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Abstract

The undo/redo database recovery algorithm of [Gray 78] is specified in terms of an evolving algebra
([Gur 95]). The specification is used to verify correctness and liveness properties of the algorithm.

1 Introduction

In this paper, we introduce evolving algebras ([Gur 95]) as a formal specification method for database
recovery. We specify the undo/redo recovery algorithm ([Gray 78]) in terms of an evolving algebra. Using
this specification, we then prove correctness and liveness properties. The treatment of this simple algorithm
is intended to be a starting point from which investigation of more complicated recovery techniques can
proceed.

The information managed by most large-scale database systems is accessed and updated concurrently
by multiple users, so the system must be able to service users’ requests promptly. At the same time,
this information is often of a critical nature, so data loss due to errors must be minimized. Therefore, a
database recovery mechanism must operate as efficiently as possible during normal processing and during
error recovery, while guaranteeing persistence of data in the face of system errors.

Recovery algorithms of varying levels of sophistication have been proposed to meet these goals. Advanced
recovery algorithms are quite complex, and many exploit subtle properties of the other components of
the database system. The current literature on the subject tends to rely on informal descriptions of the
algorithms, and there has not been much effort to prove their correctness. The area of database recovery is
clearly in need of formal techniques of specification and verification, not only to ensure that the algorithms
work correctly, but also to formalize ideas that have never been explained satisfactorily.

We feel that evolving algebras are well suited for specifying database recovery concepts. Evolving algebras
can be used to implement an algorithm at any level of abstraction ([Gur 93]); this allows us to specify the
undo/redo algorithm at a high level, without concerning ourselves with implementation-specific details. Our
results therefore apply to any implementation of the algorithm. This generic view can be made as specific
as desired through subsequent refinements of the evolving algebra.
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2 Problem description

Our first task is to state our verification conditions: what exactly must the recovery algorithm do? We begin
by introducing some basic terms related to database management. A database is a set of data items, each
identified by a location and containing a value. Data items are kept in both stable and volatile storage.
Stable storage is a failure-resistant medium, while volatile storage is a medium allowing faster access than
stable storage but prone to failure. Typically, a database system stores data in memory and on disk; the



memory storage would be termed volatile and the disk storage stable. In this paper we focus on recovery
from failure of the volatile storage component; the effect of such a failure is called a system error.

Since writing to volatile storage is relatively fast, it is used for temporary storage of data items. In most
systems, when a data item is updated the new value is stored first in volatile storage and later written to
stable storage. Volatile storage is usually too small to accommodate the entire database, so only part of the
database resides in volatile storage at any given time. As the system processes accesses and updates, copies
of data items are continually written to volatile storage, then erased after being copied to stable storage.
The current value of a data item is the value in volatile storage if a copy of the item is there; otherwise, the
current value 1s the value in stable storage.

The database is accessed concurrently by multiple application programs. A program called the
database management system or DBMS | provides an interface between the database and the application
programs accessing it. Each application program may read and write values to the database; the sequence
of reads and writes issued by an application program is called a transaction. Once it has finished accessing
the database, the application program explicitly commits or aborts the transaction. By committing, the
program indicates that it has terminated normally, and that the changes it made to the database should be
maintained. The program aborts its transaction if it terminates abnormally; this indicates that the changes
it made to the database should be rolled back or undone, i.c., any data item with a value written by the
aborting transaction should be reassigned its previous value.

The effects of a transaction on the database are therefore “all or nothing”: either all or none of the
transaction’s changes are maintained in the database. This property of transactions is called atomicity.
Furthermore, the effects of a committed transaction are persistent; the values written by a committed trans-
action are maintained even after system errors. This property is called durability. A database system
which guarantees atomicity and durability of all its transactions simplifies each application program’s in-
terface with the database. Because of atomicity, application programs need not consider the possibility of
“partially committed” or “partially aborted” transactions. The data available to an application is never
data written by an erroneous transaction; the DBMS, rather than the application, identifies and eliminates
erroneous data. Moreover, durability frees applications with committed transactions from having to enforce
the persistence of their effects; it becomes the task of the DBMS rather than the application programs to
perform recovery after an error.

The task of ensuring atomicity and durability is performed by a component of the DBMS called the
recovery manager or RM. The RM receives a sequence of read, write, abort and commit commands;
as transactions execute concurrently, commands from different transactions may be interleaved. Another
component of the DBMS called the scheduler controls the sequence or schedule of transactions issued
to the RM. The RM controls the contents of volatile storage (also called the cache) and of stable storage.
Items to be read are fetched, or copied from stable storage to the cache. Items to be written may be copied
directly to stable storage or to volatile storage. A component of the DBMS called the cache manager or
CM periodically flushes data items from the cache, removing them after copying them to stable storage.

When a system error occurs the DBMS, including the RM and CM, stops running, and the contents of
volatile storage are lost. It is assumed that a system error is a fail-stop type of error: when the DBMS
restarts, it can detect that the error occurred and can pass into a recovery mode. Only the values saved in
stable storage survive a system error. This leads to two types of inconsistency that the RM must rectify.
First, if updates issued by a committed transaction were cached but never flushed to stable storage before
the error, the committed changes to these items will no longer be recorded in the database after the error.
To ensure durability, the RM must reinstate or redo the committed updates to the database. Second, if
data items written by an uncommitted transaction were cached and subsequently flushed to stable storage
before the error, the values of uncommitted transactions will be in stable storage after the error. To allow
such transactions to continue would risk violating atomicity: between the time of the system error and the
restart of the DBMS, the uncommitted transactions may have issued further write commands, all of which
will have been unsuccessful. To ensure that a transaction’s changes are never only partially recorded, the
RM must undo the uncommitted changes recorded in stable storage.

The goal of the recovery procedure can then be stated simply: to reestablish the last committed value



of each item in the database. To show correctness, we must consider the last committed value of a data
item at the time of a system error; this must be the value in the database immediately after recovery. In
addition, we must prove liveness: there must be some bound on how long it takes the system to return to
normal processing after an error. Of course, there are pathological cases in which liveness is impossible: the
system may experience an arbitrarily long sequence of errors, with very little or no time between each error.
In our proof of liveness, we focus on cases with error-free intervals sufficiently long to allow recovery.

3 Algorithm Description

The undo/redo algorithm originated in [Gray 78]; we use the presentation in [BHG 87] as our guidelines.
One of the advantages of this algorithm, besides its simplicity, is the fact that it imposes no restrictions on
the CM. Newly written data items stored in the cache are flushed only when the CM sees fit to do so. This
allows the RM to service read and write commands without waiting for the CM to write to stable storage.
On the other hand, it introduces some problems for data persistence: uncommitted values may have been
flushed to stable storage and committed values may still reside only in the cache at the time of an error.
The task of the recovery procedure is twofold: in the event of a system error, it must undo all changes made
by uncommitted transactions, and it must redo all changes made by committed transactions.

As the contents of volatile storage are lost after a system error, the information that the recovery procedure
needs to perform these undoes and redoes must reside somewhere in stable storage. There must be a record
of the write commands issued before the error, and there must be a record of the transactions that committed
before the error. In the undo/redo algorithm, the RM maintains a log of write commands in stable storage
during normal processing. Each log record consists of the ID of the transaction 7' performing the write,
the location A it writes to, the value v, being written, and the value v,4 in the database just before the
write. This last item is called the before image of A with respect to 7" the value stored in the database
at location A before transaction T' overwrote it.! In addition, the RM maintains a commit list in stable
storage, consisting of the IDs of all committed transactions.

It is assumed that the schedule of transaction commands sent by the scheduler to the RM is strict. In a
strict schedule, no read or write command to a location A occurs until after all transactions that previously
wrote to A have either committed or aborted; this implies that no transaction ever reads an uncommitted
value. To see why this is important, consider a situation in which a transaction 7} writes a value at location
A, another transaction 75 reads this value, and T} subsequently aborts. 75 would then be forced to abort
as well, as the value it read for A would no longer be valid. This phenomenon is avoided if schedules are
strict; individual transactions can be aborted in isolation, without affecting the termination status of other
transactions.

Strict schedules have another attractive quality. When processing transaction 7’s abort and undoing the
effect of its write to A, the RM must replace the current value with the value that would have been at A had
T never executed. If schedules are not necessarily strict, this value may be difficult to determine. Consider
a schedule in which 77, T5 and T3 write to X successively. If T3 aborts and the recovery procedure undoes
its write to A, it must check the termination status of 77 and 75. If neither transaction aborted, the value
to write 1s the before image of A with respect to 73: the value of 7%’s write to A. On the other hand, if 75
aborted, the value to write is the before image of A with respect to T5: the value of T}’s write. If both T3
and 75 aborted, there is yet another value to be written: the before image of A with respect to 77. As the
number of writes to A increases, so does the number of transactions to check in case of an abort. However,
if the schedule 1s strict, only one transaction must be checked: T3, in our example. T5 either committed or
aborted before T3’s abort, so the value to write is either T3’s before image (if T2 committed) or T3’s before
image (if 7> aborted). Just as every read in a strict schedule reads a committed value, so every write in

1In [BHG 87]’s abstract description of the algorithm, log records are not assumed to include before images; it is simply
stated that any before image “can be found in the log.” In the more specific description, before images are explicitly included
in the log records, as “keeping such information in these records greatly facilitates the processing of RM-Abort and Restart
[2.e., abort and recovery processing].” We adopt this assumption in our specification.



a strict schedule writes over a committed value. Thus every before image is a committed value and so the
proper value to write in the case of an undo.

The RM accepts a strict schedule of commands during normal processing. It processes a write by
caching the new value and adding a log record including the new value and the before image. Processing
a read command consists simply of a fetch of the requested data item. When a transaction commits, the
transaction’s ID is added to the commit list. When a transaction aborts, the RM scans back through the
log, searching for entries with the transaction’s ID. For each such record that it finds, it undoes the write by
caching the before image.

The recovery procedure consists of a similar scan through the log. First the RM checks the location
associated with the current log record to determine whether the data item has already been undone or
redone. It it has not, the RM searches for the transaction ID of the log entry in the commit set. If it is there,
the write corresponding to this log entry was committed, and so it is redone: the after image is cached.
Otherwise, the write was not committed before the error, and so it is undone: the before image is cached.
When the entire log has been scanned, the recovery procedure ends and normal processing continues.

4 Evolving Algebras

Before specifying the undo/redo algorithm formally, we provide a brief description of the evolving algebra
concepts we will need. A sequential evolving algebra (hereafter, ealgebra) models a system in which a
single agent changes the current state in discrete steps. The behavior of the system can be seen as a sequence
of states, with each noninitial state determined by its predecessor in the sequence. To model such systems,
a specification method must define what a state i1s and how a state is obtained from its predecessor. We
explain the ealgebra notion of state first and then the notion of state transition rules.

An ealgebra has a vocabulary, which is a finite collection of function names, each of a fixed arity. A
function may have an arity of zero; such a function is called nullary. There are certain function names that
appear in every ealgebra’s vocabulary: the nullary function names true, false and undef, the equality sign,
and the names of the usual Boolean operators.

A state S of an ealgebra E with vocabulary T consists of a nonempty set X, called the superuniverse
of S, and an interpretation of each function name in T over X. The superuniverse is sorted into universes:
for the domain Dom(f) of any function f in Y, there is a unary function U; over X which returns true for
any member of Dom(f) and false for any other element of X. The name undef is used to represent partial
functions: for any tuple outside its domain, a partial function returns undef. The Boolean operators behave
in the expected way over {true, false} and return undef for all other inputs.

Some functions have interpretations that do not change during any execution of the ealgebra; such
functions are called static. The functions true, false and undef, equality, and the Boolean operators are
all static functions. On the other hand, the dynamic nature of a system is captured by functions whose
interpretations do change over the course of an execution. Such functions are called dynamic. Of these,
some functions change in a way determined by the state of the system; these functions are called internal.
Others may change in ways beyond the system’s control; these represent external forces which affect the
system. Such functions are called external.

While external functions define uncontrollable actions affecting the system, transition rules define the
system dynamics that are within the control of the system. An update instruction, the simplest type of
transition rule, has the form f(Z) := v, where f is a dynamic function name of some arity n, Z is an n-tuple
of terms, and v is a term. Executing an update instruction changes the function at the given value; if @ and
b are of the values of Z and v in a given state, then f(@) = b in the succeeding state.

A sequence of transition rules is itself a transition rule and is called a rule block. Executing a rule block
is done by executing each of its transition rules simultaneously. If two different rules conflict, i.e., attempt
to change the same function at the same value, the ealgebra halts.

A conditional instruction is a transition rule of the form



if gg then
Ry

elseif g1 then
Ry

elseif g, then
R,
endif

where each guard g; is a Boolean first-order term and each R; is a transition rule.? Executing a
conditional instruction results in the execution of a transition rule R;, where ¢ is the minimal value for which
g; evaluates to true. If no guard evaluates to true, the conditional instruction performs no execution of any
R;.

If T is the vocabulary of an ealgebra E', then the set T~ of all internal function names of E is E’s internal
vocabulary. If S is a state of F/, then S~ is the corresponding internal state, i.e., the state identical to S
but with vocabulary T~. A run of the ealgebra is a sequence of stages, each stage S consisting of a state of
the ealgebra and its number I(S) in the sequence. For each stage S after the initial stage, the internal state
of § is obtained from the state of the previous stage by executing all enabled updates of E simultaneously.

For any term ¢ and any stage S, we take [t]g to be the result of evaluating ¢ at stage S. In the case of
a static term (i.e., a term in which no dynamic function symbol appears), we simply use ¢ to denote the
result of evaluating ¢ at an arbitrary stage in the run. For brevity, we extend the use of comparison operators
to stages: for example, we take § < 7 to mean I(S) < I(7). We use the notation § + n, where n is an
integer, to refer to the stage 7 for which I(7) = I(S) + n. We use interval notation to denote subsequences
of a run; for example, [S, ’T) refers to the subsequence of the run containing all stages > & and < 7. Finally,
we say that a function is unchanged in an interval if it evaluates to the same value at all stages in that
interval.

5 Specification

Having described the undo/redo algorithm informally, we now specify it in terms of an ealgebra. We begin
by defining the universes and functions of the vocabulary. In this ealgebra, @ and IN¢l denote the empty
set and sequence, respectively. We use the operator € to represent membership in a set or sequence. For
element z and set S, S + @ is the set obtained by adding z to S, i.e., SU{z}.

5.1 Vocabulary

First, we define the universes and static functions. We define a universe TransIDs of transactions, a
universe of Locations of data items in the database, and a universe of V alues that may be stored at these
locations. A command issued to the recovery manager is of one of four possible types; we introduce the
universe Actions = { Read, Write, Abort, Commit} to represent these. A command always includes a
transaction ID and an action type; a read or write command includes a location, and a write command also
includes a value. Therefore the universe Commands consists of quadruples: TransIDs X Locations X
Values X Actions. We add projection functions mapping a given command to its associated components:
Trans : Commands — TransIDs, Loc : Commands — Locations, Val : Commands —
Values and Act : Commands — Actions.

A log entry specifies a transaction performing a write, the location to which the transaction is writ-
ing, the new value to be written, and the old value to be overwritten. We define a universe Entries of
quadruples: TransIDs X Locations X V alues X V alues. We add the appropriate projection functions:
Trans : Entries — TransIDs, Loc : Entries — Locations, NewVal : Entries — Values

2In a nested conditional instruction, a sequence of endif’s may be abbreviated as ENDIF.



and OldVal : Entries — Values. We represent a log configuration as an element of the universe
LogConfigs, which consists of all finite sequences of elements over Entries.

Each new log entry is added to the end of the log. WriteLog : TransIDs X Locations X V alues X
Values X LogConfigs — LogConfigs takes a transaction, location, new value and old value and
returns the result of adding the resulting log entry to the end of the log. LogEnd : LogConfigs —
Entries takes a log configuration and returns the entry at its end; we assume that Log End(Nil) evaluates
to undef. PrevEniry : Entries X LogConfigs — Enitries returns the entry immediately preceding
the given entry in the log. If the given entry is the first entry in the log, PrevEntry returns undef.
EntryPos: Entries X LogConfigs — PosInt returns the number of entries between the given entry
and the end of the log. LastEntry : Locations X LogConfigs — Entries returns the entry nearest
the end of the log with the given location.?

We represent a cache configuration as an element of the universe CacheConfigs. Each entry in the
cache is a data item consisting of a location and a value. The cache contains at most one copy of a given
data item: i.e., no two cache entries have the same location. Therefore, C'acheCon figs consists of all finite
subsets of (Locations x Values) for which no subset contains two elements with the same location.

InCache : Locations X CacheConfigs — {true, false} returns true if the cache contains an
entry with the given location. ReadCache : Locations X CacheConfigs — Values returns the result
of reading a data item of the given location from the given cache state. WriteCache : Locations X
Values x CacheConfigs — CacheConfigs returns the cache state achieved after adding a data item
of the given location and value to the cache. A data item is overwritten if it is already in the cache: if a
cache configuration C' contains a data item (A, v), then WriteCache(A,v', C') returns the result of replacing
(A, v) in C with (A v"). Flush : Locations X CacheConfigs — CacheConfigs returns the cache
state resulting from flushing a data item. If the given location is undef or there is no data item with the
given location in the cache, the function returns the cache configuration unchanged.

The recovery manager maintains in stable storage a list of transactions that have committed. If a
transaction is in this list, its writes will be redone during recovery; otherwise, they will be rolled back. We
model the commit list as an element of the universe T'ransSets, consisting of all finite subsets of TransIDs.
In addition, the recovery procedure keeps track of the set of locations it has either undone or redone; if a
particular location has already been undone or redone, the recovery procedure ignores all subsequent log
entries with that location. We introduce the universe LocSets, consisting of all finite sets of elements over
Locations.

We now define the dynamic functions which determine the state of the RM; each function is internal unless
specified as external. The external function Error : {true, false} returns ¢rue if a system-level error
has just occurred. ImRecovery : {true, false} is set to true when a system-level error is detected and
recovery is initiated. Cmd : Commands represents the command currently being processed. An external
function NextCmd : Commands represents the command scheduled immediately after the current one.
Stable : Locations — Values represents the current state of all data items as they are recorded in
stable storage. Log : LogCon figs represents the current log contents, and Cache : CacheConfigs
represents the current contents of the cache. An external function Victim : Locations represents the
location of the data item selected by the CM to be flushed from the cache. CurrEntry : Entries returns
the log entry currently being considered by the recovery procedure. CommitSet : TransSets represents
the current set of committed transactions. Finally, Corrected : LocSets represents the set of undone and
redone locations.

5.2 Rules for normal processing

Our first rules are shown in Fig. 1. The rule WriteT oStable represents the write to stable storage caused
by a cache flush. There may be no victim to flush at a given state, in which case the value of Victim

3The functions PrevEntry and EntryPos return undef if the given entry does not appear or appears more than once in
the given log configuration. The function Last Entry returns undef if no entry with the given location appears in the given log
configuration.



rule WriteToStable:
if not Error then
if Vietim # undef and InCache(Victim, Cache) then
Stable(Victim) := ReadCache(Victim, Cache)
ENDIF

rule NoCommand:

if Act(Cmd) = undef and not (Error or InRecovery) then
Cache := Flush(Victim, Cache)
Cmd ;= NextCmd

endif

Figure 1: Rules WriteToStable and NoCommand

is undef and therefore WriteToStable makes no update. If no command is issued to the RM, the rule
NoCommand simply updates the current command. Note that although no RM processing occurs in this
case, the CM may flush a data item.

The rules for processing read and write commands appear in Fig. 2. The rule DoRead simply fetches
the requested data item into the cache, if it is not already there. The rule DoW rite fetches the before
image into the cache, if it is not already there, and then writes a new value to the cache, adding a log entry
recording the write.

The rules for processing commits and aborts are shown in Fig. 3. The rule DoCommait simply adds
the given transaction to the commit list. The rule DoAbort scans the log, undoing each of the aborting
transaction’s writes by writing each log entry’s old value to cache, until the list is empty.

5.3 Rules for recovery processing

We define rules to represent the occurrence of a system-level error and the ensuing recovery procedure. The
rule Restart, shown in Fig. 4, models the system’s initial actions after a system-level error. The cache is
erased, the set of undone and redone locations is set to empty, the log index is set to the end of the log, and
the recovery flag is set to true. The rules ScanLog and DoCorrect, shown in Fig. 5, model the process
of performing the necessary undoes and redoes after a system-level error. The log index is decremented by
SecanlLog at each step in the recovery, so that the log is examined from end to beginning. Each uncorrected
entry encountered causes DoCorrect to fire, writing either the before image or after image of the update to
the cache, depending on whether the update is committed.

6 Verification

Our verification proceeds as follows. To simplify the proofs, we introduce some terms based on the specifi-
cation in the previous section. QOur first claims are easily verifiable and presented without proof. We then
make a couple of claims about the structure of the log; following this, we present claims about the processing
of aborts, then some general claims about normal (nonrecovery) processing, and finally a couple of claims
about recovery processing. Using these, we present three lemmata which provide the basis for the correct-
ness proof. Finally, our two theorems assert the desired correctness and liveness properties. Throughout this
section, we use the following variables: let @, R,S,8’, T be stages, and let A\, \' € Locations, t € TransIDs,
E, E' € Entries, and v, Vo4, Vnew € Values.



rule DoRead:
if Act(Cmd) = Read and not (Error or InRecovery) then
if not InCache(Loc(Cmd), Cache) then
Cache := WriteCache(Loc(Cmd), Val(Cmd), Flush(Victim, Cache))

else
Cache := Flush(Vietim, Cache)
endif
Cmd := NextCmd
endif

rule DoWrite:
if Act(Cmd) = Write and not (Error or InRecovery) then
if not InCache(Loc(Cmd), Cache) then
Cache := WriteCache(Loc(Cmd), Stable(Loc(Cmd)), Flush(Victim, Cache))
else
Log := WriteLog(Trans(Cmd), Loc(Cmd), Val(Cmd), ReadCache(Loc(Cmd), Cache), Log)
Cache := WriteCache(Loc(Cmd), Val(Cmd), Flush(Victim, Cache))
Cmd := NextCmd
ENDIF

Figure 2: Rules DoRead and DoWrite

6.1 Definitions

Definition
o A stage S is an error stage if [Error]g = true.
e A nonerror stage S is a recovery stage if [InRecovery] 3 = true.

e A nonerror, nonrecovery stage S is normal.

Definition

e A normal stage S is a commit stage if [Act(Cmd)]g = Commit. We define abort stage similarly.

e A commit or abort stage is a terminating stage.

e A normal stage § is a read stage if [Act(Cmd)]g = Read, or if [Act(Cmd)]g = Write but
[InCache(Loc(Cmd), Cache)lg = false. (Note: in either case, the data item specified by Loc(Cmd)

is fetched from stable storage into the cache.)

e A normal stage S is a write stage if [Act(Cmd)]g = Write and [InCache(Loc(Cmd), Cache)lg =

true.

Definition

e A t-stage is a normal stage for which [Trans(Cmd)]g = t, or a recovery stage for which

[Trans(CurrEntry)]g =t.

e A A-stage is a read or write stage for which [Loc(Cmd)]g = A, or an abort or recovery stage for which

[Loc(CurrEntry)]s = A.



rule DoCommit:

if Act(Cmd) = Commit and not (Error or InRecovery) then
CommitSet := CommitSet + Trans(Cmd)
Cache := Flush(Victim, Cache)
Cmd := NextCmd

endif

rule DoAbort:
if Act(Cmd) = Abort and not (Error or InRecovery) then
if Log = N1l then
Cache := Flush(Vietim, Cache)
Cmd = NextCmd
elseif CurrEntry = undef then
CurrEntry := LogEnd(Log)
Cache := Flush(Vietim, Cache)
else
if Trans(CurrEntry) = Trans(Cmd) then
Cache := WriteCache(Loc(CurrEntry), OldVal(Curr Entry), Flush(Victim, Cache))
else
Cache := Flush(Victim, Cache)
endif
CurrEntry := PrevEntry(CurrEntry, Log)
if PrevEntry(CurrEntry, Log) = undef then
Cmd := NextCmd
ENDIF

Figure 3: Rules DoCommit and DoAbort

rule Restart:
if Error then
Cache =0
Corrected :=
CurrEntry := LogEnd(Log)
InRecovery = true

endif

Figure 4: Rule Restart



rule ScanLog:
if InRecovery and not Error then
if CurrEntry # undef then
CurrEntry := PrevEntry(CurrEntry, Log)
else
InRecovery = false
Cmd = NextCmd
ENDIF

rule DoCorrect:
if InRecovery and not Error and CurrEntry # undef then
if Loc(CurrEntry) ¢ Corrected then
Corrected := Corrected + Loc(Curr Entry)
if Trans(CurrEntry) € CommitSet then
Cache := WriteCache(Loc(CurrEntry), NewVal(Curr Entry), Flush(Victim, Cache))

else
Cache := WriteCache(Loc(CurrEntry), OldVal(Curr Entry), Flush(Victim, Cache))
ENDIF
Figure 5: Rules ScanLog and DoC'orrect
Definition
e A recovery stage S is a correcting recovery stage if [Trans(CurrEntry)]lg = [Trans(Cmd)]g

and [Loc(CurrEntry)s € [Corrected]g. (Note: if these conditions are met, the recovery procedure
“corrects” (i.e., undoes or redoes) the write recorded in the log entry [CurrEntry|s.)

e An abort stage S is an abort-undo stage if [Trans(Cmd)]|g = [Trans(CurrEntry)]s. (Note: if this
condition is met, the abort procedure undoes the write recorded in the log entry [CurrEntry|g.)
Definition

e Norm(S) is the first normal stage following S, i.e., the minimal normal stage > S.*

Err(8) is the last error stage before S, i.e., the maximal error stage < S.
e A nonempty interval (S, Norm(S)) is a recovery phase.

o We say that £ aborted before S if there is a t-abort stage < S.
Abt(t) is the initial stage of ¢’s abort, 7.e., the minimal ¢-abort stage.

Definition

o [LW ()] is the stage of the last write to A before S, i.e., the maximal A-write stage < §.°
[LT(A)]g is the transaction issuing this write, i.e., [Trans(C’md)][LW(A)]S.

4Note that the functions Norm, Err and Abt may be undefined for certain values.
S[LW (})]s may be undefined for a given A, in which case [LT ()] is also undefined. Likewise, [LCW ())] g may be undefined,
in which case [LCT())]g and [LCV(A)]g are also undefined.
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o [LCW ()]s is the stage of the last committed write to A before §, i.e., the maximal A-write stage
R < 8 for which there is a commit stage S’ where [Trans(Cmd)]g, = [Trans(Cmd)] 5.

[LCT(A)]g is the transaction issuing this write, i.c., [Trans(Cmd)][LCW()\)]S.
[LCV(A)]g is the value written by this write, i.e., [Val(Cmd)][LCW(A)]S.

Definition

o If [Cache]g,, = [WriteCache(), v, Flush(Victim, Cache))]s, we say that v is written to cache in
location X at S.

o If [Log]s_l_1 = [WriteLog(t, X, Vnew, Vord, Log)] g, we say that

— t’s write to A is logged at S;
— before image v,q and after image v, are logged at S; and

— entry E is logged at S, where F is the entry with Trans(E) =1, Loc(E) = A, NewVal(F) =
Unew, and OldVal(E) = vo4.

Definition

e [DB(A)]g is the value stored at location A in the database at stage S, i.e.,
[ReadCache(), Cache))g if [InCache(X, Cache)|g = true;
[Stable(A)] 5 otherwise.

e [BeforeImage(A,t)]g is the before image of A with respect to t, as recorded in the log, i.e.,
OldVal(E), where E is the entry in [Log|gs such that Loc(E) = A and Trans(E) = ¢.°

Definition

e A run is strict if any transaction writing to a location during the run either aborts or commits before
another read or write to that location occurs, i.e., if for any (¢, A)-write stage S and any A-write or
A-read stage U > S, there is a t-terminating stage € (S,L{).

e A run is regular if no transaction issues commands after aborting or committing, :.e., if for every
t-terminating stage S there is no ¢-stage 7 > &, and no transaction issuing commands before an error
does so after the error, i.e., for every ¢-stage R and error stage § > R, there is no t-stage > S.

6.2 Preliminary claims

We henceforth restrict attention to strict, regular runs. Claims 1-6 are easily verified, and we present them
without proof.

Claim 1 If § is a nonerror stage, then

v if a value v is written to cache in location A;
[DB(’\)]S+1 =
[DB(A)]g otherwise.

6[BeforeImage(),t)]g may be undefined for certain X and ¢.
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Claim 2 If at stage S, t’s write to A’ is logged with a before image v, then

v A=)
[BeforeImage(A,t)] sy =
[BeforeImage(A,t)]g otherwise.

Claim 3 If a write to A’ is logged in an entry E at stage S, then

E if A=),
[LastEntry(A, Log)ls,, =
[LastEntry(), Log)]g otherwise.

Claim 4 LW ()) is unchanged in [S, T] if and only if there is no A-write stage in (S, T].
Claim 5 Log is unchanged in [S, ’T] if there is no write stage in [S, ’T).

Claim 6 Let E be an entry for which Trans(E) =t and Loc(E) = A. Then E € [Log]g if and only if there
is a (¢, A)-write stage R < S.

Claim 7 [LT())]s € [CommitSet]g,, iff [LW(A)]g = [LOW ().

6.3 Claims involving log management

Claim 8 Let E and E’ be entries for which Trans(E) = Trans(E') = t and Loc(F) = Loc(E') = A. Tf
E € [Loglg and E’ € [Loglg, then [EntryPos(E, Log)ls = [EntryPos(E’, Log)]s.

Proof. Assume to the contrary that £ € [Logls and E’ € [Loglg but [EntryPos(E, Log)ls #
[EntryPos(E’, Log)lg. By Claim 6, there are (¢, A)-write stages R < § and R’ < 8. As only one en-
try is logged at a single write stage, R # R'; without loss of generality, assume R < R’. If there is a
t-terminating stage between R and R, the following (¢, A)-write stage R’ violates regularity. If there is no
such stage, strictness is violated. O.

Claim 9 [Trans(LastEntry(A, Log))] [LT(N)]s-

S+1 =
Proof. By induction on stages in [[LW ()]s, S].

Base step: § = [LW(A)]g. Since S is a A-write stage, rule DoWrite fires, logging the write by [LT(A)]¢
to A. By Claim 3, [Trans(Last Entry(A, Log))| s, = [LT(N)]s-

Inductive step: & > [LW(A)]g, so [LW(A)]g = [LW(X)]g_, and therefore [LT(X)]g_, = [LT(N)]s-
Assume that [Trans(Last Entry(X, Log))]g = [LT(X)]g_,- If S is a non-write stage, then by Claim 5, Log is
unchanged in [S, S + 1]. If S is a write stage, then it cannot be a A-write stage, since [LIW(A)]g < S. Rule
DoWrite fires, logging a write to a location # A. By Claim 3, Last Entry(A, Log) is unchanged in [S, S+ 1].
In either case, by the inductive hypothesis, [T'rans(Last Entry(A, Log))]s,, = [LT(A)]s. O.
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6.4 Claims involving abort processing

Claim 10 If S is a (¢, A)-abort-undo stage, then [CurrEntrylg = [Last Entry(A, Log)]s.

Proof. Assume to the contrary that S is a (¢, A)-abort-undo stage but [CurrEntrylgs #
[LastEntry(, Log)lg. Since [Loc(LastEntry(X, Log))lg = [Loc(CurrEntry)lg = A, by Claim 8 it must
be that t = [T'rans(CurrEntry)]g # [Trans(Last Entry(X, Log))]g. By Claim 9, ¢ # [LT(X)]s. By Claim 6,
there is a (¢, A)-write stage @ < S. Since t # [LT(A)]g, @ < [LW(A)]g. If there is a t-commit stage R, the
presence of the t-abort stage S violates regularity. If there is no such R, then there is no ¢-terminating stage
between the A-write stages Q and [LW(A)]g, which violates strictness. O.

Claim 11 If S is a (¢, A)-abort-undo stage, then ¢t = [LT(X)]5.

Proof. Immediate from Claim 9 and Claim 10. O.

Claim 12 If S is a (¢, A)-abort-undo stage, then [LW(A)]g # [LCW(A)]s.

Proof. Assume to the contrary that S is a (¢, A)-abort-undo stage but [LW(X)]g = [LCW(X)]g. By
Claim 11, t = [LT(X)]g = [LCT(X)]g. Then there is a t-commit stage before the t-abort stage S, which
violates regularity. O.

Claim 13 Let S be Abt(t) for some ¢, let E € [Loglg, and let p = [EntryPos(E, Log)]g. If (S,S —}—p] is
normal, then [CurrEntry]S_l_(p_l_l) =F.

Proof. By induction on p.

Base step: p = 0. Then E = [LogEnd(Log)lg. At S, DoAbort fires, updating CurrEntry so that
[CurrEntrylg,, = [LogEnd(Log)|s = E.

Inductive step: p > 0. Assume [CurrEntry]S_I_p = E’, where [EntryPos(E’, Log)ls = p — 1. Then
[PrevEntry(E', Log)ls = E. At S+ p, DoAbort fires, updating CurrEntry so that [Curr Entry]
[PrevEntry(E', Log)lg = E. D.

S+(p+1) —

Claim 14 Let Q be a (¢, A)-write stage < S, let S be a nonabort stage, and let [Q, S] be normal, If ¢ aborts
before &, then there is a (¢, A)-abort-undo stage R € (Q, S).

Proof. Assume t aborts before §. At Q, t’s write to A is logged in entry E. Since the run is regular, the
t-abort stage Abt(t) is after the write stage @. Thus at Abt(t) € (Q, S), Ee [LOg]Abt(t), where E is an entry
with Trans(F) =t and Loc(E) = A. Let p = [EntryPos(E, Log)]Abt(t), and let R = Abt(t) + (p+1). By
Claim 13, [CurrEntry], = E, so R is a (t, A)-abort-undo stage. O.

6.5 Claims involving normal processing

Claim 15 If S is a read or commit stage, then DB()) is unchanged in [S, S+ 1].

Proof.

o If S is a X-read stage and [InCache(X, Cache)lg = true, then DoRead fires but does not write to
cache, so by Claim 1, DB(A) is unchanged in [S, S+ 1].
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o If S is a N-read stage and [InCache(N',Cache)lg = false, then if X' = X, [DB(X)]g = [Stable(N)]s,
so DoRead writes [DB(A)]g to cache in location A; by Claim 1, DB(AX) is unchanged in [S, S+ 1]. If
A # A, then DoRead writes to cache in a location # A; by Claim 1, DB(A) is unchanged in [S, S+ 1].

e If S is a commit stage, then rule DoCommit fires but does not write to cache, so by Claim 1, DB(A)
is unchanged in [S, S+ 1]. a.

Claim 16 Let S be a stage for which [[LIW ()]s, S] is normal. If S 4 1 is a A-write stage and [LW ()]s #
[LCW(X)]g, then [LT(X)]g aborts before S.

Proof. Assume to the contrary that S+1is a A-write stage and [LW (A)]g # [LCW(A)]g, but [LT(X)] g does
not abort before S. Then there is an [LCT(X)]g-commit stage R < S, but there is no [LT())]s-terminating
stage R’ < §. If R < [LW(A)]g4, then there is no [LT(X)]¢-terminating stage R’ between the A-write stages
[LW(N)]g and S+1. If [LW(A)]g < R, then there is no [LCT()A)]g-terminating stage R’ between the A-write
stages [LCW(A)]g and [LW(A)]g. In either case, strictness is violated. O.

Claim 17 Let 8 be a nonabort stage for which [[LW(A)]g, S| is normal, and let ¢ = [LT(\)]s. If ¢ aborts
before S, then [DB(A)]g = [BeforeImage(A,t)]s.

Proof. Assume that ¢ aborts before §. By Claim 14, there is a (¢, A)-abort-undo stage R € ([LW(/\)]S,S).
Thus [OldVal(CurrEntry)), = [BeforeImage(A,t)],. We induct on stages after R.

Base step: § = R + 1. At stage R, rule DoAbort fires, writing [BeforeImage(X, )], to cache in location
A. By Claim 1,

[DB(M)]g = [BeforeImage(A t)]x
= [BeforeImage(A,t)]4 (by Claim 5)

Inductive step: § > R + 1. Assume [DB())]g_, = [BeforeImage(X, t)]g_;.

e If § — 1 is a read or commit stage, then by Claim 15 and Claim 5, DB(X) and Log are unchanged in
[S-1,8].

o If S — 1 is a write stage, then since § > [LW(A)]5, S is not a A-write stage. Rule DoWrite fires,
writing to cache in a location # A. By Claim 1, DB(}) is unchanged in [S -1, S]. DoWrite logs the
write, but by Claim 2, BeforeImage(A,t) is unchanged in [S -1, S].

e If S—11s an abort stage, then by Claim 5, Log is unchanged in [S— 1, S]. If § — 1 1s not an abort-undo
stage, then there is no write to cache, so DB(A) is unchanged in [S -1, S]. If § — 1 is an abort-undo
stage, then it is not a A-undo abort stage, since otherwise it would be a (¢, A)-abort-undo stage (by
Claim 11), and there has already been a (¢, A)-abort-undo stage R < §. Then there is a write to cache
at a location # A. By Claim 1, DB(A) is unchanged in [S -1, S].

In all cases, by the inductive hypothesis, [DB())]g = [BeforeImage(A,t)]5. O.

Claim 18 Let S be a stage for which [[LW())]g,S] is normal. If [LW())]s = [LCW ()]s, then

[LCV()‘)]S = [DB()‘)]S+1 :
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Proof. Assume that [LIW ()]s = [LCW())]g. Proof by induction on stages in [[LW())]s,S).

Base step: S = [LW())]g = [LCW(X)]g. S is a A-write stage, so rule DoWrite fires, writing [LCV(A)]4
to cache in location A. Then by Claim 1, [DB(A)]s,, = [LCV(A)]g, so the proposition holds for S.

Inductive step: § > [LW(A)]g. Assume the proposition holds for § — 1.

e If S is a read or commit stage, then by Claim 15, DB(A) is unchanged in [S, S+ 1], so the proposition
holds for §.

o If S is a write stage, then it is not a A-write stage since § > [LW(A)]5. Rule DoWrite fires, writing to
cache in a location # A. By Claim 1, DB(}) is unchanged in [S, S+ 1], so the proposition holds for §.

o If S is an abort-undo stage, then it is not a A-undo stage, since otherwise [LW(A)]g # [LCW(A)]5 by
Claim 12. Rule DoAbort fires and writes to cache in a location # A. By Claim 1, DB(A) is unchanged
in [S, S+ 1], so the proposition holds for §.

o If S is an abort stage but not an abort-undo stage, then rule DoAbort does not write to cache, so
DB(A) is unchanged in [S, S+ 1]; therefore the proposition holds for §. O.

6.6 Claims involving recovery processing

Claim 19 Let S be an error stage, let E € [Loglg, and let p = [EntryPos(E, Log)]g. If (S,S + p] is

error-free, then [CurrEntry]S+(p+1) = FE.

Proof. Similar to that for Claim 13.

Claim 20 If S is a A-undo recovery stage, then [CurrEntrylg = [LastEntry(X, Log)]s.

Proof. Assume that S is a A-undo recovery stage but [CurrEntrylg # [LastEntry(X, Log)lg. Let p =
[EntryPos(LastEntry(X, Log), Log)] 5, and let ¢ = [EntryPos(CurrEntry, Log)]g. Then ¢ > p. Let R =
Err(S)+ (p+1). By Claim 19, [CurrEntry|, = [Last Entry(X, Log)]g. Rule DoCorrect fires at R, adding
A to Corrected. Since Err(S) +(¢+1) =8, 8 > R, so X € [Corrected]g. This contradicts the assumption
that S is a A-undo recovery stage. O.

6.7 Lemmata

Our first lemma deals with the time interval between a write to a data item A and the next error stage
following that write (if any occurs). At any stage within this interval, the last committed value can be found
at a well-defined place in the log. If the last write to A is committed, the last committed value of A is simply
the after image of the last A-entry. If the last write is not committed, the last committed value is the before
image of A with respect to the last writer to A.

Lemma 1 Let S be a stage for which [[LW())]g, 8] is normal. Then

[NewVal(LastEntry(A, Log))] g, if [LW(N)]s = [LCW(N)]g;
[LCV(N)]s =
[BeforeImage(X, [LT(X)]g)]

S41 otherwise.
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Proof. By induction on stages in [[LCW(\)]g, S].

Base step: § = [LCW()A)]s. S is a A-write stage, so rule DoWrite fires, logging new value [LCV(A)]4
in location A. Then by Claim 3, [NewVal(LastEntry(A, Log))ls,, = [LCV(A)]g. Since [LW ()]s =
[LCW (X)]g, the proposition holds for S.

Inductive step: § > [LCW())]g. Assume the proposition holds for § — 1.
o If S is a A-write stage, then [LW(A)]g = S and [LT())]g = [Trans(Cmd)],.
LWV, = W)
LWV, # LW

[DB(M)]g = [BeforeImage(X,[LT(N)]s_,)ls
[LCV(N)]g (by inductive hypothesis)

s, then by Claim 18, [LCV(A)]g = [DB())]s.

]
ls, then by Claim 16, [LT())]g_, aborts before § — 1. By Claim 17,

Rule DoW'rite fires, logging [LT())]g’s write to A with old value [DB(X)]g. Then by Claim 2,
[BeforeImage(, [LT(A)]g)] = [DB\)]g

[LCV(N)s

S+1

Since [LW(A)]g = S # [LCW(X)]g, the proposition holds for S.

e If S is a write stage but not a A-write stage, then by Claim 4, LW (X) is unchanged in [S — 1,8].
DoWrite logs the write, but by Claim 2, BeforeImage(A, [LT())]g) is unchanged in [S, S+ 1]. Thus
the proposition holds for §.

e If S is not a write stage, then by Claim 4, LW (X) is unchanged in [S — 1,8], and by Claim 5, Log is
unchanged in [S, S+ 1], so the proposition holds for §.

Our second lemma concerns the interval between a system error and the first stage after the ensuing
recovery. At any stage within this interval, if a data item A has been “corrected” (i.e., undone or redone),
the current database value of A is the value defined in Lemma 1 as the last committed value.

Lemma 2 Let § be an error stage for which there is a A-write stage < &, and let 7 be a stage in

(S, Norm(S)]. Then if A € [Corrected],,
[NewValue(LastEntry(X, Log))]s if [LW(A)]g_; = [LCW(N)]g_;;

wm»hz{ |
[BeforeImage(A, [LT(N)]s_1)ls otherwise.

Proof. By induction on stages in (S, T].

Base step: 7 = S+ 1. S is an error stage, so Restart fires, updating Corrected so that [Corrected], = 0.
Then A ¢ [Corrected], so the proposition holds vacuously for 7.

Inductive step: 7 > S + 1. Assume the proposition holds for 7 — 1.

e If 7 — 1 is an error stage, then Restart fires, updating Corrected so that [Corrected]; = 0. Then
A ¢ [Corrected);, so the proposition holds vacuously for 7.

o If 7 — 1 is a (¢, A)-correcting recovery stage for some ¢, then by Claim 9,

[LT(M]7
= [LT(N)]s_, (by Claim 4)

t
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— If [LW(N)]s_, = [LCW(A)]s_,, then by Claim 20,

[CurrEntryl,_, = [LastEntry(X\,Log)l;_,
= [LastEntry(X, Log)| s (by Claim 5)

By Claim 7, t € [CommitSet];_,. Rule DoCorrect fires, writing [NewV al(CurrEntry)l,,, to
cache in location A\. Then [NewVal(CurrEntry)],;_, = [NewVal(LastEntry(X, Log))]s, so by
Claim 1, [DB(X)]; = [NewVal(LastEntry(A, Log))] g. DoCorrect also adds A to [Corrected],_,
so A € [Corrected] . Thus the proposition holds for 7.

— I [LW(N)]s_; # [LCW(X)]g_,, then by Claim 20, [CurrEntryl,_, = [LastEntry(X, Log)],_,.
Then

[OldVal(CurrEntry)l-_, = [BeforeImage(A,t)],_,
[BeforeImage(X, [LT(M)]s_1)l7_1
[BeforeImage(A,[LT(M)]s_1)ls (by Claim 5)

By Claim 7, t ¢ [CommitSet];_,. Rule DoCorrect fires, writing [OldV al(Curr Entry)],_, to
cache in location A. By Claim 1, [DB(A)]; = [BeforeImage(X, [LT(X)]g_,)]ls. DoCorrect also
adds X to [Corrected];_,, so A € [Corrected],. Thus the proposition holds for 7.

o If 7 —1 is a correcting recovery stage but not a A-correcting recovery stage, then rule DoCorrect fires,
writing to cache in a location # A. By Claim 1, DB()) is unchanged in [’T— 1, ’T]. DoCorrect does not
update Log or Corrected, so Corrected and BeforeImage(X,[LT())]g) are unchanged in [’T - 1,’7].
Thus the proposition holds for 7.

o If 7 — 1 is a recovery stage but not a correcting recovery stage, then rule DoRecovery does not fire, so
Corrected, DB(X) and Be foreImage(A,[LT())]g) are unchanged in [’T -1, ’T]. Thus the proposition
holds for 7. O.

Our third lemma states that at the end of a recovery procedure, every data item that has been written
to has been corrected.

Lemma 3 If § is an error stage and there is a A-write stage < &, then A € [C’orrected]Norm(s).

Proof. Assume there is a A-write stage R < S, but A ¢ [Cor'rected]Norm(s). By Claim 6, there is an
entry E € [Loglg with Trans(E) = t and Loc(E) = A. Let n be the number of entries following E in
[Log]s. Then since [CurrEntryls,, = [LogEnd(Log)]s and for each 7 € (S, Norm(S)), [CurrEntry|; =
[PrevEntry(CurrEntry, Log)l;_, [C’ur'rEntry]S_l_(n_l_l) = E. Rule DoCorrect fires at S + (n + 1), adding
A to Corrected, so A € [Corrected]s,, 10y and therefore A € [Corrected]y,,,s), a contradiction. O.

6.8 Theorems: correctness and liveness

Our first theorem proves the correctness of the algorithm: after a system error and recovery, every data item
that has been written to has its last committed value stored in the database.

Theorem 1 If § is an error stage and there is a A-write stage < §, then [DBO‘)]Norm(s) =[LCV(N)]g_4-

Proof. Let R be the first error stage in [[LW(M)]g, S]. By Lemma 3, A € [C’orrected]Norm(S).
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o If [LW(XN)]g_, = [LCW(A)]g_,, then by Lemma 2,

[DB(’\)]Norm(s) = [NewVal(LastEntry(A, Log))] s
NewVal(Last Entry(A, Log))] o
LCV(N)]g (by Lemma 1)

LCV(M]s_a

[
[
[
[

o If [LW(N)]g_, #[LCW(M)]g_,, then by Lemma 2,

[DBMNorms) = [BeforeImage(A, [LT(N]s ;)]s

[
[Beforelmage(A, [LT(MN)]g_1)]g (by Claim 5)
[
[

LCV(N)]g (by Lemma 1)
LOV(Ms_y

O.

Finally, we prove the liveness of the algorithm: given a sufficiently long error-free period, a recovery
procedure will terminate and normal processing will continue.

Theorem 2 Let S be an error stage, and let n = |[Log]g|. If there is no error stage in (S, S+ (n+2)], then
Norm(S) =8+ (n+ 2).

Proof. Let E be the entry in [Log]g such that [EntryPos(E,Log)ls = n — 1; then
[PrevEntry(E, Log)|s,,, = undef. By Claim 19, [CurrEntry|s,, = E. Rule ScanlLog fires, updating
CurrEntry so that [CurrEntry]S+(n+1) = [PrevEntry(E, Log)ls,, = undef. Rule Scanlog fires again,
this time updating InRecovery so that [InRecovery]S+(n+2) = false. Then since [Error]s_l_(n_l_z) = false,
S+ (n+2)isnormal, so S+ (n+2) = Norm(S). O
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