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Abstract

Design applications typically require radically varied views of shared design data, ranging from
highly compact hierarchical design artifacts to flat and unfolded structures. Because current OODB
view technology is not capable of providing this requisite variety of representations, we address this
problem by providing special-purpose support for manipulating and querying hierarchical structures.
Our object model lays the foundation for the implementation of meta-classes required to support hier-
archical set operations. For example, the algebra defined over the data model allows the implicit
unfolding of hierarchical sets, providing users with a (virtual) flattened and unfolded view of shared
data without the penalty of having to maintain replicated data. It thus forms the basis for powerful
extensions to the view capabilities of the OODB view system MultiView. Our query operators can be
used to derive unmaterialized, unfolded, and updatable views from folded hierarchical sets. These
views are updatable using two types of update operations, namely, in-context and out-of-context
updates. For this purpose, we present an algorithm to optimally perform in-context updates on an
unfolded view via selective unfolding. In order to evaluate the advantages and limitations of interoper-
ating through such complex hierarchical and flattened views of design data, we also present empirical
performance results comparing queries on implicitly and explicitly unfolded hierarchical sets.
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1 Introduction and Motivation
Motivation. Object-Oriented Databases (OODBs) are often chosen to support the needs of advanced applica-

tions for manufacturing, ECAD, ,MCAD and design, because they support the modelling of complex data
[7,11,18]. Although integrated software tools benefit from these database services, such as versioning and access
control, these tools often manipulate different representations of shared data. In design applications, for example,
a design entry tool manipulates hierarchical design data. On the other hand, a design analysis tool may require an
unfolded and flattened structure. For the tools to cooperate in an integrated environment, the data and operations
on the data must be translated or transformed for each tool. Even with current integration standards [8] the burden
of transforming design data between different formats is frequently the responsibility of a designated translation
tool. Sometimes tool developers are charged with the responsibility to transform the data. Either approach results
in ad-hoc systems that do not support incremental update of shared and transformed data.

OODB Views. Database views have been suggested as a means to reduce the effort required to restructure data
shared by integrated applications [21,10]. Figure 1 illustrates the database view system that provides custom
restructuring ofbase data into a specificderived format required by each of the tools in the system. Our OODB
view system, MultiView, [22] provides aview definition language (VDL) based upon a generic object algebra that
is capable of restructuring data for each tool in the system. As such, it automates the transformation of data
between the central format and the tool specific formats. In addition, the system provides the services necessary to
maintain consistency between the central and materialized derived data [15]. MultiView assures the correctness of
data transformations and reduces undesired coupling between integrated tools. As a consequence, MultiView rep-
resents a powerful enabling technology for integrating design tools that has the potential of increasing the produc-
tivity of tool developers and integrators. However, current OODB view system technology (including the
MultiView system) is not yet capable of performing complex data transformations, such as the computation of
closure, the traversal of paths, or the flattening of hierarchical graph structures [1,5,13,26]. Because the ability to
support complex transformations on hierarchical data is important for achievinginteroperabilitiy of design tools,
in this paper we extend the underlying database system with the data model, algebra, operations, and update
semantics necessary to perform optimized queries and updates on hierarchically structured data.

Hierarchical Views. Hierarchical descriptions are compact because they re-use portions of the data in the form
of abstractions. As an illustrative example, consider the description of a 64-bit integer adder that is constructed
solely of two primitive elements – a single bit full adder (FA) and a 4-bit carry unit (CU) (Figure 2). In the figure,
each large design object has a border pattern and shape that matches the interface abstraction associated with the
design object, e.g. the 64-bit adder contains four instances of the 16-bit adder abstraction. The final design repre-
sentation consists of 64implicit occurrences of the 1-bit adder, even though the design description contains only 4
instances of the 1-bit adder abstraction.
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Figure 1: Database Views Supporting Interoperability under Complex Hierarchical Transformations
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Figure 2: A Folded Hierarchical Representation of a 64-bit Adder.
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This hierarchical description is compact, and consequently easier to maintain and manipulate than an equiva-
lent unfolded description. Many complex and powerful operations can be performed very efficiently on hierarchi-
cal structures [16]. The disparity the design size and the representation size suggests that there are numerous
opportunities to improve the performance of queries on the hierarchical description. We expect to gain the follow-
ing advantages when employing hierarchical representations:

• Because the size of the description is logarithmic in the size of the design, many fewer disk accesses are
required to fetch a hierarchical description from disk than would be for an unfolded design.

• Many queries posed on a folded representation can be answered more efficiently than would be possible on
the unfolded data structure, such as: “How many Full Adders occur in this design?”.

• The “concentration” of data into a folded structure permits radical changes to the design with a single
operation. For example, in Figure 2, a change to the full adder structure can impact every bit of the 64-bit
adder.

The ubiquitous nature of hierarchical structures and their advantages in retrieval and query performance as well as
powerful update capabilities suggests that an OODB system should provide support for the hierarchical design
representations suitable for the software tools and users.

Problem Description and Our Approach. Despite the clear advantages to using a hierarchical structure,
some design tools must perform operations on theunfolded or flattened (or both) data that is based upon a folded,
hierarchical description [27]. The goal of this paper is to support such tools by providing the database support
required to perform unfolding and flattening transformationsimplicitly, through a systematically derived, unmate-
rialized database view, rather than the more commonly employed method of performing an ad-hoc translation on
the design. The resulting solution shields the tool developer and integrator from problems of data replication that
complicates data consistency maintenance and inhibits the data exchange between tools. Our approach simplifies
software tool integration by permitting tools in the environment to operate on their preferredderived representa-
tions, while thebase representations are under the care of a central data manager.

Although the implicit unfolding of hierarchical structures can save enormous space and query processing time,
the later stages in the design process often require an explicitly unfolded design. Unfolding provides the designer
with the capability to distinguish between the small variations in initially identical design objects. We propose an
in-context unfolding algorithm that permits the design objects to “diverge” in a controlled fashion, while still
maintaining many of the efficiencies of the folded representation. This support called “selective unfolding”
defines the necessary algorithms to store and transparently access the selectively unfolded portions of a design.

Experiments. To validate the performance gains for implicitly unfolding hierarchical structures we conduct
experiments to measure access time required for aggregation queries on both folded and unfolded sets. The results
of our initial experimentation verify the dramatic efficiency, both in time and space, of queries on implicitly
unfolded sets. They also indicate the importance of choosing a good clustering strategy for folded sets.

Contribution. It is the goal of this research to provide the database services essential for supporting the
implicit unfolding of hierarchical sets. To this end, we have developed an object model for hierarchical sets,
including an algebra of operations that permits query optimization and the definition of updatable unfolded views.
The new meta-classes, operations, and query operators will be integrated as base classes into the MultiView
OODB view system to increase its effectiveness as an integration tool for applications requiring hierarchically
structured data.

Structure of this Paper. We begin with an overview of concepts for folded and unfolded structures in Section
2. In Section 3, we describe the object-oriented model upon which our hierarchical object model is based. Section
4 describes our object model for representing and manipulating hierarchical sets. Algebraic operators that exploit
the implicit unfolding within our model are presented in Section 5, with update operations presented in Section 6.
A performance evaluation of the proposed structures and operations is presented in Section 7. We describe related
work in Section 8, and conclude in Section 9.

2 Folded and Unfolded Hierarchical Structures
In this section, we introduce the concepts of folded/unfolded and hierarchical/flat structures commonly used in

design applications.We construct design objects by composingprimitives drawn from alibrary. Primitives may
be grouped together to form more complex design objects.Abstractions1 of these more complex design objects
are used to compose new design objects, which are said toown the abstractions. Figure 3 indicates theowns-
abstraction-of relationships between the complex design objects (16 and 4 bit adders) and the primitives of the
design. This figure closely parallels the relationships shown in Figure 2. Note that the presence of four of the four-
bit adders in the design is represented by the 16-bit adderowning four abstractions of the four-bit adder, rather
than by having four copies of the four-bit adder in the design. Even though the design description only contains a
single copy of a four-bit adder, we say that the design has fouroccurrences of the four-bit adder that areimplicitly
defined by the relationships in the owns-abstraction-of (OAO) DAG.

1. In the ECAD community, these are often referred to asInterface Instances. The terms are both similar to and different enough from
the instance described in the OO model to cause confusion. We avoid potential confusion by using the term Abstraction.
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A design description can be characterized ashierarchical andfolded (Figure 3). It is hierarchical if the OAO
DAG representing the description has a height greater than one. The description is called folded because each
design object may own more than one abstraction of the same design object.

We can unfold a design by creating a unique replica of the design object associated with each abstraction.
Because of the replicated design objects, the unfolded design has space explicitly allocated for each occurrence of
an object in the design (Figure 4). This is important if for instance we need to maintain desing data with each
unfolded design object. The description remains hierarchical after unfolding, because the height of the design tree
resulting from an unfolding operation is the same as the height of the folded design DAG.

A folded design can be flattened by removing all of the intermediate objects in the hierarchical description and
retaining only the root and the leaves of the folded tree. This is practical because, in many cases, hierarchical ele-
ments are merely artifacts that make it possible to fold a design. To distinguish between the edges in the flattened
DAG, we attach unique labels derived from each path in the original hierarchical and folded DAG. The resultant
unfolded and flattened design is illustrated in Figure 5.
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Figure 3: Folded, Hierarchical DAG Representing a 16-bit Adder.
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Figure 4: Unfolded Hierarchical Design (Tree).
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The folded and flattened design can be a convenient form for certain design and analysis tools that do not
require personalized primitives. This is because the layers of hierarchy in the design are hidden from the design
tool, making the compact, folded design more easily accessible (Figure 6).

Note that the distinction between primitive entities in a flattened and folded design is made by way of a path
identifier on each edge of the folded, flattened DAG (Figures 5 and 6). Each distinct path in the folded DAG cor-
responds to a uniqueoccurrence of a design object within the design.

The four views of hierarchical design data presented in this section are suited to different applications and to
different times in the design cycle. Table 1 compares the forms, their characteristics, and describes when they are
most likely to be used.

3 Object-Oriented Data Model
The foundational elements in this work are an object-oriented data model [1, 25, 26] augmented with system

classes that support operations on hierarchical sets. In this section we briefly review the object-oriented terminol-
ogy we utilize in the remainder of this paper.

Classes in the model are arranged in a generalization hierarchy permitting multiple inheritance. Subclasses
inherit the type characteristics of their superclasses. Objects of a class may besubstituted anywhere that objects of
a superclass could otherwise be used. The classes that comprise the generalization hierarchy combine to form the
global schema.

Objects have attributes that are encapsulated. Domains of attributes are either primitive built-in types or refer-
ences to other objects. Attributes are accessible using the dot (.) operator. In general the (.) operator invokes a
method of the same name as the attribute, returning an object that represents the value of the attribute. For an
objecta with an attributename, a.name accesses the value of the attribute. It is assumed that a method is invoked
to compute the attribute. Several invocations of the (.) operator may be used to access data along an attribute path
(i.e., a.name.length invokes thename method on the objecta and then thelength method on the object returned
from thename method.).

Objects have a unique identifier associated with them. It can be used for comparison when trying to determine
if two references to an object are to the same object.Objects can be compared for equality using two distinct com-
parisons. The =id operator determines if two references are to the same object. The = operator determines if all of

Table 1: Forms of Design Data and their Uses.

Folded Unfolded

Hierarchical • Used early in design cycle.
• Used by tools that do not need

access to distinct primitives, e.g.,
design entry tools.

• Most compact representation.
• Primitive elements are identical.

• Used later in the design cycle.
• Used by tools needing both

hierarchy and distinct primitives,
e.g., hierarchical placement tool.

• Least compact representation.
• Primitive elements may all be

distinct.

Flattened • Used early in design cycle.
• Used by tools requiring removal of

hierarchy, but not requiring
distinction between primitives, e.g.,
early design rule checkers.

• Compact representation.
• Primitive elements are identical.

• Used later in design cycle.
• Used by tools requiring no hierarchy

and distinct primitives, e.g.,
simulators.

• Large representation.
• Primitive elements may all be

distinct.

A16
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Figure 6: Folded and Flattened Design
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two objects’ attributes are =id.
A class may define aprototype instance from which copies are made when instances of the class are created.

An instance created from a prototype inherits both the type and the values from the prototype instance. All
instances made from a prototype are initially = butnot =id to the originating prototype.

A view in our model is a virtual class [22], defined and named by a query operation onbase classes. All virtual
classes are automatically integrated into the global schema by the view system. For the purposes of this work,
views are notmaterialized. We say we can update an unmaterialized view if updates made to the view can be
unambiguously propagated to the associated base classes [26].

Because objects and classes areintrospective, they both have methods to determine if a particular attribute or if
a specified operation is valid for the class or object. For a given objecto and a functionf, for example,o.accepts(f)
determines if the method (or predicate)f is valid for the object.

4 HierSet Concepts: The Model
The representation of folded sets requires a means to specify the nesting of sets. To keep the representation

compact, this nesting is accomplished using an instance of a setabstraction rather than a copy of the set itself. In
the simplest case, the abstraction is simply a reference or pointer to the set, but there may also be data stored with
the abstraction to distinguish it from others. To ensure the acyclic properties of the OAO DAG, we impose con-
straints on the nesting of sets.

In the following sections class names appear in a bold, typewriter font, for example the classHierSet is so
indicated. When we refer to the class itself, we will always refer to it as theHierSet class. We will refer to
instances of the class asHierSet instances, instances ofHierSet, or justHierSets. We set off instance
names, such asAdder, using a normal-weight sans-serif font.

4.1 The Meta-Data Classes

The meta-classes for modeling hierarchical sets are shown in Figure 7 using OMT notation [24]2. The class
Primitive, whose instances are maintained by aLibrary instance represents the primitives in the set. We
build hierarchical sets by inserting instances derived from the classAbstr into a multi-set, an instance of the
HSet class. The insertion of aPrimAbstr indicates nesting of aPrimitive instance within anHSet, while

anHSetAbstr instance indicates that anHSet is nested within anotherHSet. An instance of the classHier-
Set maintains constraints upon operations on the instances of theHSet class.

A HierSet manages an ordered collection ofHSet instances. It sequences theHSets, and imposes a non-
circularity constraint on the composition ofHSets intoHierSets. For every instance of anHSet, there is a cor-
responding instance of theHSetAbstr class. This instance serves as the prototype for all otherHSetAbstrs
associated with the sameHSet. When aHierSet creates anHSet instance, it also creates a corresponding
HSetAbstr prototype for theHSet. For simplicity, we limit the construction ofHierSets to be from the bot-
tom-up, however, the top-down construction could be supported with some additions to the system classes.

The HierSet Model
Definition 1. A HierSet H is an ordered set ofHSet instanceshj, namely:

. (1)

Most of the constraints on the construction ofHierSets are actually imposed on the construction of member

2. OMT, the Object Modeling Technique is one of several popular object-oriented design methodologies that include graphical mod-
eling languages specifically tailored for object-oriented design.

HSet
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Abstr
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Library set-of Primitive

abstraction-of
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Figure 7: OMT Diagram of the System Classes Supporting Hierarchical Sets.
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HSets. As shown in Figure 8, anHSet hj is a multiset constrained to contain two types of elements. The first
kind of element is an instance of anHSet abstraction (HSetAbstr). Each instance ofHSetAbstr is associ-
ated with only oneHSet via theabstraction-of relationship.3 The second kind of element, is aprimitive abstrac-
tion (PrimAbstr). ThePrimAbstr relates viaabstraction-of to aPrimitive instance stored in aLibrary
instance.HSetAbstr in anHSet represents the nesting of anHSet associated with theHSetAbstr.

For example, for the 16 bit adder design shown in Figure 3, we have theHierSet Adder defined as

. TheHSet A16 is defined as , indicat-
ing the nesting ofA4 within anA16 four times and nesting of aCU primitive within theHSet. Figure 8 shows the
OMT instance diagram for theHierSet Adder.

To prevent infinitely nestedHSets we number eachHSet hk with a unique topological numberk and define
the following constraint.

Definition 2. For anHSet hk containing abstractions , each related to theHSet hj via the abstraction-of

relationship, the following condition holds:

. (2)

For ourAdder example, the constraint prevents the nesting of anA16 within anA4, or anA4 within itself, because
A16 has a smaller topological index thanA4.
Additionally, the constraint permits the designation of anHSet as the root of aHierSet as follows:

Definition 3. In aHierSet H, there exists anh0 such that noHSet in H contains anHSetAbstr .We
designateh0 as theroot, and access it via theHierSet methodH.root().

For the Adder example,A16 is the root of theHierSet Adder. We impose an additional constraint on the con-
struction of aHierSet to assure that it is well–formed. The constraint assures that all requiredHSets are ele-
ments of theHierSet.

Definition 4. For aHierSet H defined as in Definition 1, we have:

. (3)

The Adder example meets this requirement becauseA4 is a member of theHierSet. Figure 8 shows the
resulting OMT instance diagram for ourAdder example. The diagram shows theowns relationship associating
HSets with their elements and theabstraction-of relationship associating eachAbstr to itsHSet or Primi-
tive. If we combine the owns and the abstraction-of relationship into a single relationship calledowns-abstrac-
tion-of, we can use the derived relationship to construct theowns-abstraction-of (OAO) DAG. The OAO DAG for
the Adder is illustrated in Figure 3.

3. The association of anHSetAbstr with differentHSet alternatives is called the configuration problem. We assume in our current
model that a configuration has already been selected.
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Figure 8: OMT Instance Diagram for the 16-bit Adder portion of the HierSet Adder.
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Definition 5. Theowns-abstraction-of(OAO) DAG of aHierSet
as defined in Definition 1 and a collection of nodesN and edgesE that satisfy the following conditions:

a. There is a root node ho.
b. For everyhi in H, there is a node inN labelledhi.

c. For every in hi there is a unique owns-abstraction-of edge labelled  in E from hi to hj.

d. For eachPrimAbstr  in all hi, there is a single leaf nodep in N.

e. For everyPrimAbstr  in hi, there is a uniqueowns-abstraction-of edge inE from hi to p.

Figure 3 shows OAO DAG for theHierSet representing a 16-bit Adder design. The DAG includes theA16
andA4 HSets as well as the FullAdder (FA) and Carry Unit (CU) Primitives. The OAO DAG has important
properties that permit us to define two new conceptscontext andoccurrence.

Definition 6. An occurrence is an object O formed by a unique path in the OAO DAG from an object S to an
object D. An occurrence inherits the type of both the path and the object D that ends the path. We define the
methodsource to return S, the methoddest to return the object D, and the methodcontext to return the path in
the occurrence associated with the parent of D in the OAO DAG.

Referring to the instance diagram illustrated in Figure 8, we see that thePrimAbstr Abstr#5 is on several paths
that originate at the rootHSet A16. One of the four occurrences (occurrence 9.5) in whichAbstr#5 participates is
shaded in the unfolded/flattened design illustrated in Figure 5.

Definition 7. A Context C for an occurrence O in aHierSet is the path from the root of theHierSet to the
parent of O.

The context is so named because it provides a context in which sibling objects in the OAO DAG may be related
via simple relationships in theHierSet. For example, the context for the occurrence corresponding to the
shadedCU in Figure 5 is 9. This context information, coupled with the identity of theAbstr instance, comprises
an occurrence in the implicitly unfoldedHierSet.

4.2 Properties of HierSets

Lemma 1. ForHierSet  rooted atHSet , ev-

eryHSet  is the root of aHierSet consisting of  and allHSets reachable from  via the transitive

application of theowns-abstraction-of property.
Proof: This follows from the properties of a DAG as well as the preservation of properties (2) and (3)

of HierSets. It can be shown using a proof by contradiction on property (2).

To support the definition of the Flatten operator, we define the multiset union, denoted by , as preserving both
membership and duplicate counts. Multiset union meets conditions (4) and (5) for the multi-sets A and B as fol-
lows:

. (4)

If we define a function  that returns the number of times the element x occurs within the multiset
S, we can express the multiset union as preserving counts with the following condition:

. (5)

Definition 8. We define the overloaded operationFlatten on aHierSet H with the following recurrence:

(6)

G N E,( )= H h0 h1 ...,hj ...,hk, , ,[ ]=

an
hj an

hj

an
p

an
p

H h0 h1 ...,hj ...,hk, , ,[ ]= h0 a1

hi1 a2

hi2 a3

hi2 a4

hi3 ... an

hin, , , , ,{ }=
hi j

hi j
hi j

multi∪

x x A∈ x B∈∨( ) x A B
multi∪( )∈→( )∀

dupcount S x,( )

x∀ dupcount A x,( ) dupcount B x,( )+ dupcount A B
multi∪ x,( )=( )

Flatten x( )

x{ } if x.class() Primitive=( )

Flatten i.abstraction-of( )
i x.owns∈

multi∪ if x.class() HSet=( )

Flatten x.root()( ) if x.class() HierSet=( )





=
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5 An Algebra for the HierSets Model
Although there are apparent time and space advantages to using foldedHierSets to represent large, regular

structures, there are often times when the structure described by aHierSet is best viewed in its unfolded splen-
dor. In fact, it is common for applications to require a view of hierarchical/folded data as if it were flat/unfolded
(see Section 2). For example, the 64-bit adder structure illustrated in Figure 2 might be subjected to queries such
as: “How many full-adder cells does this design contain?” and “What is the total size of all cells in the design?”.
Although these kinds of queries are most easily posed to a flattened and unfolded representation, the cost to
explicitly unfold and flatten a design can be prohibitive. For this reason, we provide query operators that support
the querying of hierarchical and folded structures as if they were unfolded and flattened.

In this section, we describe an object algebra forHierSets [22,25,26].  Unlike previously proposed object
algebras, our operators are unique in that they provide implicit flattening and unfolding ofHierSets and are
essential to query optimization in the presence of hierarchy. We are motivated by the following goals:

• Development of query operators that provide the appearance of operating on unfolded/flattened sets, but have
the necessary capabilities to perform the queries on folded/hierarchical structures.

• The need to identify algebraic identities that will enable the development of query optimizations for
hierarchical structures.

5.1 Query Operators on HierSets
In this section, we present the algebraic operators defined forHierSets. In general, any of the operations

with names beginning in “H” take aHierSet as an argument. As a shorthand notation, they may take anHSet
h as an argument, when they are interpreted to mean “theHierSet rooted at theHSet h”.

Unfold
The Unfold operation is the basis for defining most of the algebraic operations for theHierSet class. Unfold
returns a set of all occurrences in aHierSet. This consists of all paths in the OAO DAG originating from the
root. Recall that the OAO DAG consists only ofHSets andPrimitives at the vertices and that every occur-
rence inherits the type of both the path and the final vertex in the path. Because of this, the set returned from the
Unfold operation can be treated just as if it consisted ofHSets andPrimitives. Unfold for aHierSet H is
formally defined as:

. (7)

Select
Select returns a set of objectss from a setS for which the predicateq is both valid and true. Theaccepts() method
establishes the validity ofq as a method or predicate.

. (8)

HSelect
The HSelect operator finds all paths that are reachable from theHierSet H starting at the root and ending at an
HSet orPrimitive s, such thatq(s). We define HSelect in terms of the Select operation and the Unfold opera-
tion.

. (9)

To retrieve a set of allFA occurrences in theAdder design, we ask for all elements in theHierSet that have the
name “FullAdder”.

Full-Adders = HSelect(Adder, λv v.name = “FullAdder”).
This returns a set of all occurrences of full adders in the implicitly unfolded design. Because thePrimitive
class has aname() method, this query operation returns 64 occurrences, each ending with aFA Primitive.

Image
Image applies a function to each element of a set, creating a set of new objects comprised of the return value from
each function application. Only elements in the setS for which the functionf is valid are considered by Image.
Invalid elements are discarded. For the setS and the functionf, we define Image as:

. (10)

The functionf may accept the set itself as an argument. This permits a more expressive composition of nested
operations, namely,

. (11)

This form of Image permits the binding of the set Y to the second argument off. Because the functionf may com-
pute a set, the resulting multiset may be a nested set. For example, to construct a set composed of sets of elements
that all have the same name, we can express this as:

NameGroups = Image(Y, λs,S Select(S, λx x.name == s.name)).

Unfold H( ) o o�is�an�occurrence( ) o.source() H.root()=( )∧{ }=

Select S q,( ) s s S∈( ) q.accepts s( ) q s( )∧ ∧{ }=

HSelect H q,( ) Select Unfold H( ) q,( )=

Image S f,( ) f s( )�| s.accepts f( ) s S∈( )∧( ){ }=

Image Y f,( ) f s S,( )�| S=Y( ) s.accepts f( ) s Y∈( )∧ ∧{ }=
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If Y = {A, B, B, A, C, A}, containing objects with single letter names, thenNameGroups takes on the value:
NameGroups = {{A,A,A}, {B,B}, {B,B}, {A,A,A}, {C}, {A,A,A}}.

HImage
The HImage operator is the Image operator over an implicitly unfoldedHierSet. It is defined as:

. (12)

To obtain a set of all of the sizes of the occurrences of primitive cells in theAdder design we can apply the func-
tion λ, which invokes the size method of the argument, to all occurrences:

Sizes = HImage(Adder, λi i.size).
The result is a set of the sizes of all occurrences in theAdder for which the size method is valid.

Reduce
Reduce applies a binary operatorop repeatedly to each elements of a setS and an accumulated value in order to
produce a single value. Defined procedurally, we have:

Reduce(S, op) {
accum = identity(op);
foreach (s in S) accum = accum op s;
return accum;

}
Reduce does not consider objects for which the reduction operator is not valid, namely:

(13)

Our definition requires the following conditions are met:
• op must be a binary operator and must be associative, since ordering of the set is arbitrary.
• The domain ofs must be closed underop. This makes it possible to accumulate a value.
• op must have an identity value, for example, identity(addition)=0, identity(multiplication)=1.

For convenience, we name commonly used reductions on a set of numbersS, using the + operator:

. (14)

We count the objects inS by applying the constant function1, which returns the value 1 for each element in the
set. Recalling the definition of Image from Equation 11, we require that all objects accept constant functions.

. (15)

For example, to compute the total size of all primitive cells in the adder design, assuming that each primitive ele-
ment has asize() method that returns a numeric value, we compute the sum over the size of the primitive ele-
ments:

Size(Adder)=Sum(Image(HSelect(Adder, λs s.isPrimitive), λi i.size)).

HReduce
The HReduce operator applies a reduction using the operatorop to theHierSet H. We define the HReduce

operator using the Unfold and Reduce operators as follows:

. (16)

DupEliminate
This operator is used to eliminate the duplicates from a multiset. This is particularly important when the set

property depends upon the type of equality used to define uniqueness. A set defined with =id as the uniqueness cri-
terion can have elements that are value-equal (=), and thus with respect to the = comparison, the set is a multiset.
Since the notion of duplicate is completely dependent upon the notion of equality, the operator requires that the
kind of equality be specified in the operation [23]. To obtain sets of unique names from theNameGroups set
define

UniqNames=DupEliminate =(Image(Y, λs,S Select(S, λx x.name == s.name))).
If Y={A, B, B, A, C, A}, representing objects with the single letter names as listed in the set, thenUniqNames

assumes the value:
UniqNames = {{A,A,A},{B,B},{C}}.

Note that because Image creates unique objects with new identities, DupEliminate=id would not have elimi-
nated any elements from the set returned by Image.

Project
The Project operator permits the specification of multiple functions on a set. The values returned form a new

object with the attribute names specified in the operator. Project is defined by:

. (17)

HImage H f,( ) Image Unfold H( ) f,( )=

Reduce S op,( ) Reduce Select S opIsValid,( ) op,( )=

Count S( ) Reduce Image S 1,( ) +,( )≡

Sum S( ) Reduce S +,( ) i
i S∈
∑≡ ≡

HReduce H op,( ) Reduce Unfold S( ) op,( )=

Project S a1 f1,( ) a2 f2,( ) ... an fn,( ), ,{ , },( ) a1 a2 ... an, , ,[ ] ai|| fi s( ) s S∈,={ }=
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In this definition, the [] operator creates an object with the specified attribute names. The function fi determines
the value of the attribute ai. For example, we create a histogram set forUniqNames using Project to record the
name and the number of occurrences for each name.

Histogram = Project(UniqNames,{(count, λs Count(s)),
(name, λs DupEliminate =(s))}.

This returns a set of new objects each with a count and name attribute as follows:
Histogram = {[count:3,name:A], [count:2,name:B], [count:1,name:C]}.

HProject
Similarly to HReduce, HProject can be defined by extending project to operate on implicitly unfoldedHier-

Sets. HProject is defined as:

. (18)

5.2 Query Optimizations
Because folded structures have a built-in means for identifying duplicate subpaths, we can systematically fac-

tor out multiply occurring subpaths and recombine them in a more efficient manner. In this section, we present an
optimization that can be applied to aggregation queries that obey the distributive property. For this explanation we
will consider the implementation of the query:

Area(Adder) = Reduce(HImage(Adder, area), +)
We assume that for the 16-bit adder design illustrated by the OAO DAG in Figure 3, both primitive library ele-

ments have an area attribute that reveals the area of the component. For the purposes of this example, theFA area
is 7 and theCU has an area of 13.

This operation clearly could be carried out by enumerating all paths in the OAO DAG and totalling the area
attributes for all paths ending in primitives. However, this can result in redundant computation as many paths
have common subpaths that could otherwise be systematically merged. Our approach to optimize this query is to
factor out common subpaths and use multiplication to combine them in the reduction.

First we factor out the duplicates in anHSet in order to compute the frequency of commonly nested elements
in the currentHSet. We group the elements together that are equal (=) using the Group operator defined as:

G = Group(X) = DupEliminate =(Image(X, λs,S Select(S, λx x = s))) .
The Histogram operator determines frequency counts for elements in the groups formed by the Group operator.

Histogram(G)=Project(G, { <count, λs Count(s)>,
<id, λs DupEliminate =(s)> }.

This creates the tuple object consisting of the number of times each distinct abstraction is represented in the
HSet X. For the Adder this corresponds to a set of the form:

Histogram(Group(A16)) = {<count:4,id:A4>,<count:1,id:CU>}
Duplicates have been removed, so this has the effect of pruning all duplicate sub-paths from the operation.

Next we define a function Distribute that will be used to apply the optimization of distributing multiplication over
addition. Distribute takes an instance of the Histogram object as defined in the project operation above and com-
putes the frequency count times the value returned from a recursive call to Reduce. Figure 9 shows the values for
the Group, Histogram, and Distribute operators along with the data on which they are applied.

Distribute(j) = j.count * Reduce(j.id.abstraction-of, +)
By using the Image operator, we can apply the Distribute function to the results of the Histogram operation.

Area(A16) = Reduce(Image(Histogram(Group(A16)), Distribute),+)

This optimization uses the distributive property to improve query performance in folded structures and can be
applied using any pair of operators for which the distributive property holds. This applies to reduction on the addi-
tion operator, the logical or operator, and the parallel path operator. These operators have distributive counterparts
in multiplication, logical AND, and the serial path operator (concatenation), respectively.

HProject H p,( ) Project Unfold H( ) p,( )=

FA

4

CU

16

6 7 8 9

1 2 3 4
5

10
Area(A16) = 1 * CU.size + 4 * Area(A4)

Area(A4) = 1 * CU.size + 4 * FA.size

Area(A16) = 177

Group(A16) = { {A4,A4,A4,A4}, {CU}, {A4,A4,A4,A4}, ...

Hist(G(A16)) = { <4,A4>, <1,CU> }

Figure 9: Application of Distributive Optimization to Area(A16)
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6 Updates on HierSets
In addition to querying implicitly unfolded and flattened structures, we also need to perform update or deletion

operations. We classify these updates into two categories:out-of-context updates, andin-context updates. Out-of-
context updates correspond to operations on theHSets directly. They are called out-of-context updates because
updates directly toHSets apply to all occurrences in the implicitly unfolded set, rather than to a specific object in
a specific context. For example, these kinds of operations are common in design applications when the user of the
data wants to make changes to the entire hierarchical structure. The most common out-of-context updates are the
removal or insertion ofAbstrs fromHSets. Additionally the attribute values ofHSetAbstr instances may be
changed. If a single attribute is changed out-of-context, it affects all of the paths in the implicitly unfolded struc-
ture that contain the attribute. In-context updates, on the other hand, are updates to the implicitly unfolded/flat-
tened view of theHierSet. They are, in a sense, updates to data that does not exist explicitly. In-context updates
are so called because they effect only a specific path (in a specific context) in the OAO DAG.

We take advantage of function overloading to disambiguate between out-of-context and in-context updates. In-
context updates take occurrences as arguments, out-of-context operations takeAbstrs as arguments. It is this
difference in the argument types that determines the type of operation performed.

6.1 Out-of-Context Update Operations
Out-of-context updates are subject to constraints because they may result in the violation of constraints (i.e.,

non-cycle constraint) imposed upon theHierSet. In general, the operations described in this section are rejected
if they result in the violation of the basicHierSet constraints.

Delete
The deletion of anAbstr from a particularHSet corresponds to the deletion of a single edge in the OAO DAG.
Many occurrences from the unfolded must be removed as a result.Abstrs are deleted from anHSet using the
HSet methoddelete(). To delete anAbstr a from theHSet hk:

hk.delete(a). (19)

Even though the deletion of a singleAbstr corresponds to the removal of one edge in the OAO DAG, the opera-
tion may remove a entire sub–DAG from the design. For example an out-of-context update that removes a single
FA PrimAbstr from theHSet A4 in Figure 2 removes fourFAs from the unfolded design.

Insert
Similarly, inserting anAbstr into anHSet corresponds to adding an edge into the OAO DAG. This again has
far-reaching consequences and may result in the addition of many occurrences into the unfoldedHierSet, since
an entire sub–DAG can be connected into theHierSet using the following operation.

hk.insert(a). (20)

The insertion of an abstraction into anHSet is subject to the non-circularity constraint imposed upon theHier-
Set (see Equation 2). For example, the insertion of anA4 abstraction into theHSet A4 would not be permitted,
but the insertion of anA4 abstraction into theA16 results in the addition of four new occurrences ofFAs into the
design.

Modify
Modifications to the membership ofHSets can be accomplished with a deletion and insertion. However, the
HSets in aHierSet may also have other modifiable attributes that are used by software tools requiring hierar-
chical information. Updates to theseHSet attributes do not cause topological changes to the OAO DAG, but they
still can effect many occurrences in the unfolded set. For example, we may attach anarea attribute to anHSet
such asA4 in Figure 2. This property then applies to all occurrences of theHSet.

6.2 In-Context Update Operations
To make views defined onHierSets updatable, we define the semantics of updates on implicitly unfolded

HierSets. For simplicity and clarity, we specify update semantics in terms of operations on the OAO DAG.
Because there is a definitive mapping between the instance graph and the OAO DAG, operations on the OAO
DAG are unambiguous.

Delete
Deleting a single occurrence from the design corresponds to removing a single path from the OAO DAG. In

order to perform the delete operation, topological changes must be made to the OAO DAG. In propagating the
update we strive to impact the DAG as little as possible. An occurrenceO is removed using three basic steps.

1. Identify the critical section of the DAG that must be removed or changed.
2. Remove all paths that begin withO.source().
3. Reconstruct all paths that begin withO.source()excluding elements ofO on the critical section.
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The algorithm shown in Figure 10 demonstrates the steps required to accomplish the deletion of a single occur-
rence from an implicitly unfoldedHierSet. It first finds the top and bottom of the critical section of the DAG.
The index number of these two vertices are stored in the variablestop andbtm, respectively. The first case the
algorithm addresses is when the branching points in the DAG result in the value oftop > btm. This means that the
path to be removed contains a subpath that is not shared by any other occurrence. This case is illustrated in Figure
11, in which only the “critical portion” between thebtm andtop markers is removed from the DAG. Removing
only the critical portion of the DAG is sufficient because it does not affect any other occurrence path and because
it removes the desired path from the DAG.

The sequence of frames illustrated in Figure 12 shows the operations required for removing a single path
<abcde> from a DAG whentop < btm. The figure shows the removal of all paths starting with the vertex (a) and
the systematic reconstruction of all paths beginning with (a) but do not contain the occurrence path <abcde>. This
reconstruction corresponds to the creation of copies (versions with small modifications in terms of whichAbstr
they own) of all design objects between thetop andbtm markers.

Delete(D : oaoDAG, c : oaoPath)
int top = index of oaoPathNode closest to root with indegree > 1
int btm = index of oaoPathNode closest to leaf with outdegree > 1
if (top > btm) then

// only one path between c[btm].node and c[top].node, and it
// it can be removed without disturbing other paths. (Figure 11)
D.deleteEdge(c[btm+1].edge to c[top].edge)
D.deleteNode(c[btm].node to c[top].node if disconn. from DAG)

else
// record the parent of the split node in p
// remove edge in the path at the split point (Figure 12(b))
p = c[top-1].node;
D.deleteEdge(c[top].edge);
// “split” each node between top and btm inclusive
for (i=top; i<=btm; i++)

newnode = D.cloneNode(c[i].node); // add copy to DAG
// clone all but the corresponding edge in the path being removed
D.deleteEdge(from newnode to c[i].node);
D.addEdge(from p to newnode);
p = newnode;

end for
end if

Figure 10: Algorithm to Delete a Single Occurrence.
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Insertion
The insertion of an occurrence in the implicitly unfolded design is similar in complexity to the deletion operation.
A more simple method is to add the path directly to the DAG by attaching it to the root. A more complex method
attemptd to find a “closest fit” path (so that the inserted path can be folded into the existing DAG) and add the
path at the appropriate point in the DAG. For our approach we simply add the new path by attaching it to the root
of the DAG.

Update
An in-context update corresponds to the creation of a new version of the modified object in the folded DAG. To
accomplish this update, we delete the occurrence and then add another with the new attribute value. For example,
to change an attribute value on the occurrence <abcde> as shown in Figure 12(a), we perform a deletion as shown,
and then add another version of elemente with the new attribute value. Because the update algorithm knows
where the deletion occurred, it knows the “closest fit” point to insert the new, modified elemente. The resulting
OAO DAG is shown in Figure 13.

While complex updates to occurrences may require topological changes to the OAO DAG, it may be possible
(and practical) to update parameterized values in thePrimitives that apply to a single occurrence in the
HierSet. This capability is not fully developed in our current model, but we plan to include it in future work.

7 Performance Evaluation
To evaluate the cost of query operations in aHierSet, we specify our model of the disk paging system, as

well as the parameters that characterize theHierSets. For our evaluation, we measure the cost in terms of disk
accesses of queries on both the foldedHierSet and the flattened and unfoldedHierSet.

7.1 Disk Model
We model the persistent storage of theHierSet as a sequence of fixed size pages ofB bytes each on disk.

The storage system buffer has a capacity ofP pages. Pages are replaced in the buffer using an LRU replacement
policy. We assume an object table that fits into main memory and provides constant time to identify the location
(page) of an object, given its object identifier. The time to read data already in the cache isH time units. To read a
page that is not in the cache requires M time units.

Data can be clustered onto the disk in several different ways. We consider aHierSet that is clustered onto a
disk using either depth-first or breadth-first clustering schemes. In depth-first/breadth-first clustering,HSets,
Abstrs andPrimitives are assigned to disk pages based upon a depth-first/breadth-first traversal of the OAO
DAG.

7.2 Characteristics of the HierSet
Sizes of the objects that comprise aHierSet are designated in bytes as follows:
ba : The size of anAbstr instance.PrimAbstr andHSetAbstr instances are the same size.
bh : The size of anHSet instance (minus the size of itsAbstr instances).
bp : The size of aPrimitive instance.
To determine performance properties of folded and unfoldedHierSets for various queries, we identify char-

acteristics of the OAO DAG that may influence the performance of operations.
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Figure 13: Result of an Update to Occurrence <abcde>.
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Density (d)
The densityd of aHierSet is the average number of edges in the OAO DAG that originate from eachHSet.
This average fanout or branching factor corresponds to the complexity of each level of the design. For our evalu-
ation, we consider OAO DAGs that have the same number of edges originating from eachHSet in theHier-
Set. For the DAG illustrated in Figure 14 the density is determined by the computation: .

Local Reuse Factor (rl)
This factor measures how often a specificHSet references the sameHSet or Primitive. We compute the
local reuse factorr l for a specificHSet by computing the average number of edges between every pair ofHSets
for which at least one edge exists. In theHierSet illustrated in Figure 14, the local reuse factor is determined by
computing: .

We consider the local reuse factor because we expect a high reuse to improve performance due to caching
behavior. When anHSet retrieves all of its owns-abstraction-of relationships, a high local reuse factor in a folded
HierSet can reduce the cost to retrieve only the unique ones.

Height of OAO DAG (h)
We determine the heighth by calculating the longest path from the root of theHierSet to any of the primitives.
We consider the height of the DAG as indicating how deeply nested a hierarchical description is. Because of the
multiplicative factor ofd at each level, the height contributes exponentially to the size of the design. The height of
the OAO DAG in Figure 14 is 2.

Number of Paths in the OAO DAG (p)
The number of paths in the OAO DAG are determined by many characteristics of the DAG, including the re-use
factor, the density, and the height of the DAG. The following recursive function determines the number of paths in
a HierSet. A trace of the definition shows that it performs a depth-first enumeration of all of the paths in the
DAG originating from the root and ending at a primitive. Each time the traversal ends a path it adds one to the
total.

(21)

7.3 Performance Experiments
In this section, we present the costs to perform query operations onHierSets in either folded or unfolded and

flattened form. Recall that the reduce operation permits the application of a single operator cumulatively over the
entireHierSet. We consider aggregation queries and operations that return a single value for two reasons.

1. Because of the absence of other relationships in our current model, we are limited to traversals of the design
by traversing theowns-abstraction-of DAG.

2. Queries that return single values offer a more realistic evaluation of the implicit unfolding of hierarchical
sets. This is because operations that return entire designs must explicitly perform unfolding to return the
unfolded values.

In keeping with other examples presented earlier in this paper, we evaluate the performance associated with
answering the following query operation to compute the total power dissipation for a design represented by the
HierSet H. Assuming that eachPrimitive in theLibrary has an integer attributepower, we express this
query as:

Reduce(HImage(H, λs s.power),+). (22)

7.3.1 The Effect of DAG Density on Aggregation Query Performance
For this evaluation, we constructHierSets characterized by different densities and measure the cost to do the

power dissipation query operation on theHierSet. The density measures the branching factor in the DAG, and
we see the multiplicative effects of the branching factor on the retrieval cost of the design. We see similar shapes
for many configurations of the DAG, with the unfolded cost growing quadratically, and the folded cost growing
linearly as the DAG is more dense. Figure 15(b) shows similar, but even more dramatic differences when the sizes
of the two representations are compared.

d avg a b+ c d, ,( )=

r l avg a b c d, , ,( )=

p x( )

p x.root()( ) if x.class HierSet=( )

p i( )
i x.owns∈

∑ if x.class HSet=( )
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7.3.2 Effect of Query Optimization on Retrieval Costs
In this experiment, we again measured retrieval performance on the power dissipation query for an unfolded

and folded designs of varying density. This time, however, we exploited the distributive optimization for a folded
design that we presented in Section 5.2.

We see in Figure 16 that the distributive optimization possible for reduction operations makes the retrieval cost
very insensitive to changes in the DAG density. We note that the optimization shows dramatically improved per-
formance across a broad range of parameters. Although we did not verify this with an exhaustive set of experi-
ments, we believe that the distributive optimization, because it eliminates the traversal of paths multiple times,
renders the query performance insensitive to the size of the cache.

7.3.3 Effect of DAG Height on Retrieval Costs
We measured the retrieval cost for both unfolded and folded DAGs of varying heights in this test.
Figure 17 illustrates the exponential growth of the unfolded design as the height of the DAG increases. This is

consistent with the relationship between the size of folded and unfolded designs. It is important to note, though
that in electrical design applications for example, the height of the design DAG is rarely more than 5, so we may
not achieve as dramatic a performance gain as the graph suggests.

7.3.4 Effect of Relative Sizes of Abstractions and Primitives on Retrieval Performance
For this experiment, we determined the retrieval time on folded and unfolded data while the relative sizes of

Abstr (ba) andPrimitives (bp) were varied. bp remained fixed while ba varied from 25 to 2000 bytes.
The size ofPrimitives is assumed to be substantially larger thanAbstrs, otherwise there would be little

incentive to construct a hierarchical and folded representation. Therefore, for most practical applications, the
sytem operates in the region to the right side of the plots. Note, for example, that to the right in Figure 18 the
folded representation clearly outperforms the unfolded. Even withAbstr instances as large as thePrimi-
tives, the folded representation performs well. However, if theAbstr instance is much larger, the performance
degrades substantially. This effect is observable in many different configurations, with the crossover point deter-
mined by how much of the folded design fits in the disk cache. Note the different crossover points when 50 per-
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cent (Figure 18a) and 20 percent (Figure 18b) of the folded design fits in the cache.

7.3.5 Effect of Clustering on Retrieval Performance
For this experiment, we measured the performance for traversing the folded design in a breadth-first order for

an ideal clustering (breadth-first), and a depth-first clustering. We varied the size of the disk cache for the tests.
The plot of Figure 19 shows the effect on query performance of having a clustering order different from the tra-

versal order as the proportion of theHierSet that fits in the cache is varied. Breadth-First clustering performs
very well when 40 to 50 percent of theHSet fits in the cache. The poorer Depth-First clustering requires a much
higher (70 percent) fit before it sees comparable performance gains. This clearly demonstrates the need for clus-
tering strategies that are compatible with the traversal algorithms [4].

7.3.6 Experimental Summary
Our initial experiments indicate that aggregation queries have the potential to be dramatically faster on folded

than on unfolded structures. The substantially smaller size of folded structures reduces disk access costs from
quadratic and exponential time in DAG characteristics to linear time. Furthermore, we have quantified the trade-
off of the abstraction size and the primitive size. Our experiments also demonstrate the importance of clustering
algorithms to the performance of queries on folded structures.

8 Related Work
Related work falls mainly into three distinct categories. The first is work on domain specific constructs for

databases, the second is work on database views, and the third is research specifically related to electrical CAD.
Recent research in databases for specific domains has suggested that additions to data models and query lan-

guages may be appropriate to enhance the effectiveness of the databases [2, 9]. In fact, it has been proposed to
confer first-class citizenship to new entities such as paths [9], or hyperwalks [2]. Paths are an important part of our
model, but they exist primarily to represent the occurrence of unfolded objects. Our work suggests extensions to
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Figure 18: Retrieval Performance for Relative Sizes of bp and ba.
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the data model through the introduction of new meta-data classes that can be used effectively in domains requir-
ing hierarchically structured sets.

Earlier work in OODB database views has established data models, object algebras, update policies and mate-
rialization strategies, all motivated by the desire to provide either real or virtual restructuring of data for database
applications [5,1,26]. Most current work on OODB views studies traditional OO query languages similar to SQL
rather than employing query extensions for complex views. Similary, the MultiView OODB view system [22]
currently employs an object-preserving algebra as a query language for view definitions. To model the more com-
plex restructuring employed in design tools, such as flattening hierarchical graphs and deriving transitive relation-
ships, we are extending MultiView with more powerful view operators [13]. The work presented in this paper
continues this effort of extending MultiView with complex transformation support.

In addition to extending the object algebra to support more powerful transformations, we are addressing the
problems of how to make these views updatable. This is an important topic for view mechanisms that has for
instance been studied by Scholl et. al. for object-preserving algebra views [26]. For our implicitly unfolded data,
the update problem is how to propagate the updates from objects which only exist implicitly to the base data. In
this paper, we solved this problem by transforming updates on the implicitly unfolded structure into updates on
paths in the folded design DAG.

Work on the HS system [19] describes an API capable of implicitly flattening netlist data. Updates to the
implicitly flattened data are limited, and require a re-initialization of the database. Additionally, the work does not
present a data model and query operations capable of defining implicitly unfolded views.

Research on hierarchical attribute grammars [12] presented incremental update schemes to propagte changes
from a folded representation to an explicitly unfolded representation. Our work also propagates updates from the
unfolded to the folded representation as well as saving the space that is otherwise wasted on an explicit unfolding
of the data (see Section 7.3.1). The FICOM system [3] maintains complex constraints across various abstraction
domains, but also requires that the two distinct representations are stored separately. The system addresses update
propagation in both directions, but the same problems of space and performance overhead remain.

Recent research in enabling technology for electronic design frameworks has focused on information model-
ling of folded and unfolded design [6,8,27]. These models are used to define APIs, to develop data structure gen-
erators, or to formalize the exchange of data between systems. In general, the work on information modelling
does not present how a data manager in the database system can provide support for implicit unfolding of data.

9 Conclusions
We achieved an important step toward improving interoperability of design tools that operate on hierarchical

data that is folded and unfolded. In this paper, we have presented new meta-data classes appropriate for the effi-
cient representation and querying of folded, hierarchical sets. Included in our model are operations that can be
efficiently performed on theseHierSets by fully exploiting the constrained characteristics of the model. We
have presented algebraic operators that enable the implicit unfolding and flattening of hierarchical sets, and have
shown an algorithm capable of propagating updates from the implicitly unfolded view to the folded view via
“selective unfolding”. Additionally, we have presented opportunities for query optimization for performing aggre-
gation queries on hierarchical sets. Finally, we have conducted experiments that validate the dramatic impact that
the folded representation has on retrieval performance and on disk storage utilization, as well as demonstrate
some of the issues that we must consider while continuing our work.
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