . . . . . . ..
Performance Metrics for Age-Sensitive Centralized Schedulers . . . . . . ..
Mean Non-Compute or Run Times for Centralized 2Q) Schedulers . . . . . .
Mean Response Times for LBN-Based Schedulers . . . . . . ... ... ...
Mean Response Times for SPCTF Schedulers . . . .. ... ... ... ...
Mean Non-Compute or Run Times for LBN-Based Schedulers . . . . . . ..
Mean Non-Compute or Run Times for SPCTF Schedulers . . . . ... ...
Mean Response Times for ASPCTF(6) Schedulers . . . .. ... ... ....
Squared Coefficients of Variation for ASPCTF(6) Schedulers . . . . . .. ..
Mean Non-Compute or Run Times for LBN-Based 2Q) Schedulers . . . . . .
Mean Non-Compute or Run Times for 2QQ SPCTF Schedulers . . . .. ...
Parameters for Modeling the HP C2247 on the NCR 3550 system . . . . ..
Zone Specifications for the HP C2247 . . . . . . .. .. .. .. .. ... ...
Seek Parameters for Modeling the HP C2247 . . . . . . .. . ... ... ...
Overhead Delays for Modeling the HP C2247 on the NCR 3550 . . . .. ..
Additional Write Overhead Delays for Modeling the HP C2247 . . . . . . ..

vi



Figure
2.1
2.2
4.1
5.1

5.2
3.3

5.4

3.5

2.6

5.7

5.8

2.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

LIST OF FIGURES

Disk Drive Terminology . . . . . . . . . . .. .
Measured Seek Curves for the Seagate ST41601N Disk Drive . . . . . . . ..
Sample Validation Workload Response Time Distributions . . . . . . . . ..
LBN-Based Algorithm Performance using a Synthetic Workload with Uni-
formly Distributed Request Starting Locations . . . . . .. .. .. ... ...
Full-Map and LBN-Based Algorithm Performance using a Synthetic Workload
with Uniformly Distributed Starting Locations . . . . ... ... ... ...
Full-Knowledge Algorithm Performance using a Synthetic Workload with Uni-
formly Distributed Request Starting Locations . . . . . .. .. .. ... ...
Cello: LBN-Based Algorithm Performance . . . . . .. ... ... ... ...
Snake: LBN-Based Algorithm Performance . . . . .. ... ... ... ...
Air-Rsv: LBN-Based Algorithm Performance . . . .. ... ... ... ...
Sci-T'S: LBN-Based Algorithm Performance . . . . .. .. ... ... .. ..
Order: LBN-Based Algorithm Performance . . . . .. .. .. .. ... ...
Report: LBN-Based Algorithm Performance . . . . .. ... ... ... ...
Cello: Full-Map and LBN-Based Algorithm Performance . . . . . ... ...
Snake: Full-Map and LBN-Based Algorithm Performance . . . ... .. ..
Air-Rsv: Full-Map and LBN-Based Algorithm Performance . . . .. .. ..
Sci-TS: Full-Map and LBN-Based Algorithm Performance . . . . .. .. ..
Order: Full-Map and LBN-Based Algorithm Performance . . .. ... ...
Report: Full-Map and LBN-Based Algorithm Performance . . . . ... ...
Cello: Full-Knowledge Algorithm Performance . . . . .. .. .. ... ...
Snake: Full-Knowledge Algorithm Performance . . . . ... ... ... ...
Air-Rsv: Full-Knowledge Algorithm Performance . . . .. . ... ... ...
Sci-TS: Full-Knowledge Algorithm Performance . . . . .. . ... ... ...
Order: Full-Knowledge Algorithm Performance . . . . .. .. .. ... ...
Report: Full-Knowledge Algorithm Performance . . . . .. . ... ... ...
Cello, 1.75X: Sequential Stream Algorithm Performance . . . . . . . .. . ..
Snake, 1.25X: Sequential Stream Algorithm Performance . . . . . ... . ..
Awr-Rsv, 2.5X: Sequential Stream Algorithm Performance . . . . . . . . . ..
Sci-TS, 2.5X: Sequential Stream Algorithm Performance . . . . . ... ...

Vil



ot Ot Ot (657 QNS SN ¢
N = OO 0 -1 O

(&3¢

g

(&3¢

(&3¢
(&3¢

(&3¢

[@>]

(&3¢

oo o
© o0 =

5.40
5.41
5.42
5.43
5.44
5.45

5.46
5.47
5.48
5.49
3.50
5.51
5.52
3.53
5.54
3.59
3.56

5.57

Order, 1.0X: Sequential Stream Algorithm Performance . . . . . . ... ...
Report, 1.0X: Sequential Stream Algorithm Performance . . . . . ... ...
Improvement in Read Hit Ratios of Full-Knowledge Scheduling Algorithms
due to Cache Knowledge . . . . . . .. ... ... .. ... .
Cello, 1.75X: C-LOOK Performance with FCFS Command-Queued Disks . .
Snake, 1.25X: C-LOOK Performance with FCFS Command-Queued Disks . .
Air-Rsv, 2.5X: C-LOOK Performance with FCFS Command-Queued Disks .
Sci-TS, 2.5X: C-LOOK Performance with FCFS Command-Queued Disks . .
Order, 1.0X: C-LOOK Performance with FCFS Command-Queued Disks

Report, 1.0X: C-LOOK Performance with FCFS Command-Queued Disks . .
Snake, 1.25X: C-LOOK Performance with FCFS Command-Queued Disks . .
Synrgen: LBN-Based Algorithm Performance. . . . . . .. .. .. ... ...
Compress: LBN-Based Algorithm Performance . . . . . .. .. .. ... ...
Synrgen: Full-Knowledge Algorithm Performance . . . .. . ... ... ...
Compress: Full-Knowledge Algorithm Performance . . . . .. .. ... ...
SynRGen, 1 User: Sequential Scheduling Algorithm Performance . . . . . . .
SynRGen, 2 Users: Sequential Scheduling Algorithm Performance . . . . . .
SynRGen, 4 Users: Sequential Scheduling Algorithm Performance . . . . . .
SynRGen, 8 Users: Sequential Scheduling Algorithm Performance . . . . . .
Compress: Sequential Scheduling Algorithm Performance . . . . . . . . . ..
SynRGen, 1 User: Scheduling Algorithm Performance for Different Command
Queue Lengths . . . . . . . oo
SynRGen, 2 Users: Scheduling Algorithm Performance for Different Com-
mand Queue Lengths . . . . . . ... o o
SynRGen, 4 Users: Scheduling Algorithm Performance for Different Com-
mand Queue Lengths . . . . . . . ... oo
SynRGen, 8 Users: Scheduling Algorithm Performance for Different Com-
mand Queue Lengths . . . . . . . ... oo
Compress: Scheduling Algorithm Performance for Different Command Queue
Lengths . . . . . . o
Synrgen: LBN-Based 2Q.CW Algorithm Performance . . . . . .. ... ...
Synrgen, 2Q) CLOOK.CW: Mean Response Times by Request Class . . . . .
Compress: LBN-Based 2Q.CW Algorithm Performance . . . . . . ... ...
Synrgen: Full-Knowledge 2Q).CW Algorithm Performance . . . . . . .. ...
Compress: Full-Knowledge 2Q.CW Algorithm Performance . . . . . . . . ..
SynRGen, 1 User: 2QQ Scheduling Algorithm Performance for Different Com-
mand Queue Lengths . . . . . . ... oL
SynRGen, 2 Users: 2QQ Scheduling Algorithm Performance for Different Com-
mand Queue Lengths . . . . . . ... oL
SynRGen, 4 Users: 2QQ Scheduling Algorithm Performance for Different Com-
mand Queue Lengths . . . . . . . ..o

viil



6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27

6.28

SynRGen, 8 Users: 2(QQ Scheduling Algorithm Performance for Different Com-

mand Queue Lengths . . . . . . ... o o o oo 99
Compress: 2Q) Scheduling Algorithm Performance with Different Command

Queue Lengths . . . . . . . L o 100
Cello, 1.75X: Sequential Scheduling Algorithm Performance. . . . . . . . .. 102
Snake, 1.25X: Sequential Scheduling Algorithm Performance . . . . . .. .. 103
Air-Rsv, 2.5X: Sequential Scheduling Algorithm Performance . . . . . . . .. 104
Sci-TS, 2.5X: Sequential Scheduling Algorithm Performance . . . . . .. .. 105
Order, 1.0X: Sequential Scheduling Algorithm Performance . . . . . . . . .. 106
Report, 1.0X: Sequential Scheduling Algorithm Performance . . . ... ... 107

Cello, 1.75X: Algorithm Performance for Different Command Queue Lengths 110
Snake, 1.25X: Algorithm Performance for Different Command Queue Lengths 110
Air-Rsv, 2.5X: Algorithm Performance for Different Command Queue Lengths 111
Seci-TS, 2.5X: Algorithm Performance for Different Command Queue Lengths 111
Order, 1.0X: Algorithm Performance for Different Command Queue Lengths 112
Report, 1.0X: Algorithm Performance for Different Command Queue Lengths 112
SynRGen, 4 Users: Scheduling Algorithm Performance for Disks with Preseek

Command Queueing . . . . . . .. L 115
SynRGen, 4 Users: Scheduling Algorithm Performance for Disks with Full
Command Queueing . . . . . . .. L 116
SynRGen, 8 Users: Scheduling Algorithm Performance for Disks with Preseek
Command Queueing . . . . . . .. . L 117
SynRGen, 8 Users: Scheduling Algorithm Performance for Disks with Full
Command Queueing . . . . . . .. . L 118
Compress: Scheduling Algorithm Performance for Disks with Preseek Com-
mand Queueing . . . ... 120
Compress: Scheduling Algorithm Performance for Disks with Full Command
Queueing . . . . . L 121
Cello, 1.75X: Sequential Scheduling Algorithm Performance. . . . . . . . .. 124
Snake, 1.25X: Sequential Scheduling Algorithm Performance . . . . . .. .. 125
Air-Rsv, 2.5X: Sequential Scheduling Algorithm Performance . . . . . . . .. 126
Sci-TS, 2.5X: Sequential Scheduling Algorithm Performance . . . . . .. .. 127
Order, 1.0X: Sequential Scheduling Algorithm Performance . . . . . . . . .. 128
Report, 1.0X: Sequential Scheduling Algorithm Performance . . . ... ... 129
SynRGen, 8 Users: 2() LBN-Based Scheduling Algorithm Performance for
Disks with Preseek Command Queueing . . . . . . .. .. .. .. ... ... 132
SynRGen, 8 Users: 2() LBN-Based Scheduling Algorithm Performance for
Disks with Full Command Queueing . . . . . ... .. .. .. ... ..... 133
SynRGen, 8 Users: 2Q) Full-Knowledge Scheduling Algorithm Performance for
Disks with Preseek Command Queueing . . . . . . .. .. .. .. ... ... 134
SynRGen, 8 Users: 2Q) Full-Knowledge Scheduling Algorithm Performance for
Disks with Full Command Queueing . . . . . .. ... .. .. ... ..... 135

X



6.29

6.30

6.31

6.32

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22

7.23
7.24
7.25
7.26
7.27
7.28

7.29
7.30

Compress: 2() LBN-Based Scheduling Algorithm Performance for Disks with

Preseek Command Queueing . . . . . . . . . . ... Lo 137
Compress: 2(Q LBN-Based Scheduling Algorithm Performance for Disks with

Full Command Queueing . . . . . . .. .. ... 138
Compress: 2Q) Full-Knowledge Scheduling Algorithm Performance for Disks

with Preseek Command Queueing . . . . . .. . .. ... ... .. 139
Compress: 2Q) Full-Knowledge Scheduling Algorithm Performance for Disks

with Full Command Queueing . . . . . .. .. ... ... .. .. 140
Cello, 1.75X: Disk-Based SSTF Performance . . . . . . .. . ... ... ... 144
Snake, 1.25X: Disk-Based SSTF Performance . . . .. .. .. .. ... ... 145
Awr-Rsv, 2.5X: Disk-Based SSTF Performance . . . .. .. .. .. ... ... 146
Sci-TS, 2.5X: Disk-Based SSTF Performance . . . .. .. ... ... ... .. 147
Order 1.0X: Disk-Based SSTF Performance . . . ... .. .. ... ..... 148
Report, 1.0X: Disk-Based SSTF Performance . . . .. .. ... ... ... .. 149
Snake, 1.25X: Disk-Based SSTF Performance . . . .. .. ... ... ... .. 150
Cello, 1.75X: Disk-Based SPCTF Performance . . .. .. ... .. ..... 151
Snake, 1.25X: Disk-Based SPCTF Performance . . .. .. ... ... .... 152
Awr-Rsv, 2.5X: Disk-Based SPCTF Performance . . . . .. ... ... .... 153
Sci-TS, 2.5X: Disk-Based SPCTF Performance . . .. .. ... ... .... 154
Order, 1.0X: Disk-Based SPCTF Performance . . . ... ... ... ..... 155
Report, 1.0X: Disk-Based SPCTF Performance . . .. .. ... ... .... 156
Snake, 1.25X: Disk-Based SPCTF Performance . . .. .. ... ... .... 157
Cello, 1.75X: Distributed Scheduling Algorithm Performance . . . . . . . .. 159
Snake, 1.25X: Distributed Scheduling Algorithm Performance . . . . . . . .. 160
Air-Rsv, 2.5X: Distributed Scheduling Algorithm Performance . . . . . . .. 161
Sci-TS, 2.5X: Distributed Scheduling Algorithm Performance . . . . . . . .. 162
Order, 1.0X: Distributed Scheduling Algorithm Performance . . . . . . . .. 163
Report, 1.0X: Distributed Scheduling Algorithm Performance . . . . . . . .. 164
Snake, 1.25X: Distributed Scheduling Algorithm Performance. . . . . . . .. 165
SynRGen, 8 Users: Distributed Scheduling Algorithm Performance for Disks

with Preseek Command Queueing . . . . . .. ... . ... ... .. 170
SynRGen, 8 Users: Distributed Scheduling Algorithm Performance for Disks

with Full Command Queueing . . . . . . . .. ... ... ... ... 171
Compress: Distributed Scheduling Algorithm Performance for Disks with Pre-

seek Command Queueing . . . . . . . . . ..o 172
Compress: Distributed Scheduling Algorithm Performance for Disks with Full

Command Queueing . . . . . . .. . L 173
Cello, 1.75X: Distributed Scheduling Algorithm Performance . . . . . . . .. 177
Snake, 1.25X: Distributed Scheduling Algorithm Performance. . . . . . . .. 178
Air-Rsv, 2.5X: Distributed Scheduling Algorithm Performance . . . . . . .. 179
Sci-TS, 2.5X: Distributed Scheduling Algorithm Performance . . . . . . . .. 180
Order, 1.0X: Distributed Scheduling Algorithm Performance . . . . . . . .. 181



7.31
7.32

7.33
7.34
7.35
Al
A2
A3

A4
A5

Report, 1.0X: Distributed Scheduling Algorithm Performance . . . . . . . ..
SynRGen, 8 Users: Distributed 2Q) Scheduling Algorithm Performance for
Disks with Preseek Command Queueing . . . . . . .. .. .. .. ... ...
SynRGen, 8 Users: Distributed 2Q) Scheduling Algorithm Performance for
Disks with Full Command Queueing . . . . . .. ... .. ... .. .....
Compress: Distributed 2Q) Scheduling Algorithm Performance for Disks with
Preseek Command Queueing . . . . . . . . .. ... Lo
Compress: Distributed 2Q) Scheduling Algorithm Performance for Disks with
Full Command Queueing . . . . . . .. .. ...
HP C2247 Disk Drive Seek Curve . . . . . . . ... ... . ...
Validation Response Time Distributions: 95% Random Reads . . . .. ...
Validation Response Time Distributions: 95% Random Writes . . . . . . ..
Validation Response Time Distributions: 95% Sequential Reads . . . . . ..
Validation Response Time Distributions: 95% Sequential Writes . . . . . . .

x1



CHAPTER 1

Introduction

1.1 Overview

Disk subsystems must be effectively utilized to compensate for the growing performance
disparity between processing and storage components. Disk workloads are often charac-
terized by intense bursts of activity, creating long queues of pending requests [McNu86,
Ruem93]. When such queues develop, the disk scheduler dynamically reorders pending re-
quests to decrease service times. A significant portion of disk service time consists of mechan-
ical positioning delays, which are highly dependent on the relative positions of the requested
blocks and the current read/write head position. By taking into account the various delays
associated with disk accesses, a scheduler can produce a request sequence that minimizes
the mean positioning time while providing equitable response times for individual requests.
In many cases, better overall system performance can be achieved by a disk scheduler that
prioritizes requests based on their “importance” to the system as a whole. A scheduler with
access to application-level or system-level information can generate a request schedule that
produces more nearly optimal system performance.

Traditional disk schedulers typically utilize simple algorithms that require little knowl-
edge of system goals or the state of the disk subsystem. The increasing amount of com-
putation and memory resources available for scheduling activities makes more sophisticated
disk scheduling algorithms feasible. As the demands on 1/O subsystems increase, future
high-performance systems will require more efficient and effective disk access. Aggressive
disk request scheduling will play a major role in achieving this goal.

Disk schedulers can be found in application programs (e.g., database storage managers),
O/S device drivers, intermediate I/O controllers (e.g., disk array controllers), and on-board
disk drive controllers. In most systems, however, a disk request encounters only one “active”
scheduler in the path from the application program to the disk drive media. One approach
to improving performance is to increase the amount of information available to the active
scheduler and augment existing scheduling algorithms to take this information into account.

Effective centralized scheduling requires that useful information be identified, ex-
tracted, and transmitted along the 1/O path to a single active scheduler. Popular interme-
diate and peripheral bus protocols do not facilitate the transfer of such control information
(e.g., resource status/utilization and request priority, dependency, and aging information).



Also, not all file system and device driver interfaces have the flexibility to communicate
pertinent scheduling information.

Ideally, the location of a centralized scheduler should be chosen to minimize the control
information traffic while assuring timely access to the most useful control information. In
addition, a scheduler should have sufficient computation and memory resources to efficiently
process incoming information, maintain queues of pending requests, and perform scheduling
activities (i.e., searching and sorting the pending request queues). The cost and complexity
disadvantages of centralized scheduling, however, motivated the investigation of an alterna-
tive scheduling paradigm.

Distributed scheduling partitions the necessary activities among separate entities
along the I/O path. The scheduling entities must cooperate (i.e., exchange additional con-
trol information) in order to prevent undesirable interactions. Achieving such coordination
may require changes to existing O/S interfaces and bus protocols. Even with appropriate
hardware and software modifications, distributed scheduling may not attain performance
equivalent to that of “omniscient” centralized scheduling (i.e., scheduling with complete
knowledge of all useful information coupled with sufficient resources to effectively utilize
the information). For realistic implementations, however, distributed scheduling has cost,
complexity, and performance advantages.

Over the past 25 years, a variety of scheduling algorithms have been proposed and studied
in both academia and industry. Previous scheduling algorithm studies typically used sim-
plistic disk models lacking several important features of modern disk drives (e.g., on-board
caches). The benchmark workloads were usually synthetic, using simple probability distri-
butions (e.g., uniform, unimodal, or bimodal) for request starting locations. Host feedback
effects were ignored (e.g., open subsystem models with exponentially distributed request
interarrival times) or oversimplified (e.g., closed subsystem models maintaining a constant
number of outstanding requests). The conclusions therefore should be considered in an
appropriate context. Most apply only to a small set of workloads, which are typically unrep-
resentative of real-world systems, serviced by outdated disk drive components. In contrast,
the studies discussed in this dissertation use a simulator containing a very detailed, well-
validated disk model. The simulator uses traces taken from systems at several industrial and
research installations. Some of the experiments use an open subsystem model, while others
use a realistic host model developed at the University of Michigan [Gang93]. The host model
provides system performance metrics to measure the user-level impact of scheduler design
choices.

1.2 Thesis Statement

Previous studies of disk scheduling algorithms are inadequate for computer system en-
gineers concerned with optimizing disk subsystem performance. This dissertation pro-
vides guidelines for designing and implementing aggressive disk request schedulers in high-
performance systems equipped with state-of-the-art storage components.



1.3 Accomplishments of this Dissertation

It is shown that distributed scheduler implementations provide performance equal to or
superior to that of equivalent centralized scheduler implementations for most workloads
studied. Since distributed scheduling also has cost and complexity advantages, this new
scheduling paradigm is recommended for future high-performance systems.

It is shown that algorithms incorporating system-level information (e.g., disk request
priorities) provide the highest levels of overall system performance for the real-world
traces studied. This performance advantage is not necessarily reflected in (and some-
times runs counter to) standard disk subsystem performance metrics such as request
response time mean and variance.

It is shown that the quantity and detail of hardware-specific information required by
a disk request scheduler is a function of the algorithm complexity. Simple schedul-
ing algorithms gain little performance benefit from extensive disk drive specifications.
Complex scheduling algorithms, on the other hand, require comprehensive disk drive
configuration and state information.

It is shown that disk request schedulers that effectively exploit a disk drive’s on-board
data cache provide superior performance. Mean response times for medium-to-heavy
workloads decrease significantly when a disk request scheduler reorders or combines
disk requests to improve on-board cache utilization.

A wide variety of scheduling algorithms and implementations are compared and con-
trasted using detailed simulation driven by traces of real-world disk and system activity.

1.4 Organization of this Dissertation

This dissertation is organized in eight chapters. Chapter 2 describes a variety of infor-
mation potentially useful to the disk scheduler. Chapter 3 discusses previous disk scheduling
studies. Chapter 4 describes the methodology employed throughout this work, including a
discussion of the traced workloads and the simulator. Chapters 5 and 6 compare various
algorithms for centralized scheduling at the host and disk, respectively. Chapter 7 compares

the same algorithms using distributed scheduling. Chapter 8 provides some concluding re-
marks and discusses future directions. The appendix lists parameter values for the disks

modeled in this work.



CHAPTER 2

Useful Scheduling Information

A disk request scheduler reorders queues of pending requests to optimize some set of cri-
teria (e.g., performance and reliability metrics). It must therefore have access to information
about individual requests and the state of the components along the 1/O path. This chapter
identifies various types of information that are useful to a disk request scheduler.

The set of useful information is divided into two classes. Information from “below” the
scheduler relates to the I/O path hardware, typically concerning the configuration, opera-
tion, and current state of the individual controllers, buses, and storage devices (e.g., disks).
Information from “above” the scheduler specifies how requests relate to each other and to
system goals (e.g., application runtimes and reliability guarantees).

2.1 Information From “Below” the Scheduler

A scheduler can use hardware-specific information to reduce disk request service times. In
particular, aggressive disk schedulers can exploit information about disk drive configuration
and state to reduce mechanical delays and make better use of on-board caches.

2.1.1 The Modern Disk Drive

A disk drive consists of a set of platters rotating on a common axis, or spindle (see
figure 2.1). Both surfaces of each platter are coated with magnetic media. Data blocks are
written in circular tracks on each surface. The minimum unit of data storage is usually
a sector, which typically holds 512 bytes of data plus some header/trailer information
(e.g., error correction data). A cylinder is a set of tracks (one from each surface) equidistant
from the center of the disk. For example, the outermost cylinder contains the outermost track
of each surface. Each surface has an associated read /write head. In most drives only one
read/write head is active at any given time. The heads are mounted on disk arms that are
ganged together on a common actuator. Each cylinder of data is accessed from a specific
actuator position.?

!With increasing track densities, it has become necessary to (slightly) reposition the actuator when
switching between tracks on a cylinder. High-capacity drives use servo bursts embedded between sectors
of data to align the read/write head “over” a track.



Read/Write Head

Track

Sector Actuator

Figure 2.1: Disk Drive Terminology

Mechanical delays often dominate disk request service times. To access a requested media
location, a disk actuator must first seek to the target cylinder and activate the appropriate
read/write head. Then, a request incurs rotational latency while waiting for the target
sectors to rotate into position. After these delays, the magnetic media is accessed as the
sectors rotate “under” the read/write head. Further mechanical delays result if multiple
tracks or cylinders must be accessed.

In addition to the mechanical characteristics, a number of modern disk features can
directly affect scheduling algorithm performance. Some are the result of efforts to make
disks self-contained or self-managed. Clever methods of increasing drive capacity (e.g., zones)
and effective lifetime (e.g., automatic defect management) also have a major impact. The
remainder of this section provides additional details on mechanical positioning delays, the
on-board disk controller, the mapping of logical data blocks to physical media locations, and
methods for obtaining disk drive state and configuration information.

Mechanical Positioning

Positioning a read/write head to access specific sectors of data involves several individual
delays. To correctly predict the positioning times of pending requests, a scheduler must have
accurate approximations of the seek curve, head switch time, write settling time, rotation
speed, and current position of the disk actuator.

A seek curve maps seek distances to actuator positioning times. The seek time between
two cylinders is a complex function of the positions of the cylinders (i.e., their distance from
the spindle), the direction of the seek (inward or outward), various environmental factors
(e.g., vibration and thermal variation), the type of servo information (dedicated, embedded,



or hybrid), the mass and flexibility of the head/arm assembly, the current available to the
actuator, etc. A single curve can therefore only reflect mean or upper-bound estimations
for seek times. Typical seek curves consist of an irregular initial region for very short seeks,
a middle region approximated by a square root function, and a large linear region for long
seeks (see figure 2.2 and the appendix).

The head switch time (i.e., the time necessary to electronically switch from one
read/write head to another and realign “over” the new track) depends primarily on the
type of servo information utilized by the disk drive (e.g., dedicated, embedded, or hybrid)
and various environmental factors (e.g., vibration and thermal variation). Seek and head
switch activity occur simultaneously, with seek time dominating.? A write request that re-
quires a seek or head switch may need additional time to more closely align the read/write
head (the write settling time).?

Disk drive specifications allow rotation speeds to vary slightly from disk to disk. The
rotation speed of a disk may even vary from moment to moment. Modern drives can pass
and receive rotational synchronization signals, and an external scheduler can track the speed
and rotational position of a disk by monitoring these signals. If the necessary monitoring
hardware is unavailable, an aggressive scheduler can estimate the current rotational position
of a disk by tracking request completion times [Wort95].

Disk Controller

The resources available to on-board disk controllers increase with each new generation
of drives. Current disk drive components include powerful embedded microprocessors and
large quantities of memory. An on-board disk controller handles the peripheral bus interface,
interprets and services disk requests, manages the on-board data cache, and (if appropriately
configured) maintains and schedules queues of pending requests. Disk controller firmware
typically contains a small operating system coupled with a number of processes to perform
the various disk controller functions.

Host Interface

Most disks possess sufficient on-board logic and processing power to present a relatively
clean interface to a host system. High-level protocols, such as the Small Computer System
Interface (SCSI) and the Intelligent Peripheral Interface (IPI), are supported by a wide
variety of disk drive, disk array, 1/O adapter, and host system manufacturers. A host or
intermediate controller issues a request to a disk drive in terms of a starting logical block
number (LBN) and a total request size. The details of the subsequent media access are
hidden from the host. This approach offloads the management overhead associated with the
actual data storage from the host or controller to the disk drive electronics. As a result,
scheduling entities external to a modern drive typically have little or no knowledge of the

2Improvements in magnetic media and servo technology continue to increase track densities. For future
generations of disks, repositioning between adjacent tracks on a surface (i.e., a 1-cylinder seek) may actually
require less time than repositioning between tracks on a cylinder.

3Data can be successfully read from the media even when a read/write head is slightly misaligned, but
data must be written as close to the middle of a track as possible in order to prevent corruption of adjacent
tracks of data.



) .
e )
S 200}
£ :
|_
\ﬁ 150+
100
. — 90th Percentile
; --- Mean
50
0.0 —rd—| | | | | | |
0 250 500 750 1000 1250 1500 1750 2000
Seek Distance (cylinders)
(a) Full seek curve
/U)\ 7.0'_
£
2 601
=
g 504+
40+
30+ ) .-° ) —— 90th Percentile
’ . --- Mean
2.0
1.0+
0.0 | | | ] | | | | | |

0O 10 20 30 40 50 60 70 8 90 100
Seek Distance (cylinders)
(b) Expanded view of short seeks
Figure 2.2: Measured Seek Curves for the Seagate ST41601N Disk Drive



physical data layout, the status of the on-board data cache, and the various overhead delays
associated with each request.

Control and Communication Overheads

A disk request incurs several control and communication delays during its lifetime. Ag-
gressive scheduling algorithms must plan for such delays to be effective. For example, if
a disk rotating at 5400 RPM (11.1 ms per rotation) requires 1 ms of command initiation
overhead, a media access that would begin in 0.5 ms without any overhead (given the current
rotational position) will “just miss” the target sectors and wait for a total of 11.6 ms. If the
initiation overhead were taken into account, a request with a shorter delay might be chosen.

Disk request processing overheads depend on the request type (read or write), the request
size, the state of the on-board cache (hit or miss), and the immediately previous request’s
characteristics. Protocol and bus transfer delays depend on the individual components along
the I/O path (e.g., host processors, intermediate controllers, I/O adapters, buses, and on-
board disk controllers). The appendix lists measured overhead values for the HP C2247 disk
drive.

On-Board Data Cache

The use of memory within embedded disk drive control logic has progressed from small,
speed-matching buffers to dynamically-managed caches containing several megabytes of stor-
age. On-board disk logic can automatically prefetch data to more quickly satisty subsequent
read requests. For example, a disk might take 20 ms to service a read request that requires
media access, whereas a subsequent sequential read request for prefetched data from the
on-board cache might take only 1 ms.

The existence of an on-board cache affects scheduling activities in two ways. First, a
scheduler may not be able to determine the actual position of the active read/write head
after a read request; automatic prefetch activity may result in switching heads or seeking to
the next cylinder. Second, cached data blocks can be accessed far more quickly than blocks
obtained from the disk media. Schedulers may give priority to read requests that will hit in
the cache in an attempt to reduce mean response times.

Some disks support the ability to signal write request completion as soon as all of the
data blocks reach the on-board cache. The on-board controller moves the data from the
cache to the media at some later point. Since current disk implementations use volatile
memory components for the cache, the contents of the cache are lost if the power fails.
Fast writes may therefore reduce the reliability of disk storage unless additional measures
are taken to protect cached data (e.g., non-volatile memory components or uninterruptable
power supplies).

Disks with read-on-arrival and/or write-on-arrival capability reduce request service
times by transferring data to or from the media “out-of-order.” That is, sectors are accessed
in the order that the read/write head encounters them rather than in strictly ascending LBN
order. For example, if an entire track of data is to be read, a disk with read-on-arrival begins
transferring data from the media almost immediately after any seek or head switch delays
are complete. This essentially eliminates rotational latency. The performance advantage is
less for requests larger or smaller than a track.



Most on-board data caches contain multiple cache lines, or segments, to better service
multiple streams of sequential requests. Some disks fine-tune cache performance by analyzing
disk request patterns and dynamically modifying the number of segments (and the segment
size).

Scheduling issues related to fast writes, read/write-on-arrival, and dynamic cache seg-
mentation are beyond the scope of this dissertation.

Command Queueing

Modern disk drives can handle multiple outstanding requests for service. Command
queueing overlaps processing overhead for incoming requests with media access for prior
requests. Some command queueing implementations allow the disk controller to take an
active role in scheduling pending requests (e.g., to reduce mechanical latencies). Disk con-
trollers can also increase the concurrency between requests receiving service. Section 4.1.2
discusses several specific optimizations.

If a disk services requests in arrival order, external schedulers need only know the depth of
the on-board command queue. If a disk reorders pending requests, external schedulers should
coordinate their activity with the on-board disk scheduler (i.e., use distributed scheduling).

Data Layout

Many existing schedulers use simple LBN-based approximations of seek-reducing algo-
rithms. LBN-based scheduling relies on highly sequential logical block number to phys-
ical block number (LBN-to-PBN) mappings. More aggressive algorithms require accurate
knowledge of the data layout. Zoned recording, track/cylinder skew, and defect management
schemes complicate LBN-to-PBN mappings.

Zoned Recording

To exploit the larger track circumference of cylinders farther from the spindle, a modern
drive usually partitions its set of cylinders into multiple zones. The number of sectors per
track increases with the radius of the tracks in the zone. For example, the outermost zone
might have twice as many sectors per track as the innermost zone. This increases both the
capacity per unit volume and the mean media transfer rate of the disk. Within each zone,
a disk may reserve a subset of cylinders (or tracks or sectors) for defect management (see

below).

Track and Cylinder Skew

Since switching between tracks and seeking between adjacent cylinders requires non-zero
time, the first logical block of each track or cylinder is offset (or skewed) from the first
logical block of the previous track or cylinder. This prevents a request that crosses a track
or cylinder boundary from “just missing” the next logical block and waiting almost a full
rotation for it to come around again. Track and cylinder skews are generally specified as an
integral number of sectors and therefore differ from zone to zone.



10

Defect Management

Disk drives can survive the loss of hundreds of sectors or tracks to media corruption. In
fact, a new drive usually contains a list of defects identified at the factory. A disk updates
this list with defects grown during its lifetime and removes the corrupt media locations from
its LBN-to-PBN mapping.

Sector or track slipping occurs during disk format. In the case of sector slipping, the
format process skips each defective sector and adjusts the LBN-to-PBN mapping so that
the sectors on either “side” hold logically sequential data. Track slipping follows the same
routine, except that the format process skips an entire track if it contains any defective
media. Fach slipped region changes the mapping of subsequent logical blocks, reducing the
accuracy of a scheduler that relies on static knowledge of the cylinder and/or rotational
position of each block. The format process reserves extra space (spare regions) at the end
of certain tracks, cylinders, or zones to contain the spillover caused by slipped sectors or
tracks (to minimize the impact of defects on the static LBN-to-PBN mapping). In general,
large spare regions affect seek behavior and small spare regions (distributed across the disk)
interrupt sequential data transfers.

Reallocation occurs when a disk discovers defective sectors (or tracks) during normal
disk use. Modern disks automatically remap the affected LBNs to spare regions and redirect
subsequent accesses to the appropriate spare sectors. The disks used in this work contain
very few reallocated defects, producing no discernible performance effects.

Extraction of Disk Drive Parameters

The previous sections describe a number of disk drive parameters useful to a scheduler.
External schedulers must somehow obtain such information from a disk in order to exploit it.
In particular, algorithms that reduce combined seek and rotational latencies require detailed
information on command processing overheads, mechanical latencies, and data layout. To
enable the use of such algorithms, a suite of quick and effective programs have been developed
to extract the necessary information from modern SCSI disk drives. [Wort95] contains an
overview of the extraction process.

2.1.2 Other I/O Path State

Although the most important hardware-specific data relates to the disk drives, other
[/O path components can also supply useful scheduling information. Bus adapters can
provide the current status of intermediate and peripheral buses. Intermediate controllers
with sufficient computation and memory resources can provide both caching and scheduling
functionality. In particular, disk array controllers can contribute significantly to scheduling
performance.

Disk arrays are becoming commodity items for systems of all sizes. A variety of data
placement and redundancy schemes are available to improve performance and/or data re-
liability [Gang94, Hou93, Holl92, Gray90, Katz89, Patt88, Kim86]. An intelligent disk ar-
ray controller can reorder pending requests based on the state of any caches, disks, and
buses under its control. For example, if an array employs a redundancy scheme that pro-



11

vides multiple paths for accessing data (e.g., disk mirroring), the array controller could
dynamically route requests to the components that can most quickly service the requests
[Poly93, Sugg93, Ng91, Chen90, Lee90, Bitt88]. Alternately, the array controller could sched-
ule requests to the components with the shortest pending queues.

In this dissertation, all information from “below” the scheduler relates to disk drive
configuration and state. Scheduling optimizations using bus and intermediate controller
information are left as future work.

2.2 Information From “Above” the Scheduler

It is easy to lose sight of the “big picture” when developing scheduling algorithms that
use large quantities of hardware-specific information. The end goal of disk scheduling is not
to reduce the mean disk request response time, but to reduce (or eliminate) the performance
impact of “slow” disk activity on application processes. Information about inter-request
relationships and the impact of individual requests on system goals allows a scheduler to
optimize for overall system performance rather than disk subsystem performance. System-
level information originates from the operating system and the individual processes issuing
disk requests.

2.2.1 Application and File System Information

A scheduler can prioritize pending requests based on the system-level information avail-
able for each request. For example, read requests for which application processes are waiting
might receive high priority. Background write requests periodically generated by disk cache
flush daemons* might receive low priority.

If an application (e.g., a database storage manager) schedules its own requests, it can use
application-specific information directly.® If scheduling entities outside of the application
(e.g., the device driver) are to exploit such information, an appropriate interface must be
provided. For requests issued through a file system, similar interfaces and information-
sharing techniques are necessary to allow application and file system information to reach
schedulers farther down the I/0O path.

File system metadata updates (e.g., requests generated by file creation and deletion) and
ordered updates generated by applications (e.g., OLTP) often impose certain dependencies
between requests. For example, a set of write requests may need to complete in a certain
sequence to maintain data reliability or security guarantees. Schedulers can use dependency
information not only to uphold such guarantees, but also to prioritize requests. For example,
requests at the head of a long dependency chain might receive higher priority.

A daemon is a special-purpose host process that wakes up periodically or on request. For example,
daemons might be responsible for spooling printer requests, sending packets out over a network, and flushing
disk block caches.

5The concept of virtual devices makes application-level request scheduling less prevalent in modern
systems. That is, current operating systems present applications with an abstract view of secondary storage,
hiding the mapping between virtual and physical devices.



12

Host system reliability guarantees can also constrain scheduling activities. For exam-
ple, many UNIX® file systems guarantee that data updates written to the main memory
disk cache will be issued to stable storage within a given period of time (e.g., 30 seconds).
A background daemon periodically sweeps through the disk cache and writes dirty blocks
to disk. Alternately, the file system could generate write requests with “deadlines,” and
the scheduler could guarantee that each request will be initiated before the specified dead-
line. Both scenarios require appropriate interfaces and information-sharing for effective disk
request scheduling.

2.2.2 Resource Utilization

Request priorities should depend (to some degree) on the utilization of finite system
resources, such as main memory disk cache blocks. For example, write requests generated
because of disk cache pressure (i.e., few available clean cache blocks) should be expedited.
Otherwise, the disk block cache may become a performance bottleneck [Benn94]. This
example suggests an additional scheduling optimization. At the moment when cache pressure
raises the priority of subsequent write requests, there may already be writes waiting for
service. In order to quickly make space in the cache, the priorities of the outstanding write
requests should also be raised (retroactively). This can be accomplished by using indirect
or class-based priorities. That is, the control block associated with each request can contain
a pointer to an entry in a table of request priorities. By changing a value in the priority
table, an entire class of requests can be re-prioritized (including both existing and subsequent
requests).

SUNIX is a registered trademark used under license from the X/Open Corporation.



CHAPTER 3
Related Work

3.1 Scheduler Implementations

A modern computer system contains a number of components that can potentially par-
ticipate in scheduling activities. Device drivers embedded in the O/S traditionally contain
scheduling algorithms that use only logical block numbers and/or request types (i.e., read
or write). Schedulers found in intermediate controllers (e.g., on 1/O cards or within stor-
age enclosures) may utilize additional hardware-specific information (e.g., bus, controller, or
disk drive state). Lastly, modern disk drives with active command queueing can use full
knowledge of disk configuration, operation, and state.

Distributed schedulers make use of more than one entity along the 1/O path to reorder
disk requests. Traditional systems have little or no support for high-performance distributed
scheduling. Simple high-level schedulers could act as filters that prioritize requests or enforce
request dependencies by holding back low-priority or dependent disk requests. This degener-
ate form of distributed scheduling leaves much to be desired, although it is implementable on
current systems without modification to existing interfaces and protocols. More aggressive
distributed schedulers require active coordination between scheduling components.

3.2 Scheduling Algorithms

Numerous studies have shown that First Come First Served (FCFS) disk scheduling
results in suboptimal performance for all but the lightest workloads.! More effective schedul-
ing algorithms exploit information about individual requests and the current state of system
components. Scheduling algorithms are partitioned based on whether they use scheduling
information from “below” the scheduler (e.g., disk drive state) or information from “above”
the scheduler (e.g., request priorities).

Although previous studies provide some insight into the general performance behav-
ior of scheduling algorithms, many of their assumptions are not valid for modern high-
performance computer systems. The complex characteristics of current disk drives cannot
be duplicated with simple analytical or simulation models [Ruem94]. Synthetic or benchmark

L[Wilh76] constructs a synthetic workload with very high physical locality for which FCFS provides good
performance for some subsaturation arrival rates.

13



14

workloads with simple probability distributions for request starting locations or request inter-
arrival times are unrepresentative of real-world systems [Ruem93, Bate91, Henl89, McNu86,
Scra83, LyncT72]. Disk subsystem performance metrics cannot accurately predict the effects
of scheduling design and implementation choices on overall system performance (i.e., the
elapsed times or throughput of application-level tasks) [Gang93]. Each of the studies dis-
cussed below suffers from one or more of these inadequacies.

3.2.1 Scheduling with Information from “Below”

Traditional scheduling algorithms use hardware-specific knowledge to reduce mechanical
delays. Some algorithms minimize seek times while others minimize overall positioning times
(i.e., combined seek and rotational latencies). Modern SCSI disk drives have mean seek times
of approximately 10 ms (for random disk accesses) and maximum (or full-stroke) seek times
of approximately 20 ms. Modern disk platters rotate at 5000 RPM or more, resulting in mean
rotational latencies of approximately 4-6 ms. Thus, both seek times and rotational latencies
have a large impact on mean request service times.

Reducing Mean Seek Time

Over 25 years ago, Denning used a simple analytical model to study the advantages of
a Shortest Seek Time First (SSTF) policy [Denn67]. This algorithm always schedules
the pending request that will incur the smallest seek time given the current disk actuator
position. Since it is infeasible to exactly predict seek times (see section 2.1.1), schedulers
typically approximate SSTF by using seek distances (i.e., the number of cylinders to be
traversed). SSTF reduces mean response times over a wide range of workloads. However,
SSTF is a greedy scheduling algorithm; the potential for starvation of individual requests
increases with workload intensity. With SSTF scheduling of a heavy workload, a disk’s
actuator tends to hover over a subset of the cylinders in an attempt to exhaust all requests
to that region, thereby starving any requests outside of that region. In particular, SSTF
discriminates against requests to the innermost and outermost cylinders.

Denning also examined the SCAN or “elevator” algorithm, which provides lower re-
sponse time variance than SSTF with only a marginal increase in the mean response time
(for the synthetic workloads studied). This algorithm is named for the way that the disk
actuator shuttles back and forth across the entire range of cylinders, servicing all requests
in its path. It only changes direction at the innermost and outermost cylinder of the disk.
Because SCAN passes over every cylinder during each phase of the scan, it resists starvation
more effectively (i.e., has a lower response time variance) than SSTF. However, the disk arms
pass through the center region of the disk at more regular intervals than the edges. Requests
to the middle cylinders therefore receive better service.

The SCAN algorithm has a number of variations. The Cyclical SCAN algorithm
(C-SCAN) replaces the bidirectional scan with a single direction of travel [Seam66]. When
the actuator reaches the last logical cylinder, a full-stroke seek returns it to the first cylinder
without servicing any requests along the way. C-SCAN treats each cylinder equally rather
than favoring the center cylinders. The LOOK algorithm, another SCAN variant, reverses



15

the scanning direction when no pending requests exist in the current direction of travel
[Mert70]. The C-LOOK algorithm combines C-SCAN and LOOK.

Teorey and Pinkerton used both analytical and simulation models to analyze the perfor-
mance of several scheduling algorithms, including FCFS, SSTF, LOOK, C-LOOK, and some
hybrid algorithms optimized to handle extremely heavy workloads [Teor72]. Their simple
models assumed a linear seek curve, zero command and completion overheads, no bus activ-
ity, uniformly distributed request starting locations, and a constant number of outstanding
requests (i.e., a closed model). They showed that SSTF provides the lowest response times at
the cost of poor starvation resistance. They defined a new metric for evaluating scheduling
algorithm performance that includes the mean service time, the mean queue time, and the
response time variance. Using this metric, they concluded that the best scheduler imple-
mentation should use a dynamic algorithm policy that employs LOOK when the workload
intensity is low and C-LOOK when it is high. They suggested an implementation with some
hysteresis at the crossover point between the algorithms.

Daniel and Geist proposed VSCAN(R), a continuum of scheduling algorithms between
SSTF and LOOK [Dani83]. The R parameter indicates the algorithm’s bias towards main-
taining the current direction of actuator motion. VSCAN(0.0) is equivalent to SSTF, and
VSCAN(1.0) is equivalent to LOOK. A subsequent study by the same authors attempted
to identify the optimal value for R [Geis87]. They demonstrated that VSCAN(R) with a
low value of R provides mean response times within a few percent of STTF and response
time variances within a few percent of LOOK. However, they used simple synthetic work-
loads with either uniformly, unimodally, or bimodally distributed request starting locations.
Furthermore, their simulator configuration matched that reported in [Teor72].

They also implemented VSCAN(R) in a UNIX device driver on a DEC PDP-11/70 with
two 134 MB SMD Fujitsu disk drives. The system workload consisted of eight or more
university researchers doing program development, text editing, and some text formatting.
The results indicated that VSCAN(0.2) provides higher throughput (and lower or equivalent
mean response times) than FCFS, SSTF, LOOK, and VSCAN(0.1). They concluded that
VSCAN(0.2) provides a good balance between the response time mean and variance perfor-
mance metrics. Although this conclusion was reasonable for previous computer systems, this
dissertation shows that the VSCAN(R) algorithm does not effectively exploit the on-board
data caches found in current disk drives.

The CVSCAN(N,R) algorithm described in [Geis87a] augments VSCAN(R) to consider
more than just the “closest” request in either direction from the current actuator position.
Instead, the algorithm computes the mean seek distance to the closest N requests in each
direction. So, CVSCAN(1,R) is equivalent to VSCAN(R). Geist, et al., used both simulation
and actual implementation to test the performance of CVSCAN(N,R) for various N and R
values. Using the same simulator configuration as in [Geis87], they determined the mean
and standard deviation for request queue and service times. Values of N greater than unity
did not provide significant improvement for CVSCAN(N,R). They also compared schedul-
ing algorithms by actual implementation and determined that SSTF provides the highest
throughput and is the most susceptible to request starvation. LOOK is the least susceptible
and provides 96% of the throughput of SSTF. Versions of VSCAN(R) and CVSCAN(N,R) all
provide performance roughly equivalent to that of LOOK. Their study failed to demonstrate
any significant advantage of either VSCAN(R) or CVSCAN(N,R) over the more traditional



16

scheduling algorithms. In addition, the benchmark workload was heavily weighted towards
read requests for file system directory blocks clustered around a few points in the logical
space. As modern operating systems typically cache frequently accessed directory blocks in
main memory, this workload was quite unrealistic.

WSCAN(R), or Window SCAN, represents a slightly different continuum of schedul-
ing algorithms between SSTF and LOOK [Sugg90]. WSCAN(R) emulates the LOOK algo-
rithm while pulling a “service window” along behind. The R parameter indicates the size
of the service window. When the algorithm schedules requests within the window, neither
the “current” direction of travel nor the window boundaries change. WSCAN(0.0) is equiv-
alent to LOOK, and WSCAN(1.0) is equivalent to SSTF. Suggs used the same simulator
as [Geis87] to determine that WSCAN(R) performs best with a value of R between 0.01
and 0.03. He demonstrated that for several very short sequences of requests, WSCAN(R)
provides a mean seek time closer to “optimal” than SSTF, SCAN, and VSCAN(0.2). Using a
scheduler implementation and workload similar to [Geis87a], he showed that WSCAN(0.02)
provides a 12.8% reduction in mean response time over VSCAN(0.2).

The WSCAN(R) algorithm shows more promise than VSCAN(R) for high-performance
disk request scheduling, as it will temporarily “turn around” and service sequential requests
in logically ascending order (during its descending phase). VSCAN(R) never reverses di-
rection unless there are no requests within the nearest fifth of the logical space “below”
the current location. And when it does turn around, it does so permanently. That is,
it changes from the descending phase to the ascending phase. Experiments in this dis-
sertation demonstrate that this behavior causes significant performance degradation when
scheduling sequential requests for disks with prefetching on-board caches. Unfortunately,
the WSCAN(R) algorithm is not studied in this dissertation.

XSCAN(R), a temporal variation of WSCAN(R), updates the “current” head position
at the completion of each request rather than the initiation [Geis95]. That is, a request
arriving at the scheduler may be chosen as the next to receive service if it is “closest” to the
position of the last request completed (i.e., not the request currently being serviced). This
algorithm gives priority to logically sequential (or nearly sequential) streams of synchronous
requests when the compute time between request completions and subsequent initiations
is small. Geist and Westall examined the performance of FCFS, WSCAN(R), and a read-
prioritized version of C-LOOK using a synthetic Linux file system workload. This workload
was almost pathologically worst-case for the C-LOOK algorithm, at least partially inval-
idating the results of their study. The file system workload consisted of eight processes
issuing synchronous single-sector read requests to eight “files” in the synthetic workspace.
Each process chose a new file to read after reading the last block of the previous file. For
a C-LOOK scheduler and a 4-segment data cache, such a workload results in a very low
cache hit rate. The scheduler services one request from each process during each scan across
the logical space. When WSCAN(R) or XSCAN(R) is used to schedule this workload, the
actuator often alternates between just two files (i.e., two cylinders) until one or the other
has been completely read. In this scenario, the automatic prefetching mechanism of the disk
provides a much higher cache hit rate — a hit rate of over 50% is reported. Given the poor
choice of workload in [Geis95], it is unclear what advantage (if any) XSCAN(R) has over
WSCAN(R) or any other scheduling algorithm.



17

Reducing Mean Positioning Time

Given detailed disk configuration and state information, a scheduler can choose the pend-
ing request that will incur the minimum positioning time. Several studies have examined
the performance of such a scheduling algorithm. Denoted as Shortest Time First (STF)
in [Selt90] and Shortest Access Time First (SATF) in [Jaco91], the term Shortest Po-
sitioning Time First (SPTF) is used in this work to clarify the exact purpose of this
algorithm. Seltzer, et al., simulated a disk subsystem with a constant number of pending
requests (up to 1000). Jacobson and Wilkes simulated a disk subsystem with a Poisson
arrival process for requests. Both studies used workloads with uniformly distributed request
starting locations.

The disk utilization numbers presented in [Selt90] indicate that SPTF provides up to
60% higher performance than C-LOOK or SSTF for the heaviest workloads. At the same
time, the request response time variance for SPTF (a greedy algorithm) rises dramatically
with increasing workload intensity. The maximum response time observed for SPTF at a
queue length of 1000 is 4.5 times higher than that of C-LOOK or SSTF. Jacobson and Wilkes
showed that SPTF saturates the studied disk subsystem at an arrival rate of approximately
70 requests per second, as compared to 50 requests per second for VSCAN(0.2) and SSTF.
These two studies used better disk drive models than those used in previous simulation stud-
ies of scheduling algorithms. However, they also used unrealistic workloads with simplistic
host models.

Sector-VSCAN(R), a variation on VSCAN(R), also takes rotational latency into ac-
count [Reyn88]. The R parameter indicates the algorithm’s bias towards maintaining the
current direction of actuator motion. Reynolds showed that Sector-VSCAN(R) provides up
to a 5% improvement in mean response time over VSCAN(R) for a synthetic file system
workload.

By detecting and scheduling sequential streams of requests in logically ascending order,
most of the algorithms described in this chapter can be modified to further reduce service
times. Given that logically sequential blocks typically map to physically sequential media
locations, sequential read requests (and write requests in some cases) incur zero positioning
delays when serviced in logically ascending order. A scheduler external to the disk drive
also has the option of concatenating (combining) sequential requests into a single larger
request. A concatenated request incurs less total processing and protocol overheads than
would the set of contributing requests. On the other hand, none of the individual requests
“complete” until the entire concatenated request completes. This may artificially increase
the service times for some of the contributing requests.

3.2.2 Scheduling with Information from “Above”

This section describes scheduling algorithms that utilize system-level information (see
section 2.2) to achieve performance and reliability goals. In the absence of such information,
a scheduler cannot identify “high priority” requests. However, it can control response time
variance and thereby reduce the possibility of starving high priority requests.



18

Reducing Response Time Variance

Most of the algorithms described in section 3.2.1 can be modified to reduce response
time variance. The resulting algorithms are classified as either batch or aging algorithms.
Batch algorithms service a subset of the pending requests, selected by some set of criteria,
before moving on to other requests. Possible criteria include request arrival times and target
cylinder numbers [Jaco91, Selt90, Coff72, Teor72, Fran69]. Aging algorithms give priority to
requests that have been in the request queue for excessive periods of time. Some algorithms
gradually increase the priority as a request ages [Jaco91, Selt90]. Alternately, a time limit
may be set after which requests move to a higher priority. In either case, if an aging algorithm
gives too much weight to the queue time (age) component, it degenerates into FCFS [Got]73].
For this reason, aging algorithms must be carefully designed — preferably after a thorough
analysis of the specific workload to be scheduled.

Scheduling for System Performance

If entities above the scheduler provide information about request inter-relationships
and/or the role of individual requests in achieving system goals (e.g., performance and
reliability metrics), the scheduler can more effectively focus on improving overall system
performance. The resulting request orderings may actually be “suboptimal” as measured by
disk subsystem metrics.

Ganger and Patt performed an initial study of disk scheduling using system-level infor-
mation obtained from a UNIX file system [Gang93]. They classified requests as time-critical,
time-limited, or time-noncritical based on whether or not host processes block (or will block)
after issuing the requests. They modified a device driver executing the LOOK scheduling
algorithm to give priority to time-critical and time-limited requests. For a file compression
workload, application runtimes dropped 13-14% when compared to the conventional LOOK
scheduler. At the same time, the mean request service time increased by 86%, the mean
seek time increased by over 180%, and the mean response time increased by over an order of
magnitude. Their work plainly demonstrated the potential benefits of making system-level
information available to the disk scheduler.

Real-time system research has recently focused on disk scheduling algorithms that use
transaction deadlines to reorder outstanding disk requests. Abbott and Garcia-Molina have
studied scheduling algorithms that prioritize disk requests based on the priority of the issuing
transactions [Abbo89] or a combination of transaction priority and seek distance [Abbo90].
They show that the former provide improved performance over FCFS and the latter provide
improved performance over traditional seek-reducing algorithms. In particular, a scheduling
algorithm that considers the “feasibility” of deadlines (i.e., whether or not a disk can service
a request before the issuing transaction’s deadline expires) is shown to provide the highest
system performance (as measured by the number of missed deadlines). In the first study,
disk service time was held constant at 25 ms per request. In the second study, they used
a very simple disk model lacking most of the advanced features of a modern disk drive. A
Poisson arrival process was used to generate single-track disk requests, and starting locations
were uniformly distributed.



19

Carey, et al., used a similar methodology to examine a priority-based LOOK algorithm
[Care89]. A more complex host model was used to more closely emulate real database
activity. Their LOOK algorithm serviced all high priority requests before servicing any low
priority requests. They recognized that the number of priority levels is inversely related to
the mechanical delay reduction possible using such a multi-queue scheduler; a simple two-
queue scheme allows significant scheduling flexibility, especially for heavier workloads. They
concluded that it is essential to use a priority-based disk scheduler (in conjunction with a
priority-based buffer management algorithm) whenever the disk subsystem is a performance
bottleneck.

Chen, et al., compared the performance of several real-time scheduling algorithms, includ-
ing the best algorithms from [Abbo90] and [Care89] along with two new real-time algorithms
based on SSTF [Chen91]. The SSTF-based algorithms use both seek distances and request
deadlines in the generation of request orderings. The algorithms can be biased toward ei-
ther of the criteria by changing certain scheduling parameters. The comprehensive database
model used in the experiments was validated against an actual real-time database testbed,
but the disk model was very simplistic. In particular, the lack of an on-board data cache
in the disk model undoubtedly affected the performance results for their experiments us-
ing workloads with high access locality (up to a 0.8 sequential access probability). Most
of their experiments, however, assumed a uniform distribution of request starting locations.
For their simulation environment, the two SSTF-based algorithms provided the best system
performance.

Kim and Srivastava examined real-time disk scheduling algorithms that differentiate be-
tween reads and writes when assigning request priorities [Kim91]. The best performance
resulted from an algorithm that assigns read request priorities based on the priority of the
issuing transaction and write request priorities based on the priority of the transactions wait-
ing for the release of the corresponding write locks. If no transaction is waiting for a write
to complete, the write is set to the lowest priority possible. Their simulator did not include
a disk model; they assumed a fixed disk service time of 25 ms.

In the absence of explicit system-level information, some schedulers make certain assump-
tions about request priorities. For example, a scheduler can give priority to read requests
(over write requests) in an attempt to reduce application runtimes. This heuristic is driven
by the fact that application processes often wait for read requests, while write requests are
usually buffered in main memory using write-back disk caches. Unfortunately, such heuris-
tics are only effective in certain situations and may actually degrade performance during
bursts of heavy activity. It is easy to devise cases where optimal performance requires the
scheduler to give priority to write requests (over read requests). For example, speculative
prefetch requests issued by file systems or applications should not be given precedence over
synchronous write requests (e.g., file system metadata updates). As a more complex exam-
ple, if a disk block cache in main memory cannot hold any more dirty blocks, it is vital to
quickly clean some fraction of the cache (see section 2.2.2). Giving write requests low priority
slows the process of cleaning the disk cache, indirectly reducing application performance.



20

3.3 Significant Room for Improvement

This chapter describes the state-of-the-art in disk scheduling. Clearly, significant room for
improvement exists. Interfaces and protocols should be augmented to allow useful scheduling
information to reach a centralized scheduler or pass between distributed schedulers. Com-
ponents along the 1/O path should be modified to extract and pass such information to the
scheduler(s). Centralized scheduling algorithms should be upgraded to utilize more of the
available information, and distributed scheduling algorithms should be devised that enable
cooperative scheduling.

Accurately identifying effective scheduling algorithms and scheduler implementations re-
quires a better performance evaluation methodology than has been used in previous work.
The studies discussed above all suffer from one or more failings. Most use disk mod-
els that lack important disk drive characteristics (e.g., request processing overheads, on-
board data caches, and complex data layouts). The experiments typically use synthetic
workloads with simple probability distributions for request starting locations (e.g., uni-
form, unimodal, or bimodal), which are unrepresentative of most real-world workloads
[Ruem93, Bate91l, Henl89, McNu86, Scra83, Lync72]. Those studies that did involve ac-
tual implementation used very simplistic benchmarks. With few exceptions, previous work
ignored host feedback effects (e.g., by using a Poisson process for request arrivals) or over-
simplified them (e.g., by maintaining a constant number of outstanding requests).



CHAPTER 4
Methodology

The experiments in this dissertation involve four elements: a trace-driven simulator com-
prised of detailed models of both the host and the disk subsystem; a set of traces (primarily
taken from real-world systems) used as input to the simulator; the disk scheduling algorithms
and scheduler implementations being studied; and the performance metrics used to evaluate
scheduler designs. This chapter describes each of the four elements.

4.1 The Simulation Model

As part of a larger research effort into 1/O subsystem design issues, an extensive trace-
driven simulator was developed for studying disk subsystems. It contains multiple models
of host systems, buses, caches, controllers, and disk drives. The simplest host model merely
interprets traces of disk request activity. The most complex host model simulates the exe-
cution of application and O/S processes on one or more processors. The disk models range
from simple statistical delay mechanisms to detailed, highly-validated models of modern

SCSI disk drives.

4.1.1 Host Models

The simulator supports several host models that consume different types of traces. For
experiments driven by disk request traces, request arrivals are modeled as in an open
system. Requests are issued to the disk subsystem model using traced interarrival times
(without regard for request completion times). The open system approach was chosen for
two reasons. First, it retains the burstiness inherent in real workloads (as opposed to the
fixed queue lengths of the closed system approach). Second, scaling of the traced interarrival
times creates a smooth continuum of workloads.

For experiments driven by full system traces, a more detailed host model provides
realistic feedback based on request completions. The process-flow model reproduces the
execution of processes in the host system and their interaction with the disk subsystem
[Gang93]. It recreates each process by consulting a timestamped trace of important events
encountered during the lifetime of that process (e.g., fork, exit, sleep, and disk request
generation). It also generates and handles clock and 1/0 interrupts. Because the process-flow
model simulates how processes interact with their disk requests, it enables the partitioning of

21



22

HP C2247 Disk Drive
Formatted Capacity | 1.05 GB
RPM | 5400
Mean Seek Time | ~10 ms
Data Surfaces | 13
Cylinders | 2051
Sectors | 2054864
Zones | 8
Sectors/Track | 56-96
Interface | SCSI-2
Cache | 256 KB

Table 4.1: Basic Characteristics of the HP 2247 Disk Drive

disk requests into multiple classes. Disk scheduler(s) can use this classification information
to tune schedules for better overall system performance.

4.1.2 Disk Drive Models

The simulator contains all of the modern disk drive features described in section 2.1.1,
including zoned recording, spare regions, defect slipping and reallocation, disk buffers and
caches, various prefetch algorithms, fast writes, bus delays, control and communication over-
heads, and command queueing. For the studies reported in this dissertation, the simulator
was configured to model the HP €2240 line of disk drives [HP92]. Table 4.1 lists some basic
specifications for the HP 2247 [HP92a].

To accurately model this line of drives, an extensive set of parameters was obtained
from published documentation and by monitoring SCSI activity. The experimental platform
consisted of an NCR 3550 multiprocessor system equipped with NCR 53C700 SCSI 1/0O
processors and HP C2247 disk drives. Extraneous system activity was minimized during the
monitoring process to reduce host delays. Various mechanical positioning delays, control
and communication overhead values, path transfer rates, and cache management strategies
were extracted. Exact LBN-to-PBN mappings were determined for several disks, providing
information on zoning, sparing, and defects. The appendix provides a complete list of the
disk parameters and extracted values.

The disk model was validated by exercising an actual HP 2247 and capturing traces
of all SCSI activity. The simulator replayed each traced request stream, using the observed
interarrival delays. This process was repeated for several synthetic workloads with varying
read/write ratios, arrival rates, request sizes, and degrees of sequentiality and locality. The
mean response times of the actual disk and the simulator match to within 0.8% in all cases.
Unpredictable (from the disk’s view) host delays partially account for the difference. Greater
insight can be achieved by comparing the measured and simulated response time distributions
[Ruem94]. Figure 4.1 shows distributions of measured and simulated response times for a
sample validation workload of 10,000 requests. As with most of our validation results, one



23

o 1.00 —

i

=

8

x

S 0751+

c

i)

:

L
0.50 + — Actua

--- Simulation

0.25 +
0.00 | | | | | | | | | |

0O 5 10 15 20 25 30 35 40 45 50
Response Time (ms)

Figure 4.1: Response Time Distributions for a Validation Workload (50% reads, 30%
sequential, 30% local [normal, 10000 sector variance], 8KB mean request size
[exponential], 0-22 ms request interarrival time [uniform])

can barely see that two curves are present. [Ruem94] defines the root mean square horizontal
distance between the two distribution curves as a demerit figure for disk model calibration.
The demerit figure for the validation run shown in figure 4.1 is 0.07 ms, which is less than
0.5% of the corresponding mean response time. The worst-case demerit figure observed over
all validation runs was only 1.9% of the corresponding mean response time.

Experiments in this dissertation use the HP (2240 line of disk drives for three reasons.
First, the simulator correctly models the observed behavior of these drives. Second, they
have most of the advanced features described in section 2.1.1. Third, detailed specifications
for the disks used in some of the traced systems are unavailable.

This disk substitution leads to two significant difficulties. First, the base experimental
disk (the HP C2247) has a different storage capacity than the disks used by some of the
traced systems. To better match the size of the simulated disks to those in the traced
systems, the number of platters is reconfigured to create disks large enough to contain the
active data without excessive unused media. This is not unreasonable, since a production
line of disks often differs only in the number of platters [HP92a].

The second and more important issue is that HP C2240 disks service requests at a different
rate than the disks in the disk request traces. To produce heavier or lighter workloads, the
traced interarrival times are scaled to produce a range of mean arrival rates. When the
scale factor is one, the simulated interarrival times match those traced. When the scale
factor is two, the traced interarrival times are cut in half (doubling the mean arrival rate).
Even with an identity scaling factor, however, the workloads would undoubtedly have been



24

different if the systems traced had been using HP C2240 disk drives; information about how
individual request arrivals depend upon previous request completions is not present in these
traces. This is a common problem with trace-driven simulation, but should not invalidate
the qualitative results and insights. Also, the experiments driven by the full system traces
generally provide corroborating evidence.

Command Queueing

The simulator contains a number of parameters related specifically to disk command
queueing. Unfortunately, a methodology for validating disk command queueing models is be-
yond the scope of this dissertation. When a cache-sensitive algorithm is used by a disk-based
scheduler, the disk model’s cache is probed before selecting a new request for service. This
represents a more aggressive approach than exists in current disk-based schedulers, which
typically probe the cache (for scheduling purposes) only when a request arrives [Lary95].
Enabling command queueing does not affect the values for the command and completion
overhead parameters, although some of the overheads may occur in parallel (due to request
“pipelining” at the disk). Experiments in this dissertation use two command queueing con-
figurations, denoted Preseek and Full. The three components of inter-request concurrency
in the disk model are preseeking, read hits under misses, and write prebuffering.

Preseeking

After a disk finishes the media access for a request, it transfers any remaining cached data
to the host (in the case of a read request) and performs cleanup/completion processing. At
the same time, the disk can begin any mechanical positioning required for the next request
in the on-board queue. This is denoted as preseeking. Both Preseek and Full experimental
command queueing configurations allow preseeking. In the absence of pending requests,
disks typically prefetch sequential data into the on-board cache after a read request.

Read Hits Under Misses

The Full command queueing configuration allows read requests that hit in the on-board
cache to be serviced in parallel with any ongoing media access. There are three forms of
hits under misses enabled in this configuration. First, any new read request whose data is
entirely contained in the on-board cache (a full read hit) is serviced immediately (without
any intervening disconnect) followed by any necessary cleanup/completion activity. Second,
any new read request whose first sector is contained in the cache (a partial read hit) will
have the available data transferred to the host prior to disconnecting. Third, whenever a disk
disconnects from a bus, its pending queue is searched for read requests that have “enough”
of their requested data available in the cache to warrant reconnection and subsequent data
transfer (an intermediate read hit). The value of “enough” is determined by the Buffer
Full Ratio, as specified by the SCSI peripheral bus protocol [SCSI93]. The request currently
performing media access always has priority over intermediate read hits when bus activity
is required.



25

Write Prebuffering

The Full command queueing configuration allows a disk to transfer all or part of a write
request’s data to the on-board cache in parallel with any ongoing media access (if there is
an appropriate cache segment available). This is denoted as prebuffering. In addition,
whenever a disk disconnects from a bus, its pending queue is searched for write requests
that can be assigned to an available segment or have “enough” space available in their cache
segment to warrant reconnection and subsequent data transfer (an intermediate write
hit). The value of “enough” is determined by the Buffer Empty Ratio, as specified by
the SCSI peripheral bus protocol [SCSI93]. The request currently performing media access
always has priority over intermediate write hits when bus activity is required.

When command queueing is enabled, the default on-board cache configuration is modified
to increase the number of cache segments. For experiments without command queueing, each
on-board data cache contains two 256-sector (128 KB) segments, only one of which is usable
for write request data.! For experiments with command queueing, each on-board cache
contains four 128-sector (64 KB) segments, allowing greater inter-request concurrency at each
disk. A maximum of two segments can be dirty (if prebuffering write data). Experiments
in this dissertation point out the sensitivity of scheduler performance to on-board cache
configuration, although a full study of scheduler/cache interaction is left for future work.

4.2 Workloads

A small number of the experiments use synthetically-generated disk request traces, pri-
marily to allow comparison with previous work. The remainder use traces captured from
actual systems. Hewlett-Packard and Digital Equipment Corporation have provided six
extensive traces of disk request activity from various customer and research systems. In
addition, system and disk activity was traced on an NCR workstation to enable experiments
using the process-flow host model.

4.2.1 Disk Request Traces

The six HP and DEC traces are described only briefly as they have been discussed
elsewhere in more detail [Ruem93, Rama92]. The traced workloads span a broad range
of environments, and each trace is at least a full workshift (8 hours) in length. Table 4.2
provides some basic information on each trace.

Two of the traces come from Hewlett-Packard systems running HP-UX, a version of
UNIX [Ruem93]. Cello comes from a server at Hewlett-Packard Laboratories (Palo Alto,
CA) used for program development, simulation, mail, and news. Snake is from a file server
at the University of California, Berkeley, used primarily for compilation and editing. While
these traces are actually two months in length, the experiments in this dissertation use a
single week-long snapshot (5/30/92 to 6/6/92), as in [Wort94, Ruem93].

The other four traces are from commercial VAX systems running the VMS operating
system [Rama92]. Air-Rsv is from a transaction processing environment in which about

1This is the manufacturer’s default configuration for the HP C2247 disk drive.



26

Length Mean Req Total Read Seq Read

Trace | (hours) Disks Requests Size (KB) Percentage Percentage
Cello 168 8 3,262,824 6.3 46.0% 2.5%
Snake 168 3 1,133,663 6.7 52.4% 18.6%
Air-Rsv 9 16 2,106,704 5.1 79.3% 7.8%
Sci-TS 19.6 43 5,187,693 2.4 81.5% 13.8%
Order 12 22 12,236,433 3.1 86.2% 7.5%
Report 8 22 8,679,057 3.9 88.6% 3.8%

Table 4.2: HP and DEC Disk Request Trace Characteristics

500 travel agents made airline and hotel reservations. Sei-T'S is from a scientific time-
sharing environment running analytic modeling software and graphical and statistical pack-
ages. Order and Report are from a machine parts distribution company. Order, collected
during daytime hours, represents an order entry and processing workload. Report, collected
at night, represents a batch environment generating reports of the day’s activities.

4.2.2 Full System Traces

To drive the process-flow host model, system activity was traced on an NCR 3433 work-
station containing a 33 MHz Intel 80486 microprocessor and 48 MB of main memory. A
single HP €2247 disk drive serviced all of the disk requests in each trace. Full system traces
were captured using an instrumented version of the SVR4 MP UNIX operating system that
writes timestamped event data into a dedicated 8 MB kernel memory buffer. The instru-
mentation is unobtrusive, increasing the dynamic instruction count by less than 0.1% in the
worst case (assuming that the trace buffer could not be otherwise used).

Traces were captured for two different types of workloads. Compress represents a sin-
gle 30.7 MB file being compressed to 10.7 MB. The SynRGen traces capture the activ-
ity of the SynRGen synthetic file reference generator [Ebli94], configured to emulate an
edit /make/debug environment with a parameterized number of users. Each user performs a
series of random “tasks” intended to simulate editing, compiling, and executing files.

The trace buffer size limits the length of the NCR traces. Very light workloads take several
hours to fill the buffer, but are uninteresting for disk scheduling research. Heavy workloads
quickly fill the buffer, preventing the capture of “complete” application activity (i.e., all
phases of application execution). As a result, the traces cover light-to-medium workloads.
Since medium-to-heavy workloads benefit the most from aggressive disk scheduling, the
performance improvements reported for experiments using the NCR traces are therefore
conservative.



27

4.3 Scheduling Algorithms

This section describes the various scheduling algorithms compared in the following chap-
ters, categorized by the type of information used by the algorithms.

4.3.1 Scheduling with Information from “Below”

In this dissertation, scheduling algorithms that use hardware-specific knowledge are par-
titioned by the level of information detail: scheduling based on LBNs only, scheduling given a
full LBN-to-PBN mapping, and scheduling with full knowledge (including current read/write
head position, command overheads, cache contents, etc.). Only schedulers with full knowl-
edge have sufficient information to enable algorithms that reduce overall positioning times
(i.e., combined seek and rotational latencies).

Experiments with LBN-based and full-map schedulers compare SSTF, C-LOOK,
LOOK, VSCAN(0.2), and FCFS (for reference purposes). Experiments with full-map sched-
ulers use a heuristic to select between requests to the same physical cylinder. The heuristic
is based on the C-LOOK algorithm to take advantage of the HP C2247’s prefetching cache
and to reduce the number of head switches. A full-map scheduler satisfies all requests on
the current track using C-LOOK, then all requests on the current cylinder using C-LOOK,
and then the appropriate seek-reducing algorithm to select the next cylinder to service.

Experiments with full-knowledge schedulers use SPTF and a cache-sensitive version
of SPTF termed Shortest Positioning (w/Cache) Time First [Wort94]. The SPCTF
algorithm assumes a positioning time of zero for any read request that will hit in the on-board
cache.?

4.3.2 Scheduling with Information from “Above”

The experiments in this dissertation explore overall system performance effects of various
algorithms with and without explicit system-level information. Without such information, a
scheduler’s only recourse is to reduce the possibility of starvation for high priority requests
by minimizing response time variance (i.e., reducing starvation in general). For this pur-
pose, an age-weighted SPTF algorithm is also studied. ASPTF(W) is equivalent to the
ASATF algorithm proposed in [Jaco91].> ASPTF(W) adjusts each positioning time predic-
tion (1,,s) by subtracting the weighted amount of time the request has been waiting for
service (W * Tyai). A scheduler uses the resulting effective positioning time (7%s5) to select
the next request to issue:

Teff = Tpos - (W * Twait)

The age-sensitive algorithm recommended in [Jaco91] is equivalent to ASPTF(6.3). The
Aged Shortest Positioning (w/Cache) Time First algorithm, which combines age-

2SPCTF classifies a read request as a hit if the first requested sector is resident in the cache or is currently
being fetched from the media.

3The ASATT algorithm was chosen instead of the WSTF algorithm suggested in [Selt90] because WSTF
is less sensitive to differences in predicted positioning times when comparing requests whose waiting times
are near the aging limit.



28

sensitivity and cache-sensitivity, is also included in the experiments. For a sufficiently

large W, both ASPTF(W) and ASPCTF(W) degenerate into FCFS.

Request Criticality Information

The classification scheme introduced in [Gang93] is used for system-level partitioning
of requests. Time-critical requests cause processes to immediately wait (or block) for
disk service. Time-noncritical requests do not cause processes to block, but must still
be serviced in order to update the on-disk copy of the data and free up shared resources
(e.g., main memory). Time-limited requests become time-critical unless serviced within
the corresponding time limit. The appropriate classification for a request is known by the
system software that generates it.

To exploit request criticality information, a scheduler can maintain separate queues for
requests with different priorities. The 2Q schedulers used in this dissertation place time-
limited and time-critical requests in a high priority queue and time-noncritical requests in
a low priority queue. 2Q) schedulers always empty the high priority queue before servicing
requests from the low priority queue. For simplicity, both queues are scheduled using the

same scheduling algorithm (e.g., 2Q C-LOOK).

4.3.3 Sequential Stream Optimizations

A scheduling algorithm can be optimized to improve performance for sequential request
streams. Request concatenation combines one or more sequential requests into a single
larger request. One combined request incurs less request processing and communication
overhead than the total overhead experienced by several separate requests. A combined
request may also incur less rotational latency, since there is no delay between the media ac-
cesses for the component requests. On the other hand, none of the individual requests can be
reported as complete until the entire combined request has been serviced. This may inflate
the response times for some of the contributing requests. Also, request concatenation requires
the ability to perform scatter/gather DMA.* Otherwise, an additional memory-to-memory
copy may be necessary to move the requested data to or from a single physically contigu-
ous region of memory. The suffix .CR denotes concatenation of sequential read requests,
and the suffix .CW denotes concatenation of sequential write requests (e.g., SSTF.CR and
LOOK.CW.CR).

Sequential scheduling of sequential request streams imitates C-LOOK scheduling on
a smaller scale. Using this optimization, a scheduler only services the “heads” of sequential
streams (including streams consisting of a single request). A stream “head” is the request
with the smallest starting LBN. For example, an SSTF scheduler with the sequential schedul-
ing optimization will select the stream “head” that will incur the shortest seek time. The suf-
fix .SSR denotes sequential scheduling of read requests, and the suffix .SSW denotes sequen-

4Large data transfers between memory and lower levels of the storage hierarchy are typically handled by
a Direct Memory Access engine. To handle request concatenation, the DMA hardware must be able to
dynamically redirect a stream of data to or from the physically discontiguous memory regions containing
the individual components of a combined request.



29

tial scheduling of write requests (e.g., SSTF.SSR and LOOK.SSW.SSR). A scheduler may
handle sequential read and write streams with different optimizations (e.g., SSTF.CW.SSR).

4.4 Metrics

For experiments using the simple host model, the mean disk request response time (across
all simulated disks) is the primary metric used for comparing various scheduling algorithms
and scheduler implementations. The squared coefficient of variation (o?/u?) of request re-
sponse times is also reported, as in [Teor72]. Given a constant mean response time, a
decrease in the coeflicient of variation implies reduced response time variance (i.e., improved
starvation resistance). Reducing starvation can indirectly improve system performance by
reducing the possibility of high priority requests incurring excessive queueing time.

For experiments using the process-flow host model, several application-specific metrics
are also utilized. For Compress, the simulator reports the application run time (i.e., the
elapsed time of the compression process). For SynRGen, it reports the mean elapsed time
for the individual user “tasks” (i.e., the mean task completion time). It also reports the
mean non-compute time, which gives some indication of the amount of time each task
spends waiting on disk activity. The latter metric is conservative, however, as it is obtained
by subtracting the large computation delays (e.g., compile time and execution time) from
the task completion times. Delays associated with waiting on shared processor resources or
user activity are still part of the mean non-compute time.



CHAPTER 5
Centralized Scheduling at the Host

Centralized scheduling implies that a single entity along the 1/O path is actively reorder-
ing pending requests. Other entities participate in disk scheduling only by extracting and
passing useful information to the active scheduler. The host and the disk are examined as
possible locations for a centralized scheduler. Both possess a significant quantity of useful
information. Each location has certain advantages and disadvantages.

A host-based scheduler has easy and immediate access to system-level information. It has
the freedom to reorder the entire set of outstanding requests, and the pending request queue
length is limited only by the amount of main memory. A host-based scheduler can perform
certain scheduling optimizations, such as request concatenation, that are not possible (or
have little benefit) for disk-based schedulers. On the other hand, hardware-specific informa-
tion must be extracted and transmitted to a host-based scheduler. For the most aggressive
scheduling algorithms (e.g., SPCTF), the required accuracy and quantity of hardware-specific
information make this a difficult task. Also, systems with centralized host-based schedulers
cannot take full advantage of the inter-request concurrency offered by command-queued
disks.

In this chapter, the centralized scheduler resides at the host (e.g., within the O/S device
drivers). The experiments are partitioned based on the type of information used by the
scheduler.

5.1 Scheduling with Information From “Below”

5.1.1 Synthetic Workloads

A small number of experiments were performed using synthetic workloads in order to
replicate previous work and allow comparison with real-world workloads. The synthetic
request streams consisted of 8 KB accesses (a typical file system block size) uniformly dis-
tributed across the available logical space. The request interarrival times were exponentially
distributed with the mean varied to generate lighter and heavier workloads. The ratio of
reads to writes was set to 2:1. Each data point is the average of at least three separate runs
of 250,000 disk requests, corresponding to simulated workloads of 50-400 hours of activity.

30



31

Scheduling by Logical Block Number

Even if a scheduler has little or no knowledge of the LBN-to-PBN mapping for a given
disk, it can approximate seek delays using the “distance” between logical block numbers for
individual requests. For example, an LBN-based C-LOOK scheduler will select a pending
request for LBN 200 over one for LBN 300 if the last request to complete accessed LBN 100.
The accuracy of this approximation depends on the choice of scheduling algorithm, the
variance in sectors per track between zones, the defect slipping/reallocation scheme(s), and
any cache prefetching activity.

Figure 5.1a presents the mean response times for FCFS, LOOK, C-LOOK, VSCAN(0.2),
and SSTF for a range of mean arrival rates. FCFS quickly saturates as the workload in-
creases. Since C-LOOK reduces the response time variance (as well as the mean), its mean
response time runs 5-10% higher than those of LOOK, VSCAN(0.2), and SSTF for medium
and heavy workloads. The 95% confidence intervals shown in figure 5.1b support these ob-
servations. However, the intervals for LOOK (which are typical for VSCAN(0.2) and SSTF
as well) make it difficult to predict the relative positions of LOOK, VSCAN(0.2), and SSTF
for a given arrival rate.

Figure 5.1c shows the squared coefficients of variation (o?/u?) for the same set of ex-
periments. FCFS has the lowest coefficient for the lightest workloads. As FCFS begins to
saturate, C-LOOK emerges as the algorithm with the best starvation resistance. SSTF, on
the other hand, is highly susceptible to starvation. At an arrival rate of 50 requests per
second, the coefficient of variation for SSTF is 64% greater than that of C-LOOK.

Scheduling with a Known Mapping

If a scheduler has knowledge of LBN-to-PBN mappings, it can more accurately predict
seek delays and thereby produce better schedules. For the following set of experiments,
the scheduling algorithms have full mappings for each cylinder and a heuristic for choosing
between multiple pending requests to the same cylinder (see section 4.3.1).

Figure 5.2 displays the mean response times and squared coefficients of variation for
the LBN-based algorithms and the algorithms utilizing a full LBN-to-PBN mapping. The
LBN-based and full-map versions of each algorithm produce almost identical performance
(as measured by either metric). Since workloads with uniformly distributed request starting
locations contain few sequential requests, prefetching provides little or no performance im-
provement. The cylinder heuristic also has a minimal effect, as individual cylinders rarely
contain multiple pending requests. The only visible deviation between algorithm versions
is a slight increase in SSTF’s coefficient of variation for the full-map algorithm. This is
reasonable, as SSTF utilizes mapping knowledge strictly to reduce response times (at the
expense of increased request starvation).

To determine the influence of excessive defects on scheduler accuracy, the simulator was
reconfigured to model an HP C2247 with half of its spare tracks (450 out of 900) occupied
due to randomly grown defects. To maximize the perturbation in the LBN-to-PBN mapping,
all of the defects resulted from dynamic reallocation (i.e., no slipped tracks). Even with over
2% of a disk’s tracks remapped, full mapping information provides little improvement in
performance. SSTF, the algorithm most sensitive to the LBN-to-PBN mapping, improves



32

T 250} ——~ FCFS
e RPPRE 7 C-LOOK
= . LOOK
% 200 1~ . VSCAN(0.2)
SSTF
< 150
5 |
=
100 +—
50 +—
o | | | | | | |
[0} 10 20 30 40 50 60 70
Mean Arrival Rate (Hz)
(a) Mean Response Time
’g 250 - FCFS C-LOOK /| LOOK
g
=
8 200 1—
i
< 150
5 |
=
100 +—
50 +—
o | | | | | | |
[0} 10 20 30 40 50 60 70

Mean Arrival Rate (Hz)

(b) 95% Confidence Intervals (Mean Response Time)

= ——+ FCFS
2 1251 Oeenenn o C-LOOK
> Ao LOOK
o
- < > VSCAN(0.2) E
1.00 +—
;2 SRR o SSTF
S P
S o5l
3 °
5
=2
A 050
0.25 +—
0.00 ] ] ] ] l ] !
o] 10 20 30 40 50 60 70

Mean Arrival Rate (Hz)

(¢) Squared Coefficient of Variation

Figure 5.1: LBN-Based Algorithm Performance using a Synthetic Workload with Uni-
formly Distributed Request Starting Locations



33

Tg 250 + # ——— & FCFS l‘
= | s LOOK (LBN) il
g 1 C-LOOK (LBN) i
= S © SSTF (LBN) A
8% 200+ 5 -eeei- o VSCAN(0.2) (LBN) 'Ii’
= — — — /A LOOK (MAP) -Ir"*
] - — —~ C-LOOK (MAP) !
g_ O — — —C SSTF(MAP) ’/'
o 150 — — — - VSCAN(0.2) (MAP) /.’/
% '/.I/
A
= /Lj/
R
100 +— e
50 +—
0 | | | | | | |
0 10 20 30 40 50 60 70
Mean Arrival Rate (Hz)
(a) Mean Response Time
[
S Y —— © FCFS
® .- 0 LOOK (LBN)
B 125+ - C-LOOK (LBN)
> | O e © SSTF (LBN)
5 S eee--o O VSCAN(0.2) (LBN)
= — — =/ LOOK (MAP) PR
§ 100 = — — — 7 C-LOOK (MAP) @
2 © = — —C SSTF(MAP) e
“qo—) — — — & VSCAN(0.2) (MAP) o y e
© 075+ '
B
%g BT g
&3 0.50 +—
0.25 1+
0.00 | | | | | ! |
0 10 20 30 40 50 60 70

Mean Arrival Rate (Hz)

(b) Squared Coefficient of Variation

Figure 5.2: Full-Map and LBN-Based Algorithm Performance using a Synthetic Work-
load with Uniformly Distributed Starting Locations



34

by less than 1%. Thus, seek-reducing algorithms obtain only a marginal benefit from access
to full LBN-to-PBN mappings when scheduling workloads with uniformly distributed request
starting locations.

Scheduling with Full Knowledge

Given sufficient computation resources, a full LBN-to-PBN mapping, accurate mechan-
ical and overhead specifications, and some indication of the current rotational position of
the actuator, a scheduler can select the pending request that will incur the smallest total
positioning time (i.e., seek and rotational latency) for a given disk. As with SSTF, the basic
SPTF algorithm is highly susceptible to request starvation.

Figure 5.3 presents performance data for FCFS, C-LOOK, SSTF, SPTF, and ASPTF(W)
(an age-sensitive version of SPTF described in section 4.3.2). As W increases from 2 to 30,
the mean response time of ASPTF slowly grows, while its response time variance drops
significantly. The SPTF and ASPTF algorithms have consistently lower mean response
times than the seek-reducing algorithms or FCFS. For higher values of W, ASPTF suffers a
sharp increase in mean response time as a disk begins to saturate. For a sufficiently large W,
ASPTF degenerates into FCFS.

Modifying SPTF with an appropriate aging factor results in an algorithm with the mean
response time of SPTF and the starvation resistance of C-LOOK. For example, ASPTF(6)
and ASPTF(12) provide equivalent mean response times to SPTF for all but the heaviest
workloads, yet have much better starvation resistance. In fact, ASPTF(12) has a lower
response time variance than C-LOOK, even though its coefficient of variation is slightly
higher.

Selecting the request with the smallest positioning delay entails significant computation
(especially for large queues), cf. [Jaco91]. Unless the pending queue size is bounded, it
may be unacceptable to simply compute and compare the positioning times for all of the
pending requests. One area for future research is the design and implementation of clever
data structures to organize pending queues in such a manner as to streamline the search
for the “closest” pending request. The addition of an aging factor further complicates this
problem.

5.1.2 Disk Request Traces

This section contains experiments comparing host-based schedulers for the HP and DEC
traces. The performance graphs in this section use a range of trace scaling factors. Note
that the scaling factor (the X-axis) is shown in log, scale. The workloads with an identity
scaling factor correspond to the traced request streams. The initial experiments compare the
performance of the baseline scheduling algorithms. Subsequent experiments study algorithm
performance with sequential scheduling optimizations and FCFS command-queued disks.

Scheduling by Logical Block Number

Figures 5.4-5.9 present the mean response times and the corresponding squared coef-
ficients of variation for LBN-based scheduling of the six HP and DEC traces. Except in



Mean Response Time (ms)

Squared Coefficient of Variation

250 1

200 1

150 1

100 1

50 -

1.25 1

1.00 1

0.75 -

0.50 1

0.25 -

0.00

35

- — - FCFs N
— — = C-LOOK (LBN) i
— — — O SSTF(LBN) e
A e A ASPTF(30) ity
| m B ASPTF (12) e
® - ® ASPTF (6) A T
.o * ASPTF(2) I’, D
< SPTF S
| Y A
! A -
/// ’
/ R
///‘ A '
| — 4 .',_':‘
“s.‘-"\x
| | | | | | |
0 10 20 30 40 50 60 70
Mean Arrival Rate (Hz)
(a) Mean Response Time
— & FCFS
— — =[] C-LOOK (LBN)
— — — — SSTF(LBN)
A e A ASPTF(30)
m m ASPTF (12)
® ... ® ASPTF (6) R
[ * e * ASPTF(2) * "’
o % e
= o
| L ARERY I "o
,..f‘j-_r"-}s‘,.*.‘ -
| | | | | | |
0 10 20 30 40 50 60 70

Mean Arrival Rate (Hz)

(b) Squared Coefficient of Variation

Figure 5.3: Full-Knowledge Algorithm Performance using a Synthetic Workload with
Uniformly Distributed Request Starting Locations



Mean Response Time (ms)

Squared Coefficient of Variation

36

250 + { —— + FCFS
O] cvvve- 1 C-LOOK
...... LOOK ;
. VSCAN(0.2) 2
200 1+— !
150 + i
100 1+—
50 +
0 ! | | | !
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
20.0 +
17.5 1+
15.0 +—
125 +—
10.0 +—
751 > > VSCAN(0.2)
...... SSTF
501+
251+
0.0 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.4: Cello: LBN-Based Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation

37

250 + { —— + FCFS
...... C-LOOK
...... LOOK
> VSCAN(0.2)
200+ © SSTE
150 +—
100 +—
50 +
0 ! | | | !
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
200+ +——  FcFs
...... C-LOOK
...... LOOK
1751 s >~ VSCAN(0.2)
...... SSTE :';';
15.0 +— :
125+
10.0 +—
751+
501+
254+ Blreveoeororeeees .- [
0.0 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.5: Snake: LBN-Based Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation - LOG SCALE!

38

250 + { —— + FCFS
...... C-LOOK
...... LOOK
s > VSCAN(0.2)
2004+ O oo SSTF
150 1+
100 1+
50 +
0 ! | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(a) Mean Response Time

12800 - —— . Fers
...... C-LOOK
6400+ - LOOK
S e > VSCAN(0.2)
32.00 b o SSTF
16.00 -
8.004-
4004
2001
1.00
0.50 4
0.25 — | | | |
0125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.6: Air-Rsv: LBN-Based Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation - LOG SCALE!

39

250 + { —— + FCFS
...... C-LOOK
...... LOOK
> VSCAN(0.2)
200+ © - SSTF
150 1+
100 1+
50 +—
0 [ 1 | !
0.125 0.250 0.500 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
512.00f+ +—— + FCFs
...... C-LOOK
256.00+ - LOOK
SIEPRETS & VSCAN(0.2)
128004 - SSTF
64.00 —
32.00 +
16.00 +—
8.00 +—
4.00 +—
2.00 +—
1.00 +
0.50 +— :
0.25 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.7: Sci-TS: LBN-Based Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation - LOG SCALE!

40

250 + { —— + FCFS
...... C-LOOK
...... LOOK
. > VSCAN(0.2)
200+ © - SSTF
150 1+
100 1+
50 +
0 ! | |
0.125 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
64001~ +—— FCFS
[] wvene- C-LOOK
...... LOOK
320+ . ... > VSCAN(0.2)
16.00 +—
8-00 | D A Y S
4.00 +—
2.00 +—
1.00 +—
0.50 +—
0.25 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.8: Order: LBN-Based Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation - LOG SCALE!

41

250 + { —— + FCFS
...... C-LOOK
...... LOOK
, >~ VSCAN(0.2)
200+ © e SSTE
150 +—
100 +—
50 T (.'..
0 1 | | | |
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
51200+ +—— ¢ FCFs
...... C-LOOK
256.00+ ~ --oee- LOOK
& e & VSCAN(0.2)
12800+ .. SSTF
64.00 +
32.00 +
16.00 +—
8.00 +
4.00 1 B
2004 '
1.00 +—
0.50 +
0.25 | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.9: Report: LBN-Based Algorithm Performance



42

‘ Trace  Scale Factor‘C—LOOK LOOK VSCAN(0.2) SSTF‘

Cello 1.5 134 129 129 128
Snake 1.25 71.5 3.7 73.7 73.6
Air-Rsv 2.5 44.2 51.2 51.2 53.9
Sci-T'S 2.5 31.0 54.7 55.7 57.5
Order 1.0 29.6 51.7 51.1 51.3
Report 1.0 59.4 63.2 64.8 80.2

(a) Mean Response Times (ms) using a Prefetching On-Board Data Cache

Trace  Scale Factor | C-LOOK LOOK VSCAN(0.2) SSTF
Cello 1.25 145 134 134 133
Snake 0.34 65.5 65.5 65.4 65.2
Air-Rsv 2.0 44.8 43.1 42.9 43.1
Sci-T'S 1.69 92.6 64.4 63.6 61.8
Order 0.67 57.1 52.8 52.2 51.4
Report 0.71 60.2 55.3 595.5 54.6

(b) Mean Response Times (ms) using a Speed-Matching On-Board Data Buffer

Table 5.1: Sample Mean Response Times for LBN-Based Algorithms (taken from the

“knees” of the Mean Response Time curves for the six traces)

the case of Cello, all algorithms perform equally for the lowest trace scaling factors studied.
FCFS performs poorly for all but the lightest workloads, as was true for the synthetic work-
loads. The relative performance of the other algorithms, however, differs from that observed
for the synthetic workloads. The results indicate that the HP C2247’s prefetching cache
plays a large role in determining algorithm effectiveness.

A disk with an on-board cache services read requests for cached data much faster than
those requiring media access. If read requests arrive at a disk in logically ascending order,
some fraction (or all) of the data for each sequential request may already be in the prefetch-
ing cache when the request arrives. Therefore, algorithms that preserve any existing read
sequentiality achieve superior performance for workloads containing a significant fraction of
sequential or highly local read requests.

Table 5.1a lists a sample point from the “knee” of each trace’s set of mean response time
curves. The LBN-based C-LOOK algorithm, which always schedules requests in logically
ascending order, provides higher performance than LOOK, VSCAN(0.2) and SSTF for all
traces except Cello. LOOK and VSCAN(0.2) generally outperform SSTF, as they schedule
all sequential requests in logically ascending order during the “ascending” phase of the scan

cycle. However, LOOK, VSCAN(0.2), and SSTF all exhibit similar performance when the



43

‘ Trace  Scale Factor‘C—LOOK LOOK VSCAN(0.2) SSTF‘

Cello 1.0 11.5 11.5 11.5 11.5
Snake 1.25 21.8 21.6 21.6 21.7
Air-Rsv 2.5 15.0 13.8 13.7 13.7
Sci-TS 2.5 26.9 25.7 25.5 25.3
Order 1.0 17.6 14.8 14.8 14.8
Report 1.0 14.5 14.2 14.1 13.7

Table 5.2: On-board Data Cache Read Hit Percentages for LBN-Based Algorithms

last of a sequential sequence of requests is scheduled first. When this occurs, the disk services
the requests in logically descending order, completely negating the performance advantage
of the prefetching cache.

For Cello, C-LOOK produces a higher mean response time than the other seek-reducing
algorithms. Large bursts of write requests to a single disk dominate the Cello environment
[Ruem93|. The /usr/spool/news disk services almost half of the requests, with maximum
queue lengths approaching 1000 at the identity scaling factor. In addition, this trace contains
the smallest fraction of sequential read requests, thus benefiting the least from the prefetching
cache. Table 5.2 lists the on-board cache hit rates for each of the sample points given in
table 5.1a. For all workloads except Cello, the C-LOOK algorithm exhibits a higher hit rate
in the on-board data cache. Note that a small improvement in cache hit rate can significantly
affect performance, due to the long mechanical delays incurred when accessing the media
(versus accessing the cache). A decrease in service time for even a single request can result
in lower queue times for numerous pending requests.

Additional evidence of the benefits of scheduling to exploit a prefetching cache are found
by comparing tables 5.1a and 5.1b. The latter table lists sample points from experiments
where the on-board “cache” functions only as a speed-matching buffer. Under this restriction,
the performance of C-LOOK drops dramatically in relation to the other seek-reducing algo-
rithms. For example, C-LOOK scheduling of the Sei-TS trace using a fully functioning on-
board cache decreases the mean response time by more than 40% over LOOK, VSCAN(0.2),
and SSTF. On the other hand, C-LOOK increases the mean response time by over 40% when
the on-board memory acts as a simple buffer.

For some traces, such as Report, the performance advantage of C-LOOK over LOOK
and SSTF is greater than would be expected from the improvement in cache hit rate. The
ascending order of scheduling maintained by C-LOOK matches the prefetching nature of
the disk. That is, the disk continues reading data beyond the end of a read request, often
moving the read/write head forward one or more surfaces (or even to the next cylinder).
This prefetching activity continues until satisfying a configured maximum prefetch size or



44

the disk receives a new request for service.! So, requests that are logically forward of an
immediately previous read will suffer shorter seek delays. This may account for some of the
additional performance achieved by C-LOOK scheduling.

For all six traces, C-LOOK provides starvation resistance equivalent to or superior to the
other seek-reducing algorithms (as evidenced by its squared coeflicient of variation). This is
not surprising, as C-LOOK was invented for this purpose. Predictably, LOOK has the next
highest coefficient for most workloads, followed by VSCAN(0.2) and SSTF.

Scheduling with a Known Mapping

Figures 5.10-5.15 display the mean response times and squared coefficients of variation
for full-map scheduling of the six traces. FCFS and the LBN-based C-LOOK algorithm
are also shown for comparison purposes. Full-map scheduling improves the performance of
LOOK, VSCAN(0.2), and SSTF for all traces except Cello. This improvement is not the
result of reduced seek times via better mapping information, but rather is caused by the
heuristic used to schedule requests within a single cylinder. As described in section 4.3.1,
a full-map scheduler uses C-LOOK, LOOK, VSCAN(0.2), or SSTF when moving between
cylinders and uses C-LOOK “within” a cylinder. Therefore, the full-map versions of LOOK,
VSCAN(0.2) and SSTF use the prefetching cache much more effectively than their LBN-
based counterparts.

To verify the relative importance of the C-LOOK heuristic compared to the full LBN-to-
PBN mapping, the scheduling algorithms were temporarily modified to use a fixed number
of sectors per cylinder (1024) rather than the actual zone-dependent values. The resulting
performance for all traces and algorithms is within 1% of the performance obtained using
accurate mappings. Thus, the seek-reducing algorithms obtain only a marginal benefit from
accurate LBN-to-PBN mappings when scheduling the real-world traces.

Because of the heuristic, the mean response times of full-map LOOK, VSCAN(0.2), and
SSTF more closely match that of C-LOOK. For the five workloads where C-LOOK provides
the best mean response time, this implies improved performance for LOOK, VSCAN(0.2),
and SSTF. However, C-LOOK itself obtains only a marginal reduction in mean response
time using accurate LBN-to-PBN mappings; adding the C-LOOK cylinder heuristic does
little to modify the behavior of the LBN-based C-LOOK algorithm.

Full-map SSTF improves less than full-map LOOK or VSCAN(0.2) when compared to
the LBN-based algorithms. In the case of Report, the LBN-based SSTF scheduler is actually
superior to the full-map version. This is because of a slight difference in the exact imple-
mentation of the SSTF scheduler. SSTF takes the “last known position” of the read/write
head as being just beyond the last block of the immediately previous request. C-LOOK,
LOOK, and VSCAN(0.2) use the first block of the previous request instead. This keeps
the three scanning algorithms from starving overlapping requests. Full-map SSTF achieves
a performance improvement equivalent to full-map LOOK and VSCAN(0.2) if it also uses

!When command queueing is disabled, lengthy delays often occur between reading the last requested
sector from the media and receiving a new request to service. First, the disk transfers one or more requested
sectors to the host (perhaps after waiting for permission to use the peripheral bus) and performs any necessary
cleanup/completion processing. After acknowledging the completion message, the host obtains permission
to use the bus and transfers a new request to the disk.



45

Tg 250 + { —— + FCFS "
= | e C-LOOK (LBN) i
2 — — = C-LOOK (MAP) j
= - - - LOOK (MAP) l)—J
8 200+ — — — & VSCAN(0.2) (MAP) i
c — — — O SSTF(MAP) i
8 )
g i
g 1501 P
s A
i = -
100 + T
50 +—
0 ! | | | !
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
S 20.0
g T
[
> 1751+
G
© 1501
B
B 1251+
O
B 100f ——  Fors X
s |1 o C-LOOK (LBN) )
— — —— C-LOOK (MAP) 2
i
751 — — — /. LOOK (MAP) s
— — — & VSCAN(0.2) (MAP) =
5.0 4 - — = SSTF(MAP)
251+
0.0 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.10: Cello: Full-Map and LBN-Based Algorithm Performance



46

Q 2501 - —— Fors i
= | e C-LOOK (LBN) 'Y
2 — — = C-LOOK (MAP) ]
= — — =/ LOOK (MAP) Ij
8 2004+ 5 — — — & VSCAN(0.2) (MAP) I
= — — — O SSTF(MAP) U
g
% 150 +—
=

100 1+

50 +—

0 ! | | | !
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time

[
K=
8 200+  —— Fcrs
8 | 0 e C-LOOK (LBN)
> 175 — — —— C-LOOK (MAP)
k] 21 — — —/ LOOK (MAP)
§ — — — & VSCAN(0.2) (MAP)
S 15.0 +— — — — O SSTF(MAP)
2
S 1251+
3
8 10.0 +—
=
&

751+

501+

o5 E————— =

0.0 | | | | |

0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.11: Snake: Full-Map and LBN-Based Algorithm Performance



47

Tg 250 + { —— + FCFS
= | e C-LOOK (LBN)
2 — — = C-LOOK (MAP)
= — — —/ LOOK (MAP)
8% 200+ ©— — — & VSCAN(0.2) (MAP)
< - — — O SSTF(MAP)
i
4
% 150 1+
=
100 1+
50 +—
0 | | | | .
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
i
z 12800~ +—— FCFs
S N C-LOOK (LBN)
10) 64.00 + -—- - C-LOOK (MAP) Vel
S - — — A LOOK (MAP) / II
- — — < VSCAN(0.2) (MAP /
2 32001+ 112 St [
o
o —
i 16.00 +— &
E 8.00 +
B
§ 4.00 +
=
& 2.00 +—
o
1.00 +—
z
> 0.50 1—
&
0.25 | . . . |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.12: Air-Rsv: Full-Map and LBN-Based Algorithm Performance



48

Tg 250 + i ——— . FCFS !
= | e C-LOOK (LBN) ! A
g - — — C-LOOK (MAP) I H
= — — — /. LOOK (MAP) ! ,'
8 2004+ 5 — — — & VSCAN(0.2) (MAP) I K
S — — — O SSTF(MAP) ,' ,
i ¥
o I
% 150 1+ !
)t
= r
) ¥
T
100 T II ,
A
3
/lf"
S0+ /W[
"
Pt
= = -
0 1 i | |
0.125 0.250 0.500 2.000 4.000

Trace Scaling Factor
(a) Mean Response Time

512.00 + t —— + FCFS

i
=4 | o C-LOOK (LBN) A
< 256.00+ - — — | C-LOOK (MAP) i\
o) - — — A LOOK (MAP) AN
O 128.00 +— - — — & VSCAN(0.2) (MAP) TN
o (= — = SSTF(MAP) oYy
—1
T 64.00 1+ g
&
& 1
g 16.00
B 8001
E 4.00 +
T 200¢
O
T 100+
§ 0.50 7
g . T o =
0.25 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor
(b) Squared Coefficient of Variation

Figure 5.13: Sci-TS: Full-Map and LBN-Based Algorithm Performance



49

Q 2501 - —— Fors [ i
e [ o R, C-LOOK (LBN) 1 ','
2 — — = C-LOOK (MAP) ] !
= — — — /. LOOK (MAP) I I
% 2004~ --- vscan©2 MaP I ":
e — — — O SSTF(MAP) ! i
o I I"
)
r?g B 1]
5 1801 : N
> )" I]\.I\
I /;
/-
100 + ! .7
] A7
] /'M
/ ()./
/ 4
50 + P21
N
e
——— e T
0 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
W 64.00{~ «—— « FoFS o
pre O eeees C-LOOK (LBN) ,
— — — 1 C-LOOK (MAP) )
B 32001 - — — . LOOK (MAP) 1
8 — — — & VSCAN(0.2) (MAR) " \
_.I 16.00 + - — — O SSTF(MAP) II’I \\
5 I N7
® 800+ /’ !
& , P
E /1 _ -7 =
s 4001 ry e aET
g L, e -
¢
S 2.00 +— , sz‘m
£ |
8 100+
B
8 0501
&
0.25 | | |
0.125 1.000 2.000 4.000

Trace Scaling Factor
(b) Squared Coefficient of Variation

Figure 5.14: Order: Full-Map and LBN-Based Algorithm Performance



50

2 20} — e : Iy
S C-LOOK (LBN) | I
2 — — — C-LOOK (MAP) | T
= — — =/ LOOK (MAP) | y:
¥ 200+ 5= — =& VSCAN(0.2) (MAP) | I
< — — — O SSTF(MAP) I I,
o
1
g .
% 150 + "
= 1
100 +
50 +—
0 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
i 512.00 + { —— + FCFS /
-4 | o C-LOOK (LBN) !
< 256.00+ - — — | C-LOOK (MAP) !
oy - — —/ LOOK (MAP) !
» 128.00 + - — — & VSCAN(0.2) (MAP) !
9 (= — = SSTF(MAP) :
T 64.00 + :
- I
o I
2 32001 ! _
= [ ’
g 16.00
5 8001 5
& 2
S 4.00 + -
T 200¢
O
g 1004
§ 0.50
g osor
0.25 ] . | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor
(b) Squared Coefficient of Variation

Figure 5.15: Report: Full-Map and LBN-Based Algorithm Performance



51

the first block of the previous request. This indicates that overlapping requests exist in the
experimental workloads. Some fraction of these requests are directly attributable to the
chosen methodology (i.e., scaling of traced interarrival times).

For Cello, LOOK, VSCAN(0.2), and SSTF decrease in performance when using a full-
map scheduler. Since large bursts of write activity dominate this trace, it is write request
performance that determines algorithm effectiveness (as measured by subsystem metrics).
For sequential writes to a disk without write prebuffering (described in section 4.1.2), issuing
requests in logically ascending order can actually degrade performance. When a write request
completes, a disk sends a completion message back to the host, waits for the next request,
and then performs the necessary command initiation processing. At the same time, the host
processes the completion message, issues the next (sequential) write request, and begins
transferring data blocks to the on-board data cache for subsequent transfer to the disk
media. During these steps, the active read/write head rotates beyond the first sector of the
next request. Assuming that the completion and initiation processing takes only a fraction
of a rotation, the new request incurs almost a full rotation of latency.

The relative starvation characteristics of the full-map scheduling algorithms generally
match those of the LBN-based algorithms. For the Sci-TS trace, however, the full-map
C-LOOK algorithm has only a marginal advantage in response time variance over the other
algorithms. In fact, SSTF has a smaller squared coefficient of variation than C-LOOK for
the heaviest workloads (although its response time variance is still greater). By satisfying
all requests within a cylinder before moving to another cylinder, the full-map algorithms are
slightly less resistant to starvation.

Scheduling with Full Knowledge

Figures 5.16-5.21 show results for experiments using the SPTF-based algorithms de-
scribed in section 4.3.1. These algorithms have both an advantage and a disadvantage over
C-LOOK. The advantage is the obvious improvement in positioning time prediction accuracy
due to the inclusion of rotational latency information. A full rotation for an HP C2240 series
disk takes approximately 11 ms, equivalent to a seek of over 550 cylinders (or 27% of the
maximum seek distance). For workloads with a skewed distribution of request starting loca-
tions (i.e., with shorter average seek distances), rotational latency represents an even larger
fraction of the total positioning time. The disadvantage is that SPTF-based algorithms have
no inherent bias towards servicing sequential reads in logically ascending order. An SPTF
scheduler selects requests based on their predicted positioning time, not their LBN or cylin-
der. Even SPCTF only services subsets of a sequential stream in logically ascending order.
As a result, the SPTF-based algorithms utilize prefetching caches less effectively. Table 5.3
lists the cache hit percentages for some sample trace scaling factors. Note that C-LOOK
always exhibits a higher cache hit rate.

This tradeoff affects overall performance to different degrees for each of the six traces.
For Cello, the SPTF-based algorithms are clearly superior to the seek-reducing algorithms.
Cache knowledge increases performance an additional 5-15% for the largest scaling factors.
In experiments using the other five traces, the comparison is not as straightforward. SPTF
saturates more quickly than C-LOOK, but SPTF provides superior performance for some
sub-saturation workloads. For example, figure 5.21a shows that SPTF is up to 18% better



Mean Response Time (ms)

Squared Coefficient of Variation

52

250 + i ——— . FCFS :";',"
------ C-LOOK (LBN) !
- - = SPTF .'III,
A— - —A SPCTF ’:"k,'
200 + - — — O ASPTF(®6) _-',,I
® - — — @ ASPCTF(6) Ay
e
150 1+
100 1+
50 +—
0 ! | | | !
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
20.0 +
17.5 1+
15.0 +—
125 1+
1004 —— Fors 2
------ C-LOOK (LBN) \Q
- — -/ SPTE g
75T  a---a sPCTF e
— — — ASPTF(6) -
501 e---e AsPCcTRe)
251+
0.0 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.16: Cello: Full-Knowledge Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation

53

201  —— Fers " i
------ C-LOOK (LBN) M &
- - = SPTF I iy
A— — — A SPCTF 1] 4
200 + - - ASPTF(6) il 1
® — — — @ ASPCTF(6) I 1
150 1+
100 1+
50 +—
0 ! | | | !
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
20.0 + f —— + FCFS
------ C-LOOK (LBN)
- — — /A SPTF
1751 A—- — — A SPCTF
- — — O ASPTF(6)
150+ ®— — — ® ASPCTF(6)
125 1+
10.0 +—
751+
501+
251+ PURARSARSARASAR IR
0.0 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.17: Snake: Full-Knowledge Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation - LOG SCALE!

54

250 + { —— + FCFS
------ C-LOOK (LBN)
- — -/ SPTF
A— — — A SPCTF
200 + - - = ASPTF(6)
®— — — @ ASPCTF(6)
150 1+
100 1+
50 +—
[
0 ! | | | .
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
128.00 +— # —— + FCFS
------ C-LOOK (LBN) rA
64.00 - - ==/ SPTF !
) A- — —A SPCTF //,‘
- — — 0 ASPTR(®) /
32001  o- - -e ASPCTF() /;/
16.00 - Lo e
8.00 +—
4.00 +—
2.00 +—
1.00 +
0.50 +—
0.25 . . . . |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.18: Air-Rsv: Full-Knowledge Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation - LOG SCALE!

99

250 1+— ¢ —— + FCFS P
------ C-LOOK (LBN) oo
- - - SPTF | =]
A—- — — A SPCTF oo
200 1+ - = = ASPTH®) o
® - — —® ASPCTF(6) oo
o
o :%
T
150 1+ Pk
oroch
o
o
100 - o ah
1o
por /;'
1 !
50 + porl /’/
s , A
A// s ‘/
0 1 1 il |
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
512.00 + f —— + FCFS
------ C-LOOK (LBN) a
256.00 + - — -/ SPTF !
A- — — A SPCTF |
128.00 +— - — — O ASPTF(®6) i
®— — — @ ASPCTF(6) P
64.00 1— T
/ ..
32.00 + :
16.00 +—
8.00 +—
4.00 +—
200+
1.00 +
0.50 +— -
0.25 | | | | |
0.125 0.250 0.500 1.000 2.000 4.000

Trace Scaling Factor
(b) Squared Coefficient of Variation

Figure 5.19: Sci-T'S: Full-Knowledge Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation - LOG SCALE!

56

250 +— — ¢+ FCFS ; I :
------ C-LOOK (LBN) | ! '
- — —/ SPTF | I ! ):
A— — —A SPCTF o b
200 +— - — —C ASPTH(®) ol b
®— — — @ ASPCTF(6) o : )
| I N
[ : /’."
(- :
150 +— Vo lf{-
[ ;
[ 6
I /
100 +— | S
| /.’
) /[,
.'/ Y
50 +— 7
0 | . ! | !
0.125 0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor
(a) Mean Response Time
64.00 +— —— + FCFS d
...... C-LOOK (LBN) ,’ll
- — -/ SPTF !
32.00 + A— — — A SPCTF I A
— — - ASPTF(§) ,' : e ’
16.00 + ®— — — ® ASPCTK(6) D ,
[ /
/
8.00 - L
A
o, .,o.
4.00 +— «/I/ A e
e
2.00 - i
1.00 +—
0.50 +
0.25 | | |
0.125 1.000 2.000 4.000

Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.20: Order: Full-Knowledge Algorithm Performance



Mean Response Time (ms)

Squared Coefficient of Variation - LOG SCALE!

250 +—

200 +—

150 1+

100 1+

57

1
¢ —— + FCFS | :
------ C-LOOK (LBN) -
- - - SPTF [
A- — — A SPCTF (.
— — — O ASPTF(6) .
® - — —® ASPCTF(6) 1
I
I
]
|

0
0.125

512.00 +
256.00 +—
128.00 +—
64.00 1+
32.00 1+
16.00 +—
8.00 +—
4.00 +—
2.00 +—
1.00 +
0.50 +—

0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor

(a) Mean Response Time

+ —— + FCFS /
------ C-LOOK (LBN) /
- — — A SPTF /

A- — — A SPCTF B /
- — =0 ASPTF(6) / A

® - — — ® ASPCTF(6)

0.25

0.125

0.250 0.500 1.000 2.000 4.000
Trace Scaling Factor

(b) Squared Coefficient of Variation

Figure 5.21: Report: Full-Knowledge Algorithm Performance



o8

Scale | LBN-Based

Trace  Factor | C-LOOK  SPCTF ASPCTF(6) SPTF ASPTF(6)

Cello 1.0 11.5 11.5 11.5 11.2 11.2
Snake 1.25 21.8 21.2 21.2 17.4 17.4
Air-Rsv 2.5 15.0 14.2 14.1 13.2 13.1
Sci-TS 2.5 26.9 25.4 25.3 23.0 22.5
Order 1.0 17.6 16.2 16.0 11.0 10.9
Report 1.0 14.5 11.7 11.6 10.2 9.6

Table 5.3: On-board Data Cache Read Hit Percentages for Full-Knowledge Algorithms

than C-LOOK in the 0.4-0.9 range of scaling factors for Report. For SPCTF, saturation
does not occur as quickly. Incorporating cache knowledge widens the window where SPTF-
based algorithms are superior to C-LOOK. In the case of Sei-T'S, SPCTF provides increased
performance for all scaling factors studied.

SPTF scheduling of the Snake trace exhibits interesting behavior. Without cache knowl-
edge, SPTF-based algorithms do a very poor job of scheduling the occasional bursts of
sequential reads that dominate the performance metrics for this trace. During a sequential
read burst, SPTF rarely chooses to service requests in logically ascending order; by the time
the data transfer and cleanup overheads complete for one read request, the read/write head
has rotated past the first sector of the next sequential read request. Thus, the scheduler will
predict almost a full rotation of positioning delay for that request. As the queue of pending
requests grows, the scheduler will almost always be able to locate another request whose
data can be positioned over more quickly. Figure 5.17a shows that SPTF and ASPTF(6)
saturate before all other algorithms, including FCFS. Since the bursts of sequential read
requests in Snake arrive in logically ascending order, the seek-reducing algorithms and the
cache-sensitive SPTF algorithms service requests in FCFS order (for the duration of the
burst).

The performance of the age-sensitive SPTF algorithms (i.e., ASPTF(6) and ASPCTF(6))
are analyzed in section 5.2.1, but it is worth noting that the aging factor can improve
performance as well as starvation resistance in some cases. It does this by maintaining the
ordering of sequential requests (if the scheduler receives them in logically ascending order).

Sequential Stream Optimizations

The above experiments were repeated to study the effects of concatenation and sequential
scheduling of sequential request streams. Since scheduling individual sequential writes to a
disk without write prebuffering degrades performance (see page 51), this particular set of
experiments does not consider sequential scheduling of write requests.

Figures 5.22-5.27 show results for LBN-based and full-knowledge scheduling algorithms
using the sequential stream optimizations. Each bargraph displays mean response times for
four versions of each algorithm at a trace scaling factor along the “knee” of the set of response
time curves. C-LOOK maintains the lowest mean response time among the seek-reducing



99

200

[EY

a1

o
?

= No Opt
=.CW

= .CW.CR
= CW.SSR

Mean Response Time (ms)
o 5
T . 7
[ [

0
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

Figure 5.22: (ello, 1.75X: Sequential Stream Algorithm Performance

JEN
N
o

=
o
o

o)
o
]

|

mo o o ~ = No Opt
=.CW

=.CW.CR

= CW.SSR

IN
o
i

Saturated
Saturated
Saturated
Saturated

N
o
?

Mean Response Time (ms)
g
i

0
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

Figure 5.23: Snake, 1.25X: Sequential Stream Algorithm Performance



60

N
o
|

=
(@]
|

60
gso 15 u

(D]

£ 40-

= = No Opt

(b)

0] =.CW

§3° = .CW.CR
2 = CW.SSR
@

[

3

(D)

=

0
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

Figure 5.24: Aur-Rsv, 2.5X: Sequential Stream Algorithm Performance

o]
o

o)
o
]

Mean Response Time (ms)
S 5
%

0
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

Figure 5.25: Sci-TS, 2.5X: Sequential Stream Algorithm Performance



Mean Response Time (ms)

Mean Response Time (ms)
g
=I
]

61

60
50 0 0l i
40
77777 = No Opt
=.CW
=.CW.CR
= CW.SSR

N
o
?

H
o
?

0
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

Figure 5.26: Order, 1.0X: Sequential Stream Algorithm Performance

120
100 ]
80
77777777777 = No Opt
=.CW
il W A A A O = .CW.CR
= CW.SSR
40 5
201 3

0
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

Figure 5.27: Report, 1.0X: Sequential Stream Algorithm Performance



62

algorithms for all traces except Cello. As in previous experiments, all other seek-reducing
algorithms outperform C-LOOK for this trace. For example, SSTF has a 1-2% lower mean
response time than C-LOOK after enabling concatenation of sequential write requests.

For Air-Rsv, Sci-TS, Order, and Report, the sequential scheduling optimizations affect
the performance of LOOK, SSTF, and VSCAN(0.2) in a different fashion than C-LOOK.
A discussion of the implementation details for sequential scheduling of these algorithms
should help explain this behavior. Without the sequential scheduling optimization, these
three algorithms frequently schedule streams of sequential requests in logically descending
order — a highly undesirable behavior for disks with prefetching caches. LOOK always
services requests in logically descending order during the “descending” phase of its scan
cycle. During the “descending” phase of VSCAN(0.2), it treats a sequential stream the
same as LOOK as long as no additional stream requests arrive once it has begun servicing
the stream. SSTF behaves the same as VSCAN(0.2) if it approaches from logically “above”
the stream.

The three algorithms differ in how they handle stream requests that arrive after the
service of the stream has begun. LOOK ignores the requests until its next “ascending” phase.
VSCAN(0.2) handles the new requests (in logically ascending order) after it completes the
previous stream requests as long as there aren’t any requests in the logical space just “below”
the stream (i.e., within a 0.2 fraction of the logical space). SSTF almost always handles the
new requests immediately after servicing the previous stream requests.

Therefore, SSTF with sequential scheduling services most sequential streams in logically
ascending order. VSCAN(0.2) with sequential scheduling does so (during its “descending”
phase) as long as there aren’t any requests in the logical space just “below” the stream.
Otherwise, it services those requests instead of continuing forward along the stream. LOOK
with sequential scheduling, on the other hand, services just the first request in a sequential
write (or read) stream during its “descending” phase, returning to service the rest of the
stream during a subsequent “ascending” phase. Thus, all three algorithms benefit from se-
quential scheduling optimizations, but LOOK and VSCAN(0.2) still suffer from non-optimal
servicing of sequential streams. Alternate sequential stream optimizations for LOOK and
VSCAN(0.2) may avoid this particular pitfall, but the potential benefits of augmenting such
scheduling algorithms are unclear when C-LOOK — an extremely simple algorithm to im-
plement — already exhibits the desired behavior.

Looking at the full-knowledge algorithms, SPCTF and ASPCTF(6) outperform SPTF
and ASPTF(6), respectively, across all six workloads. For the selected trace scaling factors,
cache knowledge alleviates saturation of the disk subsystem for ASPTF(6) scheduling of
Report and for both SPTF and ASPTF(6) scheduling of Snake (see figures 5.23 and 5.27).
Cache-sensitive schedulers achieve lower mean response times by increasing the on-board
cache hit rates. Figure 5.28 presents the improvement in read hit rates due to cache knowl-
edge. Adding cache knowledge to an SPTF-based algorithm improves the read hit ratio by
up to 50% for the selected trace scaling factors.

The remaining analysis in this section focuses on C-LOOK, SSTF, SPCTF, and
ASPCTF(6), as representatives of the seek-reducing and SPTF-based scheduling algorithms.
For four of the six traces, concatenation of sequential write requests improves the perfor-
mance of host-based scheduling. The mean response times for Cello, Snake, Air-Rsv, and



63

0.5

= Cache-Sens.
= .CW

= .CW.CR

== CW.SSR

Read Hit Ratio

Cello Snake Air-Rsv Sci-TS Order Report
Disk Request Trace

(a) SPTF and SPCTF Read Hit Ratios

0.5

= Cache-Sens.
= .CW

= .CW.CR

== CW.SSR

Read Hit Ratio

Cello Snake Air-Rsv Sci-TS Order Report
Disk Request Trace

(b) ASPTF(6) and ASPCTF(6) Read Hit Ratios

Figure 5.28: Improvement in Read Hit Ratios of Full-Knowledge Scheduling Algo-
rithms due to Cache Knowledge



64

Sci-TS drop by 9-10%, 12-16%, 4%, and 8-33%, respectively. Concatenation of sequential
write requests only marginally affects the mean response times for Order and Report.

For all traces except Snake, sequential stream optimizations for read requests only have a
significant impact on the SSTF algorithm (if at all). Adding either concatenation or sequen-
tial scheduling of sequential reads to SSTF.CW decreases mean response times by 7%, 36%,
31-34%, and 5% for Air-Rsv, Sci-TS, Order, and Report, respectively. The performance
of C-LOOK was not expected to change with the addition of sequential scheduling opti-
mizations (since it already schedules requests in logically ascending order), but the minimal
improvement in SPTF-based algorithm performance was surprising. For workloads “farther
up” the response time curves (i.e., workloads on the very edge of saturation), the sequen-
tial stream optimizations enhance performance more significantly (e.g., 10-15% for SPCTF
scheduling of Sci-TS at a trace scaling factor of 3.45).

For the Snake trace, sequential stream optimizations for read requests provide significant
performance improvements. Assuming the scheduler already concatenates sequential write
requests, adding concatenation of sequential reads decreases mean response times by 60-70%.
Alternately, sequential scheduling of read requests decreases mean response times by 27-30%
for the two SPTF-based algorithms. Since C-LOOK already schedules sequential requests in
logically ascending order, the latter optimization does not alter its performance. SSTF.CW
experiences a 3% drop in mean response time with sequential scheduling of reads.

The Snake trace was examined to determine the reason behind the major performance
advantage of the sequential stream optimizations for this workload. The trace contains
occasional bursts of numerous sequential read requests. For example, the first “day” of the
trace (containing over 192,000 requests) has a burst of 3848 read requests of size 8 KB serviced
by a single disk. The requests are grouped into 256 KB sequential streams (i.e., 32 requests
per stream). The traced interarrival times show the entire burst being received in just
over 17 seconds. The sequential stream optimizations obtain most of their performance
advantage from scheduling such bursts. For this particular burst, a C-LOOK scheduler with
concatenation of sequential read requests drops the number of requests serviced by the disk
to 1345 (i.e., 65% fewer requests).

Table 5.4 lists the reduction in the total number of requests (serviced by the disks) due
to request concatenation for C-LOOK, SSTF, SPCTF, and ASPCTF(6). Although some of
the percentages indicate where concatenation provides a performance advantage, others are
deceptive. For example, C-LOOK.CW scheduling of Sci-T'S decreases mean response times
by 8-22% by concatenating only 0.35% of all requests. C-LOOK.CW.CR concatenates an
additional 2.7-3.4% requests, but only decreases mean response times by 1-2%.

In these experiments, concatenation of sequential reads is superior to sequential schedul-
ing because of the decrease in total overhead delay incurred at the disk. If a disk has zero (or
close to zero) command initiation and completion overheads, sequential scheduling of read
requests provides slightly better performance than concatenation of sequential read requests.

Scheduling with FCFS Command Queued Disks

Even host-based centralized scheduling can take advantage of the inter-request concur-
rency available from disks with command queueing. Figures 5.29-5.34 present mean response
times for C-LOOK at points along the “knee” of each set of response time curves. The



65

‘ Trace  Scale Factor‘C—LOOK SSTF SPCTF ASPCTF(G)‘

Cello 1.75 1.53 1.52 1.48 1.49
Snake 1.25 2.07 2.04 2.09 2.10
Air-Rsv 2.5 0.21 0.20 0.19 0.19
Sci-TS 2.5 0.35 0.36 0.29 0.30
Order 1.0 0.01 0.02 0.01 0.01
Report 1.0 0.01 0.01 0.01 0.01

(a) Concatenation of Sequential Writes

‘ Trace  Scale Factor‘C—LOOK SSTF SPCTF ASPCTF(G)‘

Cello 1.75 2.74 2.60 2.30 2.31
Snake 1.25 5.64 5.65 5.45 5.45
Air-Rsv 2.5 3.43 3.07 2.70 2.73
Sci-TS 2.5 3.74 3.48 2.95 2.97
Order 1.0 0.70 3.76 0.49 0.46
Report 1.0 3.87 0.74 3.48 3.52

(b) Concatenation of Sequential Reads and Writes

Table 5.4: Percentage Reduction in Total Requests Serviced due to Sequential Request
Concatenation



200

iy
o
o

Mean Response Time (ms)
o )
o o

66

Preseek

SPCTF.CW.SSR

C-LOOK.CW.SSR
Scheduling Algorithm

C-LOOK.CW.SSR

"==No CQ

:CQ:Z
:CQ:A].

Figure 5.29: Cello, 1.75X: C-LOOK Performance with FCFS Command-Queued Disks

80

(o2}
o

Mean Response Time (ms)
] B
o o

Preseek

SPCTF.CW.SSR

C-LOOK.CW.SSR
Scheduling Algorithm

C-LOOK.CW.SSR

—No CQ
:CQ:Z
:CQ:A].

Figure 5.30: Snake, 1.25X: C-LOOK Performance with FCFS Command-Queued Disks



60

a1
o

IN
o

Mean Response Time (ms)
N w
(=) o

=
o

67

Preseek Full

SPCTF.CW.SSR C-LOOK.CW.SSR C-LOOK.CW.SSR
Scheduling Algorithm

.= No CQ

:CQ:Z
:CQ:A].

Figure 5.31: Air-Rsv, 2.5X: C-LOOK Performance with FCFS Command-Queued Disks

60

a1
o

IN
o

Mean Response Time (ms)
N w
o o

=
o

SPCTF.CW.SSR C-LOOK.CW.SSR C-LOOK.CW.SSR
Scheduling Algorithm

—No CQ
:CQ:Z
:CQ:A].

Figure 5.32: Sci-TS, 2.5X: C-LOOK Performance with FCFS Command-Queued Disks



68

50

IN
o

w
o

N
o

Mean Response Time (ms)

=
o

SPCTF.CW.SSR C-LOOK.CW.SSR C-LOOK.CW.SSR
Scheduling Algorithm

Figure 5.33: Order, 1.0X: C-LOOK Performance with FCFS Command-Queued Disks

140

Preseek Full

120

100

—=No CQ
==CQ=2
:CQ:A].
— CQ =16

o]
o

(o2}
o

N
o

Mean Response Time (ms)

N
o

SPCTF.CW.SSR C-LOOK.CW.SSR C-LOOK.CW.SSR
Scheduling Algorithm

Figure 5.34: Report, 1.0X: C-LOOK Performance with FCFS Command-Queued Disks



69

40

30
" ==No CQ
:CQ:Z
:CQ:A].

=
o

Mean Response Time (ms)
N
o

SPCTF.CW.SSR C-LOOK.CW.CR C-LOOK.CW.CR
Scheduling Algorithm

Figure 5.35: Snake, 1.25X: C-LOOK Performance with FCFS Command-Queued Disks

scheduler was configured to concatenate sequential write requests and sequentially schedule
read requests. The first bar on each graph gives the performance of SPCTF.CW.SSR (for
reference).? The remaining two sets of four bars give the mean response times for disks con-
figured with Preseek and Full command queueing (described in section 4.1.2) over a range
of maximum on-board queue depths (labeled CQ).

All of the traces exhibit relatively similar behavior except Snake. Section 5.1.2 demon-
strates how concatenation of sequential read requests significantly outperforms sequential
scheduling of read requests for the Snake trace. The simulations were repeated using
concatenation of reads, and figure 5.35 shows that the mean response time behavior of
C-LOOK.CW.CR scheduling for Snake matches the C-LOOK.CW.SSR behavior of the other
traces.

The results for all six traces indicate that a host-based centralized scheduler generally
performs best with a disk command queue length of two. By maintaining just two outstand-
ing requests per disk, the scheduler takes advantage of concurrency between the “current”
request and the “next” request at each disk, while preserving the ability to dynamically
reorder (or concatenate) the remainder of the pending requests. That is, a host-based sched-
uler retains more flexibility to rearrange pending requests if the command queue length is
kept short.

This also explains the difference in C-LOOK behavior between the two sequential stream
optimizations for Snake read requests. A host-based C-LOOK.CW.SSR scheduler does not
need to continually reorder the large bursts of sequential reads that dominate the performance
metrics for this trace. Each sequential stream arrives at the scheduler in logically ascending

2As a host-based SPCTF algorithm relies on current knowledge of on-board data cache contents and
actuator positions, it does not schedule effectively for disks with command queueing.



70

order. Therefore, the disk subsystem achieves the best performance by maximizing the
available inter-request concurrency at the disk.

For disks using the Preseek command queueing configuration, the mean response times
for the six traces drop 7-36% when the maximum command queue length is two. They drop
an additional 1-25% after enabling Full command queueing.

5.1.3 Full System Traces

This section contains a similar set of experiments comparing host-based schedulers for the
NCR traces. These full system traces enable the use of the process-flow host model, which
simulates the bidirectional feedback between a host and a disk subsystem. Although the
algorithms studied in this section optimize for subsystem performance criteria, the process-
flow model allows the measurement of application-specific performance metrics as well. As
before, the baseline scheduling algorithms are compared before adding sequential scheduling
optimizations or FCFS command-queued disks.

Scheduling by Logical Block Number

Figure 5.36 shows performance data for the SynRGen workload configured with 1, 2, 4,
and 8 users. The number of users is plotted along the X-axis using a logs scale. Each data
point is the mean of multiple trace runs. The SynRGen benchmark uses random number
generation to determine the sequence of events, the compute times, and the sleep times
for each “user” generating activity. As a result, the performance metrics vary significantly
between runs (using the same configuration).

Figure 5.36a shows the mean response times for disk requests using FCFS and LBN-based
C-LOOK, LOOK, VSCAN(0.2), and SSTF. The seek-reducing algorithms clearly outperform
FCFS. For the 4-user workload, its mean response time is over 40% higher. C-LOOK provides
the lowest mean response times for all but the lightest (1-user) workload, where SSTF
outperforms C-LOOK by 1%. For the 2-user and 4-user workloads, C-LOOK decreases
the mean response time by 20% and 7%, respectively, compared to the other seek-reducing
algorithms.

Figure 5.36b shows the corresponding mean completion times for the SynRGen tasks. For
this metric, the seek-reducing algorithms outperform FCFS by only 2%. However, the largest
fraction of the task completion time is the time “executing” code from main memory (the
compute time). Figure 5.36¢ shows the mean task non-compute times (i.e., the mean task
completion times excluding the large application compute times). For the 4-user and 8-user
workloads, the mean non-compute time drops by 12-13% and 7-10%, respectively, when
a seek-reducing algorithm replaces FCFS. C-LOOK outperforms the other seek-reducing
algorithms by 1-3% for these workloads.

Figure 5.37 presents performance data for experiments using the Compress workload.
Each data point is the mean of five separate trace runs. Figure 5.37a shows the mean
response times for FCFS and the LBN-based algorithms. For this metric, the seek-reducing
algorithms produce 15% better performance than FCFS. Figure 5.37b shows the total run
time for the file compression process. The seek-reducing algorithms decrease compression
times by approximately 2%. Although this may seem insignificant, the magnitude of the



71

)
2
< s00t ——  FCFS
_E -0 C-LOOK
B LOOK
% 40T VSCAN(0.2)
g | L.
§ 300}
=
200
100 }-
0 | | | |
1.0 2.0 4.0 8.0
Number of Users
(a) Mean Request Response Time
£ 35001
£
E 30001
g
T 25001
[=%
5
© 2000+ «——+ FCFS
K S C-LOOK
ﬁ 1500+ A . LOOK
= S © VSCAN(0.2)
o004+~ o SSTFE
500 -
0 | | | |
1.0 2.0 4.0 8.0
Number of Users
(b) Mean Task Completion Time
)
2
T 5004
£
=
@
2 400
£
Q
Q
5
S 300}
g = o C-LOOK
= A e . LOOK
200
e > VSCAN(0.2)
......... o SSTF
100 -
0 | | | |
1.0 2.0 4.0 8.0

Number of Users

(c) Mean Non-Compute Time

Figure 5.36: Synrgen: LBN-Based Algorithm Performance



72

80
o)
[%2]
E 60
@
g | .
}—
3
< 40
o
o
(%]
q) ,,,,,,,,
o
s
S 20
=
0
FCFS C-LOOK LOOK SSTF  VSCAN(0.2)
Scheduling Algorithm
(a) Mean Response Time
200

100

Application Run Time (sec)
o g z

FCFS C-LOOK LOOK SSTF VSCAN(0.2)
Scheduling Algorithm

(b) Application Run Time

Figure 5.37: Compress: LBN-Based Algorithm Performance



73

improvement should increase with the processing power of the host system. On the NCR
workstation traced, the Compress workload is at least partially CPU-bound; the processor
spends approximately 10% of its time in the idle loop. For a faster host system, Compress
could become 1/0O-bound, resulting in a workload much more sensitive to disk subsystem
performance.

Scheduling with Full Knowledge

Figure 5.38a shows mean response times for SPTF-based scheduling of SynRGen. The
full-knowledge algorithms have 7-9% longer mean response times than C-LOOK for all but
the 1-user workload. However, this is not reflected in either the mean task completion time
or the mean non-compute time (see figures 5.38b and 5.38c¢).

Figure 5.39a shows the mean response times for full-knowledge scheduling of the Com-
press workload. C-LOOK has a 2% lower mean response time than SPTF and ASPTF(6).
The cache-sensitive algorithms provide the worst performance, with mean response times
19% higher than C-LOOK and only 2% lower than FCFS. Figure 5.39b shows corresponding
data for the compression run times. C-LOOK outperforms SPTF and ASPTF(6) by 0.5%
using this metric. Adding cache-sensitivity to the SPTF-based algorithms increases the run
times by another 1%.

Intuitively, adding cache-sensitivity should enhance performance, not degrade it. In this
case, the inferior performance of the cache-sensitive algorithms is due to an unfortunate
interaction between the disk model’s prefetching algorithms and the specific behavior of the
Compress workload. The default disk model configures the segmented cache to prefetch
data after read hits as well as read misses. The Compress workload consists of separate
sequential streams of read requests and write requests (reading the uncompressed file and
writing the compressed file). The write requests occur in bursts triggered by an O/S daemon
that periodically flushes dirty blocks from the host disk block cache (see section 2.2.1).

Consider the situation when the disk is servicing a burst of write requests and a read
request arrives whose data is completely contained in a read segment of the on-board cache.
Cache-sensitive algorithms give immediate priority to the read request, and (with the default
prefetching configuration) the disk initiates a seek to prefetch additional data into the read
segment. But as soon as the read request is satisfied from the on-board cache, the host-based
scheduler immediately issues the next pending write request. This preempts the prefetching
activity — perhaps before the disk actuator even reaches the target cylinder containing
the data blocks to prefetch. An additional seek returns the disk actuator to the cylinder
containing the current stream of write requests. Without cache-sensitivity, the scheduler
would finish the write burst before servicing the read request. Since most read requests for
Compress are time-limited, this does not necessarily lengthen the application run time (if
the write burst completes before the time limit).

If the disk model prefetches only on read misses (i.e., not on full read hits), the cache-
sensitive scheduling algorithms provide superior performance, as measured by both mean
response times and application run times. Of all the full-knowledge configurations, SPCTF
with read miss prefetching has the lowest run time (although it is still slightly higher than
that of C-LOOK).



74

%)
1S
= 5001 ——  FCFS
E SIRTE o C-LOOK (LBN)
R ---+ SPTF
% 40T L _-. SPCTF
& 5 ---5 ASPTF(6)
§ 3001 e - - -e ASPCTF(6)
=
200
0+ s
0 | | | |
1.0 2.0 4.0 8.0
Number of Users
(a) Mean Request Response Time
‘2 3500 -
2
E 30001
g
T 25001
[=%
g
o
© 2000+ +——+ FCFS
K L5 C-LOOK (LBN)
ﬁ 1500 +— - - -, SPTE
= a---a SPCTF
1000 + ---o ASPTF(6)
e - --e ASPCTF(6)
500
0 | | | |
1.0 2.0 4.0 8.0
Number of Users
(b) Mean Task Completion Time
)
1S
= 5001
E
=
2
= 400
£
Q
<Q
5 3001~ ——  FCFS
g SRR o C-LOOK (LBN)
= ol \---n SPTF
a---a SPCTF
5 ---o ASPTF(6)
100 1 e ---e ASPCTF(6)
0 | | | |
1.0 2.0 4.0 8.0

Number of Users

(c) Mean Non-Compute Time

Figure 5.38: Synrgen: Full-Knowledge Algorithm Performance



75

80
o)
[%2]

E 60
@
E=
}—
3

< 40
o
o
(%]
4
o
s

S 20
=

0

FCFS  C-LOOK SPTE  ASPTF(6) SPCTF ASPCTF(6)
Scheduling Algorithm
(a) Mean Response Time
200

100

Application Run Time (sec)
o g z

FCFS C-LOOK SPTF ASPTF(6) SPCTF ASPCTF(6)
Scheduling Algorithm

(b) Application Run Time

Figure 5.39: Compress: Full-Knowledge Algorithm Performance



76

Sequential Stream Optimizations

Figures 5.40-5.43 show the effects of the sequential stream optimizations for scheduling
SynRGen. Sequential stream optimizations for read requests have little or no effect on mean
request response times. For the 1-user, 2-user, and 4-user workloads, concatenation of se-
quential write requests improves mean response times by 1% or less. For the 8-user workload,
the mean response times decrease by 3-5%, with C-LOOK dropping 5.1% (the largest de-
crease among the eight algorithms). C-LOOK always schedules sequential writes in logically
ascending order, a behavior that can degrade performance when servicing sequential write
streams with disks lacking write prebuffering (see section 5.1.2, page 51). By concatenating
streams of sequential writes at the host, the number of sequential writes issued to the disk
in logically ascending order decreases.

The mean non-compute times reflect the improvement in mean response times caused by
concatenation of sequential writes. Figure 5.43b shows the mean non-compute times for an
8-user SynRGen workload decreasing by 0.4-2.3% as a result. SPTF and SPCTF improve the
most (2.3%), followed by the age-sensitive SPTF-based algorithms (1.4%). Thus, the SPTF-
based algorithms actually outperform C-LOOK when using a system-level (i.e., application-
specific) performance metric. This indicates that C-LOOK’s improvement in mean response
time is probably due to better handling of the bursts of write requests issued by the O/S
cache flush daemon. Although it is important to service such background requests efficiently,
it is more important to service critical requests (e.g., read requests for which processes are
blocking). That is, improved service for background write requests only improves application
run times indirectly (if at all), whereas improved service for high priority requests typically
allows a process to finish more quickly.

Figure 5.44 gives the mean response times and application run times for the Compress
workload. Concatenation and sequential scheduling of read requests does not affect these
performance metrics. Concatenation of sequential writes improves mean response times
by 3% for all of the scheduling algorithms. The file compression completes 0.5-0.8% faster as
a result. C-LOOK benefits the most (0.8%) from this particular optimization. This indicates
the C-LOOK is not only servicing the background writes efficiently, it is also providing better
service for the critical requests in the Compress trace.

Scheduling with FCFS Command Queued Disks

Figures 5.45-5.48 give performance data for host-based C-LOOK.CW.SSR scheduling of
SynRGen using disks with FCFS command queueing. The bargraphs also show host-based
SPTF.CW.SSR and SPCTF.CW.SSR algorithm performance (using non-queued disks) for
reference.® For Preseek and Full command queueing configurations, a command queue length
of two provides the best mean response times regardless of the number of users. Allowing
up to two commands queued at each disk lowers mean response times by 4-10% for Preseek
command queueing and 14-20% for Full command queueing. The improvement in mean
response time increases with the number of users.

3 As host-based SPCTF algorithms rely on current knowledge of on-board data cache contents and actuator
positions, they do not schedule effectively for disks with command queueing.



7

80
’(—n\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
E
o 601 — - 1 im I 0
£
= = No Opt
<D}
7y =.CW
g =.CW.CR
2 = .CW.SSR
x
c 20-
@
[<B)
=
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Mean Response Time
250
)
E
© 200
=
|_
2 150- = No Opt
3 =.CW
5 =.CW.CR
Q 1007 = CW.SSR
5
Z
— 50
<
)
=

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 5.40: SynRGen, 1 User: Sequential Scheduling Algorithm Performance



78

120
€ 100
)
E 80-
= = No Opt
[«B}
) =.CW
5 * =.CW.CR
o = .CW.SSR
L 40-
[
G
O 204
=
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Mean Response Time

500
© |
E
@ 400
=
|_
L3004 = No Opt
3 =.CW
5 =.CW.CR
Q 200 = CW.SSR
5
Z
c 100+
G
]
=

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 5.41: SynRGen, 2 Users: Sequential Scheduling Algorithm Performance



79

200
)
E
o 150
=
= = No Opt
@
%) =.CW
51 =.CW.CR
2 = CW.SSR
x
c 50+
@
3]
=
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Mean Response Time
400
m
\E/ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
o
£ 3001
=
i) = No Opt
=
o =.CW
200
g = .CW.CR
Q = CW.SSR
5
Z 100 —
c
@
D
=

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 5.42: SynRGen, 4 Users: Sequential Scheduling Algorithm Performance



80

500
R
E 400 -
() . _ M —
= ] ]
= 3004 = No Opt
3 =.CW
§ = .CW.CR
2007 = CW.SSR
o
T
© 100
=
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Mean Response Time
500
© |
E
o 400 == —_ =
=
|_
23004 = No Opt
3 =.CW
S =.CW.CR
Q 200 = CW.SSR
5
=
— 100 -1
G
[¢)
=

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 5.43: SynRGen, 8 Users: Sequential Scheduling Algorithm Performance



81

o]
o

o)
o
|
|

= No Opt
=.CW

= .CW.CR
= CW.SSR

Mean Response Time (ms)
S 5
% %

0
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(a) Mean Response Time

200 —— —— ——

m

[«B}

(%)

;150—7

£

= = No Opt
c =.CW

& 07| =.CW.CR
IS = CW.SSR
<

L 50

o

o

<

0
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Application Run Time

Figure 5.44: Compress: Sequential Scheduling Algorithm Performance



80

[92]
o

Mean Response Time (ms)
N n
o o

300

N
a
o

8]
o
o

=
o
o

Mean Non-Compute Time (ms)
=
a (o))
o o

82

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(a) Mean Response Time

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Mean Non-Compute Time

- =CQ=1
=CQ=2
:CQ:4

. ==CQ =16

- =CQ=1
=CQ=2
:CQ:4

 ——CQ =16

Figure 5.45: SynRGen, 1 User: Scheduling Algorithm Performance for Different Com-

mand Queue Lengths



83

100
@ 80
E
Q
£
~ 60 —=CQ=1
2 =CQ=2
S =CQ=4
o 40 = CQ =16
x
c
©
2 2
0
SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm
(a) Mean Response Time

500
m
E 400
(]
£
'_
@ 300 =CQ-=1
3 - =CQ=2
5 —=CQ=4
Q 200 = CQ =16
&
z
8
& 100
=

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 5.46: SynRGen, 2 Users: Scheduling Algorithm Performance for Different
Command Queue Lengths



84

200
o Preseek | Ful
%)
E 150
. _ _ o
= N I —
= — CQ =1
)
n — CQ = 2
100 H HoH
§_ =CQ=4
g 7777777 | — CQ = 16
@
3
® 50 H H H o H
=
0
SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm
(a) Mean Response Time
400
)
E
© 300
£
= ,
9 — CQ =1
=}
o — CQ = 2
200
g =CQ=4
Q  ==CQ=16
c
S
pd
< 100
]
0]
=
0

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 5.47: SynRGen, 4 Users: Scheduling Algorithm Performance for Different
Command Queue Lengths



85

400
o Preseek | Ful
m - i
E 300 _ _
= E—
= N I — o N
= —CQ=1
)
@ ||l ||l =CQ=2
§-200 =CQ=4
2 I N D  ==CQ=16
(14
&
© 100 HoH HH
=
0
SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm
(a) Mean Response Time
500
< | Preseek | Full
E 400 — —
[} [ ] ] o ] ——
E=S S I
'_
@ 300 o Hon —CQ=1
a | || =CQ=2
5 —=CQ=4
Q 200 HoH HoH = CQ =16
&
S
8
© 100 HoH HH
2 ,,,,,,,
0

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 5.48: SynRGen, 8 Users: Scheduling Algorithm Performance for Different
Command Queue Lengths



86

For the 1-user, 2-user, and 4-user workloads, the mean non-compute time varies only
slightly (up to 2.3%) for maximum command queue lengths of 1, 2, 4, and 16. The mean
response time difference between maximum queue lengths of 1 and 2 is only 0.2-1.1%. For
the 8-user workload, however, the maximum command queue length begins to visibly af-
fect the mean non-compute time (by up to 4.3%). Allowing two commands queued per
disk improves mean non-compute times by 2% for Preseek command queueing and 3% for
Full command queueing. Allowing four commands improves performance by another 2%.
Increasing the command queue length beyond four begins to degrade performance, as the
host-based scheduler loses more and more of its ability to dynamically reorder the pending
requests.

Figure 5.49 gives the mean response times and application run times for the Compress
workload using the same range of maximum command queue lengths. A queue length of two
provides the best performance, improving mean response times by 5% and 10% for Preseek
and Full command queueing, respectively. For both configurations, the application runs
1.2% more quickly with a command queue length of two.

5.1.4 Summary of Conclusions

As section 5.1 presents a large number of experiments, it is useful to restate some of the
major conclusions:

Seek-reducing algorithms do not require detailed mappings of logical blocks to physical
media locations, since logical adjacency generally implies physical adjacency in modern disk
drives. Having access to accurate data layout mappings only marginally improves scheduling
performance for such algorithms. Among the seek-reducing algorithms, C-LOOK interacts
best with on-board prefetching caches. This results in lower mean response times for most
of the workloads studied and increased system-level performance for the full system traces.

Algorithms designed to reduce combined seek and rotational latency delays require accu-
rate logical-to-physical mappings, seek curves, head switch times, command and completion
overheads, rotation speeds, and knowledge of current actuator positions. This information al-
lows a scheduler to accurately predict initiation delays for pending requests and thereby select
better request schedules. Subsystem and system metrics indicate that such full-knowledge
algorithms often provide the highest levels of performance. For experiments using the disk
request traces, SPTF-based algorithms that incorporate knowledge of on-board cache state
achieve the lowest mean response times for most sub-saturation workloads. For experiments
using the full system traces, SPTF-based algorithms with cache-sensitivity provide higher
performance if the disk model only prefetches on read misses (i.e., not on read hits). Other-
wise, an unfortunate interaction occurs between the workload and the prefetching algorithm,
making cache-sensitivity inadvisable.

If a workload contains a significant fraction of sequential requests, a host-based scheduler
can improve performance by concatenating sequential requests into fewer, larger requests.
This technique reduces the total command and completion overheads incurred at the disk
and better utilizes the on-board data cache. Alternately, a scheduler can sometimes improve
performance by explicitly scheduling sequential requests in logically ascending order. The
latter optimization is contraindicated for sequential streams of write requests serviced by
disks without the ability to prebuffer write request data, as it produces an almost pathologi-



60

a
o

IN
o

Mean Response Time (ms)
N w
o o

=
o

250

= = N
o ul o
] o o

Application Run Time (sec)
a
o

87

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(a) Mean Response Time

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Application Run Time

- =CQ=1
=CQ=2
:CQ:4

 ——CQ =16
=CQ=1

=cCQ=2
:CQ:4
—CQ =16

Figure 5.49: Compress: Scheduling Algorithm Performance for Different Command

Queue Lengths



88

cally inferior request ordering. Also, the selected implementation of the sequential scheduling
optimization is better suited to SSTF than LOOK or VSCAN(0.2).

In simulations using disks with FCFS command queueing, shorter command queue lengths
(e.g., 2-4 pending requests per disk) result in better performance. Short on-disk queues allow
a host-based scheduler to maintain the flexibility to dynamically reorder the majority of the
pending requests, while exploiting some of the inter-request concurrency available at each
disk. It is likely that the optimal queue length varies with the cache configuration. However,
such a study is beyond the scope of this dissertation.

5.2 Scheduling with Information From *“Above” and
“Below”

This section examines the system performance effects of adding system-level knowledge to
host-based centralized scheduling algorithms. Without explicit knowledge of request priori-
ties or the impact of individual requests on performance and/or reliability goals, a scheduler
can only attempt to prevent the starvation of critical requests by minimizing the response
time variance. Such is the case for scheduling the disk request traces from HP and DEC. If
applications or file systems pass system-level information to a scheduler, it can give priority
to the most “important” requests. The full system traces (taken from the NCR workstation)
identify which requests are time-critical and time-limited, allowing a scheduler to optimize
for system performance. In either case, a scheduler should still use the subsystem hardware
efficiently (by exploiting hardware-specific knowledge).

5.2.1 Disk Request Traces

Figures 5.16-5.21 in section 5.1.2 show the mean response times and coefficients of vari-
ation for ASPTF(6) and ASPCTF(6) scheduling of the six HP and DEC traces. The age-
sensitive SPTF-based algorithms are visibly more resistant to starvation than SPTF and
SPCTF. However, C-LOOK provides equivalent (or slightly superior) starvation resistance
for workloads on the very edge of saturation. When the age-sensitive algorithms begin to
saturate, their behavior starts to resemble FCFS (with a resulting sharp increase in mean
response times). This is most visible with the Sei-T'S, Order, and Report traces. The seek-
reducing algorithms (especially C-LOOK) saturate much more gradually. For some systems,
this type of graceful degradation is also an important goal.

Because ASPTF(6) does not effectively utilize the on-board cache, it saturates more
quickly than either the seek-reducing algorithms or ASPCTF(6). However, it provides supe-
rior performance over the seek-reducing algorithms for some sub-saturation workloads. For
example, figure 5.21a shows that ASPTF(6) has up to 18% lower mean response times in
the 0.4-0.9 range of scaling factors for the Report trace.

Although ASPCTF(6) always has better starvation resistance than SPCTF, the relative
performance of these two algorithms (as measured by mean response times) depends on the
individual workload. In some cases, the aging factor improves both starvation resistance and
performance by maintaining the ordering of sequential requests issued in logically ascending



89

order. ASPTF(6) and ASPCTF(6) provide better performance than SPTF and SPCTF,

respectively, for most sub-saturation Cello, Order, and Report workloads.

5.2.2 Full System Traces

This section presents performance data for scheduling algorithms using per-request prior-
ity information. Section 5.1.3 demonstrates that concatenation of sequential write requests
is the only effective sequential stream optimization for scheduling the full system traces. All
of the schedulers in this section therefore use concatenation of sequential writes.

Scheduling by Logical Block Number

Figure 5.50 presents the mean response times and mean non-compute times for 2Q FCF'S,
2Q C-LOOK, and 2Q) SSTF scheduling of the SynRGen workloads. The 2Q) algorithms always
give priority to time-critical and time-limited requests (see section 4.3.2). These algorithms
therefore have a tendency to starve time-noncritical requests for all but the lightest work-
loads. Figure 5.51 displays the mean response times measured for the three request classes
when the scheduler uses a 2() C-LOOK algorithm. The difference in mean response times
between the request classes increases with the workload intensity.

By giving priority to requests on which the application and file system processes are
waiting, the 2Q algorithms produce lower mean non-compute times. Figure 5.50b shows that
the mean non-compute times for the 4-user and 8-user workloads are approximately 3% and
16% lower, respectively, for the seek-reducing 2Q algorithms. The difference between the
performance of the FCFS, C-LOOK, and SSTF algorithms diminishes to less than 1% for
2Q scheduling.

Figure 5.52 shows the mean response times and application run times for LBN-based
2Q scheduling of the Compress workload. While mean response times increase over an order
of magnitude, run times drop slightly for 2Q scheduling of FCFS (2.9%), C-LOOK (0.2%),
and SSTF (0.8%). This workload consists of separate sequential streams of read and write
requests scattered across the disk. The read requests are mostly time-limited (with some
time-critical requests), while the write requests are almost all time-noncritical. Giving pri-
ority to a fraction of the total set of requests defeats much of the seek-reducing behavior
of C-LOOK and SSTF. For example, switching from C-LOOK.CW to 2Q C-LOOK.CW in-
creases the mean seek distance from 126 cylinders to 563 cylinders. The mean seek time
more than doubles as a result, increasing from 3.55 ms to 8.48 ms. FCFS, which does not
attempt to minimize seek delays, benefits the most from 2Q scheduling.

Scheduling with Full Knowledge

Figure 5.53 displays performance data for 2Q) SPTF and 2Q) SPCTF scheduling of the
SynRGen workloads. The behavior of these algorithms is similar to the behavior of the LBN-
based 2Q) algorithms. Mean response times grow rapidly as the workload increases, while
mean non-compute times drop by up to 13.3%, matching the performance of 2Q) FCFS.
Therefore, it is far more important to exploit system-level information than minimize me-
chanical latencies for a SynRGen workload of up to 8 users.



500 1+—

400 1+

300 +—

Mean Response Time (ms)

200 +—

100 1+—

90

FCFS

¢ 2QFCFS
C-LOOK

m 2Q C-LOOK

0.5

500 1+—

300 +—

Mean Non-Compute Time (ms)

200 +—

100 1+—

(

1.0 2.0 4.0 8.0
Number of Users

a) Mean Request Response Time

FCFS

¢ 2QFCFS
C-LOOK

m 2Q C-LOOK

0.5

1.0 2.0 4.0 8.0

Number of Users

(b) Mean Non-Compute Time

Figure 5.50: Synrgen: LBN-Based 2Q.CW Algorithm Performance



91

()
E 700+ —— Al Requests
Q [ Time-Noncritical
§ ------ Time-Limited
'g; 600+ Time-Critical
c
(@)
& 5001
x
% 400 1+~
=

300 +

200 1+~

100 1+~

O ! ................. !-! ................. .!
05 1.0 2.0 4.0 8.0

Number of Users

Figure 5.51: Synrgen, 20 CLOOK.CW: Mean Response Times by Request Class



1200

)

[
o
o
o

800

o)}
o
o

Mean Response Time (ms
N
o
o

N
o
o

250

= = N
o a o)
e} o o

Application Run Time (sec)

a
o

92

FCFS C-LOOK SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm

(a) Mean Response Time

FCFS C-LOOK SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm

(b) Application Run Time

Figure 5.52: Compress: LBN-Based 2Q).CW Algorithm Performance



93

)
S
o 5001+ —— - FCFS
= £ ...... 4 20QFCFS )
= - - -/ SPIF R
) A— — — A 2QSPTF 4
5§ 4001 > = = =< SPCTF 4y
g_ e— — —& 2QSPCTF : 4
d
§ 300}
=

200 +—

100 +

0 | | | |
0.5 1.0 2.0 4.0 8.0
Number of Users
(a) Mean Request Response Time

)
S
o 5001 —— - FCFS
= -...-- 4 2QFCFS
= - — - SPTF
@ A— — — A 2QSPTF
a 400 1+ - — — < SPCTF _
= e— — —e 2QSPCTF -
[} / N _ -
Q SRI I e
S 300}
2
=

200 +—

100 +

0 | | | |
0.5 1.0 2.0 4.0 8.0

Figure 5.53:

Number of Users

(b) Mean Non-Compute Time

Synrgen: Full-Knowledge 2Q).CW Algorithm Performance



94

Section 5.1.3 describes how the performance of SPTF-based algorithms is below that of
LBN-based algorithms for single-queue scheduling of the Compress workload. Figure 5.54
displays performance data for two 2(Q) full-knowledge schedulers, showing that the SPTF-
based 2Q) algorithms are slightly superior to both FCFS and LBN-based 2Q) scheduling.
2Q SPTF and 2Q SPCTF have application run times that are over 1% lower than C-LOOK’s
run time. Also in contrast to the single-queue schedulers, 2QQ SPCTF is slightly faster than
2Q SPTF. Since the scheduler is already giving priority to the time-critical and time-limited
read requests, adding cache sensitivity just helps the scheduler reorder multiple outstanding
read requests (a rare occurrence). As the SPTF-based 2Q algorithms outperform FCFS
by 2%, a high-performance scheduler for Compress can therefore exploit both system-level
and hardware-specific information.

Scheduling with FCFS Command Queued Disks

Figures 5.55-5.59 show performance metrics for simulations of the full system traces using
FCFS command queued disks with varying maximum queue lengths and command queueing
configurations. To minimize mean response times, a command queue length of two is best
for SynRGen, and a command queue length of sixteen (or more) is optimal for Compress.
However, the application-specific metrics show that the best overall system performance
occurs when command queueing is disabled. This is because a host-based, priority-sensitive
scheduler loses the flexibility to reorder pending requests once it issues them to a FCFS
command-queued disk. For example, assume that a disk has a maximum command queue
length of two. If a host-based 2Q) scheduler issues one high priority request and one low
priority request to a disk, the scheduler cannot change the order of service if another high
priority request arrives before the first high priority request is complete. For a disk without
a command queue, the low priority request would never have been issued, and the scheduler
would be free to issue the second high priority request as soon as the first completed.

5.2.3 Summary of Conclusions

Adding age-sensitivity to SPTF-based algorithms improves starvation resistance (i.e., the
squared coefficient of variation). By correctly “weighting” aging information, the improve-
ment in starvation resistance does not necessarily degrade performance. In some cases, age-
sensitivity actually improves mean response times by maintaining the ordering of sequential
requests issued in logically ascending order.

For experiments using the full system traces, 2Q) scheduling gives precedence to time-
critical and time-limited requests (over time-noncritical requests). This results in enhanced
system performance, as measured by the application-specific metrics. At the same time,
2Q) algorithms produce much larger mean request response times (e.g., over an order of
magnitude greater for Compress). This demonstrates the importance of including accurate
host feedback in disk scheduling experiments; traditional disk subsystem analysis (using only
subsystem performance metrics) would label 2Q) scheduling as a bad design choice. Host-
based 2Q) scheduling works best if the disks in the subsystem do not have command queueing.
Even a very short command queue length (e.g., 2 or 4) degrades overall system performance
(albeit improving mean response times).



1000

800

600

400

Mean Response Time (ms)

250

= = N
o a o)
e} o o

Application Run Time (sec)

a
o

95

C-LOOK 2Q C-LOOK SPTF SPCTF  2Q SPTF 2Q SPCTF
Scheduling Algorithm

(a) Mean Response Time

C-LOOK 2Q C-LOOK SPTF SPCTF  2Q SPTF 2Q SPCTF
Scheduling Algorithm

(b) Application Run Time

Figure 5.54: Compress: Full-Knowledge 2Q.CW Algorithm Performance



96

80

[92]
o

Mean Response Time (ms)
N n
o o

300

N
a
o

8]
o
o

=
o
o

Mean Non-Compute Time (ms)
=
a (o))
o o

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(a) Mean Response Time

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Mean Non-Compute Time

- =CQ=1
=CQ=2
:CQ:4

. ==CQ =16

- =CQ=1
=CQ=2
:CQ:4

 ——CQ =16

Figure 5.55: SynRGen, 1 User: 2Q) Scheduling Algorithm Performance for Different

Command Queue Lengths



120

=
o
o

80

Mean Response Time (ms)
B (o2}
o o

20

500

N w B
o o o
o o o

Mean Non-Compute Time (ms)
=
o
o

Figure 5.56: SynRGen, 2 Users: 2QQ Scheduling Algorithm Performance for Different

97

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(a) Mean Response Time

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Mean Non-Compute Time

Command Queue Lengths

- =CQ=1
=CQ=2
:CQ:4

 ——CQ =16
=CQ=1

=cCQ=2
:CQ:4
—CQ =16



98

200
o Preseek | Full
’a —_— —_—
E 150 e
© R
= N I ,
= — CQ =1
©
o =CQ=2
100 HoH o
§ —CQ=4
a | | . ==CQ =16
x
&
& 50 HoH o
=
0
SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm
(a) Mean Response Time
400
m
E
© 300
£
= ,
9 — CQ =1
=}
2 =CQ=2
200
g =CQ=4
Q  ==CQ=16
c
S
Z
c 100
@
o
=
0

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 5.57: SynRGen, 4 Users: 2QQ Scheduling Algorithm Performance for Different
Command Queue Lengths



99

500
S Preseek | Full
@ 400 — _
E __
q) 1. - - - . - . ] 1 (- | [ - - - - .
£ — [
= 300 H H H H —=CQ=1
g 7777777 =CQ=2
S =CQ=4
g 2% i i - CQ =16
(14
-
®
2 100 0 H H o H
0
SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm
(a) Mean Response Time
500
m
E 400
(]
=
|_
@ 300 =CQ-=1
3 - =CQ=2
5 =CQ=4
Q 200 = CQ =16
&
P
8
© 100
=
0

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 5.58: SynRGen, 8 Users: 2QQ Scheduling Algorithm Performance for Different
Command Queue Lengths



100

1000
o Preseek =~ | Full
@ 800
E
oo e e
£
— 600 —=CQ=1
g - e I A A =CQ=2
3 =CQ=4
& 400 = CQ =16
o
e e e I e e e
I
2 200
. ﬂ [ [
SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm
(a) Mean Response Time
250
L Preseek. =~ | Full
0200 — S
2 — — — —
2
“E’ ,,,,,,,
i= 150 o Hon —CQ=1
s | || - =CQ=2
o = CQ =4
& 100 i 1 -—CQ=16
IS
R R I
o
& 50 H H H o H
0

SPTF.CW.SSR SPCTF.CW.SSR C-LOOK.CW.SSR  C-LOOK.CW.SSR
Scheduling Algorithm

(b) Application Run Time

Figure 5.59: Compress: 2Q) Scheduling Algorithm Performance with Different Com-
mand Queue Lengths



CHAPTER 6
Centralized Scheduling at the Disk

Modern disk drives contain powerful embedded microprocessors to handle peripheral bus
interfaces, interpret and service incoming requests, and manage segmented data caches. In
addition, disk drive controllers can maintain and reorder on-board queues of pending re-
quests. A disk-based centralized scheduler has the advantage of easy and immediate access
to the complete set of disk configuration and state information. On-board firmware (and
hardware) can be tuned to exploit the maximum amount of concurrency between requests
in service at a disk. On the other hand, system-level scheduling information must be com-
municated from the host (e.g., using additional fields in the request control blocks). More
importantly, the on-board queue of pending requests is limited by the amount of available
disk-level memory (excluding the data cache and firmware storage). The limited queue
length impairs the performance of a disk-based scheduler; once the on-board queue is full,
additional requests must be buffered by the host and are therefore not considered by the
disk-based scheduler. Increasing the maximum queue length alleviates this problem at the
cost of additional per-disk memory (and possibly computation) resources.

This chapter examines a variety of disk-based centralized scheduling algorithms. The
experiments are partitioned based on the type of information used by the scheduler.

6.1 Scheduling with Information From “Below”

6.1.1 Disk Request Traces

This section uses the six HP and DEC traces to study the effects of sequential stream
optimizations and maximum command queue lengths on disk-based schedulers using only
hardware-specific knowledge. It concludes with a comparison of disk-based and host-based
centralized scheduling.

Sequential Stream Optimizations

As all experiments in this chapter use disks with preseeking capability, there is no advan-
tage to concatenating requests as they arrive at a disk. The sequential scheduling optimiza-
tion, on the other hand, can improve on-board cache hit rates and reduce mean response
times. Figures 6.1-6.6 show the effects of this optimization on disk-based centralized schedul-

101



102

200
’(-n\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
E
o 150
£ mm
lq_) A T rFl = No Opt
g 100 =.SSR
= = SSW.SSR
4]
nd
c 50
3
[¢B)
=
C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Preseek Command Queueing

200
’(-n\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3 -
o 150
£ ]
" 1] 1] e = No Opt
g 100 =.SSR
= = SSW.SSR
4]
nd
c 50
3
[¢B)
=

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.1: Cello, 1.75X: Sequential Scheduling Algorithm Performance



103

40 -
_ _ _
E
q) 30_
£
|q_) = No Opt
g 20 =.SSR
2 = SSW.SSR
@
x
c 10
G
[<B)
=
C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Preseek Command Queueing
30
2 25-
)
_E 20-
o = No Opt
g 15 =.SSR
= = SSW.SSR
& 10+
c
G
L 54
=

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.2: Snake, 1.25X: Sequential Scheduling Algorithm Performance



104

50

> 1 e
E 10
@
e 1
|_ —
o 0 m = No Opt
g 1l =.SSR
& 20 = SSW.SSR
m T T T
o o0
= S55
8 104 » D0
=

0

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Preseek Command Queueing
50

v | e
E 40
@
e 1 e e
|_
s 30 - = No Opt
g 1 o L& =.SSR
%20 1] ] ] - mim = SSW.SSR
O
@
@
S 10
=

0

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.3: Aur-Rsv, 2.5X: Sequential Scheduling Algorithm Performance



105

(o]
o

al
o

IN
o

N
o
|

Mean Response Time (ms)
= w
o o

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(a) Preseek Command Queueing

(o]
o

al
o

IN
o

Mean Response Time (ms)
N w
o o

=
o
|

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.4: Sci-TS, 2.5X: Sequential Scheduling Algorithm Performance



106

IN
o

w
o

Mean Response Time (ms)
= N
o o

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(a) Preseek Command Queueing

(o]
o

al
o

IN
o

N
o
|

Mean Response Time (ms)
= w
o o

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.5: Order, 1.0X: Sequential Scheduling Algorithm Performance



Mean Response Time (ms)

Mean Response Time (ms)
N
o

N
o
|

[N
o
|

107

IN
o

w
o

= No Opt

=.SSR
= SSW.SSR

T T T T T T T T T T T T

222 Lee 222 Lee

10 © © © © © © © © © © © ©

50 05 35 S5 3 3 jm R R | S5 3 3

T T T T CT T T T

n unonm 0w unonm n nonm n unonm

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(a) Preseek Command Queueing

IN
o

w
o
|

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.6: Report, 1.0X: Sequential Scheduling Algorithm Performance



108

ing. The maximum command queue length was set to 128 (a value justified below) for all
disks. The data points are from the “knee” of each trace’s set of response time curves. For
Snake, sequential scheduling of read requests decreases mean response times by up to 9%.
For the other five traces, this optimization affects mean response times by 2% or less when
using C-LOOK or the SPTF-based algorithms. This matches the general behavior observed
for host-based schedulers with sequential scheduling of reads (see section 5.1.2).

Sequential scheduling of writes has a minimal effect for Cello, Snake, Order, and Report
when using C-LOOK or the SPTF-based algorithms. For Air-Rsv and Seci-TS, sequential
scheduling of write requests actually degrades performance by approximately 2% for the
Preseeking command queueing configuration.®

The sequential scheduling optimization strongly affects the performance of LOOK, SSTF,
and VSCAN(0.2). Section 5.1.2 discusses how these algorithms handle sequential streams
of requests with and without the sequential scheduling optimization (see page 62). The
sub-optimal sequential scheduling behavior of LOOK and VSCAN(0.2) is quite obvious in
figure 6.1 and figures 6.3-6.6. In several cases, the use of these algorithms results in sat-
uration of the disk subsystem at the selected trace scaling factors. Figures 6.4 and 6.5
show how sequential scheduling allows SSTF to attain performance much closer to that of
C-LOOK for Sei-TS and Order. For Snake configurations with Preseek command queueing
(see figure 6.2a) and Air-Rsv configurations with Full command queueing (see figure 6.3b),
the sequential scheduling optimizations enable SSTF to marginally outperform C-LOOK
(with 1-2% lower mean response times).

Comparison of Disk-Based Scheduling Algorithms

As was true for host-based scheduling, C-LOOK generally provides the best performance
among the seek-reducing algorithms. For Cello, SSTF produces up to 4% lower mean re-
sponse times. A few configurations using Snake and Air-Rsv also achieve better performance
with SSTF (as noted above).

Across all six traces, the SPTF-based algorithms provide the lowest mean response times.
In the case of Report, a disk subsystem using Preseek command queueing saturates at the
selected trace scaling factor for all of the LBN-based algorithms. The full-knowledge algo-
rithms, on the other hand, achieve mean response times of 27-30 ms.

For the four DEC traces, cache-sensitivity degrades the performance of the SPTF-based
algorithms by up to 11%. This behavior matches that of SPTF-based scheduling of the
Compress full system trace (see page 73 in section 5.1.3). As was true for Compress, the
cache-sensitive algorithms produce higher mean response times for the DEC traces because of
automated prefetching on full read hits. When prefetching is enabled only on partial read hits
and read misses, SPCTF and ASPCTF(6) outperform SPTF and ASPTF(6), respectively. In
fact, all algorithms experience a decrease in mean response times after this change (using the
DEC traces), although the LBN-based algorithms maintain the same relative performance
ordering.

The full-knowledge algorithms are also sensitive to any preference given to full read hits
(over partial read hits). Cache-sensitive SPTF algorithms query the on-board cache model

!Section 5.1.2 explains how sequential scheduling of writes to a disk without write prebuffering can degrade
performance (see page 51).



109

to determine if a pending request will hit in the cache. For host-based scheduling, the cache
simply indicates either “hit” or “miss”. For disk-based scheduling, the cache model also
indicates if a read hit is “complete” or “partial” based on whether or not all of the requested
sectors are present in the cache. The default scheduler configuration gives precedence to
full hits over partial hits. Unfortunately, this design choice has a detrimental effect when
scheduling sequential request streams.

Consider the situation when a disk is servicing a stream of sequential read requests. If a
request arrives that is not part of the “current” stream and the cache indicates that it will
be a full hit (in another cache segment), a cache-sensitive scheduler will give higher priority
to that request over the next sequential request in the “current” stream (which will only be a
partial hit unless the prefetching activity is far outpacing the servicing of requests). Even if
all the sectors for both requests are present in the cache, there is no way for the cache model
to indicate that a request is part of the “current” sequential stream and should therefore be
given higher priority. This is an artifact of the simulator and does not necessarily reflect a
common design choice for current disk drive controllers.?

The experiments on host-based SPTF scheduling given in section 5.1.2 do not exhibit
the behavior discussed above. All comparisons between SPTF algorithms in that section
refer to experiments that use disks without command queueing. As noted in section 4.1.2,
experiments using disks without command queueing also use on-board data caches with one
read segment (and one write segment). With only one read segment, all read hits occur
within (or near) the “current” sequential stream.

Maximum Command Queue Length

The amount of available main memory bounds the pending request queue length for
host-based schedulers. Similarly, the amount of on-board controller memory bounds the
command queue length for a disk. This section examines the effects of limited command
queue lengths on disk-based centralized scheduling.

Figures 6.7-6.12 present mean response times for points along the “knees” of the in-
dividual response time curves for C-LOOK and SPCTF. The bargraphs include data for
Preseek and Full command queue configurations with maximum command queue lengths
(labeled CQ) of 16, 128, and infinity. A maximum queue length of 16 is visibly subopti-
mal for most of the trace/scheduler combinations. For Snake, Air-Rsv, Order, and Report,
a maximum queue length of 128 generally provides performance equivalent to an infinite
queue length. Mean response times for Cello and Sci-TS increase by less than 4% when the
maximum command queue length changes from infinity to 128. The single exception to the
above observations is C-LOOK scheduling of Report with the Preseeking command queueing
configuration. The mean response time measured for this combination exceeds 1 second
(i.e., a saturated workload).

The last few generations of SCSI disks provide queue depths of at least 16, with some disks
queueing as many as 64 requests [Seag93]. Since the SCSI-2 protocol provides 256 unique
command tags [SCSI93], a maximum command queue length of 128 seems quite reasonable
for future generations of disks.

2There is little or no documentation available regarding the exact implementation of request schedulers
in modern disk drives.



110

200
,,,,,, Preseek  _Ful

’(-/)\ I

E 150 —

Q

£ ] —

|_

o —=CQ=16

g 1001 =CQ=128

7l == CQ = Infinity

m -

4

&

S 50—

=

C-LOOK SPCTF C-LOOK SPCTF
Scheduling Algorithm

Figure 6.7: Cello, 1.75X: Algorithm Performance for Different Command Queue Lengths

50
B 10 Preseek Full

3 -

o LTI - —r

S

= 30—

o =CQ=16

g — - =CQ=128
S0l | == CQ = Infinity
O

4

c

@

2 104

C-LOOK SPCTF C-LOOK SPCTF
Scheduling Algorithm

Figure 6.8: Snake, 1.25X: Algorithm Performance for Different Command Queue Lengths



111

40

Preseek Full

w
o
|

- —CQ =16
=CQ =128
== CQ = Infinity

Mean Response Time (ms)
S
T

C-LOOK SPCTF C-LOOK SPCTF
Scheduling Algorithm

Figure 6.9: Air-Rsv, 2.5X: Algorithm Performance for Different Command Queue
Lengths

40
Preseek Full

w
o
|

—CQ =16
=CQ =128
== CQ = Infinity

Mean Response Time (ms)
S
T

C-LOOK SPCTF C-LOOK SPCTF
Scheduling Algorithm

Figure 6.10: Sci-TS, 2.5X: Algorithm Performance for Different Command Queue
Lengths



112

50
a0 Preseek Full

3 -

o 1

E

= 30—

o =CQ=16

g ==CQ =128
S0l | == CQ = Infinity
O

4

c

@

2 104

C-LOOK SPCTF C-LOOK SPCTF
Scheduling Algorithm

Figure 6.11: Order, 1.0X: Algorithm Performance for Different Command Queue Lengths

120

Preseek Full
~100
()]
é ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2 80
=
o 11 S —=CQ=16
g 60 ==CQ =128
o
[%)]
O
4
C
d
()
=

C-LOOK SPCTF C-LOOK SPCTF
Scheduling Algorithm

Figure 6.12: Report, 1.0X: Algorithm Performance for Different Command Queue
Lengths



113

Host-Based Disk-Based
Scale || C-LOOK.CW.CR SPCTF.CW.CR | C-LOOK SPCTF
Trace  Factor cQ =2 cQ =1 CQ =128 CQ =128
Cello 1.75 140.49 116.72 141.99 118.07
Snake 1.25 23.75 26.94 37.05 35.71
Air-Rsv 2.5 30.89 33.56 29.52 24.52
Sci-TS 2.5 20.63 20.62 22.40 18.79
Order 1.0 23.90 23.96 23.26 20.11
Report 1.0 40.51 49.21 Saturated 30.16

(a) Preseek Command Queueing

Host-Based Disk-Based

Scale || C-LOOK.CW.CR SPCTF.CW.CR | C-LOOK SPCTF

Trace  Factor cQ =2 cQ=1 CQ =128 CQ =128
Cello 1.75 101.86 116.72 122.60 109.45
Snake 1.25 22.68 26.94 25.79 25.11
Air-Rsv =~ 2.5 29.76 33.56 26.38 21.30
Sci-TS 2.5 18.48 20.62 16.79 13.49
Order 1.0 23.16 23.96 21.63 18.35
Report 1.0 39.86 49.21 33.35 24.51

(b) Full Command Queueing
Table 6.1: Mean Response Times (ms) for “Reasonable” Centralized Schedulers

Comparison with Scheduling at the Host

The optimal location for a centralized scheduler is completely dependent on the work-
load and system configuration, but some general observations can be made based on the
experimental results. Table 6.1 lists the mean response times for the six HP and DEC
traces using eight different combinations of centralized schedulers and command queueing
configurations. These combinations represent “reasonable” implementations of centralized
scheduling specifically tuned to service all six traces.

For configurations with Preseek command queueing, the optimal choice for host-based
versus disk-based scheduling is evenly split for the six traces (see table 6.1a). A host-based
scheduler works best for Cello and Snake; a disk-based scheduler works best for Air-Rsv
and Order; and for Sei-T'S and Report, the best scheduler is host-based for C-LOOK and
disk-based for SPCTF. Host-based scheduling reduces the total amount of command and
completion overhead by concatenating sequential requests. Disk-based scheduling enhances



114

inter-request concurrency through longer on-board command queues (especially for SPCTF).
Furthermore, SPCTF scheduling is more accurate when performed at the disk, as host-based
schedulers must deal with unpredictable bus delays after selecting a request to service.

Host-based scheduling performance improves when Full command queueing is enabled,
but disk-based schedulers gain the most from the upgrade in disk controller complexity.
Table 6.1b shows that disk-based SPCTF schedulers for Cello and Snake and C-LOOK
schedulers for Sei-TS and Report outperform their host-based counterparts when Full com-
mand queueing is enabled; only C-LOOK scheduling for Cello and Snake is best performed
by the host.

6.1.2 Full System Traces

This section examines the performance of disk-based centralized scheduling for the NCR
traces. Only hardware-specific information is used by the scheduler, but both subsystem
and system (i.e., application-specific) metrics are reported.

Sequential Scheduling

For disks with maximum command queue lengths of 128, sequential scheduling of reads
and/or writes affects the performance metrics for the SynRGen workload by less than 1%.
For the Compress workload, some of the algorithms experience a 1-2% drop in mean re-
sponse times when scheduling sequential write requests in logically ascending order for disks
with Full command queueing. Therefore, the remaining experiments in this section use
no sequential scheduling optimizations for configurations with Preseek command queueing
and sequential scheduling of both reads and writes for configurations with Full command
queueing.?

Maximum Command Queue Length

For 1-user and 2-user SynRGen workloads, the choice of maximum command queue
length affects mean non-compute times by less than 1%. Figures 6.13 and 6.14 show the
mean response times and mean non-compute times for 4-user configurations with Preseek and
Full command queueing, respectively. Maximum command queue lengths of 128 and infinity
provide equivalent performance across all algorithms. Reducing the maximum queue length
to 16 degrades performance for the LBN-based algorithms, increasing mean response times
by up to 13% and mean non-compute times by up to 2%. A maximum queue length of 16
provides marginally superior performance for the full-knowledge algorithms, with mean non-
compute times decreasing less than 1%. SPTF-based algorithms are greedy in nature and
therefore highly susceptible to request starvation. Limiting the number of pending requests
visible to the scheduler results in increased age-sensitivity, thereby reducing the potential
for starvation of high priority requests.

Figures 6.15 and 6.16 present the performance data for the 8-user SynRGen configura-
tions. Again, a maximum command queue length of 128 provides good performance across

3Sequential scheduling of reads is included for Full command queueing configurations only for consistency
with other experiments. Little or no benefit is gained from this optimization in this context.



115

200

150 — —
- =CQ=16
=CQ =128
- =CQ = Infinity

Mean Response Time (ms)
o o
o (@]
Il Il
[ [

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(a) Mean Response Time

400

w

o

o
|

- =CQ=16
=CQ =128
- =CQ = Infinity

200

100

Mean Non-Compute Time (ms)

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.13: SynRGen, 4 Users: Scheduling Algorithm Performance for Disks with
Preseek Command Queueing



116

200

150 —
- =CQ=16
=CQ =128
- =CQ = Infinity

Mean Response Time (ms)
o o
o (@]
Il Il
[ [

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(a) Mean Response Time

400

w

o

o
|

- =CQ=16
=CQ =128
- =CQ = Infinity

200

100

Mean Non-Compute Time (ms)

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.14: SynRGen, 4 Users: Scheduling Algorithm Performance for Disks with
Full Command Queueing



117

400

300
- =CQ=16
=CQ =128
- =CQ = Infinity

100

Mean Response Time (ms)
g
i

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(a) Mean Response Time

500

IN

o

o
!
]

300 -+ =oCQ =16
- =2CQ=128
200 = CQ = Infinity

100

Mean Non-Compute Time (ms)

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.15: SynRGen, 8 Users: Scheduling Algorithm Performance for Disks with
Preseek Command Queueing



118

400

300 — ] — —
- =CQ=16
=CQ =128
- =CQ = Infinity

100

Mean Response Time (ms)
g
i

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(a) Mean Response Time

400 +—

300 -+

- =CQ=16
200 =CQ =128

- =CQ = Infinity
100 H

Mean Non-Compute Time (ms)

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.16: SynRGen, 8 Users: Scheduling Algorithm Performance for Disks with
Full Command Queueing



119

the range of scheduling algorithms. In many cases, performance degrades when the max-
imum command queue length changes to infinity. That is, it is often better if the sched-
uler considers only the “most recent” 128 requests. There are two anomalous points in the
graphs that bear further discussion. For C-LOOK scheduling of disks with Preseek command
queueing, C-LOOK appears to achieve much better performance with an infinite command
queue length. For SSTF scheduling of disks with Full command queueing, SSTF appears to
achieve superior performance with a maximum command queue length of 16. In both cases,
the number of “tasks” completed before the process-flow model halts is actually lower. That
is, the processes simulated in the host model experienced an unusual ordering such that the
model had to “abort” earlier for these simulation runs.* Therefore, these two configurations
represent inferior design points, contrary to the displayed performance metric values.

Figures 6.17 and 6.18 show the mean response times and mean non-compute times
for Compress configurations with Preseek and Full command queueing, respectively. For
the LBN-based algorithms, maximum command queue lengths of 128 and infinity produce
slightly lower (less than 1%) mean non-compute times. For the SPTF-based algorithms,
the converse is true; configurations with a maximum queue length of 16 have a marginal
performance advantage over those with longer queue lengths. This matches the behavior of
the 4-user SynRGen workload, discussed above.

Comparison of Disk-Based Scheduling Algorithms

For 1-user and 2-user SynRGen workloads, all algorithm but FCFS provide equivalent
performance. For the 2-user traces, scheduling with FCFS degrades mean non-compute
times by up to 2%. For the 4-user traces, C-LOOK shows a slight (1% or less) performance
advantage over the other LBN-based algorithms and the SPTF-based algorithms. For the
8-user traces, SSTF provides the lowest mean non-compute time among the LBN-based algo-
rithms, even though C-LOOK has the lowest mean response time. For SynRGen, C-LOOK
apparently improves the performance of low priority requests at the expense of high priority
requests. For the Compress workload, all algorithms but FCFS provide roughly equivalent
performance.

Comparison with Scheduling at the Host

Table 6.2 presents application-specific performance data for “reasonable” host-based and
disk-based centralized scheduling of SynRGen and Compress. For light workloads (i.e., the
l-user and 2-user SynRGen traces), disk-based scheduling has a slight advantage. As the
workload intensity increases, using host-based scheduling improves the application-specific
performance metrics by approximately 2%. Comparing tables 6.2a and 6.2b, the advantage
of host-based scheduling lessens as the complexity of the disk controller increases (from
Preseek to Full command queueing).

4The process-flow model stops executing as soon as it reaches a state where there are no more events in
the trace for a process that is “active” at the end of the trace.



120

N
o
|

60
gso—
Py
_§40-
) - =CQ=16
g 30 =CQ =128
2 - = CQ = Infinity
Q
o
c
@
(]
=

=
o
|

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(a) Mean Response Time

200 -

)

[}

(2)

— 150}

g

= - =CQ=16
2 100 =CQ =128
c = CQ = Infinity
i) )

©

L 50

o

o

<

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.17: Compress: Scheduling Algorithm Performance for Disks with Preseek
Command Queueing



121

N
o
T

60
gso———
Py
_E 401
) - =CQ=16
g 30 =CQ =128
2 - = CQ = Infinity
Q
o
c
@
(]
=

=
S)
T

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(a) Mean Response Time

200 —

)

[}

(2)

— 150}

g

= - =CQ=16
2 100 =CQ =128
c = CQ = Infinity
i) )

©

L 50

o

o

<

FCFS C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6)SPCTRASPCTF(6)
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.18: Compress: Scheduling Algorithm Performance for Disks with Full Com-
mand Queueing



122

Host-Based (all .CW.SSR) Disk-Based
C-LOOK SPCTF C-LOOK  SPCTF
Trace cQ =2 cQ=1 CQ =128 CQ = 128
SynRGen(1) | 225.09 225.19 225.02  224.60
SynRGen(2) | 433.31 436.11 433.23  430.98
SynRGen(4) | 334.08 339.27 335.12 338.05
SynRGen(8) 380.90 377.74 388.34 385.65
Compress 191.82 191.86 194.74 194.76
(a) Preseek Command Queueing
Host-Based (all .CW.SSR) | Disk-Based (all .SSW.SSR)
C-LOOK SPCTF C-LOOK SPCTF
Trace cQ =2 cQ =1 CQ =128 CQ =128
SynRGen(1) | 225.00 225.19 224.95 224.56
SynRGen(2) | 432.42 436.11 432.85 430.94
SynRGen(4) || 336.33 339.27 334.57 336.97
SynRGen(8) || 377.01 377.74 384.60 382.38
Compress 190.05 191.86 190.95 190.90

(b) Full Command Queueing

Table 6.2: Mean Non-Compute Times (ms) or Application Run Times (sec) for “Rea-
sonable” Centralized Schedulers



123

6.1.3 Summary of Conclusions

For disk-based centralized scheduling using only hardware-specific knowledge, C-LOOK
generally provides the lowest mean response times among the seek-reducing algorithms. Full-
knowledge scheduling algorithms, such as SPCTF, provide the highest levels of performance.
On-board caches and prefetching algorithms should be examined before using SPCTF or
ASPCTF(6), as cache-sensitivity degrades SPTF-based algorithm performance for some on-
board cache configurations. In particular, automatic prefetching on full read hits can cause
excessive actuator motion as well as lower on-board cache hit rates.

Sequential scheduling of read requests improves the performance of disk-based central-
ized schedulers for some workloads (such as the Snake trace). Sequential scheduling of write
requests provides a marginal performance improvement if write prebuffering is enabled. Oth-
erwise, it degrades performance by increasing mean rotational latencies.

Disks with maximum command queue lengths of 128 often provide performance near that
of disks with unbounded command queues. In some cases, a finite command queue length
helps to reduce the starvation of high priority requests.

Disk-based centralized scheduling is a reasonable alternative to traditional host-based
scheduling. For several of the DEC and HP traces and some of SynRGen traces with 4 users
or less, disk-based schedulers outperform host-based schedulers of comparable complexity.
The performance advantage of disk-based scheduling increases with the amount of inter-
request concurrency available at each disk.

6.2 Scheduling with Information From “Above” and
“Below”

This section examines the overall system performance effects of adding system-level
knowledge to disk-based centralized scheduling. When scheduling the disk request traces,
the lack of system-level information prevents the use of algorithms that optimize for system
performance metrics. However, a scheduler can still attempt to prevent the starvation of
high-priority requests by minimizing the request response time variance. For experiments
using the full system traces, the host model passes a simple hi/lo priority flag to the disk
subsystem model along with each request. This allows a disk-based scheduler to give priority
to time-critical and time-limited requests.

6.2.1 Disk Request Traces

Section 6.1.1 shows that the ASPTF(6) and ASPCTF(6) algorithms have mean response
times equivalent (within a few percent) to SPTF and SPCTF, respectively. This section
demonstrates that the age-sensitive SPTF algorithms provide much better starvation resis-
tance, which leads to the conclusion that adding age-sensitivity to disk-based SPTF algo-
rithms is generally advisable. Furthermore, age-sensitive SPTF algorithms usually provide
better starvation resistance than LBN-based algorithms.

Figures 6.19-6.24 present the squared coeflicients of variation corresponding to the mean
response times given in figures 6.1-6.6. As expected, C-LOOK provides the best starvation



124

30
c
5 T
kS
s ! I
>
IS
g """""""""""""" = No Opt
3 =.SSR
D an e —CFr =.SSW.SSR
(@)
@)
o
o
3
>
(o
7
C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Preseek Command Queueing

30
c
5 T
8 25
S |
>
45 20
g """""""""""""""""""""" = No Opt
'S 15 =.SSR
5 o = mim T B i = SSW.SSR
S 104
o
o
S 5-
>
(o
7

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.19: Cello, 1.75X: Sequential Scheduling Algorithm Performance



125

40

30

20 == H ——

10+

Squared Coefficient of Variation

C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(a) Preseek Command Queueing

40

30
""""""""""""""""""""""""""""""" = No Opt
» = .SSR
_ = .SSW.SSR

10

nom |lem rem e | (em | 5e 0o
C-LOOK LOOK SSTFVSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

Squared Coefficient of Variation

(b) Full Command Queueing

Figure 6.20: Snake, 1.25X: Sequential Scheduling Algorithm Performance



40

30

20

10

Squared Coefficient of Variation

40

30

20

10

Squared Coefficient of Variation

126

"""""""""""""""""""""" = No Opt
=.SSR

777777777777777777777777777777777777 = .SSW.SSR

,,,,, HH 1l

10 00 0o (00 0w

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)

Scheduling Algorithm
(a) Preseek Command Queueing

""""""""""""""""""""" = No Opt
=.SSR
= .SSW.SSR

LIS

HHI T N e T T

C-LOOK LOOK

SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.21: Air-Rsv, 2.5X: Sequential Scheduling Algorithm Performance



140

120

100

80

60

40

Squared Coefficient of Variation

140

120

100

Squared Coefficient of Variation
(o]
o

127

’ _W
0

R mem R ol

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Preseek Command Queueing

238 g

g o g B |

S22 =

343G a1 |
C1rm |_||—| T e R == e R e T ==
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)

Scheduling Algorithm

(b) Full Command Queueing

Figure 6.22: Sci-TS, 2.5X: Sequential Scheduling Algorithm Performance



10

Squared Coefficient of Variation

80

60

40

20

Squared Coefficient of Variation

128

= No Opt
———————————————————————————————————— =.SSR
= .SSW.SSR
T T T T T T
""" ZEEE g€
EER EER
3B H 3B &

Il Bl I e 17 (B

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(a) Preseek Command Queueing

Saturated
Saturated
Saturated

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.23: Order, 1.0X: Sequential Scheduling Algorithm Performance



129

10
c
Sl
—
.©
S 8
=
—
o
= 6 = No Opt
S =.SSR
E 4 = .SSW.SSR
O T T O T T O T T O T T O
233 33T 2B DDB
= Sgg ©E88 EEE EEE
@ S55 333 333 3233
T 2T688 888 5§88 888
S
o , ,
C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm
(a) Preseek Command Queueing
10
c
Sl
—
.©
S 8
=
—
o
= 6 = No Opt
S =.SSR
E 4 — = .SSW.SSR
o 4 £33 P
= S8 g S8 T
@ S22 S 33
. 2 22 2 22
G BB D BB D
S
= 40 e , , - ,
3 0w (T

C-LOOK LOOK SSTF VSCAN(0.2) SPTF ASPTF(6) SPCTFASPCTF(6)
Scheduling Algorithm

(b) Full Command Queueing

Figure 6.24: Report, 1.0X: Sequential Scheduling Algorithm Performance



130

resistance for the LBN-based algorithms. The age-sensitive SPTF algorithms have lower
squared coefficients of variation than C-LOOK for the majority of the disk-based scheduler
implementations. For Full command queueing implementations of Air-Rsv and Sei- TS, the
squared coefficients of variation for the age-sensitive SPTF algorithms are less than 50% of
the corresponding values for C-LOOK. In all cases, ASPTF(6) and ASPCTF(6) provide
better starvation resistance than SPTF and ASPCTF, respectively. For the Snake trace,
age-sensitivity decreases the squared coefficient of variation by as much as 76%.

Comparison with Scheduling at the Host

Table 6.3 shows the mean response times and squared coefficients of variation for “rea-
sonable” implementations of host-based and disk-based centralized schedulers using the
ASPCTF(6) algorithm. The mean response times displayed are for configurations that do
not automatically prefetch data on full read hits. The table does not contain ASPTF(6) per-
formance data, since ASPCTF(6) provides superior mean response times for configurations
with prefetching on full read hits disabled.

For the two HP traces, disk-based scheduling only results in lower mean response times
for Full command queueing configurations. For the four DEC traces, disk-based scheduling
is superior for both Preseek and Full command queueing. Table 6.3b shows that disk-based
schedulers for Full command queueing configurations generally have the best (or roughly
equivalent) starvation resistance. For Preseek configurations, four of the six workloads
achieve lower response time variances with host-based scheduling.

6.2.2 Full System Traces

The experiments in this section assume that each request arriving at a disk has already
been marked high or low priority (e.g., by an application or file system at the host). A
disk-based scheduler using a 2Q algorithm then gives precedence to the high priority (time-
critical and time-limited) requests. Common peripheral bus protocols (such as SCSI-2) do
not necessarily provide for passing this type of control information. However, the capability
could easily be incorporated into subsequent versions (or future bus protocols).

For 1-user SynRGen traces, adding 2Q) scheduling reduces mean non-compute times by
less than 1% for FCFS, C-LOOK, SSTF, SPTF, and SPCTF. For 2-user traces, the per-
formance of FCFS improves up to 2.5% and the LBN-based algorithms improve 1-2% for
maximum command queue lengths of 128 or greater. A maximum queue length of 16 pre-
vents some high priority requests from quickly reaching the disk-based scheduler. Doubling
the number of users approximately doubles the performance improvement of 2Q) scheduling.
Mean response times for FCFS drop up to 5% for configurations with maximum command
queue lengths of 128 or greater. Mean response times for LBN-based and SPTF-based al-
gorithms decrease by up to 3%. For SynRGen workloads of up to 4 users, disks with a
maximum command queue length of 128 provide the same level of performance as disks with
unbounded command queues.

Figures 6.25 and 6.26 present performance data for LBN-based 2(Q) scheduling of 8-user
SynRGen traces using Preseek and Full command queueing, respectively. Figures 6.27

and 6.28 present corresponding data for SPTF-based 2Q) scheduling. All of the 2Q) algo-



131

Host-Based Disk-Based
Scale || ASPCTF(6).CW.CR | ASPCTF(6).SSR, CQ = 128
Trace  Factor cQ=1 Preseek Full
Cello 1.75 115.38 118.43 108.66
Snake 1.25 33.92 34.98 25.04
Air-Rsv 25 30.18 23.50 21.13
Sci-T'S 2.5 15.52 14.64 12.79
Order 1.0 20.94 18.09 17.75
Report 1.0 37.66 23.96 23.45

(a) Mean Response Times (ms)

Host-Based Disk-Based
Scale || ASPCTF(6).CW.CR | ASPCTF(6).SSR, CQ = 128
Trace  Factor cQ=1 Preseek Full
Cello 1.75 10.38 12.64 12.71
Snake 1.25 14.12 16.82 2.30
Air-Rsv 25 3.64 3.69 1.22
Sci-T'S 2.5 3.82 6.14 2.25
Order 1.0 2.06 1.12 1.18
Report 1.0 2.93 1.25 1.28

(b) Squared Coefficients of Variation

Table 6.3: Performance Metrics for “Reasonable” Age-Sensitive Centralized Sched-
ulers. Prefetching disabled for full read hits.



132

500
w
£ 400
%)
£
: 300 =CQ =16
g - =CQ =128
3200 = CQ = Infinity
3}
o
g
& 100-
=

FCFS  C-LOOK  SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm
(a) Mean Response Time

500
{773
S
@ 400+ —
£ — e M
|_
£ 300 =CQ=16
3 - =CQ=128
8 200 4 =CQ = Inflnlty
c
(@]
Z
< 100
@
5}
=

FCFS C-LOOK SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.25: SynRGen, 8 Users: 2QQ LBN-Based Scheduling Algorithm Performance

for Disks with Preseek Command Queueing



133

500
I
E 400
Q
£
' 300 =CQ=16
g - =CQ =128
3200 = CQ = Infinity
i
g
& 100+
=
FCFS  C-LOOK  SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm
(a) Mean Response Time
400 —
0 = _
é ] —
(O]
€ 300
=
2 =CQ = 16
£ 200+ =CQ =128
S - =CQ = Infinity
<
(@]
Z 100+
c
3
Q
=

FCFS C-LOOK SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.26: SynRGen, 8 Users: 2QQ LBN-Based Scheduling Algorithm Performance
for Disks with Full Command Queueing



134

400
’J)\ ,,,,,,,,,,,,,,,,,,,
E
© 300
£
s - =CQ=16
g 200- =CQ =128
@ = CQ = Infinity
? ,
o
c 100
S
(]
=
C-LOOK 2Q C-LOOK SPTF SPCTF  2QSPTF 2Q SPCTF
Scheduling Algorithm
(a) Mean Response Time
400 1 —— —
= _ _
2 =
(O]
£ 300
=
g =CQ=16
200 =CQ =128
S - =CQ = Infinity
<
(@]
Z 100
C
@
[}
=

C-LOOK 2Q C-LOOK SPTF SPCTF  2Q SPTF 2Q SPCTF
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.27: SynRGen, 8 Users: 2Q Full-Knowledge Scheduling Algorithm Perfor-

mance for Disks with Preseek Command Queueing



135

400
’J)\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,
E
o 300 - m — ]
£
s - =CQ=16
g 200- =CQ =128
@ = CQ = Infinity
? ,
o
c 100
S
(]
=

C-LOOK 2Q C-LOOK SPTF SPCTF  2QSPTF 2Q SPCTF

Scheduling Algorithm
(a) Mean Response Time
400 —

= _ _
£ =
(O]
£ 300
=
g =CQ=16
£ 200+ =CQ =128
S - =CQ = Infinity
<
(@]
Z 100
C
@
[}
=

C-LOOK 2Q C-LOOK SPTF SPCTF  2Q SPTF 2Q SPCTF
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.28: SynRGen, 8 Users: 2Q Full-Knowledge Scheduling Algorithm Perfor-

mance for Disks with Full Command Queueing



136

rithms show similar performance improvement when the maximum command queue length
is increased. Mean response times rise with the growing starvation of time-noncritical re-
quests, and mean non-compute times decrease with the improvement in service times for
time-critical and time-limited requests.

In contrast to the single-queue schedulers discussed in section 6.1.2, all of the disk-based
2Q schedulers perform best with unbounded command queues. Mean non-compute times
drop 7-9% when the maximum command queue length changes from 128 to infinity. Finite-
length command queues impair a disk-based scheduler’s flexibility during bursts of heavy
activity. Once a disk command queue reaches its maximum length, any subsequent requests
must wait at the host (e.g., in a FCFS device driver queue) until the on-board queue length
drops below the maximum. If high priority requests are blocked at the host, overall system
performance may suffer. For some of the 8-user traces, a disk command queue length of 700 or
more is necessary to prevent queueing of requests at the host.

For all configurations, 2(Q) scheduling with the FCFS, LBN-based, or full-knowledge
algorithms improves performance over the single-queue implementations discussed in sec-
tion 6.1.2.° For a maximum queue length of 128, 2Q scheduling decreases mean non-compute
times by 7-10%.

For 8-user SynRGen traces, SSTF provides the lowest mean non-compute times. C-LOOK
or SPTF-based scheduling results in approximately 1.5% longer mean non-compute times,
with FCFS trailing by an additional 1.5%.

The benefits of 2Q) scheduling are less significant for the Compress workload. Fig-
ures 6.29-6.32 present performance data for LBN-based and full-knowledge 2() scheduling
with Preseek and Full command queueing configurations. Mean response times increase al-
most an order of magnitude as the maximum command queue length reaches infinity. Unlike
SynRGen, the Compress traces gain little benefit from a maximum command queue length
greater than 128. Even with FCFS scheduling, the maximum number of outstanding re-
quests at any point in the Compress traces is only 163 (for the implementations studied).
2Q) scheduling with a maximum command queue length of 128 provides a slight (1-2%) de-
crease in total run times for the compression workload. The run times for both SPTF-based
algorithms are up to 3% faster than FCFS and the LBN-based algorithms. Although the
advantage of SPTF-based algorithms is minimal when scheduling for Compress, they provide
a much higher margin of performance improvement for heavier workloads.

Comparison with Scheduling at the Host

Table 6.4 presents application-specific performance data for “reasonable” host-based and
disk-based centralized 2Q) scheduling of 8-user SynRGen and Compress. For SynRGen, the
host-based schedulers provide the best performance because of the limited command queue
length imposed on the disk-based schedulers. With unbounded command queues, the disk-
based schedulers obtain a marginal performance advantage. The Compress traces are best
served by a disk-based scheduler, since the pending request queues for Compress are usually
short enough to completely fit into the on-board command queues.

5A few of the single-queue simulation runs produce anomalous results, in that a smaller number of “tasks”
are completed before the process-flow model halts. See page 119 in section 6.1.2 for a description of this
phenomenon.



137

600
gsoo
B’ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
_E 400
o 1 o1 (- - =CQ=16
g 300 =CQ =128
o - == CQ = Infinity
& 200
e
a
® 100
= | H |

OO OFm (e |
FCFS  CLOOK  SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm
(a) Mean Response Time

200
o
()]
(2]
~ 1504
w
=
[ ' _
c =CQ =16
2 100 =CQ =128
c == CQ = Infinity
i )
I
L 504
Q.
Q.
<

FCFS C-LOOK SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.29: Compress: 2(Q LBN-Based Scheduling Algorithm Performance for Disks
with Preseek Command Queueing



138

600
gsoo
B’ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
_E 400
o 1 — - =CQ=16
g 300 =CQ =128
o - == CQ = Infinity
& 200
e
a
® 100
= | M

Jmm e oem [T
FCFS  CLOOK  SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm
(a) Mean Response Time

200
o
()]
(2]
~150-
w
=
[ ' _
c =CQ =16
2 1004 =CQ =128
c == CQ = Infinity
i )
I
L 504
Q.
Q.
<

FCFS C-LOOK SSTF 2Q FCFS 2Q C-LOOK 2Q SSTF
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.30: Compress: 2(Q LBN-Based Scheduling Algorithm Performance for Disks
with Full Command Queueing



139

500
= ol
£ 400
Q
g 1 e
' 300 =CQ=16
S e I =CQ =128
& 200 = CQ = Infinity
c
g
g 100

Jomm N oom cpm (0N [T
C-LOOK 2Q C-LOOK SPTF SPCTF  2Q SPTF  2Q SPCTF
Scheduling Algorithm
(a) Mean Response Time

200
o
()]
(2]
~ 150
Q
£ ,
= =CQ=16
2 1004 =CQ =128
c == CQ = Infinity
i) )
IS
L 504
Q.
Q.
<

C-LOOK 2Q C-LOOK SPTF SPCTF  2Q SPTF 2Q SPCTF
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.31: Compress: 2Q Full-Knowledge Scheduling Algorithm Performance for
Disks with Preseek Command Queueing



140

500
= ol
£ 400
Q
e 1 N
' 300 = =CQ=16
S e B | - =CQ=128
& 200 = CQ = Infinity
c
g
© 100
 lomm (1 rom oom (1

0 [] []
C-LOOK 2Q C-LOOK SPTF SPCTF  2Q SPTF  2Q SPCTF
Scheduling Algorithm
(a) Mean Response Time

200
o
()]
(2]
~ 150
Q
£ ,
= =CQ=16
2 1004 =CQ =128
c == CQ = Infinity
i) )
IS
L 504
Q.
Q.
<

C-LOOK 2Q C-LOOK SPTF SPCTF  2Q SPTF 2Q SPCTF
Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 6.32: Compress: 2Q Full-Knowledge Scheduling Algorithm Performance for
Disks with Full Command Queueing



141

Host-Based Disk-Based, CQ = 128
Trace cQ=1 Preseek Full
SSTF.CW.SSR SSTF SSTF.SSR.SSW

8-User 333.56 353.62 352.34
SynRGen || SPCTF.CW.55R SPCTF SPCTF.SSR.SSW

332.05 357.95 356.15
C-LOOK.CW.SSR | C-LOOK C-LOOK.SSR.SSW

Compress 193.94 190.38 188.70
SPCTF.CW.SSR SPCTF SPCTF.SSR.SSW

190.72 185.31 186.82

Table 6.4: Mean Non-Compute Times (ms) or Application Run Times (sec) for “Rea-
sonable” Centralized 2Q) Schedulers

6.2.3 Summary of Conclusions

Adding age-sensitivity to SPTF-based algorithms implemented in disk-based schedulers
improves starvation resistance (i.e., response time variance). By correctly “weighting” ag-
ing information, the improvement in starvation resistance does not significantly degrade
performance. In some cases, age-sensitivity actually improves mean response times by main-
taining the ordering of sequential requests issued in logically ascending order. Disk-based
SPTF schedulers with age-sensitivity usually outperform their host-based counterparts.

For experiments using the full system traces, 2Q) scheduling improves overall system
performance (as measured by application-specific performance metrics). This improvement
results from giving priority to time-critical and time-limited requests. Time-noncritical re-
quests are often starved, resulting in much higher mean request response times.

Finite command queue lengths impair the flexibility of disk-based 2() schedulers. For
heavy workloads, high priority requests may have to wait at the host because of full on-
board command queues. Disk-based 2(Q) schedulers only outperform host-based 2Q) schedulers
when the maximum number of outstanding requests does not greatly exceed the maximum
command queue length.



CHAPTER 7
Distributed Scheduling

Distributed scheduling implies two or more entities along the 1/O path cooperatively
reordering disk requests. This chapter examines distributed scheduler implementations where
host-based schedulers (e.g., in O/S device drivers) cooperate with disk-based schedulers (in
disk controllers). Most of the advantages of host-based and disk-based centralized scheduling
are also found in distributed scheduling. Each component scheduler has easy and immediate
access to local scheduling information. That is, the host-based scheduler has knowledge of
system goals and guarantees, while each disk-based scheduler has accurate disk configuration
and state information. The host-based component can perform scheduling optimizations such
as request concatenation, while each disk-based component can maximize the concurrency
between requests receiving service. Most of the disadvantages of host-based and disk-based
centralized scheduling are obviated by cooperation between the distributed components. For
example, host-based schedulers can take steps to reduce the negative impact of limited disk
command queue lengths (see section 7.2.2).

The only disadvantage of distributed scheduling is the need to modity existing protocols
to allow the necessary levels of cooperation between scheduling components. As with disk-
based centralized scheduling, a small amount of system-level information must be passed
between the host and each disk-based scheduler to expedite high priority requests. If the host
scheduler is to reorder requests based on hardware-specific information, some configuration
and state knowledge must be extracted and transferred to the host as well. However, if the
amount of control information required for cooperation is minimized, only slight protocol
modifications should be necessary.

All distributed scheduling experiments assume that the host-based scheduler has insuf-
ficient computation resources, hardware-specific knowledge, and/or hardware support to
compute positioning times for a set of pending requests. Host-based schedulers in this chap-
ter therefore use single-queue and 2(Q) versions of the C-LOOK.CW.SSR and SSTF.CW.SSR
seek-reducing algorithms. Chapter 5 describes how these two algorithms generally provide
the best performance for LBN-based scheduling at the host. The distributed scheduling
experiments include disk-based schedulers with LBN-based and full-knowledge scheduling
algorithms. Disk-based schedulers with full-knowledge algorithms are assumed to have suf-
ficient resources and hardware information to compute positioning times for finite-length
queues of pending requests. The experiments in this chapter are partitioned based on the
type of information used by the schedulers.

142



143

7.1 Scheduling with Information From “Below”

This section examines the performance of distributed scheduler implementations using
disk-based C-LOOK, SSTF, SPCTF, and ASPCTF(6). Both the host-based and the disk-
based schedulers are therefore attempting to minimize mean response times (and response
time variances, in the case of the age-sensitive SPCTF algorithm).

7.1.1 Disk Request Traces
LBN-based Scheduling at the Disk

The experiments reported below examine the performance effects of sequential schedul-
ing of read and write requests on disk-based SSTF implementations. C-LOOK is unaffected
by the sequential scheduling optimization, since it already schedules requests in logically as-
cending order. Sequential scheduling of read requests at the disk consistently improves SSTF
performance, especially for configurations with large maximum command queue lengths. Se-
quential scheduling of write requests marginally degrades performance for disks with Preseek
command queueing and improves performance for disks with Full command queueing. This
matches the previous observation that sequential scheduling of writes adversely affects the
performance of disks without write prebuffering (see page 51 in section 5.1.2 for a full dis-
cussion of this behavior).

Figures 7.1-7.6 display mean response times for distributed scheduling of the six HP
and DEC workloads. These figures show the improvement (or degradation) caused by
adding sequential scheduling of reads and writes to a disk-based SSTF scheduler. Each
graph shows data for four configurations, comparing maximum command queue lengths
of 16 and 128 for disks with either Preseek or Full command queueing. With a host-based
C-LOOK.CW.SSR scheduler, sequential scheduling of read requests by a disk-based SSTF
scheduler decreases mean response times by up to 24% and 35% for maximum command
queue lengths of 16 and 128, respectively (using the selected trace scaling factors). With
a host-based SSTF.CW.SSR scheduler, the mean response times decrease by up to 30%
and 36%. For experiments using Full command queueing, sequentially scheduling write
requests further decreases mean response times by up to 1.5%.

As the Snake workload is better served by a host-based scheduler that concatenates read
requests (rather than sequentially scheduling them), figure 7.7 provides additional data for
distributed scheduling using host-based C-LOOK.CW.CR and SSTF.CW.CR. The mean
response times for the configurations with a maximum command queue length of 16 drop
approximately 9% when the host-based scheduler concatenates reads instead of sequentially
scheduling them. Configurations with a maximum queue length of 128 gain little benefit from
this change, as the host only concatenates requests when the disk subsystem is extremely
busy (i.e., when more than 129 requests are outstanding for a single disk).

Full-Knowledge Scheduling at the Disk

SPCTF and ASPCTF(6) experience the same general reaction to sequential scheduling
of read and write requests. Figures 7.8-7.14 display mean response times for distributed
implementations using disk-based SPCTF scheduling. They show that sequential scheduling



Mean Response Time (ms)

Mean Response Time (ms)

144

150
Preseek Full

125+

100

" == No Opt
==.SSR
== SSW.SSR

~
al
|

a1
o
|

25+

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(a) Host-Based C-LOOK.CW.SSR

150

125+

100

" == No Opt
=.SSR
== SSW.SSR

~
a1
|

al
o
|

25+

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.1: Cello, 1.75X: Disk-Based SSTF Performance



145

40

Preseek Full
- -
E 30 H
(O]
E 111 Iy . ,
|_
) — NO Opt
g 20 1 ==.SSR
=2 == SSW.SSR
Q, ,,,,, -
04
3
© 10 H
=
cQ=16 cQ=128 cQ=16 cQ=128
Maximum Command Queue Length
(a) Host-Based C-LOOK.CW.SSR
40
Preseek Full
- -
E 30 H
(O]
£ Bl ,
|_
) — NO Opt
g 20 1 H ==.SSR
=2 == SSW.SSR
g )
04
3
© 10 H 1
=

CQ=16

CQ=128 CQ=16 CQ =128

Maximum Command Queue Length

(

b) Host-Based SSTF.CW.SSR

Figure 7.2: Snake, 1.25X: Disk-Based SSTF Performance



146

40

,,,,,, Preseek ~  FRul
w
£ 304 gy —
(O] S
E 011t I e ] ,
l—
[0) — No Opt
g 20+ ’ == SSR
2 == SSW.SSR
Q, ,,,,, -
04
T
S 101 H
=

cQ=16 cQ=128 cQ=16 cQ=128
Maximum Command Queue Length
(a) Host-Based C-LOOK.CW.SSR
40

,,,,,, Preseek ~  FRul
w
E 304 gy —
(O] S
E 011t I e ] — ,
l—
) — No Opt
g 20+ ’ ! == .SSR
2 == SSW.SSR
Q, ,,,,, -
04
T
S 101 H i
=

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.3: Air-Rsv, 2.5X: Disk-Based SSTF Performance



147

40

w
o

Mean Response Time (ms)
3
|

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length
(a) Host-Based C-LOOK.CW.SSR
40

Preseek Full

w
o
|

Mean Response Time (ms)
3
|

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.4: Sci-TS, 2.5X: Disk-Based SSTF Performance



148

50
o Preseek | Ful
® 40
E - —
o 1o
£ ] _
= 304
(]
(2] —
7 O L B P
o
@ 204 I
(O]
o
< e
®
2 104 i
cQ=16 cQ=128 cQ=16 cQ=128
Maximum Command Queue Length
(a) Host-Based C-LOOK.CW.SSR

50
o Preseek | Ful
® 40
E - -
(O] e T I R I
£
= 304
(]
(2] —
2 O e e
o
@ 204 I
(O]
o
< e
©
2 104 i

0

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.5: Order 1.0X: Disk-Based SSTF Performance



149

60

Preseek Full

Mean Response Time (ms)

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(a) Host-Based C-LOOK.CW.SSR

60

Preseek Full

Mean Response Time (ms)

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.6: Report, 1.0X: Disk-Based SSTF Performance



150

40

Preseek Full
m
E30 H
(O]
E =m0 ,
|_ —_—
1) — No Opt
g 20 1 ==.SSR
2 == SSW.SSR
Q’ ,,,,, -
o
3
© 10+ H
=
CcCQ=16 cQ=128 cQ=16 cQ=128
Maximum Command Queue Length
(a) Host-Based C-LOOK.CW.CR
40
Preseek Full
m
E 30 1
(O]
£ ,
|_
1) — No Opt
g 20 1 ==.SSR
2 == SSW.SSR
q) -
o
3
© 10+ H
=

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.CR

Figure 7.7: Snake, 1.25X: Disk-Based SSTF Performance



Mean Response Time (ms)

Mean Response Time (ms)

151

140

Preseek Full

120

100

o]
o
|

= No Opt
- ==.SSR
== SSW.SSR

(o2}
o
|

IN
S
|

N
o
|

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(a) Host-Based C-LOOK.CW.SSR

140
Preseek Full

120

100

o]
o
|

= No Opt
- ==.SSR
== SSW.SSR

(o2}
o
|

IN
S
|

N
o
|

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.8: Cello, 1.75X: Disk-Based SPCTF Performance



152

40

Preseek Full
/&)\ — ——
E 30 H
(O]
£ ,
|_
) — NO Opt
g == .SSR
=2 == SSW.SSR
g )
xx
c
©
(]
=

cQ=16 cQ=128 cQ=16 cQ=128
Maximum Command Queue Length
(a) Host-Based C-LOOK.CW.SSR
40

Preseek Full
& -
E 30 H
(O]
£ ,
|_
) — NO Opt
g == .SSR
=2 == SSW.SSR
g )
xx
c
©
(]
=

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.9: Snake, 1.25X: Disk-Based SPCTF Performance



Mean Response Time (ms)

30

Mean Response Time (ms)

153

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(a) Host-Based C-LOOK.CW.SSR

Preseek Full

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

" =—=No Opt

=.SSR

. == .SSW.SSR

" =—=No Opt

=.SSR

. == .SSW.SSR

Figure 7.10: Aur-Rsv, 2.5X: Disk-Based SPCTF Performance



154

25
B 20 Preseek Full

E —

o | m—e ™

E

— -

[0} 15 - == No Opt

SRR RN . - =.SSR
210 ==.SSW.SSR
)

o

RN SN

©

%

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(a) Host-Based C-LOOK.CW.SSR

25
B 20 Preseek Full
E —
Q
E
— -
[0) 1 — No Opt
£ - == SSR
210 ==.SSW.SSR
)
o
c
©
%
0

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.11: Sci-TS, 2.5X: Disk-Based SPCTF Performance



155

25
,,,,,, Preseek =~ . _Ful
w20 —
3 -
o 411 It e
£
|_ ..
) 1 — No Opt
SRR RN . - =.SSR
2 ==.SSW.SSR
(0]
o
= e
@
S 54
CcCQ=16 cQ=128 cQ=16 cQ=128
Maximum Command Queue Length
(a) Host-Based C-LOOK.CW.SSR
25
,,,,,, Preseek =~ _Ful

0 20 —
£ o
(O]
£
|_ .. L
[0) e — No Opt
g == .SSR
2 | ==.SSW.SSR
(0]
o
c
@
2 5] |

0

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.12: Order, 1.0X: Disk-Based SPCTF Performance



156

40

Preseek Full

w
o
|

=— No Opt
==.SSR
== SSW.SSR

Mean Response Time (ms)
N
o

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(a) Host-Based C-LOOK.CW.SSR

40

w
o
|

=— No Opt
==.SSR
== SSW.SSR

Mean Response Time (ms)
N
o

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.SSR

Figure 7.13: Report, 1.0X: Disk-Based SPCTF Performance



157

40
Preseek Full

& -
E 30 H

(O]

=S R I 1 ,

|_

° . — No Opt
g 20 g ==.SSR
2 == SSW.SSR
Q’ ,,,,, -

(4

3

© 10+ H

=

CQ=16 cQ=128 CcQ=16 cQ=128
Maximum Command Queue Length
(a) Host-Based C-LOOK.CW.CR
40
Preseek Full

& -

E 30 1

(O]

£ ,

|_

) — No Opt
g 20 ==.SSR
2 == SSW.SSR
Q’ -

(4

3

© 10+

=

CQ=16 CQ=128 CcQ=16 cQ=128
Maximum Command Queue Length

(b) Host-Based SSTF.CW.CR

Figure 7.14: Snake, 1.25X: Disk-Based SPCTF Performance



158

of read requests with a disk-based SPTF scheduler impacts mean response times by 1% or
less. Sequential scheduling of write requests degrades performance by up to 2.4% for disks
with Preseek command queueing. Disks with Full command queueing experience less than
a 1% change in performance with sequential scheduling of writes. Figures 7.9 and 7.14 show
a 10% decrease in mean response times for Snake configurations with a maximum command
queue length of 16 when the host-based scheduler changes from sequential scheduling of read
requests to concatenation of sequential reads.

For both LBN-based and full-knowledge scheduling, it is beneficial to sequentially sched-
ule read requests at the disk for distributed scheduling of the disk request traces. Further-
more, sequential scheduling of write requests sometimes provides a performance improvement
when usings disks with Full command queueing. Therefore, all remaining experiments in this
chapter using the HP and DEC traces study disk-based scheduling algorithms with sequen-
tial scheduling of reads. All experiments modeling disks with Full command queueing use
sequential scheduling of writes as well.

Maximum Command Queue Length

Figures 7.15-7.20 show mean response times for distributed scheduler implementations
with maximum command queue lengths of 4, 16, and 128. More often than not, a maximum
command queue length of 16 results in mean response times that are better or roughly equiv-
alent to those for configurations with maximum queue lengths of 4 or 128. Most exceptions
to this generalization are in three areas. First, a maximum command queue length of 4 pro-
vides 3-6% lower mean response times for scheduling Cello with Full command queueing (as
compared to a maximum length of 16). Second, for Sei-T'S and Order, a maximum command
queue length of 128 provides up to 5.6% lower mean response times for some configurations
of disk-based C-LOOK scheduling. Third and most important, a maximum command queue
length of 16 is ill-advised for distributed scheduling of the Report workload using LBN-based
scheduling on disks with Preseek command queueing. Maximum command queue lengths of
either 4 or 128 provide much better performance for these configurations.

As Snake benefits more from concatenation of sequential read requests than from sequen-
tial scheduling of reads, figure 7.21 shows performance data for distributed implementations
using C-LOOK.CW.CR and SSTF.CW.CR at the host. Compared with figure 7.16, the
mean response times for configurations with maximum command queue lengths of 4 drop
by approximately 30%. As a result, the mean response times for these configurations now
outperform those using maximum queue lengths of 16 and 128. Thus, both Cello and Snake
are best served by distributed scheduler implementations that allow the host-based scheduler
to concatenate as many requests as possible, while allowing a small amount of inter-request
concurrency at each disk. The data in table 6.1 supports this observation; section 6.1.1
shows that LBN-based scheduling at the host always outperforms LBN-based scheduling at
the disk for Cello and Snake.

Comparison of Distributed Scheduling Algorithms

Across all six workloads, the difference in performance due to switching between C-LOOK
and SSTF host-based schedulers decreases with the maximum command queue length. For a



159

160

=

a

o
|

[EY

N

o
|

100—-

=CQ=16
=CQ = 128

o2}
o
' | '

Mean Response Time (ms)
N o]
o o

N
o
| '

o

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(a) Preseek Command Queueing

100—-

=CQ=16
=CQ =128

o2}
o
' | '

Mean Response Time (ms)
S o]
o o

N
o o
' | '

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.15: Cello, 1.75X: Distributed Scheduling Algorithm Performance



160

0
4 C-LOOK.CW.SSR (Host) SSTF.CW.SSR
’(-n\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
B -
q) 30_
£
' =CQ =4
g 20- =CQ=16
2 =CQ =128
@
x
c 10
G
[<B)
=
C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Preseek Command Queueing
0
4 C-LOOK.CW.SSR (Host) SSTF.CW.SSR
’(-n\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
E I - _ _ - - _ _
q) 30 11
£ _ _ _ _
' b M =cqQ=4
g 20+ =CQ=16
= =CQ =128
@
x
c 10
G
[<B)
=

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.16: Snake, 1.25X: Distributed Scheduling Algorithm Performance



161

40
-~ | ~ CLOOKCW.SSR (Host)  SSTEF.CW.SSR
é - —
q) 30 T — — — —
= - -
" u [ =co=4
g 201 =CQ=16
2 =CQ =128
m
@
c 104
@
a)
=

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Preseek Command Queueing

40
-~ | ~ CLOOKCW.SSR (Host)  SSTEF.CW.SSR
E
o 30
£ e o B —
'0_) T A . =CcQ=4
g 20+ ] " =CcQ =16
= =CQ =128
m
@
c 104
@
3
=

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.17: Air-Rsv, 2.5X: Distributed Scheduling Algorithm Performance



162

[y
o
|

30
"g% ~ C-LOOK.CW.SSR (Host) = SSTF.CW.SSR
; —
_E 20
Q =CQ=4
£ 154 =CQ =16
2 =CQ =128
[¢)
o
c
(48]
[<B)
=

[6)]
|

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(a) Preseek Command Queueing

[y
o
|
|

30
gzs ~ C-LOOK.CW.SSR (Host)  SSTF.CW.SSR

= L

_E 20 _

() T~ = - =4

2 151 — . =16
5 i =128
()]

o

[

&

()

=

al
]
I

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.18: Sci-TS, 2.5X: Distributed Scheduling Algorithm Performance



163

IN
o

C-LOOK.CW.SSR  (Host)

w
o

SSTF.CW.SSR

Mean Response Time (ms)
= 3
T T
|

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(a) Preseek Command Queueing

IN
o

C-LOOK.CW.SSR  (Host)

w
o

SSTF.CW.SSR

Mean Response Time (ms)
= 3
T T

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.19: Order, 1.0X: Distributed Scheduling Algorithm Performance



164

80
€ |  CLOOK.CW.SSR (Host)  SSTF.CW.SSR
o 60
£ _ ]
A i T =CQ =4
g 404 — - ] =CQ =16
2 M = =CQ =128
]
o
c 20
3
[<B)
=

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Preseek Command Queueing
80

C-LOOK.CW.SSR  (Host) SSTF.CW.SSR

(o]
o

Mean Response Time (ms)
3 5
T

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.20: Report, 1.0X: Distributed Scheduling Algorithm Performance



165

IN
o

C-LOOK.CW.CR (Host) SSTF.CW.CR

30
=CQ=4
=CQ =16
=CQ =128

Mean Response Time (ms)
= N
o o

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(a) Preseek Command Queueing

IN
o

C-LOOK.CW.CR (Host) SSTF.CW.CR

w
o

Mean Response Time (ms)
= N
o o

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.21: Snake, 1.25X: Distributed Scheduling Algorithm Performance



166

maximum queue length of 16, the change in mean response time rarely exceeds 1% for work-
loads other than Cello. The most noticeable exception is the 6% performance advantage of
host-based C-LOOK over host-based SSTF when scheduling Report using disks with Preseek
command queueing. For a maximum queue length of 128, the choice of host-based scheduler
affects mean response times by 1% or less. In terms of individual workloads, Cello is the
most sensitive to the host-based scheduling algorithm. For most configurations, a dual SSTF
scheduler implementation provides the lowest (or equivalent) mean response times among
the LBN-based algorithms when scheduling the Cello trace.

The choice between C-LOOK and SSTF for disk-based scheduling is workload dependent.
C-LOOK generally provides lower mean response times for Sci-T'S and Order, whereas SSTF
generally provides lower mean response times for Cello and Air-Rsv. SSTF also outperforms
C-LOOK for Snake and Report when using Preseek command queueing. This behavior devi-
ates from that of centralized scheduling, where C-LOOK outperforms SSTF for all workloads
except Cello. Since the sequential stream optimizations improve SSTF more than C-LOOK,
it is not surprising that the two algorithms perform equally with two levels of sequential
stream optimizations in place. That is, with SSTF servicing sequential requests in a manner
similar to that of C-LOOK, the shorter mean seek times incurred by SSTF frequently result
in superior mean response times.

For distributed scheduling of the disk request traces, SPTF-based algorithms outperform
LBN-based algorithms at the disk. As was true for centralized scheduling, adding age-
sensitivity to SPCTF improves or degrades performance depending on the workload. How-
ever, the absolute change in mean response time is rarely greater than 1-2%. Section 7.2.1
compares the starvation resistance of the various distributed scheduler implementations (as
measured by the squared coefficients of response time variation).

Comparison with Centralized Scheduling

Table 7.1 shows performance data for the “best” LBN-based centralized and distributed
scheduler implementations from the experiments covered by this dissertation. For configu-
rations with Preseek command queueing, distributed scheduling has up to 3% higher per-
formance for all six HP and DEC traces. When Full command queueing is enabled, the
distributed and centralized implementations provide roughly equivalent performance for all
workloads except Cello, where the host-based centralized scheduler has a 5% lower mean
response time. Therefore, the choice of a centralized versus a distributed implementation is
not crucial to achieving good LBN-based scheduler performance.

Table 7.2 shows performance data for the “best” centralized and distributed scheduler
implementations using the SPCTF full-knowledge scheduling algorithm. For Preseek and
Full command queueing configurations, distributed scheduling provides equivalent or supe-
rior mean response times for all six disk request traces. For the Snake trace, distributed
schedulers produce 14-18% lower mean response times. For configurations with Preseek
command queueing, distributed scheduling of the HP traces also has a significant complex-
ity advantage. The best centralized location for these traces is the host, and host-based
SPCTF scheduling requires a significant effort; all disk-specific information related to data
layout, mechanical and overhead delays, cache contents, and current rotational position must
be extracted and transferred to the host-based scheduler. With distributed scheduling, the



167

Trace Host Sched  Disk Sched Mean Resp
Scale (all .CW) (all .SSR) CQ Time (ms)
Cello | Central SSTF.SSR 2 133.19
1.75 Distrib SSTF.SSR SSTF 16 130.16
Snake | Central C-LOOK.CR 2 23.75
1.25 Distrib  C-LOOK.CR  C-LOOK 4 23.68
Air-Rsv | Central C-LOOK 128 29.52
2.5 Distrib  C-LOOK.SSR SSTF 16 28.84
Sci-TS | Central C-LOOK.CR 2 20.63
2.5 Distrib  C-LOOK.SSR SSTF 16 20.21
Order | Central C-LOOK 128 23.26
1.0 Distrib SSTF.SSR C-LOOK 128 23.25
Report | Central C-LOOK.CR 2 40.51
1.0 Distrib SSTF.SSR SSTF 128 39.33

(a) Preseek Command Queueing

Trace Host Sched Disk Sched Mean Resp
Scale (all .CW) (all .SSW.SSR) C Time (ms)
Cello | Central SSTF.SSR 2 101.96
1.75 Distrib  C-LOOK.SSR C-LOOK 4 107.62
Snake | Central C-LOOK.CR 2 22.68
1.25 Distrib  C-LOOK.CR C-LOOK 4 22.36
Air-Rsv | Central SSTF 128 25.76
2.5 Distrib  C-LOOK.SSR SSTF 16 25.63
Sci-TS | Central C-LOOK 128 16.79
2.5 Distrib SSTF.SSR C-LOOK 128 16.76
Order | Central C-LOOK 128 21.63
1.0 Distrib  C-LOOK.SSR C-LOOK 128 21.63
Report | Central C-LOOK 128 33.35
1.0 Distrib  C-LOOK.SSR C-LOOK 128 33.35

(b) Full Command Queueing

Table 7.1: Mean Response Times for “Reasonable” LBN-Based Schedulers



168

Trace Host Sched Disk Sched Mean Resp
Scale (all .CW) CQ Time (ms)
Cello | Central SPCTF.CR 1 116.72
1.75 Distrib  C-LOOK.SSR SPCTF.SSR 16 114.13
Snake | Central SPCTF.CR 1 26.94
1.25 Distrib  C-LOOK.CR SPCTF.SSR 4 22.75
Air-Rsv | Central SPCTF 128 24.52
2.5 Distrib SSTF.SSR SPCTF.SSR 16 23.99
Sci-TS | Central SPCTF 128 18.79
2.5 Distrib SSTF.SSR SPCTF.SSR 16 17.40
Order | Central SPCTF 128 20.11
1.0 Distrib  C-LOOK.SSR  SPCTF.SSR 128 20.15
Report | Central SPCTF 128 30.16
1.0 Distrib  C-LOOK.SSR  SPCTF.SSR 128 30.14
(a) Preseek Command Queueing
Trace Host Sched Disk Sched Mean Resp
Scale (all .CW) CQ Time (ms)
Cello | Central SPCTF 128 109.45
1.75 Distrib SSTF.SSR SPCTF.SSW.SSR 4 105.48
Snake | Central SPCTF 128 25.11
1.25 Distrib SSTF.CR SPCTF.SSW.SSR 4 21.62
Air-Rsv | Central SPCTF 128 21.30
2.5 Distrib SSTF.SSR SPCTF.SSW.SSR 16 21.35
Sci-TS | Central SPCTF 128 13.49
2.5 Distrib C-LOOK.SSR SPCTF.SSW.SSR 128 13.45
Order | Central SPCTF 128 18.35
1.0 Distrib  C-LOOK.CW.SSR SPCTF.SSW.SSR 128 18.40
Report | Central SPCTF 128 24.51
1.0 Distrib  C-LOOK.CW.SSR SPCTF.SSW.SSR 128 24.50

(b) Full Command Queueing

Table 7.2: Mean Response Times for “Reasonable” SPCTF Schedulers




169

full-knowledge scheduler resides at the disk (with full access to the necessary configuration
and state information).

7.1.2 Full System Traces

For light workloads, distributed scheduler implementations provide the same performance
as disk-based centralized schedulers, since all pending requests typically fit within the on-
board command queues. As the workload intensity increases, on-board queues occasionally
reach their maximum lengths and the host-based schedulers begin to take an active role in
ordering requests.

Figures 7.22 and 7.23 present mean response times and mean non-compute times for
the 8-user SynRGen traces. The performance impact of the maximum command queue
length varies from implementation to implementation, but the lowest mean non-compute
times result when the disk-based scheduler uses an SSTF algorithm for scheduling short
(i.e., 4 request) command queues. For disks with Preseek command queueing, a host-based
C-LOOK scheduler has a marginal performance advantage. When Full command queueing
is enabled, it has a marginal disadvantage.

Figures 7.24 and 7.25 show mean response times and application run times for the Com-
press workload. For configurations with Preseek command queueing, the maximum command
queue length affects system-level performance by less than 1%. The lowest run times occur
with a maximum command queue length of 16 and a disk-based scheduler using one of the
cache-sensitive SPTF algorithms.

Comparison with Centralized Scheduling

Tables 7.3 and 7.4 allow comparison between the “best” centralized and distributed
schedulers. The limited command queue lengths imposed on the disk-based schedulers make
host-based centralized scheduling the best choice for scheduler implementations without
system-level knowledge. Host-based schedulers produce up to 2% better performance over
disk-based schedulers or distributed schedulers for the SynRGen and Compress workloads.

7.1.3 Summary of Conclusions

Distributed scheduler implementations gain the same performance benefits from sequen-
tial stream optimizations as their centralized counterparts. For implementations with max-
imum disk command queue lengths of 16 or higher, mean response times are generally
unaffected by the choice between C-LOOK and SSTF host-based scheduling algorithms.
The optimal disk-based scheduling algorithm is workload dependent, but distributed SSTF
schedulers are more closely matched with distributed C-LOOK schedulers than is the case
for centralized scheduling. Full-knowledge distributed scheduler implementations provide
the lowest mean response times (when the on-board data caches have prefetching on read
hits disabled).

For most configurations, a maximum command queue length of 16 provides the lowest
mean response times. This lends additional support to the claim that distributed scheduling
provides better overall performance. If this were not the case, most configurations would



170

(Host)
0 _
E
[¢]
£
' =CQ =4
g =CQ =16
= =CQ =128
[¢)
24
c
]
[¢B)
=
C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Mean Response Time
500
m C-LOOK.CW.SSR  (Host) SSTF.CW.SSR
@ | FeeEReesw RS esinesR
"D 400
£
l_
£ 300 =CQ=4
£ =CQ=16
S 2004 =CQ =128
<
o
p
— 100-
]
[¢)
=

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 7.22: SynRGen, 8 Users: Distributed Scheduling Algorithm Performance for
Disks with Preseek Command Queueing



171

(Host)
0
£ —
[¢]
£
' =CQ =4
g =CQ =16
= =CQ =128
[¢)
24
c
]
[¢B)
=
C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Mean Response Time
500
m C-LOOK.CW.SSR  (Host) SSTF.CW.SSR
@ | FeeEReesw RS esinesR
"D 400
£
l_
£ 300 =CQ=4
£ =CQ=16
S 2004 =CQ =128
<
o
p
— 100-
]
[¢)
=

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 7.23: SynRGen, 8 Users: Distributed Scheduling Algorithm Performance for
Disks with Full Command Queueing



172

60
- C-LOOK.CW.SSR  (Host) ~ SSTF.CW.SSR
g5o
> _
_E 40
Q =CQ=4
g 30- =CQ=16
= =CQ =128
& 20 -
c
G
D 10
=
C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Mean Response Time
250
- C-LOOK.CW.SSR  (Host) ~ SSTF.CW.SSR
)
8 200 -
[¢]
=
 150- _
- =CQ=4
& =CQ=16
< 100 =CQ =128
§e]
IS
Q
2 50
o
<

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Application Run Time

Figure 7.24: Compress: Distributed Scheduling Algorithm Performance for Disks with
Preseek Command Queueing



173

60
- C-LOOK.CW.SSR  (Host) ~ SSTF.CW.SSR
g5o
[¢)
_E 40
Q =CQ=4
g 30- =CQ=16
= =CQ =128
& 20 -
c
G
D 10
=
C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Mean Response Time
250
- C-LOOK.CW.SSR  (Host) ~ SSTF.CW.SSR
)
8 200
[¢]
=
 150- _
- =CQ=4
& =CQ=16
< 100 =CQ =128
§e]
IS
Q
2 50
o
<

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Application Run Time

Figure 7.25: Compress: Distributed Scheduling Algorithm Performance for Disks with
Full Command Queueing



174

Host Sched Disk Sched Metric
Trace (all .CW.SSR) CQ Value
8-User Central C-LOOK 4 374.07
SynRGen | Distrib C-LOOK SSTF 4 378.06
Compress Central C-LOOK 2 191.82
Distrib C-LOOK C-LOOK 4 194.21
(a) Preseek Command Queueing
Host Sched Disk Sched Metric
Trace (all .CW.SSR) (all .SSW.SSR) CQ Value
8-User Central C-LOOK 4 370.71
SynRGen | Distrib C-LOOK SSTF 4 371.09
Compress Central C-LOOK 2 190.05
Distrib C-LOOK C-LOOK 128 190.95

(b) Full Command Queueing

Table 7.3: Mean Non-Compute Times (ms) or Application Run Times (sec) for “Rea-
sonable” LBN-Based Schedulers



175

Host Sched Disk Sched Metric
Trace (all .CW.SSR) CQ Value
8-User Central SPCTF 1 377.74
SynRGen | Distrib SSTF SPCTF 16 384.20
Compress Central SPCTF 1 191.86
Distrib SSTF SPCTF 4 193.15
(a) Preseek Command Queueing
Host Sched Disk Sched Metric
Trace (all .CW.SSR) (all .SSW.SSR) CQ Value
8-User Central SPCTF 1 377.74
SynRGen | Distrib C-LOOK SPCTF 4 381.78
Compress Central SPCTF 128 190.90
Distrib C-LOOK SPCTF 16 190.64

(b) Full Command Queueing

Table 7.4: Mean Non-Compute Times (ms) or Application Run Times (sec) for “Rea-
sonable” SPCTF Schedulers



176

perform best with very long (i.e., centralized scheduling at the disk) or very short (i.e., cen-
tralized scheduling at the host) maximum disk command queue lengths. When the “best”
centralized and distributed schedulers are compared, distributed scheduling provides equiva-
lent or superior mean response times for most of the experiments using the HP and DEC disk
request traces. The full system traces, however, are better served by centralized schedulers.
This is due to the limited command queue length imposed on each disk component of the
distributed scheduler implementations.

7.2 Scheduling with Information From *“Above” and
“Below”

7.2.1 Disk Request Traces

Section 7.1.1 shows that the ASPTF(6) and ASPCTF(6) algorithms have mean response
times equivalent (within a few percent) to those of the SPTF and SPCTF algorithms, re-
spectively. Figures 7.26-7.31 show that the age-sensitive SPTF algorithms also provide
equivalent or superior starvation resistance (as measured by squared coefficients of varia-
tion). Adding age-sensitivity to SPTF algorithms in distributed scheduler implementations
is therefore generally advisable. Furthermore, the age-sensitive SPTF algorithms usually
provide better starvation resistance than the LBN-based algorithms for all workloads except

Cello.

Comparison with Scheduling at the Host

Table 7.5 shows the mean response times for “reasonable” centralized and distributed
scheduler implementations using the ASPCTF(6) algorithm. Automatic prefetching on full
read hits was disabled for these simulations, as this type of prefetching degrades performance
when scheduling the DEC traces. The centralized scheduler listed for each trace configura-
tion represents the host-based or disk-based implementation that produces the lowest mean
response time. Similarly, the chosen distributed schedulers provide the lowest mean re-
sponse times among the distributed implementations studied. For all six traces, the “best”
distributed scheduler provides an equivalent or superior mean response time to the “best”
centralized scheduler. For the Snake trace, distributed scheduling drops mean response times
by 32% and 13% for Preseek and Full command queueing configurations, respectively.

Table 7.6 shows the squared coefficients of variation for the same centralized and dis-
tributed scheduler implementations. With one exception, distributed scheduling provides
equivalent or superior starvation resistance to centralized scheduling. When scheduling the
Cello trace for disks with Preseek command queueing, a host-based ASPCTF(6) implemen-
tation has a 13% lower squared coefficient of variation.

7.2.2 Full System Traces

This section examines the performance of distributed scheduler implementations using
2Q algorithms. For convenience, the host-based and disk-based centralized schedulers use



177

20

. C-LOOK.CW.SSR  (Host) = SSTF.CW.SSR

10

Squared Coefficient of Variation

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(a) Preseek Command Queueing

20

. C-LOOK.CW.SSR  (Host)  SSTF.CW.SSR

10

Squared Coefficient of Variation

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.26: Cello, 1.75X: Distributed Scheduling Algorithm Performance



178

20
C-LOOK.CW.CR  (Host) SSTF.CW.CR

15

10

Squared Coefficient of Variation
6]
] | |
I ‘ ‘
[ —
— ] ]
I ‘ ‘
T
— I I
I ‘ ‘
I
— ] ]
[
— ] ]
1 ‘ ‘
I
—] ] ]
1 ‘ ‘
I
=
] i
:* |
I 00D
000
ey oye]
I 1 n

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(a) Preseek Command Queueing

C-LOOK.CW.CR  (Host) SSTF.CW.CR

Squared Coefficient of Variation

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.27: Snake, 1.25X: Distributed Scheduling Algorithm Performance



179

10
c
je
s
G
>
©
5 Ta
o =16
= =128
o
@)
S
o
G
>
o
)

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Preseek Command Queueing

10
5
= - C-LOOK.CW.SSR (Host)  SSTF.CW.SSR
S 8
>
©
g ° 1
- R IR = 16
=, =128
o
o o
D
g ° ]
>
2 , , , o
Al Tl

0

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.28: Air-Rsv, 2.5X: Distributed Scheduling Algorithm Performance



180

30
c
-% . - C-LOOK.CW.SSR (Host)  SSTF.CW.SSR
3
>
%5 20
5 Ca
G 15 =16
= =128
S 10
o
o
S 5-
>
(o
%)

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Preseek Command Queueing

20
c
je
=
7 1 C-LOOK.CW.SSR  (Host)  SSTF.CW.SSR
>
s !\ m ™
g ] =CQ=4
S =CQ=16
5 = =CQ =128
S o | 1/ I
@)
et _
o
c
(o
5 0 ([ LU

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.29: Sci-TS, 2.5X: Distributed Scheduling Algorithm Performance



181

8
c
5
% C-LOOK.CW.SSR  (Host) SSTF.CW.SSR
= 6
s ! =
= =CQ =
31(]:) — =CQ =
S e O ([
O _
=
o
©
o3

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Preseek Command Queueing

8
c
5
% C-LOOK.CW.SSR  (Host) SSTF.CW.SSR
= 6
>
= =CQ =
8 a =COQ =
5 =CQ =
S | |
@)
82 ]
©
o3
3,0 L (1w (o NN (0

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.30: Order, 1.0X: Distributed Scheduling Algorithm Performance



182

Squared Coefficient of Variation

12
- C-LOOK.CW.SSR  (Host) ~ SSTF.CW.SSR
10 —
. _
rrrrrr P T =4
6 =16
rrrrrrrrrrrrrrrrrr = 128
Al
il Ll
0 L]
C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm
(a) Preseek Command Queueing
6
¢|  CLOOK.CW.SSR (Host) SSTF.CW.SSR
4 —
,,,,,,,,,,, =4
3 =16
,,,,,, M =128
2
14

Squared Coefficient of Variation

C-LOOK SSTF SPCTFASPCTF(6) C-LOOK SSTF SPCTFASPCTF(6)
Disk-Based Scheduling Algorithm

(b) Full Command Queueing

Figure 7.31: Report, 1.0X: Distributed Scheduling Algorithm Performance



183

Trace Host Sched Disk Sched Mean Resp
Scale (all .CW) (all .SSR) CQ Time (ms)
Cello | Central ASPCTF(6).CR 1 115.38
1.75 Distrib  C-LOOK.SSR SPCTF.SSR 16 113.83
Snake | Central ASPCTF(6).CR 1 33.92
1.25 Distrib C-LOOK.CR SPCTF.SSR 4 22.95
Air-Rsv | Central ASPCTF(6) 128 23.50
2.5 Distrib SSTF.SSR SPCTF.SSR 16 22.85
Sci-TS | Central ASPCTF(6) 128 14.64
2.5 Distrib SSTF.SSR SPCTF.SSR 16 13.91
Order | Central ASPCTF(6) 128 18.09
1.0 Distrib SSTF.SSR SPCTF.SSR 128 18.09
Report | Central ASPCTF(6) 128 23.96
1.0 Distrib ~ C-LOOK.SSR SPCTF.SSR 128 23.96

(a) Preseek Command Queueing

Trace Host Sched Disk Sched Mean Resp
Scale (all .CW) (all .SSR) CQ Time (ms)
Cello | Central ASPCTF(6) 128 108.66
1.75 Distrib SSTF.SSR SPCTF.SSW.SSR 4 102.73
Snake | Central ASPCTF(6) 128 25.04
1.25 Distrib SSTF.CR SPCTF.SSW.SSR 4 21.87
Air-Rsv | Central ASPCTF(6) 128 21.13
2.5 Distrib C-LOOK.SSR SPCTF.SSW.SSR 128 21.11
Sci-TS | Central ASPCTF(6) 128 12.79
2.5 Distrib C-LOOK.SSR SPCTF.SSW.SSR 128 12.77
Order | Central ASPCTF(6) 128 17.75
1.0 Distrib  C-LOOK.CW.SSR SPCTF.SSW.SSR 128 17.75
Report | Central ASPCTF(6) 128 23.45
1.0 Distrib  C-LOOK.CW.SSR  SPCTF.SSW.SSR 128 23.45

(b) Full Command Queueing

Table 7.5: Mean Response Times for “Reasonable” ASPCTF(6) Schedulers. Prefetch-
ing disabled for full read hits.



184

Trace Host Sched Disk Sched Sqr Coeft
Scale (all .CW) (all .SSR) CQ  of Var
Cello | Central ASPCTF(6).CR 1 10.38
1.75 Distrib C-LOOK.SSR  SPCTF.SSR 16 11.96
Snake | Central ASPCTF(6).CR 1 14.12
1.25 Distrib C-LOOK.CR SPCTFE.SSR 4 1.74
Air-Rsv | Central ASPCTF(6) 128 3.69
2.5 Distrib SSTF.SSR SPCTE.SSR 16 1.59
Sci-TS | Central ASPCTF(6) 128 6.14
2.5 Distrib SSTF.SSR SPCTFE.SSR 16 2.79
Order | Central ASPCTF(6) 128 1.12
1.0 Distrib  C-LOOK.SSR  SPCTF.SSR 128 1.12
Report | Central ASPCTF(6) 128 1.25
1.0 Distrib C-LOOK.SSR  SPCTF.SSR 128 1.25

(a) Preseek Command Queueing

Trace Host Sched Disk Sched Sqr Coeff
Scale (all .CW) (all .SSR) CcQ of Var
Cello | Central ASPCTF(6) 128 12.71
1.75 Distrib SSTF.SSR SPCTF.SSW.SSR 4 11.89
Snake | Central ASPCTF(6) 128 2.30
1.25 Distrib SSTF.CR SPCTF.SSW.SSR 4 1.68
Air-Rsv | Central ASPCTF(6) 128 1.22
2.5 Distrib SSTF.SSR SPCTEF.SSW.SSR 16 1.23
Sci-TS | Central ASPCTF(6) 128 2.25
2.5 Distrib C-LOOK.SSR SPCTF.SSW.SSR 128 2.24
Order | Central ASPCTF(6) 128 1.18
1.0 Distrib  C-LOOK.CW.SSR SPCTF.SSW.SSR 128 1.18
Report | Central ASPCTF(6) 128 1.28
1.0 Distrib  C-LOOK.CW.SSR SPCTF.SSW.SSR 128 1.28

(b) Full Command Queueing

Table 7.6: Squared Coefficients of Variation for “Reasonable” ASPCTF(6) Schedulers.
Prefetching disabled for full read hits.



185

the same 2() algorithm, although the sequential stream optimizations differ. The host-based
schedulers use concatenation of writes and sequential scheduling of reads. The disk-based
schedulers use sequential scheduling of read and write requests when Full command queueing
is enabled.

Host-based schedulers are assumed to have knowledge of each disk’s maximum command
queue length. In order to prevent high priority requests from being delayed by full on-board
command queues, host-based schedulers only issue low priority requests to disks with at least
25% of their command queue empty. That is, once a disk’s command queue reaches 75% of
maximum, only high priority requests will be passed on by the host-based scheduler.!

For light workloads, distributed schedulers provide the same performance as disk-based
centralized schedulers, since all pending requests typically fit within the on-board queues.
Figures 7.32 and 7.33 present mean response times and mean non-compute times for the
8-user SynRGen traces. For configurations with Preseek command queueing, command queue
lengths of 4 or 16 provide the lowest mean non-compute times. SSTF outperforms FCFS,
C-LOOK, and the SPTF-based algorithms by 2%. The inferior performance of SPTF is
due to an unfortunate on-board cache design choice (see section 5.1.3). For Full command
queueing configurations, a command queue length of 4 provides the lowest mean non-compute
times. The SPTF-based algorithms trail SSTF by less than 1% when Full command queueing
is enabled.

Figures 7.34 and 7.35 show mean response times and application run times for the Com-
press workload. The maximum command queue length affects application run times by less
than 1%. The SPTF-based algorithms outperform FCFS and the LBN-based algorithms
by 2-3%.

Comparison with Centralized Scheduling

Tables 7.7 and 7.8 allow comparison between the “best” centralized and distributed
2Q schedulers. For configurations with either Preseek or Full command queueing, distributed
implementations provide superior values for the application-specific performance metrics.
Distributed schedulers using LBN-based algorithms provide 4% and 0.5% better perfor-
mance for 8-user SynRGen and Compress, respectively. For schedulers using full-knowledge
algorithms, distributed scheduling provides a 0.4-2.7% performance improvement for these
workloads.

7.2.3 Summary of Conclusions

Age-sensitive versions of the full-knowledge algorithms provide good mean response times
and superior starvation resistance for distributed scheduling of the disk request traces.
When the “best” centralized and distributed ASPCTF(6) implementations are compared,
distributed scheduling provides lower mean response times and better starvation resistance.

For light workloads, distributed schedulers provide the same performance as disk-based
centralized schedulers, since all pending requests typically fit within the on-board disk
queues. For the 8-user SynRGen and Compress traces, distributed 2Q) scheduler implemen-

1Since this optimization requires that the host take an active role in selecting requests for service, it was
not considered for disk-based centralized scheduling.



186

500
’(7)\ _—
E 400
] S
= 1 11 T Y O A e R A A e
'q—) 300 1— — —=CQ=4
£ - =CQ=16
&200 1 =CQ =128
]
@
T
© 100
=
FCFS C-LOOK SSTF SPTF SPCTF
Disk-Based Scheduling Algorithm
(a) Mean Response Time
400
)
£
[¢b)
€ 300
=
2 =CQ=4
2200 1 =CQ =16
8 =CQ=128
=
o
Z 100
c
@
<]
=

FCFS C-LOOK SSTF SPTF SPCTF
Disk-Based Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 7.32: SynRGen, 8 Users: Distributed 2Q) Scheduling Algorithm Performance
for Disks with Preseek Command Queueing



187

500

R . -

Ea004-{ 1]

]

E 1T Il e T = | =

300 — —=CQ=4
£ - =CQ=16
&200 1 =CQ =128
]

@

T

© 100

=

FCFS C-LOOK SSTF SPTF SPCTF
Disk-Based Scheduling Algorithm
(a) Mean Response Time
400

M

£

[¢b)

£ 300

=

2 =CQ=4
2200 1 =CQ =16
8 =CQ=128
=

o

Z 100

c

@

(]
=

FCFS C-LOOK SSTF SPTF SPCTF
Disk-Based Scheduling Algorithm

(b) Mean Non-Compute Time

Figure 7.33: SynRGen, 8 Users: Distributed 2Q) Scheduling Algorithm Performance
for Disks with Full Command Queueing



188

700
06004
E
] 1
£ 500
|_
@ 400 - —=CQ=4
g =CQ=16
8 300 =CQ =128
]
& 2001
c
(U 4 B
< 100+
FCFS C-LOOK SSTF SPTF SPCTF
Disk-Based Scheduling Algorithm
(a) Mean Response Time

200
o
[¢b])
2
~150 |
]
E ,
= =CQ=4
3 100 =CQ =16
c -— CQ =128
9 ’
©
L 504
o
o
<

FCFS C-LOOK SSTF SPTF SPCTF
Disk-Based Scheduling Algorithm

(b) Application Run Time

Figure 7.34: Compress: Distributed 2Q) Scheduling Algorithm Performance for Disks
with Preseek Command Queueing



189

700
V6004
E
] 1
£ 500
|_
@ 400 - —=CQ=4
£ - =CQ=16
8 300 =CQ =128
a ,
& 2001
c
(U 4 B
< 100+
FCFS C-LOOK SSTF SPTF SPCTF
Disk-Based Scheduling Algorithm
(a) Mean Response Time

200
o
[¢b])
2
~150 |
]
E ,
= =CQ=4
3 100 =CQ =16
c -— CQ =128
9 ’
©
L 504
o
o
<

FCFS C-LOOK SSTF SPTF SPCTF
Disk-Based Scheduling Algorithm

(b) Application Run Time

Figure 7.35: Compress: Distributed 2Q) Scheduling Algorithm Performance for Disks
with Full Command Queueing



190

Host Sched Disk Sched Metric
Trace (all .CW.SSR) CQ Value
8-User Central SSTF 1 333.56
SynRGen | Distrib SSTF SSTF 16 320.80
Compress C(?ntr'al C-LOOK 128 190.38
Distrib C-LOOK C-LOOK 16 189.38
(a) Preseek Command Queueing
Host Sched Disk Sched Metric
Trace (all .CW.SSR) (all .SSW.SSR) CQ Value
8-User Central SSTF 1 333.56
SynRGen | Distrib SSTF SSTF 4 320.25
Compress Central C-LOOK 128 188.70
Distrib C-LOOK C-LOOK 4  187.75

(b) Full Command Queueing

Table 7.7: Mean Non-Compute Times (ms) or Application Run Times (sec) for “Rea-
sonable” LBN-Based 2() Schedulers



191

Host Sched Disk Sched Metric
Trace (all .CW.SSR) CQ Value
8-User Central SPCTF 1 332.05
SynRGen | Distrib SPCTF SPCTF 16 326.11
Compress Central SPCTF 128  185.31
Distrib SPCTF SPCTF 16 184.52
(a) Preseek Command Queueing
Host Sched Disk Sched Metric
Trace (all .CW.SSR) (all .SSW.SSR) CQ Value
8-User Central SPCTF 1 332.05
SynRGen | Distrib SPCTF SPCTF 4 322.93
Compress Central SPCTF 128 186.82
Distrib SPCTF SPCTF 4 184.84

Table 7.8: Mean Non-Compute Times (ms) or Application Run Times (sec) for “Rea-

(b) Full Command Queueing

sonable” 2Q) SPCTF Schedulers




192

tations provide superior performance over equivalent centralized scheduler implementations
(as measured by application-specific metrics).

The experiments in this dissertation show that distributed scheduling provides perfor-
mance equal to or slightly superior to that of both host-based and disk-based centralized
scheduling. With the additional cost and complexity benefits of distributed scheduler im-
plementations, this new scheduling paradigm is recommended for future high-performance
computer systems.



CHAPTER 8

Concluding Remarks and Future Directions

This dissertation demonstrates the major impact that disk request scheduling has on
storage subsystem performance and overall system performance. Disk workloads contain
intense bursts of activity, which result in long queues of pending disk requests. A disk
request scheduler uses knowledge of the system and of the relationships between individual
requests to produce a request ordering that optimizes specific criteria. As the amount of
useful information increases, a scheduler achieves better performance, albeit at the cost of
increased scheduling algorithm complexity and resource requirements (e.g., processing power
and memory).

Useful scheduling information is partitioned based on whether it comes from “above”
or “below” the scheduler. Information from “above” helps the scheduler to identify the
importance of individual requests to the application processes and any request ordering re-
strictions. Experiments in this work use a simple priority scheme that classifies a request as
high priority if a host process is (or will be) waiting for it to complete. Even this straightfor-
ward approach allows a scheduler to significantly improve overall system performance. For
example, user “tasks” spend at least 16% less time waiting on disk I/O in an 8-user SynRGen
edit/make/debug environment (as indicated by the mean non-compute time, a conservative
system performance metric).

Without explicit knowledge of request priorities or the impact of individual requests on
performance and/or reliability goals, a scheduler can only attempt to prevent the starvation
of critical requests by minimizing response time variance (i.e., reducing starvation in general).
Age-sensitive scheduling algorithms effectively reduce response time variance by giving pri-
ority to requests that have been pending for excessive periods of time. The two age-sensitive
algorithms studied in this dissertation consistently and effectively resist starvation.

Information from “below” the scheduler provides hardware-specific knowledge of individ-
ual components along the 1/O path. This dissertation focuses on schedulers that use disk
drive configuration and state information. Mechanical positioning delays often dominate
disk request service times, and scheduling algorithms that reduce these mechanical delays
result in superior performance. Algorithms designed to minimize seek times require little
disk-specific knowledge, relying on the fact that adjacent logical blocks are usually physi-
cally adjacent. Algorithms designed to reduce combined seek and rotational latencies usually
outperform seek-reducing algorithms, but they require accurate logical-to-physical data map-

193



194

pings, seek curves, head switch times, command and completion overheads, rotation speeds,
and actuator positions.

An aggressive scheduler can also exploit information related to the operation and state
of the on-board data cache found in a modern disk drive. Cached data blocks are accessed
far more quickly than blocks requiring media access. Scheduling algorithms designed to uti-
lize on-board cache information typically produce superior performance. In particular, the
C-LOOK scheduling algorithm, which always schedules pending requests in logically ascend-
ing order, interacts well with common prefetching mechanisms. Other scheduling algorithms,
such as Shortest Seek Time First (SSTF), can be modified to take better advantage of on-
board caches, but the simplicity of C-LOOK makes it a good choice for low-cost disk request
scheduler implementations. More complex algorithms that exploit the cache while reducing
combined seek and rotational latency delays (e.g., SPCTF) provide the highest performance.
When scheduling the Report trace, for example, such algorithms provide lower mean response
times and equivalent starvation resistance (compared to seek-reducing algorithms) for trace
scaling factors up to 1.5 or more.

This dissertation compares a number of scheduling algorithms proposed in previous work
as well as some new variations. For light workloads, all scheduling algorithms provide roughly
equivalent performance. As the workload intensity increases, the performance differences
between the algorithms grow. Schedulers using First Come First Serve (FCFS) typically
saturate a disk subsystem well before those using algorithms designed to reduce mechanical
delays. The C-LOOK scheduling algorithm maintains the lowest mean response time and
response time variance among the seek-reducing algorithms studied. Variants of the Short-
est Positioning Time First (SPTF) algorithm, which reduces combined seek and rotational
latency delays, generally provide the best performance for medium-to-heavy workloads. How-
ever, SPTF-based algorithms degrade less gracefully than C-LOOK for the heaviest work-
loads (i.e., those close to saturation). Cache-sensitive versions of SPTF usually provide
the highest performance. Age-sensitive versions provide increased resistance to starvation
(i.e., lower response time variance). Combining cache-sensitive SPTF with age-sensitive
SPTF produces a robust scheduling algorithm that performs well across a wide range of
workloads.

Several scheduling algorithm optimizations exploit the presence of sequential disk re-
quests in real-world workloads. When a host-based scheduler concatenates multiple sequen-
tial requests into fewer, larger requests, it reduces the total request processing overhead and
better utilizes the target disk’s on-board cache. For the Snake trace, which contains occa-
sional bursts of highly sequential reads, concatenating read requests at the host decreases
mean response times by 60-70% (for all algorithms except FCFS) at a trace scaling factor
of 1.25. Alternately, a scheduler can improve performance by explicitly scheduling sequen-
tial requests in logically ascending order. This optimization also makes better use of the
on-board cache, but it can degrade performance when scheduling sequential streams of write
requests for disks without the ability to prebuffer write request data. For disks with write
prebuffering, sequential scheduling of writes generally provides a marginal reduction in mean
response times.

In a centralized scheduler implementation, only one entity along the I/O path actively
reorders pending requests. Other entities participate in disk scheduling only by extracting
and passing useful information to the active scheduler. The host and the disk are two



195

obvious locations for a centralized scheduler, as each possesses a significant quantity of
information useful to scheduling activities. Host-based schedulers have the advantage of
sequential request concatenation. They also have (essentially) unbounded queues for holding
requests, allowing all pending requests to be considered for service. Disk-based schedulers
have limited command queue capacity, but they maximize inter-request concurrency at the
disk and have better access to disk configuration and state information. Also, disk-based
schedulers are better suited to exploit the increasing computation and memory resources
included with modern disk drive components.

Host-based schedulers can exploit inter-request concurrency by using FCFS command-
queued disks. Short command queue lengths provide the best performance; longer on-board
queues reduce a host-based scheduler’s flexibility to dynamically reorder requests. On the
other hand, experiments driven by the full system traces indicate that disk command queue-
ing may not be advisable for host-based schedulers that use request priority information. If
low priority requests are issued to a FCFS command-queued disk, a host-based scheduler
cannot change the order of service when subsequent high priority requests arrive.

Although the optimal location for a centralized scheduler is workload-specific, scheduling
algorithms using request priority information work best if implemented at the host (unless
the workload is very light). Otherwise, when a disk’s on-board command queue reaches its
maximum length, subsequent requests are not considered for service (until space becomes
available in the on-board queue). If high priority requests cannot reach the disk-based
scheduler, overall system performance suffers.

In a distributed scheduler implementation, two or more entities along the /O path co-
operatively reorder disk requests. Each component scheduler exploits different information
to achieve specific scheduling goals. This dissertation examines distributed scheduler im-
plementations that use host-based schedulers in conjunction with disk-based schedulers. In
most cases, a well-designed distributed scheduler outperforms a centralized scheduler with
equivalent resources.

In addition to the performance advantage, distributed scheduling provides cost and com-
plexity benefits. Aggressive host-based centralized schedulers require the extraction and
communication of a large quantity of disk-specific configuration and state information. Dis-
tributed schedulers do not require this additional complexity, since the disk-based schedul-
ing component has easy access to all disk-specific data. Disk-based centralized schedulers
can be hampered by limited on-board memory and computation resources. In particular,
high priority requests may be delayed at the host if on-board request queues are too small.
Distributed scheduling components can cooperate to reduce the impact of finite on-board
command queues. This cooperation can actually reduce the amount of on-board resources
required for good performance. For example, several of the real-world traces used in this
dissertation are best scheduled by distributed implementations using disks with relatively
short on-board command queues.

As the demands on disk subsystems increase, disk request scheduling becomes a major
factor in determining system performance. An improperly designed or implemented scheduler
can easily be the bottleneck in a medium- or heavily-loaded disk subsystem. This dissertation
provides guidelines for computer system engineers concerned with building aggressive disk
request schedulers in high-performance systems using state-of-the-art storage components.



8.1

196

Future Work

The work in this dissertation can be extended in several areas:

The effects of disk drive technology on scheduling activities must be continually re-
evaluated. Rotation speeds and media densities are increasing; seek times are dropping;
peripheral buses are getting wider and faster; and disk platter diameters are shrinking.
As disk technology is expected to improve dramatically in the next decade, studies
identifying additional scheduling issues for future high-performance disk subsystems

will be needed.

Full-knowledge scheduling algorithms are usually located at the disk drive, since they
require extensive knowledge of disk drive configuration and state. However, [Wort95]
describes how the necessary scheduling information can be extracted from modern SCSI
disk drives for use in host-based schedulers. In order for a host-based full-knowledge
scheduler to effectively utilize FCFS command-queued disks, it must also be able to
predict request completion times and peripheral bus utilization. In essence, a host-
based SPTF scheduler using FCFS command-queued disks needs to be able to “sim-
ulate” disk and bus activity for the immediate future. A scaled-down disk subsystem
simulator could provide this functionality. The additional computation and memory
resources consumed by the simulation effort should also be considered.

Experiments in this dissertation show that on-board data cache configurations can sig-
nificantly impact scheduling performance. In particular, the choice of when to initiate
prefetch activity (e.g., after read hits or read misses or both) and the choice of cache
segment size (or the number of segments) significantly impact the performance of the
scheduler implementations studied. As on-board data caches become more complex,
performance demands may necessitate an explicit interface between external request
schedulers and on-board cache management algorithms. That is, schedulers and cache
managers may need to cooperate in order to achieve high performance. The design and
effective use of a scheduler/cache interface is an promising area for future research.

The 2Q scheduling algorithms studied in this dissertation give priority to time-critical
and time-limited requests, thereby achieving better overall system performance. These
algorithms could be modified to only give priority to time-limited requests that are
in danger of exceeding their time limits. This could improve response times for time-
critical requests, albeit at the risk of having more time-limited requests exceed their lim-
its. In addition, this could reduce the starvation of time-noncritical requests (e.g., write
requests generated by a cache flush daemon). More sophisticated algorithms could be
developed to utilize additional system-level information or make better use of request
priorities; the design space for scheduling algorithms that use system-level information
remains relatively unexplored.

The host and the disk have been examined as potential participants in scheduling
activities. Intermediate I/O controllers and disk array controllers could also participate
in disk request scheduling. Controller-level schedulers could incorporate knowledge of



197

resource (e.g., disk and bus) utilization and the state of any additional data caches

along the 1/0 path.

Request scheduling for disk arrays involves new issues, such as reducing combined
service times for multi-disk accesses, finding an appropriate priority level for redundant
data updates, and selecting between multiple data sources. A number of data layout
schemes and redundancy mechanisms have been proposed and implemented. Each
presents unique opportunities for aggressive scheduling optimizations.



APPENDIX A
HP C2247 Disk Drive Parameters

The following parameters were used to configure the simulator to model the HP C2247
disk drive. They were obtained both from manufacturer specifications and from direct ob-
servation of SCSI bus activity.

Table A.1 contains several fixed and variable parameters used in configuring the HP C2247
disk model. The host system used during the extraction was an NCR 3550 multiprocessor.
Some of the values given contain combinations of disk and host delays. For example, the
host system (not the HP C2247) limits the data transfer rates given in Table A.1.

Table A.2 specifies the layout of the HP (C2247’s eight zones. Most of this informa-
tion is available in the disk drive specifications. All skew values are given in sectors. The
Send/Receive Diagnostic SCSI commands were used to obtain full logical-to-physical map-
pings for eight different disks. This provided data on the first logical sector in each zone
and allowed verification of other data layout parameters. The first 17 tracks are reserved
for internal use. All spare tracks are placed at the end of each zone. The HP C2247 uses
track-based sparing for both slipped and dynamically reallocated defects. The default disk
configuration in the experiments has 38 slipped tracks (matching the largest defect list found
in the set of eight experimental HP C2247 disk drives).

Table A.3 presents the head switch, seek, and settling delays observed for the HP €2247.
A full seek curve is given in figure A.1. These values were obtained via extensive repetition
of predetermined seek distances and appropriate monitoring of SCSI activity using a logic
analyzer. Seek distances greater than ten cylinders can be approximated by a two-piece
curve. Although the exact overlap between command overhead and seek initiation cannot
be extracted empirically, separate command overhead and seek values have been determined
which together account for the observed behavior.

Table A.4 lists various measured control and communication overheads. In most cases,
these values are sensitive to the characteristics of both the current request and the immedi-
ately previous request. Also, the cache contents affect the observed delays. In the case of
consecutive non-sequential write requests, the second write incurs an additional disconnect
(immediately after receiving the command) and has different overhead delays than a write
following a read request or a sequential write. Most of the “preparation” delays are caused
by the host system rather than the disk drive.

Using the above parameter values for the HP C2247, the model still deviates by a small
amount from the observed behavior. By adding additional write overhead delays, this devi-

198



199

Constant | Value Variable | Value
Rotational Speed | 5400 RPM Cache Segments | 2
Cache Size | 256 KB Read Watermark | 75 %
Read Data Transfer | 3.01 MB/s Write Watermark | 75 %
Write Data Transfer | 2.74 MB/s Prefetch Minimum | 0 KB
Read Transfer Disconnect | No Prefetch Maximum | 64 KB

Table A.1: Parameters for Modeling the HP C2247 on the NCR 3550 system

Zone | First Last Sectors 1st Logical Track Cyl Rsrvd Spare
Cyl  Cyl /Track Sector Skew Skew Tracks Tracks
1 0 558 96 0 14 32 17 325
2 559 760 92 14 13 30 0 130
3 761 901 88 73 13 29 0 65
4 902 1051 84 80 12 28 0 78
5 1052 1193 80 52 12 27 0 52
6 1194 1519 72 0 11 24 0 104
7 1520 1793 64 32 10 22 0 78
8 1794 2050 56 30 9 19 0 65

Table A.2: Zone Specifications for the HP C2247

ation can be reduced significantly. Although these delays cannot be attributed to any docu-
mented phenomena, the final model closely matches the observed activity of the HP C2247
disk drive. Table A.5 lists the additional overhead delays added to the model. In the last
two table entries, the delay depends on the request size (S sectors).

Figures A.2-A.5 compare the response time distributions for four typical validation runs
comparing the model and the actual system. The workloads consist of 95% random reads,
95% random writes, 95% sequential reads and 95% sequential writes, respectively. The de-
merit figures (defined by [Ruem94] as the root mean square horizontal distance between the
two distribution curves) are 0.43%, 0.52%, 1.58%, and 0.99% of the mean response times
for each run, respectively. The largest demerit figure results from the workload of 95% se-
quential reads, which are usually satisfied by the prefetching cache and thus exhibit very
low mean response times. (The root mean square difference between the two distributions
is only 0.078 ms, the lowest value of all four validation runs.) The demerit figure has never
exceeded 1.9% of the corresponding mean response time for any validation run.



200

Seek Distance (cylinders) Delay (ms)
0 (Head Switch) 0.89
1 2.69
2 3.48
3 3.61
4 3.78
5 4.07
6 4.45
7 4.32
8 4.45
9 4.62
10 4.79
10 < D < 300 3.81 4+ 0.33vD
300 < D 7.75 4 0.0059D
Write Settling 0.65

Table A.3: Seek Parameters for Modeling the HP C2247

22—

Seek Time (ms)

| | | | | | | |
0 250 500 750 1000 1250 1500 1750 2000
Seek Distance (cyl)

Figure A.1: HP (C2247 Disk Drive Seek Curve



201

Overhead Description Delay (ms)
Read Command (Hit) 0.953 ms
Read Command (Miss) 0.558 ms
Write Command (Seq or After Read) 0.824 ms
Write Command (Non-Seq Write) 0.642 ms
Read Disconnect Preparation (After Read) 0.023 ms
Read Disconnect Preparation (After Write) 0.046 ms
Write Disconnect Preparation (Seq or After Read) | 0.166 ms
Write Disconnect Preparation (Non-Seq Write) 0.046 ms
Write Disconnect Duration (Non-Seq Write) 0.429 ms
Data Phase Preparation 0.025 ms
Read Completion 0.057 ms
Write Completion 0.050 ms
First Reselect 0.162 ms
Second Reselect (Non-Seq Writes Only) 0.129 ms

Table A.4: Overhead Delays for Modeling the HP 2247 on the NCR 3550 system

Overhead Description Value
Reconnect Preparation After Media Write Complete 0.540 ms
Minimum Time Before Media Write (After Command) 0.600 ms
Minimum Sectors Received Before Media Write (S < 45) | Min(10,5)
Minimum Sectors Received Before Media Write (S > 45) 15

Table A.5: Additional Write Overhead Delays for Modeling the HP C2247 (5 is the

number of sectors in the request)



1.00 —

0.75 1+

0.50 +—

0251+

0.00

202

—— Actua
- - - Simulation

| | | ] | )

5 10 15 20 25 30 35 40 45 50

Response Time Distribution (ms)

Figure A.2: Validation Workload Response Time Distributions (95% non-sequential

reads, 8KB mean request size [exponential], 0-22 ms request interarrival time

[uniform])

1.00 —

0.75 1+

0.50 +—

0251+

0.00

—— Actua
- - - Simulation

| | | ] | )

5 10 15 20 25 30 35 40 45 50

Response Time Distribution (ms)

Figure A.3: Validation Workload Response Time Distributions (95% non-sequential

writes, 8KB mean request size [exponential], 0-22 ms request interarrival time

[uniform])



203

1.00 —
0.75 1+
0.50 1~ —— Actua
- - - Simulation
0.25 1+
0.00 | | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50
Response Time Distribution (ms)

Figure A.4: Validation Workload Response Time Distributions (95% sequential reads,
8KB mean request size [exponential], 0-22 ms request interarrival time [uni-

form])
1.00 —
0.75 1+
0.50 +— —— Actua
- - - Simulation
0.25 1+
0.00 | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50
Response Time Distribution (ms)

Figure A.5: Validation Workload Response Time Distributions (95% sequential writes,
8KB mean request size [exponential], 0-22 ms request interarrival time [uni-
form])



BIBLIOGRAPHY

[Abbo89] R. Abbott, H. Garcia-Molina, “Scheduling Real-Time Transactions with Disk Resi-
dent Data”, Proceedings of the 15th International Conference on Very Large Data Bases,
Amsterdam, August 1989, pp. 385-396.

[Abbo90] R. Abbott, H. Garcia-Molina, “Scheduling I/O Requests with Deadlines: a Per-
formance Evaluation”, Proceedings of the IEEE Real-Time Systems Symposium, Lake
Buena Vista, Florida, December 1990, pp. 113-124.

[Bate9l] K. Bates, VAX [/O Subsystems: Optimizing Performance, Professional Press
Books, 1991.

[Benn94] S. Bennett, D. Melski, “A Class-Based Disk Scheduling Algorithm: Implementa-

tion and Performance Study”, Class Project, University of Wisconsin.

[Bitt88] D. Bitton, J. Gray, “Disk Shadowing”, Proceedings of the 1/th International Confer-
ence on Very Large Data Bases, Long Beach, California, September 1988, pp. 331-338.

[Bitt89] D. Bitton, “Arm Scheduling in Shadowed Disks”, COMPCON, March 1989,
pp- 132-136.

[Care89] M. Carey, R. Jauhari, M. Livny, “Priority in DMBS Resource Scheduling”, Pro-
ceedings of the 15th International Conference on Very Large Data Bases, Amsterdam,
August 1989, pp. 397-410.

[Chen90] P. Chen, G. Gibson, R. Katz, D. Patterson, “An Evaluation of Redundant Arrays of
Disks using an Amdahl 58907, Proceedings of the 1990 ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, Boulder, Colorado, May 1990,
pp- 74-85.

[Chen91] S. Chen, J. Stankovic, J. Kurose, D. Towsley, “Performance Evaluation of Two
New Disk Scheduling Algorithms for Real-Time Systems”, Real-Time Systems Journal,
Vol. 3, No. 3, September 1991, pp. 307-336.

[Chen94] S. Chen, D. Towsley, “Scheduling Customers in a Non-Removal Real-Time System
with an Application to Disk Scheduling”, Real-Time Systems Journal, Vol. 6, No. 1,
January 1994, pp. 55-72.

[Coff72] E. Coffman, L. Klimko, B. Ryan, “Analysis of Scanning Policies for Reducing Disk
Seek Times”, SIAM Journal of Computing, Vol. 1, No. 3, September 1972, pp. 269-279.

204



205

[Dani83] S. Daniel, R. Geist, “V-SCAN: An Adaptive Disk Scheduling Algorithm”, Proceed-
ings of the IKEE International Workshop On Computer Systems Organization, New
Orleans, Louisiana, March 1983, pp. 96-103.

[Denn67] P. Denning, “Effects of Scheduling on File Memory Operations”, Proceedings of
the AFIPS Spring Joint Computer Conference, Atlantic City, New Jersey, April 1967,
pp- 9-21.

[Ebli94] M. Ebling, M. Satyanarayanan, “SynRGen: An Extensible File Reference Genera-
tor”, Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems, Nashville, Tennessee, May 1994, pp. 108-117.

[Fran69] H. Frank, “Analysis and Optimization of Disk Storage Devices for Time-Sharing
Systems”, Journal of the Association for Computing Machinery, Vol. 16, No. 4, October
1969, pp. 602-620.

[Fuji9l] Fujitsu Limited, “M2622Sx/M2623Sx/M2624Sx Intelligent Disk Drives CE Man-
ual”, Specification Number 41FH6868E-01, July 1991.

[Fuji9la] Fujitsu Limited, “M2622Sx/M26235x/M26245x Intelligent Disk Drives OEM Man-
ual - SCSI Logical Specification”, Specification Number 41FH5057E-01, January 1991.

[Fuji9lb] Fujitsu Limited, “M26225x/M26235x/M2624Sx Intelligent Disk Drives OEM Man-
ual - Specifications & Installation”, Specification Number 41FH5055E-01A , June 1991.

[Gang93a] G. Ganger, B. Worthington, R. Hou, Y. Patt, “Disk Subsystem Load Balanc-
ing: Disk Striping vs. Conventional Data Placement”, Proceedings of the 26th Hawaii

International Conference on System Sciences, Wailea, Hawaii, January 1993, Vol. 1,
pp- 40-49.

[Gang93] G. Ganger, Y. Patt, “The Process-Flow Model: Examining I/O Performance from
the System’s Point of View”, Proceedings of the 1993 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, Santa Clara, California, May 1993,
pp- 86-97.

[Gang94] G. Ganger, B. Worthington, R. Hou, Y. Patt, “Disk Arrays: High-Performance,
High-Reliability Storage Subsystems”, IEEE Computer, Vol. 27, No. 3, March 1994,
pp- 30-36.

[Geis8T] R. Geist, S. Daniel, “A Continuum of Disk Scheduling Algorithms”, ACM Trans-
actions on Computer Systems, Vol. 5, No. 1, February 1987, pp. 77-92.

[Geis8Ta] R. Geist, R. Reynolds, E. Pittard, “Disk Scheduling in System V”, Proceedings
of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, Banft, Alberta, May 1987, pp. 59-68.

[Geis95] R. Geist, J. Westall, “Disk Scheduling in Linux”, Proceedings of the Computer
Measurement Group (CMG) Conference, Orlando, Florida, December 1994, pp. 739-746.



206

[Gotl73] C. Gotlieb, G. MacEwen, “Performance of Movable-Head Disk Storage Devices”,
Journal of the Association for Computing Machinery, Vol. 20, No. 4, October 1973,
pp- 604-623.

[Gray90] J. Gray, B. Horst, M. Walker, “Parity Striping of Disk Arrays: Low-Cost Reliable
Storage with Acceptable Throughput”, Proceedings of the 16th International Conference
on Very Large Data Bases, Brisbane, Australia, August 1990, pp. 148-161.

[Henl89] M. Henley, B. McNutt, “DASD I/O Characteristics: A Comparison of MVS to
VM”, Proceedings of the Computer Measurement Group (CMG) Conference, Reno,
Nevada, December 1989, pp. 566-578.

[Holl92] M. Holland, G. Gibson, “Parity Declustering for Continuous Operation in Redun-
dant Disk Arrays”, Proceedings of the 5th International Conference on Architectural
Support for Programming Languages and Operating Systems, Boston, Massachusetts,

October 1992, pp. 23-35.

[Hou93] R. Hou, Y. Patt, “Trading Disk Capacity for Performance”, Proceedings of the
2nd International Symposium on High-Performance Distributed Computing, Spokane,
Washington, July 1993, pp. 263-270.

[HP92] Hewlett-Packard Company, “HP 2240 Series 3.5-inch SCSI-2 Disk Drive, Technical
Reference Manual”, Part Number 5960-8346, Edition 2, April 1992.

[HP92a] Hewlett-Packard Company, “HP (©2244/45/46/47 3.5-inch SCSI-2 Disk Drive,
Technical Reference Manual”, Part Number 5960-8346, Edition 3, September 1992.

[HP93] Hewlett-Packard Company, “HP C2490A 3.5-inch SCSI-2 Disk Drives, Technical
Reference Manual”, Part Number 5961-4359, Edition 3, September 1993.

[HP94] Hewlett-Packard Company, “HP (C3323A 3.5-inch SCSI-2 Disk Drives, Technical
Reference Manual”, Part Number 5962-6452, Edition 2, April 1994.

[Jaco91] D. Jacobson, J. Wilkes, “Disk Scheduling Algorithms Based on Rotational Posi-
tion”, Hewlett-Packard Technical Report, HPL-CSP-91-7, February 1991.

[Katz89] R.H. Katz, G.A. Gibson, D.A. Patterson, “Disk System Architectures for High
Performance Computing”, Proceedings of the IEEE, Vol. 77, No. 12, December 1989,
pp- 1842-1858.

[Kim86] M. Kim, “Synchronized Disk Interleaving”, IFEE Transactions on Computers,
Vol. C-35, No. 11, November 1986, pp. 978-988.

[Kim91] W. Kim, J. Srivastava, “Enhancing Real-Time DBMS Performance with Multiver-
sion Data and Priority Based Disk Scheduling”, Proceedings of the IEEE Real-Time
Systems Sympostum, San Antonio, Texas, December 1991, pp. 222-231.

[Lary95] R. Lary, Storage Architect, Digital Equipment Corporation, Personal Communica-
tion, May 1995.



207

[Lee90] E. Lee, “Software and Performance Issues in the Implementation of a RAID Proto-

type”, Report No. UCB/CSD 90/573, University of California, Berkeley, May 1990.

[Lync72] W. Lynch, “Do Disk Arms Move?”, Performance Evaluation Review, Vol. 1, No. 4,
December 1972, pp. 3-16.

[Maxt92] Maxtor Corporation, “MXT-1240S Product Specification and OEM Technical
Manual”, Document 1028044, Revision A, November 1992.

[McNu86] B. McNutt, “An Empirical Study of Variations in DASD Volume Activity”, Pro-
ceedings of the Computer Measurement Group (CMG) Conference, 1986, pp. 274-283.

[Mert70] A. Merten, “Some Quantitative Techniques for File Organization”, Ph.D. Thesis,
Technical Report No. 15, University of Wisconsin Computing Center, 1970.

[Ng91] S. Ng, “Improving Disk Performance Via Latency Reduction”, IEEE Transactions
on Computers, Vol. 40, No. 1, January 1991, pp. 22-30.

[Patt88] D. Patterson, G. Gibson, R. Katz, “A Case for Redundant Arrays of Inexpensive
Disks (RAID)”, Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Chicago, Illinois, May 1988, pp. 109-116.

[Poly93] C. Polyzois, A. Bhide, D. Dias, “Disk Mirroring with Alternating Deferred Up-
dates”, Proceedings of the 19th International Conference on Very Large Data Bases,
Dublin, Ireland, 1993, pp. 604-617.

[Quan93] Quantum Corporation, “ProDrive 700/1050/1225S Product Manual”, Publication
Number 81-102480-02, March 1993.

[Rama92] K. Ramakrishnan, P. Biswas, R. Karedla, “Analysis of File I/O Traces in Com-
mercial Computing Environments”, Proceedings of the 1992 ACM SIGMETRICS and
PERFORMANCE 92 International Conference on Measurement and Modeling of Com-
puter Systems, Newport, Rhode Island, June 1992, pp. 78-90.

[Reyn88] R. Reynolds, “Sector-Based Disk Scheduling in the UNIX™™ System V Environ-
ment”, Proceedings of the ACM Southeastern Regional Conference, Mobile, Alabama,
April 1987, pp. 648-652.

[Ruem93] C. Ruemmler, J. Wilkes, “UNIXT™ Disk Access Patterns”, Proceedings of the
Winter USENIX Conference, San Diego, California, January 1993, pp. 405-420.

[Ruem94] C. Ruemmler, J. Wilkes, “An Introduction to Disk Drive Modeling”, IEEE Com-
puter, Vol. 27, No. 3, March 1994, pp. 17-28.

[Scra83] R. Scranton, D. Thompson, D. Hunter, “The Access Time Myth”, IBM Research
Report, RC 10197, September 1983.

[SCSI93] “Small Computer System Interface-2”, ANSI X3T9.2, Draft Revision 10k, March
1993.



208

[Seag92] Seagate Technology, Inc., “SCSI Interface Specification, Small Computer System
Interface (SCSI), Elite Product Family”, Document Number 64721702, Revision D,
March 1992.

[Seag92a] Seagate Technology, Inc., “Seagate Product Specification, ST41600N and
ST41601N Elite Disc Drive, SCSI Interface”, Document Number 64403103, Revision G,
October 1992.

[Seag93] Seagate Technology, Inc., “Seagate Product Specification, ST11750/1 N/ND and
ST12550/1 N/ND Barracuda Disc Drive, SCSI Interface”, Document Number 64403700,
Revision A, January 1993.

[Seam66] P. Seaman, R. Lind, T. Wilson “An Analysis of Auxiliary-Storage Activity”, IBM
System Journal, Vol. 5, No. 3, 1966, pp. 158-170.

[Selt90] M. Seltzer, P. Chen, J. Qusterhout, “Disk Scheduling Revisited”, Proceedings of the
Winter USENIX Conference, Washington, D.C., January 1990, pp. 313-324.

[Sugg90] D. Suggs, “The Use of Future Knowledge in the Design of a Disk Scheduling Al-
gorithm”, Master’s Thesis, Clemson University, South Carolina, 1990.

[Sugg93] D. Suggs, “Disk Subsystem Performance and Reliability Enhancements Through
the Use of Carnival Mirrors”, Ph.D. Thesis, Clemson University, South Carolina, 1993.

[Teor72] T. Teorey, T. Pinkerton, “A Comparative Analysis of Disk Scheduling Policies”,
Communications of the ACM, Vol. 15, No. 3, March 1972, pp. 177-184.

[Wilh76] N. Wilhelm, “An Anomaly in Disk Scheduling: A Comparison of FCFS and SSTF
Seek Scheduling Using an Empirical Model for Disk Accesses”, Communications of the
ACM, Vol. 19, No. 1, January 1976, pp. 13-17.

[Wort94] B. Worthington, G. Ganger, Y. Patt, “Scheduling Algorithms for Modern Disk
Drives”, Proceedings of the 199/ ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, Nashville, Tennessee, May 1994, pp. 241-251.

[Wort94a] B. Worthington, G. Ganger, Y. Patt, “Scheduling for Modern Disk Drives and
Non-Random Workloads”, University of Michigan, Technical Report CSE-TR-194-94,
March 1994.

[Wort95] B. Worthington, G. Ganger, Y. Patt, J. Wilkes, “On-line Extraction of SCSI Disk
Drive Parameters”, Proceedings of the 1995 ACM SIGMETRICS Joint International

Conference on Measurement and Modeling of Computer Systems, Ottawa, Ontario, May
1995, pp. 146-156.



