Functional Abstraction and Partial Specification of Boolean Functions

KaremA. Sakallah

CSE-TR255-95
August 9, 1995

THE UNIVERSITY OF MICHIGAN

Computer Science and Engineering Division

Department of Electrical Engineering and Computer Science
Ann Arbor, Michigan 48109-2122

USA

Functional Abstraction and Partial Specification of Boolean Functions

KaremA. Sakallah

Advanced Computekrchitecture Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan 48109-2122

August 9, 1995

Abstract

We define functional abstraction as theqmess of deliberately ignoring the dependence of a Boolean function on a subset of
its variables. Functional abstraction causes a completely spédiinction to become partially speetfi Vi propose function
sets as a theetical model for partially specéd functions and function intervals as a practical apgnation to them. &/
develop an interval Boolean algebra suitable for the symbolic manipulation of function intervals and highliglattitneship
between functional abstraction and universal and existential queEatiifi.

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 1

Notational Con ventions and Glossar y of Symbols

We will generally use leer-case symbols to denote scalar quantities and wqaser symbols to denote aguates (ec-
tors and sets.) Calligraphic type will denote the carriersy¢useal sets) of algebraic structures. Unlegdieitly stated other
wise, when we speak of Boolea@ariables and functions we meaariables and functions in the 2-element Boolean
(switching) algebra. Thus, X4, X,,...,X, refer to switching ariables, f,g,h denote switching functions,
X = (X4, Xy, ..., X,) represents agetor of switching ariables, ands, G, H denote sets of switching functions.

Notation Meaning Example
B 2-element Boolean algebf{®, 1} —
S Set of interals onB; S = {[0,0],[0,1],[1,1]}. —

When clear from conke, these three inteals may be
relabeled0, U and1 respectrely

X1, Xo, ooy X Y2 Z - 2-element Booleanariables —

X, X', =X Complement —
Xy, X -y, xQy AND —
x Oy OR —
XDy Exclusive-Or (XOR) —
X0y Equialence; gclusive-NOR (XNOR) —

X = (X4, Xy, ..., X,;) Vector ofn Boolean wariables —

f(X),9(X),h(X) n-variableBoolean functions f(Xp, Xp) = % Oy
I (X)| Number of minterms for whichi (X) = 1 X1 © %y = 2
U (X) Set of alln-variable Boolean functions Uq (%) = {0, %q, xq, 1}

F(X), G(X), H(X) Partially specifedn-variableBoolean functions; sub- F(Xq, X,) = { Xy, X; Oy, X1 X5}
sets of U, (X)

[F(X)| Size (cardinality) ofF(X) ‘{ X1, X1 O %o, xlxz}‘ =3
FUG Set union {x1} U{R x5 = {Xq, %1%}
FNG Set intersection {x5 X N {xy, X} = {x}

L F(X) | Greatest lover bound (glb) ofF(X) L{ X1, Xq 0%y, XlXZ}J = X%
[F(X)] Least upper bound (lub) &f(X) [0, X @ X %}] = % 0%,

U(x) Uncertainty set of Boolearaviablex U(x)={0,x x, 1}

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 2

Notation Meaning Example

F(X)U(Xi) Abstraction ofF(X) with respect to; { X%} Uk = {X;X5, 0, Ry Xy, Xo}
[1(X), u(X)] Intenval in U, (X) betweenl(X) andu(X) [X1X5, X1 OX,]

[F(X)] Smallest interal containingF(X) [{ X1 D@ X5 X1 © X5}] = [0, 1]
F(X)[U(Xi)] Conserative abstraction ofF (X) with respect to; {xlxz}[u(xl)] = [0, x,]

F(X) 0 G(X) Expand operator; inteaV containingF(X) U G(X) —

1 Introduction

In this report we address the follmg question: “Gien a completely speci#il n-variable Boolean function
y = f(xq, X5 ..., X)) , what is the déct of ignoring its dependence on one or more ofatiables?’We refer to this process
as functional abstraction Intuitively, functional abstraction introducescertaintyin our knavledge of the function and
causes the function to becopartially specifed Partial speciftation of Boolean functions has traditionally berargined in
the contet of logic synthesis by ay of exploiting the inherent &ibility in a partially speciid function to produce morefief
cient implementations thanould otherwise be possible from a complete spetifin. Rurtial speciftation can also be wied
as a ehicle for approximate circuit analysis. In this scenario, the obgeistito establish &€iently-computedoundson cir
cuit behaior by judicious injection of ambiguity in a circiugtfunctional speciéation.

A particularly important @ample of this type of approximation is timing analysis where we seek to determine the earliest
and latesteent times for circuit signals under all possible input stinTiieoretically these times can be determinedaly
by exhaustve simulation. In practice, though, this approach is infeasiaepe for trivially small circuits. “Incomplete” simu-
lation may be acceptable in certain cases if the inpetibvs can reasonably bepected to stimulatexereme circuit behador
(longest path, forsample.) Generallyhovever, incomplete simulation does not pitde a coerage guarantee and carries the
risk of false ngatives.Alternatively, functional abstraction alles us to err conseatively by bounding xreme beheor; it
guarantees completevarage by embedding the sought-after bairdn a lager set of behaors that are easier to determine.
The inevitable incidence ofdlse posities in such an approach can be controlled by appropriate choice of &hahles to
abstract way. The loosest bounds are found by structural (topological) analysis of the circuit and correspond to total abstrac
tion of all functional informationTighter bounds can be obtained by abstractimgyaonly some ot not all functional depen-
dencies.

The use of uncertain signalues in models of logicage circuits has a long history that started witf the introduction, by
Muller [13], of a third \alue to the tw-element switching algebrahis third \value—which Muller wrote ag —was meant to
model digital signals in transition between the binaly&s 0 and 1. Muller also pointed out that the resulting ternary algebra
was formally equialent to the strong 3alued logic of Kleengl0]. Since that time, this thirdalue has become a standard
feature of logic simulation models and has found additional applications such as circuit initialization, hazard detection, rac
detection, etd4]. More recentlyHayes 8, 9] examined uncertainty in the comteof multiple-valued logics and shaed hav
logics that incorporate more than one uncertaines can be systematically generated. Examples, other than timing analysis,
of approximate modeling through careful introduction of uncertaintg baen studied by Harkne&s 7] and include switch-

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 3

f (X1, X5) f(Xq, X5) a(xq) f(xq, X5)
X1 | X2 Xp | X2 X2
X1X2 X1X2 X110 |X |1 X1X2 | 0 | XXz | Xy
0O |0 |O {0,1} |0 |O 0|0 |1 |1 |0 |O 0 0 0
0 |1 |0 {0,1} |1 |{0,1} ojo0j1/1/2]/0 |o |1 |1
1 |0 |0 {0,1} |0 |O 1/0 |0 |1 |0 |O 0 0 0
1 11 |1 {0,1} |1 {0 1} 1/0 01111 |0 |0 |1
0 0,1}
ol)0 { %, -0 {x4, 0, %, 1}
0 {0,1} {x} D{Xlxz' 0, X1 X, Xp}
1.)0 "1 {01}
1 {0,1} 1
ol)0 o, O
1 {0,1} 1
14 1 11 {01}
(a) AND function specification (b) “Numeric” model of AND (c) Symbolic model of AND function when X is
function when X; is unknown
unknown

Figure 2-1: Modeling uncertainty for AND gate

level simulation with uncertain signal strength, delay in RC agtsvwith uncertain parametealues, and placement using
uncertain costs. Zukvski [16] also demonstrated that tight bounds ottage vaveforms in circuit simulation can befief
ciently obtained when appropriate bounds on the cirguitagions are assumed.

The remainder of this report isvitied into four sections. IBection 2we motvate the use of function sets for modeling
functional uncertainty and establish the computation rules required for their manipulatiection 3we formally defne
functional abstraction and establish some of its important propéftieite providing the theoretical basis for functional
abstraction, ¥plicitly enumerated function sets are unwieldy angehdtle, if ary, practical alue.We address this defeng
in Section 4by introducing function intells as approximations to unrestricted function $&¢salso deelop a suitable inter
val Boolean algebra for function intextg, illustrate its use with geral kamples, and conclude byvealing the relationship
between functional abstraction anduarsal and xdéstential quantiftation.Section Ssummarizes the main points of the report
and highlights ongoing and future applications.

2 Modeling Uncer tainty with Function Sets

Consider the functional bewiars that can be obsexg at the output of a winputAND gate (x4, X,) = X;X, when
the \alue of the fist input x; is unknavn. As shavn in Figure2-1, uncertainty about thealue of x; can be modeled by

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 4

replacing each entry in thg column of theAND truth table with the sef 0, 1} . Application of theAND function tox, and

this set-alued x; yields, in turn, an uncertain sedtued resultThis numericmodel of uncertainty can be a@rted to an
equialentsymbolicmodel by transforming the uncertainty in tauesof x; andf to uncertainty about thefunctional
dependence om, . In this viav, the frst input of theAND gate is treated as a hwable Boolean functiorg(x;) = X; .
Thus, when thealue ofx, is knavn, theAND gate “sees” the functior, at its frst input and produces thepected function
X;X, atits output. Havever, when the glue ofx, is unknavn, theAND gate is unable to distinguish among the four possible
single-\ariable Boolean functions ok, , namely the functions in the sdtx,, 0, x4, 1} . Consequentlythe gte output
f(x4, X,) becomes uncertain since, in addition to the original functiog , it can also be gnof the functiond, x;x,, or

X, . Symbolically these obseations are captured by the equation:

f({xy, 0, %, 1}, {X5}) = {xq,0, %, 1} O{ x5} = {X;X5, 0, X1 Xo, X} (2.1)

where the inputs and output of thARID gate are considered to henction setsather than single functions.

This example suggests that function sets arise naturally in thextafiteodeling functional uncertaintindeed, function
sets proide the most general framverk for modeling uncertainty in the functional belwa of logic circuits. Other models,
such as dottrcares, Boolean relation8], or function interals [, p. 45], are easily shvan to be special cases of function
sets! In the remainder of this section, we yicke a formal defiition of partially specigéd Boolean functions as function sets
and &amine seeral of their properties.

n
Definition 2.1 (Boolean Function Space) The function space, or universe,nefariable Boolean functions is e -
element set denoted By, (X, Xy, ---, X;) -2 O

Definition 2.2 (Partiall y Specifi ed Boolean Functions) A partially specifed n-variable Boolean function
F(Xq, Xy, .., X,;) is @ nonempty subset of the function spakgx,, X,, ..., X,) . The cadinality of the set Fdenoted byF|,
is the number af-variable Boolean functions it contains and indicates theekegf its uncertaintyWhen|F| = 1, F is said
to be completely spe@fl. WherF = ‘U,,, F is said to be completely unspesaifi O

Unless stated otherwise, the phrases “function” and “partially spedifnction” in this report should be interpreted as abbre-
viations for “partially speciédn-variable Boolean functioh.

Example 2.1 The function space of 2aviable Boolean functions is the sixteen-element set

Uy (X4, X5) = {0, Xy R, X1 X9, X1 Ry X1 X, K1, Ry, X1, Xo,
X1 © X, X1 D Xo, Xy O Ry, X1 OX5, Xg O Ry, Xq OX,, 1}

1. Don't-cares, Boolean relations, and function inddswield identical function sets when used for the partial spatith of sin-
gle-output Boolean functioné. natural &tension of dort*cares tan-output Boolean functions is to viethem as subsets of
two or more elements of theer set of B™. The function sets generated by such tdoates are identical to those produced
by a Boolean relation fronB" to B™. In contrast, function inteals result when the functions are indidually treated as
single-output partially spec#d functions.

2. Brown [5, p. 47] denotes this set by,(B) whereB is, in general, &element Boolean algebra.

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 5

The sets(Xq, X5) = {0,1}, G(X4, X5) = { X%y, X1 D X5, Xy OX,} , andH (X4, X,) = {x; Ox,} correspond to partially
specifed 2-ariable functions whose uncertainties are equal to 2, 3, and 1, reslyeSince|H| = 1, His completely spec-
ified. O

Partially specifed functions hee two facets. On the one harttiey ae setsand can thus be related by set inclusion and
manipulated by set operations such as union, intersection, &eiiie. On the other harttigir elements @& Boolean func-
tionsthat can be manipulated by Boolean operators sudiNBs OR, and N and that, more generallgan be composed
with other Boolean functions. It is, therefore, appropriate to manipulate partially spdaifictions algebraicallsuch alge-
braic manipulation is based on the fallag pair of functional composition rul¢g].

Definition 2.3 (Functional Composition Rules f or Partiall y Specifi ed Boolean Functions)

+ Composition Rule #1 Let ¢(yy,Y, ...,Y,) be a k-variable Boolean function, and let
G1(X), Gy(X),...,G (X) be k partially specified n-variable Boolean functions. Then
¢(G1(X), Go(X), ..., G (X)) is a partially specified n-variable Boolean function defined by the following rule:

#6100, G200, . GON = | L) | {o(u00, W), . 200)) 2.2)

W(X) € G,(X)

2(X) E.”Gk(X)

» Composition Rule #2Let F(X), G;(X), Gy(X), ..., G,(X) be partially specified n-variable Boolean
functions. TherF(G,(X), G,(X), ..., G,(X)) is a partially specified n-variable Boolean function defined by
the rule:

F(G4(X), Gy(X), ..., G(X)) = £(G1(X), Gy(X), ..., G,(X)) (2.3)

f(X) € F(X)

u, U,

u Uu u
X2 "x..x2 "to2 "where2 "

n

Uu n
Note that the functioR can be viewed as a mappingrr % ng =2

is the paver set ofU,, . O

Example 2.2 Let

F(X{ X9) = {X1X9, 0, R X5, Xo}
Gy(X4, X5) = {Xq, X1 OXo}
Gy(Xq, Xo) = {0, %5, X,, 1}
Ga(xy %) = {xq}

Then,

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 6

G3(Xq, X5) € Gy(Xq, X5)
F(X3, X5) N Gy(Xq, X5) = {0, X,}
F(Xx3, X5) = Go(Xq, Xo) = {X1Xo, R X5}

F(G3 Gy) = F({x},{0, %), x5, 1})

({1} 0{0, %y, X5, 1}) U {0} U ({ Ry} O{0, Ry, X5, 1}) U {0, Ry, X5, 1}
= {0, X{Xy, X1 Xy, X1} U {0} U {0, %Xy, Ry X5, X1} U {0, Ry, X5, 1}

= {0, Rq R, Xy Rp, Xy Xo1 X1 Xp, Xy, Xpu X, X, 1}

- U 1= . V1 SRR VI I TR

= F(xq, X = X X = {0, x
X1 1 2‘xlzl Dlz‘xlzlg D‘Xlle Dlz‘xlzlg |:|2x1=1[| 2
where the last operationas the cadctor of F with respect tox; [2]. O

n

Finally, let us note that the function spatg,(x;, X,, ..., X,) forms a2’ -element Boolean algebr§, p. 48], i.e.itis a
distributive and complemented latticl] p. 64]. Thus, each subset dt/, has a unique greateswler bound (glb) and a
unique least upper bound (luBhe following defhition prescribes he these bounds are calculated.

Definition 2.4 (glb and lub of Partiall y Specifi ed Functions) The geatest lower bound and least upper bound of the
partially specifedn-variable Boolean functiofr(X) are n-variable Boolean functions denotedspectivelyby | F(X) | and
[F(X)], and determined accding ta

LFOOJ = /A (0
f(X) € F(X) 2.4)
[FOX)T = f(X)
f(X) € F(X)
In general,| F(X) | and[F(X) are not necessarily membersffX) . O

Example 2.3 Let F(Xq, X5) = {Xq, X%y, X; @ X5} . Then,

1(x1, Xp) = [F(x1, Xp) | = X Ox1%, O (X1 & Xp) = X1,
and

u(xq, Xp) = (F(xl, xzﬂ = Xy X%, O0(X D x5) = X UX,

Note thatl (x4, X,) € F(Xq, X,) whereasu(x,, Xo) & F(Xy, X5) . O

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 7

3 Functional Abstraction

As mentioned in the introduction, partial spesfion of Boolean functions has been mainly used in synthesis. In this
report, havever, we are primarily concerned with characterizing the partially spddiiinctions that arise when we choose to
ignore the functional dependence on certainables. In this section we formally dedifunctional abstraction andsgsticate
its properties.

Definition 3.1 (Uncertainty Sets of Boolean Variables) The uncertainty set of a Boolean variablgis the partially
specifed n-variable Boolean functioR(X) = {0, X;, x;, 1} . The shorthand notatioi)(x;) , will be used to denote this set
and may beead as "x; is unspeciéd.” Further, the notationU (V) , whee Vis a set of variables, will be used to indicate that
each of the variables ¥ is individually unspeciid O

Definition 3.2 (Functional Abstraction) A variable x; is said to be functionally abstractediin a functionF(X) if

every occurence ofx; in F(X) is replaced byU(x;) . The esult of abstracting; fromF is a partially speciéd n-variable
function F(x4, ..., U(X), ..., X,) called the abstraction d¥ with respect tax; anddenoted agy(x,) 23 Functional abstrac-
tion of both x and x; from F wil be denoted by FU(Xi’ x) @and evaluated accding to
FU(XP X)) = F(Xy, ..., U(X), ..y U(xj), ..., X,) - Abstraction of lager sets of variab1es is handled similarly [

It is important to emphasize that functional abstraction afremble does not eliminate functional dependence diné.
difference between the functiofgX) and F(X)U(Xi) is that the lattes' dependence ox) may be more ambiguous than the
former’s. The act relationship between theseotfunctions is preided by the follving theorem.

Theorem 3.1 F(X) C F(X)y(x)

Proof: The following expression forF(X)U(Xi) follows directly from defiitions 3.1 and3.2 and from application of the
functional composition rule i(2.3):

F(X)U(Xi) = F(Xg oo U(X), -)
= F(Xg, -, {0, %, %3, 1}, .., Xp)
= F(Xgy -+, 0y ooty Xp) U F(Xqy oy Ry ooy X)) U
F(Xqy ooes Xy v X)) U F(Xq, s 1,000y X))

(3.1)

Thus F(X) is a subset oF(X)U(Xi) . O

Example 3.1 Let F(x4, X,) = {X{X,, 0, X;X,, X5} . Functional abstraction of, yields:

3. This notation is similar to the cadtor notatiorf2] and can be read as “the functimvith x; unspecifd” It suggests thewval-
uation of the function at thealues indicated in the subscript.

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 8

F(xg, U(X5)) = {xq} OU(X,) U {0} U{x;} OU(X5) U U(X5)
= {0, X1 %o, X1 Xo, X1} U {0} U {0, X{ X5, X1 X, X1} U {0, X5, X5, 1}
= {0, Xy Rp, X Rg, X X9, X1 X9, Xq, Rg, Xq, X, 1}

Note thatF (X, X5) C F(X1, U(X5)). O

Example 3.2 Let f(X;, X;) = X;X,. Functional abstraction of both andx, yields:

FUtny = (UG, U0R)) = {0,%y, %5, 1} 0{0, %, Xp, 1}

= {0, Xy Ry, X, Rg, Xg Xg, Xq Xg, Xp, Ko, Xy, Xp, 1} O

It is interesting to note that the partially spexiffunction resulting from the abstractionxgf in Example 3.1is identical
to the function resulting from the abstraction of b&thand x, in Example 3.2This is not coincidental since the starting
functions in the tw examples are related (x4, x,) = f(U(x;), X,) . Indeed, as stated in the fallmg theorem, ariables
can be abstracted from a function iry amder without &gcting the result.

Theorem 3.2 F(X)U(xi,xj) = (F(X)U(Xi))u(xj) = (F(X)U(Xj))U(Xi)

Proof: Immediate from gpansion of each side using composition rule #2i8). O

Corollary 3.3 (F(X)U(Xi)) = F(X)U(Xi) O

U(x)
Note also that the abstraction of both andx, from the tvo-variableAND function yields a ten-element partially spec-
ified function rather than the sixteen-element completely unsggeéifnctionU,(x4, X,) . This may seem odd considering
that we are ambiguating the functional dependendalonput \ariablesThis apparent paradox disappears, though, when we
recall from defiitions 3.1 and3.2that multiple variables are abstractadlividually. Thus, while we may n@ no longer knar
the precise functional dependence on eack; o&nd x,, we do kna that theg are still combined by aAND function. The
maximum uncertainty set/,(x;, X,) would have resulted had the defiion of functional abstraction alled for thesimulta-
neousabstraction of botlx; andx, .

While variables can be abstractaslay in aty order the folloving example demonstrates that abstractingudable from
a function may not produce the same result as abstractingriable from aircuit implementatiomf that function.

Example 3.3 Let f(Xxq, X;) = X; @ X,. The functional abstraction of; yields the follaving partially specitd function:
fU(Xl) = {0, %, X1, 1} D { X5} = { X5 X1 O Xo, X1 D Xy, X5}

Consider net the abstraction ox; from the fourNAND implementation of XOR shvan in Figure3-1. The resulting partially
specifed functions at the intermediate nodeg andw as well as that at the output nddee easily shen tobe:

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 9

X1

Lo f

w

X2

Figure 3-1: Four-NAND Circuit Implementation of XOR

U(xq)
0 X1 X1 1
v=x0 |1 X 0%y [%y 0%y | Xy
f=w |x X O Xy | Xy D Xy | Xy

Figure 3-2: Solution of Example 3.3 taking signal correlations into account

g(U(Xq), X5) = { Ry, X1 OR,, X4 OX,, 1}
V(U(X1), X5) = {0, Ry X, X1 X5, Ry, X1, X5, Xy OXo, Xq X5, 1}
FU(Xp), Xp) = Up(Xq, Xp)

Thus, abstraction ok; from the circuit implementation of the XOR function yields the maximally uncertain functioroof tw
variables indicating a complete loss of information. O

The abee example illustrates an undesirable characteristic of uncertainty models, namelywbielainla introduction of
appaentuncertainty wherorrelationsthat eist among the modelaviables are ignoreés shavn in Figure3-2, the correct
answer for thisxample can be obtained when such correlations are propegly itato accounflo accomplish that, weever,
requires that we distinguish among widual members of sets and amounts to an enumeratase analysisSince the
abstraction ofm variables gres rise toa™ independent cases, such an approach is infeagit#ptsor small alues ofm. The
only other vay of eliminating apparent uncertainty is ig@eress the model only in terms of independantables such as those
corresponding to primary inputs or head lingg[208] in the circuit implementation. Unfortunateigr mary functions such
representations are impractical since their sizes caxgomential in the number of independeatiables. Realisticallythere-
fore, the injection of apparent uncertainty must be accepted as a necessary consequence of abstraction, and the rest
abstraction should be vieed as a conseative approximation to the sought-after partially spedifunction.

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 10

4 Function Inter vals

Function sets represent uncertaiexplicitly by enumerating all the completely spemififunctions that are obtained as a
result of abstractio heir importance, thus, is primarily theoretical sincey @y become too lge for ay practical applica-
tion, even when apparent uncertainty is eliminatBde only recourse for containing the vitable exponential gravth in set
sizes is to bound such sets by sets that can be represepliedly, i.e. without enumeration. Inteals in the function space
‘U,, are function sets that can be described compactly by specifyindistinguished members. In this section werdgefi
function intenals, denve some of their properties, and shioow they can be used for functional abstraction.

Definition 4.1 (Function Inter val [5, p. 45]) The partially specifid functionF(X) is a function interval if it can be
expessed as

F(X) = {f(X)(X) = £(X) = u(X)}

wheee [(X) andu(X) are two n-variable Boolean functions such th@) = u(X) . A function intervalF(X) can be viewed
as a mappingBn - S, whee S = {[0,0],[0,1],[1,1]} is the set of intervals oB, and can thus be equivalently
expessed as(X) = [I(X), u(X)]. O

Several xkamples of function inteats in U, (x,, X,) are shwn in Figure4-1.
Function interals hae mary useful properties most of which dexifrom the partial ordering (inclusion) relatiag’‘and

its various equialents b, p. 28]. In particulargiven F(X) = [I(X), u(X)] and f(X) € F(X), we can establish the folle
ing two sets of equalent identities:

1(X) = f(X) f(X) = u(X)
1(X) O f(X) = I1(X) u(X) 0 f(X) = u(x)

I(X) O f'(X) = 0 u(X) 0 f'(X) = 1 @.1)
(X) = 1"(X) u'(X) = £/(X) '
1'(X) O f'(X) = 1"(X) u(X) O/ (X) = u'(X)

'(X) O f(X) = 1 u(X)Of(X) =0

An immediate consequence of these identities islthgt andu(X) are the glb and lub d¥(X), i.e.

LF(X)] = 1(X) (4.2)
[F(X)] = u(X) (4.3)

Thus, if F(X) is a function interal we can denote it most succinctly as

F(X) = [LFX)LTFX)] (4.4)

The size of a function inteaV F(X) is 2™ wheremis the number of minterms for which the functiaiue is[0, 1] . For
each one of thosa combinations, the glbF(X) | is 0 whereas the IupF(X)] is 1.Thus,mis equal to the number of min-
terms for which the functiohF(X) |'[F(X)] is equal to 1 yielding the folaing expression for the size d¥(X) :

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 11

H

1\/
X mxﬁxz % U%;

\ X1 X F G H
T~. 0 0|00 [00 [L1]
Xy Xy X, D X, X1 © X, X5 X% 0 1][01 [01] [01]
1 0 |[00] [11] [01]
1 1 |1[00] [01] [0,1]
X1X2 X1%o X1%o X4 Ry

c \\/

@) (b)

Figure 4-1: (a) Sixteen-element lattice ‘U,(Xy, X,) of two-variable Boolean functions. The
highlighted lines correspond to the three intervals F = [0,%X,], G = [X1R9, X1 OXs]
and H = [X{%,, 1] . (b) Truth tables for highlighted intervals.

where| f(X)| is the number of minterms for which a Boolean functi¢iX) is equal to 1. Using4.5)it is easy to she that
the size of the completely unspeeifin-variable function[0, 1] is 2° , whereas that of gncompletely speciéd function
[f(X), f(X)] is 1. It is worth noting that, while identical in appearance, the ialdi®, 1] in then-variable function space is
distinct from the interal [0, 1] in the 2-element Boolean algeliBaThe intenal bounds in the former case representrithe
variable constant functions m¢onsistencyand 1 tautology) in the latter case the bounds denote the constant eleméBits of
Furthermore, the partially speeifl n-variable functiond0, 1] and{0, 1} are diferent; the latter consists of justdvele-
ments, namely the constant functions 0 and 1, wh¢@dg denotes the entire function spatk, .

The intenal operator introduced reis useful in “comerting” unrestricted partially speafi functions into inteals. It
can be viered as dype casf15] that cowerts objects of type “function set” to objects of type “function irg&rv

Definition 4.2 (Interval Operator []) The interval operatof] is a unary operator thateturns the smallest function
interval containing a given partially spe@ function. It is defied by the formuta

[FOOT=[LF(X) L. TF(X) 1] (4.6)
Note thatF itself is an interval whenevérF | € F and[F | € F; in such a cas¢F] = F. O

Example 4.1 Let F(Xq, X,) = {XX,, %o} . Then,

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 12

[F1 = [LFLTFI = [0,x; O%,] = {0, XRo, Xq Ko, Xq Xy, Xq, Ko, X1 O Xo, X7 O Ry} O

4.1 Operations on Function Inter vals

The main adantage of function inteals over unrestricted partially spe@fl functions is that tlyedo not require an
explicit enumeration of their member functions. Instead, the elements of a functiomliaterimplicitly defied by the inter
val's glb and lub along with the partial ordering relatiah “This adwantage may not, in general, be presdrwhen function
intenals are combined by set operators. Spedlfi, the union, intersection, and féifence of tw function interals are not
necessarily function inteals. On the other hand, applying Boolean operators to functionatgemill alays yield function
intervals. This property allavs us to deelop aninterval Boolean algebrghat can be used to manipulate and simpbifgres-
sions ivolving function interals.

The etension of the three basic Boolean operatord M®ID, and OR to function inteals is preided by the follaving
theorem.

Theorem 4.1 (Boolean Operations on Function Inter vals) Let F(X) and G(X) be two function intervals. Then
F'(X), F(X) OG(X), andF(X) OG(X) are also function intervals thataigiven by the following identities:

F'(X) = [TF],[LF]] (4.7)
F(X)DOG(X) = [LFJOLGJTFIOMG]] (4.8)
F(X)DOG(X) = [LFJOLGJTFIOMGT]] (4.9)

Proof: We demonstrate the proof procedure(ti7), the other tw identities can be pved similarly

H(X)=F'(X) = f(X)LEJF(X){ f'(X)} from (2.2) (functional composition rule #1)
LHX) 1= /\ hx)= /\ (X from (2.4) (definition of glb)
h(X) € H(X) f(X) € F(X)
=[FX)70 /\ (X factor out lub
f(X) € F(X)
f(X) # [F(X)]
= [F(X)] from (4.1) (inclusion relation)
[H(X)] = h(X) = f (X) from (2.4) (definition of lub)
h(X) € H(X) f(X) € F(X)
= |F(X)]' O f(X) factor out glb
f(X) € F(X)

f(X)# [F(X)]
LF(X) from (4.1) (inclusion relation)

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 13

Table 4-1: Some properties of inter val Boolean alg ebra
(F, G,and H are assumed to be function inter vals)

Commutatre | FOG = GUF FOG = GUOF

Distributive |FO(GOH) = (FOG) O(FOH) FO(GOH) = (FOG)O(FOH)
Identities [0,0]0F = F [L,1]OF = F

Associatve |FO(GOH) = (FOG)OH FO(GOH) = (FOG)OH
Idempotence| F OOF = F FOF =F

Null Elements F 01, 1] = [1, 1] FO[0,0] = [0,0]

Absorption |FO(FOG) = F FOFOG) = F

Involution (F) =F

De Moman's |(FOG)' = F' OG’ (FOG) = F OG’

Complement | FOF" = [[F|O[F7, 1] FOF = [0,LF] O7F]

Thus, | H(X) | € H(X) and [H(X)] € H(X), i.e. H(X) is an interal (seeDefinition 4.2). This immediately leads to
F/(X) = [[FO) T, LF(X) 1T O

The identities in(4.1) allow us to derre maiy useful properties thaagilitate the algebraic manipulation ofpeessions
involving function interals. A few of these properties are listedTable4-1. It is interesting to note that function intats
obey most, lut not all, of the levs of Boolean algebra. In particuléiney do not obg the complement \@s or aly properties
derived from themThus, unlile the case for completely speedfifunctions, the conjunction and disjunction of a function
interval F and its complement do not yield, respeddiy, [0, 0] and[1, 1] . Instead, there is some residual uncertainty whose
size is equal tF|.

Equality of function interals derves from their interpretation as function sdteus, the function inteals F(X) and
G(X) are equaif and only if F(X) C G(X) andG(X) C F(X). Equvalently:

(F=G) = (LFI=[G)HO(FI=[G] (4.10)

i.e., F(X) andG(X) are identical if their respegé bounds are equal.

Example 4.2 Assume thak,, X,, X3 € {0, 1} are Boolean ariables and th& andG are function interals. The follow-
ing equations illustrate the application of inerBoolean algebra.

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 14

[R1Xo OXqRo, X1 OXo] O[X X5, Ry Ko OXX5] = [X7 O Xy, 1]
FOG = FFGOFG' = [[FTLGJOLF|[GT,LFJTGTOF]LG]] O
It is useful to note that the alm2-\alued interal Boolean algebra is isomorphic to the ternary algebra commonly used in

logic simulators. Specdally, the three intemals on{0, 1} are renamed 0, 1, and, are considered to be totally ordered
according tg 0, 0] =[0, 1] =[1, 1] and are assumed to ghthe folloving truth tables:

F F’ O [0,0] |[O,1] |[1,1] 0 [0,0] |[O,1] |[1,1]
[0,0] |[1,1] (0,01 |[0,0] |[0,1] |[%,1] [0,0] |[0,0] |[0,0] |[0,0Q]
[0,1] |0, 1] (0,1] |[0,1] |[0,1] |[%,1] [0,1] |[0,0] |[0,1] |[0,1]
[1,1] |[0,0] (1,1] |[11] [[1,1] |[1,1] [1,1] |[6,0] |[0,1] |[1,1]

As mentioned earligiset operations on function intals do not, in general, yield function intals. In such cases, the
interval operatoff] can be used to ceert the result of a set operation to the smallest enclosing functionainfigme func-
tion intenal containing the union of wvfunction sets is particularly useful and we defa special operator for it as falls:

Definition 4.3 (Expand Operator) The expand operator for partially speeifi functions is a binary operator defd by
the formula

F(X) ¢ G(X) = [F(X) U G(X)]

whee F(X) and G(X) are arbitrary partially specigd functions (i.e. not necessarily function intervals.) O

The net theorem establishes the relation between the bounds of thalniesduced by thexpand operator and the corre-
sponding bounds of its maiguments.

Theorem 4.2 F(X)0G(X) = [LF]OLG],[F10O[GT]

Proof:
FOG = [FU G] from Definition 4.3
= [[FUG],[FUGT] from (4.6) (definition of interval operator)
- { A h V hJ from (2.4) (definition of glb and Iub)
hEFUG heEFUG

/\f0 /g \/fO gJ
L eF geG f\e/F g\e/G
= [LFJOLG],TF]1O[GT] from (2.4) (definition of glb and lub) O

Example 4.3 Let F(Xxq, X5) = [X1 D X5, X1 OX,] andG(Xyq, X5) = [X1X5, X1 © X,] . Then,

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 15

FUG = {X; D X9, X; OXo} U {X1X5, X1 O X} = {X1X5, X1 O X5, X; D Xo, X7 O X5}

FOG = [(X1 D xy) O(X1X5), (X OX5) O(X1 © x5)] = [0, 1] O

4.2 Abstraction of Variab les fr om Function Inter vals

Another operation on a function intatvhat may not necessarily yield a function in&tii¢ functional abstractione
therefore gtendDefinition 3.2 so that the result of functional abstraction from a function iatésvanother function inteal.

Definition 4.4 (Conservative Functional Abstraction) The conservative functional abstraction of a partially speci-
fied n-variable Boolean functior(X) with respect to a variable; is a function interval denoted tE/[U(X,)] and defied

1
accoding to:

FOwe = IFXu)] (4.11)

In other wods, the conservative functional abstractiorFgiX) with respect tax; is the smallest function interval containing
the (exact) functional abstraction & X) with respect tax; . O

The conserative functional abstraction has a particularly simple form in terms of ttaetoo$ of the function bound$o
derive this form, it is comenient fist to establish the folaing two identities:

Lemma 4.3 The glb/lub and cofactor operators commute,“.léxij = LFlx and(FXJ = [Fly-

Proof:
Fy = fLEJFin from (2.3)
LFX'J = /\ fo from (2.4)
fEF
LFl= /\f from (2.4)
fEF
O O
Rl = DA = Aty = [Fy]
EF X feEF
The other identity is preed similarly O

Theorem 4.4 The conservative abstraction B{X) with respect tax; is given by the following exgssion:

F()ugq) = [LFy, OLF L [F T, OFFT,] (4.12)

Proof:

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 16

[Fupgl = TFg UF(XqG o Xy %) U F(X) U Ry] from (41D and(3.1)
- [LFXi U F(Xy, -y Ry -0y X) U F(X) U inj’
[Fr UFOG, o %oy %) U FO) U R

= [| Fx | D[FOp o %o X0) JOLFO) 0| Fy |

from (4.6) (interval operator)

(FXJ O[F(Xgs oo Ry ooy %)] BTF(X)] D(ij] from (2.4)
= [LFXJ DLFXJ’ (FXJ D(FXJ] by perfect induction
= [LF 5, OLF L. TF 1y O F 1] from Lemma4.3 O

It is interesting to note that the consative abstraction oF (X) with respect to; is the interal whose glb is theonsen-
susoperatorCXiLFj and whose lub is tkmnoothingoperatorSXiFFT [12]. Brown [5, pp.106-110] refers to these bounds,
respectiely, as the conjunate and disjunctie eliminants, and wes what we hee called conseative abstraction as the
“elimination” of x; from the function interal F(X). Finally, these tw bounds can be obtained by wersal and xdstential
quantifcation ofx; from [F] and[F:

FOOueg = 9% - LFCOL 3% - TFCOT] (4.13)

This last form is particularly helpful because it demonstrates that abstraction is essentially a process cdtiprantifi

Example. 4.4 Lgt f(Xq, X9) =.x1x2 andg(.xl, X) = X1 @ X,. Then fXl = 0, le = X2, 0g, = X2, Ox, = %o and
the folloving functional abstractions are easily established:

F(x1X0) = fug) =[x, P Fx, D] = [0.%] (4.14)
f - F = lo ool _ ., 0 - [0,1 4.15
[U0q)] = Fruee) { x, = 0500, =1 %2|, oD%, J [0.1] (4.15)
ux)l = [gxlgxl’ gxlmgxl] = [X%p X, URp] = [0, 1] (4.16)

Recalling(2.1), note that the conseative abstraction if4.14) does not iwolve additional pessimism. On the other hand, the
conserative abstractions ifd.15)and(4.16)are more pessimistic than theixaet” counterparts inamples3.2 and3.3

5 Conclusions and Future Work

In this report we sought to understand the transformation to a Boolean function that results from functionally abstractin
its dependence on some of itiablesWe agued for the use of function sets as a basis for capturing functional uncertainty
and indicated ha function intenals sere as a practical approximation to unrestricted function\d&t®lso deeloped a com-
plete interal Boolean algebra that helps us in the practical manipulation of functionailsterv

CSE-TR255-95 Functional Abstraction and Partial Specification of Boolean Functions 17

The purpose of this reportas to lay the algebraic foundation for both functional abstraction and partial caiemifiof
Boolean functions. In relatedork, we describe a compreheresimodel of the dynamic befiar of logic gate circuits that
builds on this foundatiofil4]. We are also desloping a general model for the timing of logiate circuits that is dered
through careful functional abstraction. Udiknost gisting timing models, the proposed model handles state-dependent com-
ponent and wire delays and replaces the plethora of local sensitization criteria with a siggtabgriterion that captures the
functional dependence of component delays and signehlaimes.

References

[1] M. Abramovici, M. A. Breuer andd. D. FriedmanDigital Systemsésting and &stable DesigrElectrical Engineering, Communica-
tions, and Signal Processing, ed. R.L. Pickholtz. 1990, Computer Science Press.

[2] R.K.Brayton, J. D. Cohen, G. D. Hachtel, B.Mager and DY.Y. Yun, “Fast Recursie Boolean Function Manipulatidrin Proc.
IEEE International Symposium on @uits and Systems (ISCA$p. 58-62, 1982, Rome, Italy

[3] R. K. Brayton and FSomenzi, An Exact Minimizer for Boolean Relatiofign Digest of IEEE International Confence on Com-
puterAided Design (ICCAD)pp. 316-319, 1989, Santa Clara, California.

[4] M. A. Breuer “A Note onThree-\alued Logic Simulatiofi|EEE Transaction on ComputersplvC-21, pp. 399-402April 1972.

[5] F M. Brown, Boolean Reasoningd. JAllen. 1990, KluwerAcademic Publishers.

[6] C.L.HarknessinAppmoach to Uncertainty in VLS| DesigRh.D.Thesis, Bravn University, 1991.

[7] C.L.Harkness and D. Bopresti, “Interal Methods for Modeling Uncertainty in Riming Analysis; IEEE Transactions on Com-
puterAided Design of Integrated Cuits and Systemsol. 11, no. 11, pp. 1388-1401, ember 1992.

[8] J. PHayes, “UncertaintyEnegy, and Multiple-\alued Logics, IEEE Transactions on Computegl. C-35, no. 2, pp. 107-114, Feb-
ruary 1986.

[9] J. P Hayes, “Digital Simulation with Multiple Logi®alues; IEEE Transactions on Comput&kided Design of Integrated Ciudits
and Systemsol. CAD-5, no. 2, pp. 274-283pril 1986.

[10] S. C. Kleenelntroduction to Mathematicd952, Princeton, N.J.: @an Nostrand, Inc.

[11] Z. Kohavi, Switching and Finitédutomata TheorySecond ed. Computer Science Series, 1978, McElil

[12] P C. McGeerOn the Interaction of Functional andriing Behavior of Combinational Logic Cirits Ph.D.Thesis, Uniersity of
California, Berleley, November 1989.

[13] D. E. Muller, “Treatment ofTransition Signals in Electronic Switching Circuits Algebraic Method$, IRE Trans. on Elecwnic
Computersvol. EC-8, pp. 401, 1959.

[14] K. A. Sakallah, “Dynamic Modeling of Logic Gate Circuit3echnical Report CSE-TR-253-95he University of Michigan, July
1995.

[15] B. StroustrupThe C++ Poogramming Languagéddison-Wesle/ Series in Computer Science, ed. M.A. Harrison. 188@json-
Weslgy.

[16] C.A. Zukowski, The BoundingApprach to VLSI Cizuit Simulation The Kluwer International Series in Engineering and Computer
Science, ed. Allen. 1986, KluwerAcademic Publishers.

