Optimal Dual-Issue Instruction Scheduling With Spills
For Binary Expression Trees

Waleed M. Meleis Edward S. Davidson

Advanced Computer Architecture Lab
University of Michigan, Ann Arbor MI
waleed @eecs.umich.edu

Abstract

We describe an algorithm that produces code, with spills, for a register-constrained machine
that can issue up to one arithmetic operation and one memory access operation per time slot,
under the restrictions that the code’s dependence graph is represented as a binary tree with no
unary operations, and the latency of the operations is 1. We prove that the algorithm produces
a minimum cost schedule, and show that its complexity is O(nk) where n is the number of
operations to be scheduled and k is the number of spills in the schedule. The number of issue
slots in the minimum length schedule is p + 2k + | A| where p is the number of registers used, k
is the number of spills and | A| is the number of arithmetic operations in the tree. We show this
is the cost of any schedule that is in “contiguous form”.

1 Introduction

High performance processors are increasingly memory bottlenecked due to increasing proces-
sor issue bandwidth and clock speeds relative to the limited number of ports and access latency
to memory. Reducing memory traffic by improving data reuse at all levels of the memory hier-
archy is therefore essential for improving system performance. Processors that can issue more
than one instruction per cycle can hide the latency of spill code by overlapping it with instruc-
tions that do useful work. In this paper, we introduce an algorithm that produces a minimal
length code schedule for a processor that can issue up to one 2-operand arithmetic operation
and one memory access operation per time slot, provided that the code’s dependence graph
is represented as a binary tree and the latency of each operation is 1. The complexity of the
algorithm is shown to be O(nk) where n is the number of operations to be scheduled and £ is
the number of spills in the schedule.

The problem of minimizing the number of registers needed to evaluate an expression tree
without spills on a single-issue processor was first solved by Nakata [10] and by Redziejowski
[11]. The algorithm uses a postorder evaluation of the expression tree and executes in time
proportional to the number of operations to be scheduled. Sethi and Ullman extend this result
in [13] to minimize the amount of spill code needed to evaluate an expression tree, given a fixed
number of registers. This algorithm also uses a postorder traversal of the expression tree and
executes in linear time. Aho and Johnson develop a dynamic programming algorithm that solves
the same problem in [1]. Bernstein et al. [2] show how to find the cheapest dual-issue schedule
without spills for a binary expression tree, given a fixed number of registers. They also give an
efficient heuristic that applies if the expression tree contains unary operations.

The problem of minimizing the number of registers needed in an evaluation of an expression
DAG without spills was shown to be NP complete by Sethi in [12]. An expression DAG differs
from an expression tree in that a computed quantity may be used more than once in the course
of the computation. Bruno and Sethi show in [6] that evaluating an expression DAG using
minimal spill code for a 1-register machine is NP-complete.

The spill insertion problem is to insert the minimum amount of spill code into a given initial
schedule. The most efficient algorithms known for spill insertion are shown by Horwitz et al.
[8], and Hsu et al. [9] to be exponential in the number of registers in the worst case. This is
a striking result because it demonstrates that optimal code generation is difficult even when
the instruction schedule is fixed. They derive pruning rules for optimal spilling and present
heuristics.

The basic multi-processor scheduling problem is to optimally schedule a set of unit time tasks,
given a partial ordering on the tasks and a set of processors that can each execute disjoint subsets
of the tasks. This is equivalent to the problem of optimally scheduling an expression on a machine
with distinct functional units and infinite registers. The multi-processor scheduling problem for
DAGs is shown to be NP-complete by Ullman in [14]. The multi-processor scheduling problem
for trees is shown to be NP-complete by Bernstein et al. in [3]. These results demonstrate that
optimal code generation for a multiple-issue machine is difficult even in the absence of register
restrictions.

2 The Machine/Computation Model

The notation used in [2] formalizes the sequential and parallel scheduling problems without
spills. We begin by extending this notation to allow the use of spill code. We consider a machine
model that has access to R registers: r; rg,...,rg and an arbitrarily large memory space. The
machine has three types of operations: load operations which copy a data value from memory
into a register, store operations which copy a data value from a register into memory, and binary
arithmetic operations which read two data values from registers and write a new data value to
a register.

A computation tree, F’, contains leaf nodes that represent load operations and internal
nodes that represent arithmetic operations. In this work, every internal node is assumed to have
exactly two children. An edge between two nodes represents a data dependence between the two
operations. The set of arithmetic operations in F' is denoted A(F) = Ay, Aq, <oy Aja(ry|, Where
A; may denote either the operation or its arithmetic result (or simply, value). The set of load
operations is L(F) = Ly, Ly, ..., Lipry where L; represents a load of A; if 1 <7 < [A(F)], and
L; represents a leaf node of Fif |[A(F")| < i < |L(F)|. The set of store operations is denoted
S(F) = 51,82 ., 54(F)| Where 5; represents a store of A;. A load operation L; or a store
operation 5; is referred to as spill code if 1 < ¢ < |A(F)|. Note that if value A; is spilled in an
evaluation of F'; §; and later L; will appear in the schedule somewhere between A; and the use
of A;;if A; is not spilled, S; and L; will not appear at all.

For a given node v of F', I, denotes the subtree of > with v as its root. If « is a child of »
in F, we say u is used in the computation of v.

A sequential evaluation P of a computation F'is an ordered list of operations (including spill
code): P = Py, Py, ..., P, where P; is executed in slot i, and the following three conditions are
satisfied:

1. Every arithmetic operation and load leaf is executed, i.e. for every node v, there exists a
unique j such that P; = v.

2. No dependences of I’ are violated, i.e. if P;, P; are nodes in F', then P; € Fp; implies
7 < 1. This implies that the latency of each arithmetic and load operation is 1 slot, i.e. if
value P; is used by P; then i > 7 + 1.

3. If the value A, corresponding to a non-leaf node P; is used by P; (j > ¢), then A, may
be stored in slot k1, and loaded in slot &y, provided that 7 < k1 < ko < j. In this case,
Py, = 5, and Py, = L, are spill code.

Conditions 2 and 3 are collectively referred to as the precedence constraints of a sequential
evaluation. The completion time of P, ¢(P), equals | P|, the number of operations in P.

A parallel evaluation PQ of a computation F is an ordering of operation pairs: PQ =
PQ1, PQs,...PQ, where PQ; = (p;,q;) such that p; € L(F)U S(F)U{NOP} and ¢; € A(F) U
{NOP}. NOPs are used to indicate that no operation is scheduled in either or both operation
pairs at a slot. A parallel evaluation P¢) must satisfy the following four constraints:

1. For every nonleaf node v, there exists a unique P@); such that ¢; = v.

2. For every leaf node v, there exists a unique P@); such that p; = ».

L
14 15

slot# i=
Pi:

|inreg|i =
slot# i=
Pi:

|inreg|i =

slot# i=

b=
Gi=

|inreg|i =

slot# i=
pi=
a=

|inreg|i =

2 3

A A
5 6
L
23
As Ag AlO 11
L L Ag L L L L L L
16 17 20 21 22 24 25 26
ng L19

(@ A computation F

3 4 5 8 9 10 11 12 13 14 15 16 17 18
L. A L A A S L L_A L L. A A L

18 19 13 20 9 21 22 10 5 5 14 15 7 6 17 8 4 5
12 1 2 1 2 3 2 1 o0 1 2 1 2 3 2 1 2

20 21 22 23 24 25 26 27 28 29 30 31

s L L_A L L A A L_A L A
2 24 25 11 26 27 12 6 23 3 2 1

o 1 2 1 2 3 2 1 2 1 2 1

(b) A sequential evaluation of F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1wbhis ™ o be by T obigle T bty S byt T T by
T A T T AR T AT AT T A A T AT
1 2 1 2 3 2 2 3 2 3 3 2 3 2 1 2 1 2

20 210 22 23 24 25 26 27 28

L S. L - L - L. - -
26 11 27 11 23

A - - A_ - A{; - A A
11 12 3 1
3 2 3 2 3 2 3 2 1

(c) A parallel evauation of F

Figure 1: Examples of notation.

A
12

19

A
2

1

19

L27

3. For every PQ;, PQ;,if ¢; # NOP, then p; € F,, implies j < 4, and ¢; € F,, where ¢; # ¢;
implies j < 4. (once again, latency is 1).

4. For every PQ;, PQ;,if ¢ = A, and ¢; uses A, (j > 1), then A, may be stored in slot ky,
and loaded in slot kg, provided that i < k; < ky < j. In this case, PQg, = (S, qx,) and
PQr, = (Ly, qr,) are spill code.

Conditions 3 and 4 are collectively referred to as the precedence constraints of a parallel
evaluation. A pair (p;, NOP)is called an empty arithmetic slot, (NOP, ¢;) is an empty load/store
slot, and (NOP, NOP) is an empty slot. The completion time of PQ, ¢(PQ), equals | PQ]|.

The concatenation, Pi|P; (or simply P P;), of two sequential evaluations represents the
sequential evaluation formed by the operations in P; followed by the operations in P;.

For a sequential or parallel evaluation F, inreg; is the set of all values that are in a register
in slot 7, namely the set of all values v such that v is defined or loaded in slot 7, where 7 < 1,
and is neither used nor stored in any slot k£, where j < k£ < 7. A nonleaf value v is said to be
spilled in slot 7 if it is stored in slot j, where j < 7, and is loaded in slot k£, where k£ > 7. Thus if
v is spilled in slot 7, then » is not in a register in slot .

Fach load operation adds one element to inreg, each store removes one, and each arithmetic
operation adds one and removes two. Therefore, |inreg;| = the total number of loads, minus
stores, minus arithmetic operations in slot ¢ or earlier. The number of values in registers at slot
i of an evaluation F, |inreg;|, is denoted p;(F), and p(F) denotes the maximum over all ¢ of
pi(E). An example is shown in Figure 1.

Given a computation, ', and the number of available registers, R, the sequential scheduling
problem is to construct a sequential evaluation P such that ¢() is minimized subject to p(P) <
R. The parallel scheduling problem is to construct a parallel evaluation P such that ¢(PQ)
is minimized subject to p(PQ) < R. In each case, the evaluation constructed is said to use R
registers.

3 Minimizing spills in a parallel evaluation

Given a tree F’ and a number of available registers R, the solution to the parallel scheduling
problem is found by using the sequential scheduling algorithm to construct a sequential evalua-
tion with the minimum number of spills, transforming this evaluation into a parallel evaluation,
and then transforming this evaluation into a “contiguous” form. At each stage of the trans-
formation the amount of spill code remains unchanged and the cost of the evaluation does not
increase. In this section we show that no parallel evaluation of F' can have fewer spills than the
optimal sequential evaluation of F’, and that a minimum cost sequential evaluation can therefore
be transformed into a minumum spill parallel evaluation. In the following sections, we show that
every parallel evaluation, P@), of I’ in contiguous form that contains & spilled values has a cost
of p(PQ) + 2k + |A(F)| and that no parallel evaluation can cost less.

3.1 Minimizing spills in a sequential evaluation

In [1] and [13], efficient algorithms to solve a variant of the sequential scheduling problem are
described. In addition to the three types of operations described above, these algorithms include
another latency 1 binary arithmetic operator that reads one operand from a register and one
operand from memory and writes its result to a register, causing no net change in inreg;. In [4],

Bose describes a simple adaptation of the algorithm in [1] that solves the sequential scheduling
problem without the fourth instruction class. The algorithm first computes a label, M, for each
vertex of F’, and then uses these labels to construct the schedule.

Sequential scheduling algorithm

Visit the vertices of the tree in postorder. For every vertex v compute its label, M (v), as follows:

Label(v)
1.I1f ve L(F): M(v)=1.
2.If v € A(F) with children v;,v;:
a) if M(v1) # M(ve), M(v) = mazx(M(v1), M(v3))
b) if M(v1) = M(v3), M(v)= M(v1)+1
End

Apply Schedule to the vertex of F to produce the sequential evaluation.

Schedule(v)
if M(v)=1 {i.e. v is a leaf} Compute v;
{otherwise, vertex v has children vy, vy}
else if M(v1), M(v2) > R:
Schedule(v1); Store wvy; Schedule(vy); Load vy; Compute v;
else if M(vg) < M(vq):
Schedule(vy); Schedule(vy); Compute v;
else
Schedule(vy); Schedule(vy); Compute v;
End

As argued in [4], the sequential scheduling algorithm computes a cheapest evaluation of F
that uses no more than R registers. Furthermore, it can be shown that if the cheapest evaluation
contains no spills, the algorithm minimizes the maximum number of values in registers. The
proof of this, which we omit, is similar to the one given in [13]

Clearly ¢(P) equals the number of nodes in F' plus the number of spill operations. Therefore
an optimal sequential evaluation must contain the fewest spill operations among all sequential
evaluations. Furthermore, if & values are spilled, there are 2k spill operations, i.e. k store/load
pairs. Figure 1(b) shows the result of the sequential scheduling algorithm for R = 3.

3.2 A lower bound on spills in a parallel evaluation

A simple transformation allows us to transform any k-spill parallel evaluation that uses
R registers into a k-spill sequential evaluation that uses R registers. Given such a parallel
evaluation, P@Q), recall that each slot i has PQ; = (p;, ;). Let J; = ¢ip;, and let P' = J1Ja...J|pq),
then delete the NOPs to create a sequential evaluation, P. In [2] the same transformation
is applied to parallel evaluations that do not contain spills. We first show that when P is
constructed in this manner it represents a sequential evaluation. Then we show that p(P) <
p(PQ).

If operation v is in an earlier slot than operation w in parallel evaluation P@, v will be in
an earlier slot than w after P@Q is transformed into P. Since each non NOP operation in PQ is
located uniquely in P (and visa versa), and since the precedence conditions among operations

Slot#i=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P=bglg ™ by by~ = S bybg - Lgh,- = Lo

G= - - A.- A - AA - - - A - - A A - A

13 Y 10 ‘% v 8 7

inegk= 1 2 1 2 1 2 3 2 1 0 1 2 1 2 3 2 1 2 1

slot# i= 20 21 22 23 24 25 26 27 28 29 30 31

= _ - - L - _
p_'_ S, Loy Lo A Le L7 23 L
4= - - - T T T Y
liregk = 0 1 2 1 2 3 2 2 1 2

Figure 2: The result of transforming a sequential evaluation in Figure 1b into a parallel evalu-
ation.

in PQ) refer only to operations in distinct slots and the relative order of these operations is
unchanged in P, it follows that P represents a sequential evaluation.

Consider some P@); such that p;,q; #NOP, and assume that P; = ¢; and P;;; = p;. That
is, assume that ¢; and p; become the jth and (j + 1)th operations in P. Clearly the number of
values in registers in slot ¢ of P() is the same as the number of values in registers in slot j + 1
of P because in both evaluations the same operations have executed, i.e. p;(PQ) = p;+1(P).
Similarly, p;—1(PQ) = p;—1(P). Since ¢; = P; is an arithmetic operation, the number of values
in registers decreases by one between slots j — 1 and j of P,i.e. p;(P) = p;j—1(P)—1. Therefore,
p;(P) < pi—1(PQ). We have shown that the number of values in registers in slots j and j + 1 of
P is no larger than the number of values in registers in slots ¢ — 1 and 2, respectively, of PQ. A
similar analysis can be applied to all slots of P and P@). For those slots of P for which p; or
¢; =NOP, the analysis is degenerate since NOPs do not alter p. Therefore p(P) = p(PQ).

Since P is a sequential evaluation of I’ that contains the same operations as P}, evaluations
P and P¢) contain the same number of spills. Therefore we may now prove the following theorem.

Theorem 1: Given a computation F' and a number of available registers R, if an optimal
sequential evaluation, P, of F' contains k spills, then no parallel evaluation of F contains fewer
than k spills.

To prove this theorem, assume that P is a parallel evaluation of F’ that uses no more than
R registers and contains &’ spills with &’ < k. Then the transformation described above can be
used to create a sequential evaluation of F' that uses no more than R registers and contains &’
spills. This contradicts the assertion that P is optimal. Hence, no parallel evaluation of F’ can
contain fewer than £ spills.

3.3 Creating a minimum-spill parallel evaluation

The optimal serial evaluation of F’ thus directly yields a lower bound, &, on the number
of spills in any parallel evaluation of F. We can easily achieve this lower bound through a
straightforward transformation of the optimal sequential evaluation. Given a k-spill sequential
evaluation P = Py, P,, ..., P,, then for each slot ¢:

o if P, e A(F), let PQ; = (NOP,P;), and

slot# i= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P=bgligboo by Lo bia bis S5 bgbir bs by bs S5 L by bg by =

g= - - A A - A A - A - A A A - A - A A A A

13 "9 0 ‘5 v s 4 T2 11 12 7% 3 ™

|inreg|i = 1 2 2 2 3 3 3 2 2 3 3 3 3 2 2 3 3 3 2 1

Figure 3: The result of applying the load-contiguous transformation to Figure 2 with R = 3.

o if P, € I(F)U S(F), let PQ; = (P,,NOP).

No precedence is violated by this transformation since the operations are executed in the
same order. Therefore P(@) represents a k-spill parallel evaluation of F’ that uses R registers.
Note, however, that P() is degenerate since there is a NOP in every slot; thus P@Q is unlikely to
have the minimum number of slots. The result of applying this transformation to the sequential
evaluation shown in Figure 1b can be seen in Figure 2.

4 Load-contiguous parallel evaluations

We have shown that a parallel evaluation with the minimum number of spills can be con-
structed by applying a transformation to the optimal sequential evaluation. We now de-
scribe the process of transforming this parallel evaluation into a canonical form. We define
a load-contiguous parallel evaluation and show that every parallel evaluation can be made load-
contiguous without increasing its cost, the maximum number of values in a register, or the
number of spills.

A parallel evaluation of a computation F is said to be load-contiguous if and only if no load
operation is scheduled in a later slot than an empty load/store slot. Let PQ be a k-spill parallel
evaluation of a computation F that uses R registers. Consider the first slot ¢ containing an
empty load/store slot such that there is a later slot containing a load operation. Let j be the
first slot after 7 that contains a load operation. We create an evaluation P@Q)’ that is the same
as P(@) except either

1. the empty slot ¢ has been deleted,
2. the load operation in slot j has been moved to 1, or

3. the load operation in slot j has been deleted along with the store of the same value.

Clearly, in all three cases, ¢(PQ’) < ¢(PQ) and PQ’ has no more spills than P@Q. It remains
to show that p(PQ’) < p(PQ) and that precedence is preserved.

First consider the degenerate case where slot 7 is an empty slot containing neither an arith-
metic operation nor a load/store. Slot ¢ can clearly be deleted without increasing p or affecting
precedence.

Next consider the case where slot ¢ contains an arithmetic operation. Since slot ¢ contains
only an arithmetic operation, p;(PQ) = p;—1(PQ)— 1. From slot 7 to slot j by assumption there
are no load operations, so the number of registers used here can only stay the same or decrease.
That is, for all slots s such that i < s < j, ps(PQ) < pi—1(PQ) — 1.

We tentatively create a new evaluation PQ’ that is identical to PQ) except the load operation
in slot j is moved to slot 7. That is, p} = p;, and p}; = NOP. Yor all k < i, pp(PQ") = pr(PQ).
Similarly, for all k& > j, px(PQ’) = pr(PQ). However, p;(PQ") = p;(PQ) + 1 due to the new
load operation in slot 7. Similarly, for all slots s such that i < s < j, ps(PQ") = ps(PQ) + 1.
But since ps(PQ) < p;i—1(PQ) — 1 from above, we can conclude that for ¢ < s < j, ps(PQ’) =
ps(PQ)+ 1 < pi_1(PQ). Therefore p(PQ’) < p(PQ) < R. Moving a load operation earlier in
the evaluation cannot violate its precedence with respect to an arithmetic operation that uses
the loaded value. However, if the load operation is spill code which has been moved earlier
than its associated store, precedence has been violated - but, in this case both operations can
be deleted, thereby decreasing the number of spills without increasing either the cost of the
evaluation or the maximum number of values in registers.

This transformation can be applied iteratively until the evaluation is load-contiguous. The
transformation does not affect any operation earlier than 7, and each time the transformation is
applied slot 7 is either no longer empty or eliminated entirely, or a spill is eliminated. Therefore
the iterations will eventually terminate, giving an evaluation in which the initial string of slots
will contain a load or store operation until the load operations are exhausted. We have thus
proven the following theorem.

Theorem 2: Gliven any parallel evaluation PQ) of a computation I, there exists a load-contiguous
parallel evaluation PQ' of F such that:

1. ¢(PQ") < ¢(PQ),
2. p(PQ") < p(PQ), and
3. PQ' has no more spills than PQ.

The result of applying this transformation to the parallel evaluation in Figure 2 is seen in
Figure 3. We now extend the notion of load-contiguity to stores.

5 Store-contiguous parallel evaluations

We now define a store-contiguous parallel evaluation and show that every load-contiguous
parallel evaluation can be made store-contiguous as well without increasing the evaluation’s cost
or the number of spills, and without causing the maximum number of values in registers to
exceed R.

Given a R available registers, a parallel evaluation of a computation F is store-contiguous if
and only if every store operation is in a slot ¢ where p;41 = R.

Consider the largest i such that slot ¢ contains a store operation and p;+1(PQ) < R. We
show by contradiction that slot 7 + 1 cannot contain a store. Suppose slot ¢ + 1 does contain a
store operation. Then p;11(PQ) < p;(PQ). Furthermore, since slot i contains a store operation,
pi(PQ) < pi—1(PQ). Thus pi11(PQ) < pi—1(PQ) — 2. The number of values in registers at a
slot can increase by 1 in the next slot, which occurs when the next slot contains only a load
operation. Therefore, p;12(PQ) < pi—1(PQ) — 1. Since p;_1(PQ) < R, we have p;13 < R — 1.
In this case, the store in slot 72 + 1 contradicts the assumption that the store in slot 7 is the last
store that precedes a slot with fewer than R values in registers. Therefore slot 7 + 1 does not
contain a store.

We now show that since p;11(PQ) < R, we can construct a new, evaluation PQ’ in which
the store in slot 7 is moved one slot later without increasing the evaluation’s cost, the number

slot# i=

pi=
ai=

|inreg|i =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
L L L L L L L L S L L L L L S L L L -
18 19 20 21 22 14 15 16 5 17 5 24 25 26 2 27 23 2
- - - A - - A A - - A
A13 A9 Alo A5 7 As A4 2 11 12 Ae A3
1 2 2 2 3 3 3 3 2 3 3 3 3 3 2 3 3 3 2

Figure 4: The result of applying the store-contiguous transformation to Figure 3.

of spills, or the maximum number of values in registers. We separately consider the following
six cases depending on the operations in slots 7 and 7 + 1.

Case 1:

Case 2:

Case 3:

Case 4:

Case 5:

Case 6:

PQ; = (5,A) and PQ;41 = (L,NOP): Swap the S and L, i.e. let PQ: = (L, A) and
PQi,, = (5 NOP). Moving a load operation earlier in an evaluation cannot violate a
dependence. Clearly for all j < i —1, p;(PQ) = p;(PQ"). Since PQ; = (L, A), then
pi(PQ") = p;—1(PQ'). Finally, for all & > i 4+ 1, pp(PQ) = pr(PQ’) since for each
of these k, the same set of operations have been executed in PQ and PQ’. Therefore
p(PQ") < p(PQ) < R. If the store and load reference the same value, they can both be
deleted from PQ’ without increasing the maximum number of values in registers.

PQ; = (5,A) and PQipq = (L, A"): Let PQ: = (L,A) and PQi,, = (5,A’). The

justification for this transformation is identical to that given for case 1.

PQ; = (5,A) and PQi41 = (NOP, A"): Let PQ; = (NOP, A) and PQ! , = (5,A"). For
all j #14, p;(PQ) = p;(PQ’) < R. Since PQ: = (NOP, A), then p;(PQ") = pi=1(PQ’) —
1 < R. Therefore p(PQ’) < p(PQ) < R.

PQ; = (5, NOP)and PQ;y1 = (NOP, A): Let PQ; = (NOP,NOP)and PQ} , = (5, A).
For all j # 1, p;(PQ) = p;(PQ’). Since PQ; = (NOP, NOP), then p;(PQ’) = p;i_1(PQ").
Therefore p(PQ’) < p(PQ) < R. The empty slot PQ’ can be deleted without increasing
the maximum number of values in registers.

PQ; = (S, NOP) and PQ;4+1 = (L, A), Swap PQ; and PQ;41, i.e. let PQ: = (L, A) and
PQi,, = (5, NOP). Moving the arithmetic operation earlier than a store cannot violate
precedence. Moving a load operation earlier than a store violates precedence only if L
and S reference the same value, in which case they can be deleted as in case 1. For all
J# i, p;(PQ) = p;(PQ). Since PQ’ = (L, A), then p;(PQ") = pi—1(PQ’). Therefore
o(PQ") < p(PQ) < R.

PQ; = (5, NOP)and PQ41 = (L, NOP): Let PQ}: = (L,NOP)and PQ;,, = (5,NOP).
No precedence is violated unless the load and store reference the same value, in which case
they can be deleted as in case 1. By assumption, p;+1(PQ) < R. The load operation in
PQ;4+1 increases the number of values in registers by 1, so p;(PQ) < R — 1. The store
operation in P@); decreases the number of values in registers by 1, so p;,_1(PQ) < R.
Clearly for all j # 4, p;(PQ') = p;(PQ) < R.. The load operation in PQ’ increases the
number of values in registers by 1, so p;(PQ’) < R. Therefore p(PQ’) < R.

In each case we have shown that if slot ¢ contains a store operation and p;+1(PQ) < R, it is
always possible to move the store one slot later without increasing the evaluation’s cost or the

number of spills, and without causing the maximum number of values in registers to exceed R.

20

A
1
1

This transformation can be applied repeatedly to the same store, moving it 1 slot later in each
case, until either it does precede a slot in which R values are in registers, or the store can be
deleted (if it is moved later than the load of the same value). Then the transformation can be
applied to the preceding store. Since the evaluation contains a finite number of slots, each store
will eventually either precede a slot containing R values in a register or be deleted.

The movement of one store cannot affect the prior placement of a later store since, as we
have shown, stores cannot be in adjacent slots if they precede slots with R values in registers.
Since there are finitely many stores, the transformations will eventually terminate with each
remaining store preceding a slot with R values in registers.

It remains to show that it is possible to satisfy both load-contiguity and store-contiguity
in an optimal schedule. Notice that up to the point of deleting load/store pairs, the store
contiguity transforms that move a load interchange the load with a store. Thus they preserve
load-contiguity. However, empty load/store slots are introduced wherever a load/store pair
is deleted and these may destroy load-contiguity. In this case, however, the load-contiguity
transformation can be reapplied. In the worst case, the load-contiguity and store-contiguity
transformations are reapplied up to k times, i.e. each time a spill is eliminated. We have thus
proven the following theorem.

Theorem 3: Gliven a k-spill, load-contiguous, parallel evaluation PQ of a computation F such
that p(PQ) < R, there exists a parallel evaluation PQ' of F such that:

- oPQ) < o(PQ),

- p(PQ) < R,

. PQ' uses k or fewer spills,
. PQ' is load-contiguous, and

N Y

. PQ' is store-contiguous.

An evaluation PQ’ is said to be contiguous if it is both load-contiguous and store-contiguous.
The result of applying this transformation to the parallel evaluation shown in Figure 3 is seen
in Figure 4.

6 Cost of a k-spill parallel evaluation

We have shown that given a k-spill parallel evaluation of a computation F’ that uses R
registers, there exists another parallel evaluation of I that is no more expensive, does not use
more than R registers or more spills, and is contiguous. We now examine the structure of such
a k-spill contiguous evaluation and show that its cost is p(PQ) + 2k + |A(F)|.

Let PQ be a k-spill, contiguous parallel evaluation of a computation F' such that p(PQ) <
R, and consider an arbitrary store operation 5 in P@;. We show by contradiction that that
PQ;=(5,NOP) and PQ;4+1 = (L, NOP) for some load operation, L.

Assume that PQ; = (5, A). Then p;(PQ) = p;i—1(PQ)—2. The number of values in registers
at a slot can increase by at most 1 in the next slot, so p;41(PQ) < pi—1(PQ)—1< R —1. Thus
PQ is not store-contiguous, which is a contradiction. We conclude that PQ; = (5, NOP).

Similarly, assume that PQ;+1 = (L, A). Then p;1(PQ) = pi(PQ). Then since PQ; =
(S,NOP), pi(PQ) = piz1(PQ) — 1 < R —1. Thus PQ is not store-contiguous, which is a
contradiction. Slot ¢ + 1 cannot contain an empty load/store slot because this would violate

load-contiguity. We conclude that PQ;41 = (L, NOP). We have thus proven the following
lemma.

Lemma 1: Given a k-spill, contiguous parallel evaluation PQ of a computation F that uses R
registers, if PQ); contains a store operation S, then PQ; = (S, NOP), and PQ;41 = (L, NOP)
for some load operation L.

Consider a store operation in slot 7 of a contiguous parallel evaluation PQ with p(PQ) < R,
and the following store operation, if it exists, in slot . We show by contradiction that for all
m such that ¢ < m < j, p(PQ) = R. Assume that for some slot m, i < m < 7, p(PQ) < R.
Since PQ is store-contiguous, p;41(PQ) = R. Therefore the number of values in registers
decreases by 1 between slots i+ 1 and m. Since there are, by assumption, no stores among these
slots, there must be a slot m’, i + 1 < m’ < j such that PQ,,, = (NOP,A). We can assume
that there is a load operation after slot 7 that loads the value stored in slot j. Thus the empty
load /store slot m' causes PQ not to be load-contiguous, which is a contradiction. Therefore,
for all : < m < j, pm(PQ) = R. This immediately implies that all such slots m contain a load
operation and an arithmetic operation. We have thus proven the following lemma.

Lemma 2: Given a k-spill, contiguous parallel evaluation PQ of a computation F that uses
R registers, if PQ; and P(Q); contain store operations, then for all m such that i« < m < j,
pm(PQ) = R and PQ,, = (L, A) for some load operation L and arithmetic operation A.

Consider the slot ¢ containing the first store operation 5, if one exists, in a contiguous parallel
evaluation PQ with p(PQ) < R. We show by contradiction that there are R empty arithmetic
slots before slot 7. Note that load-contiguity implies that there can be no empty load/store slots
before slot 7, and since there are no stores there, each must contain a load.

Suppose there are more than R empty arithmetic slots before slot . Then p;_1(PQ) would
exceed R, a contradiction. Thus, there cannot be more than R empty arithmetic slots before
slot z.

Similarly, if there are fewer than R empty arithmetic slots before slot ¢, p;_1 < R— 1. Then,
since PQ; = (S, NOP), p;(PQ) < R — 2, and since PQ;41 = (L,NOP), pit1(PQ) < R -1,
which violates store-contiguity. Thus, there cannot be fewer than R empty arithmetic slots
before slot 7. The number of empty arithmetic slots before the first store slot must thus exactly
equal R. We have therefore proven the following lemma.

Lemma 3: Given a k-spill, contiguous parallel evaluation PQ of a computation F that uses R
registers, if the first store operation of PQ) is in slot m, then there are exactly R empty arithmetic
slots preceding slot m.

Finally, consider the slot m containing the last store operation 5, if one exists, of a contiguous
parallel evaluation PQ with p(PQ) < R. We claim that if PQ contains no empty slots, there are
no empty arithmetic slots after slot m + 1, and show this by contradiction. Note first that there
can be no empty load/store slots between slot m and the last load operation in slot ¢. As argued
above, if there is such an empty load/store slot, PQ would not be load-contiguous. Assume that
PQ does contain an empty arithmetic slot, m’, such that m + 1 < m’. If there is more than
one such slot, we assume that m’ is the first one. Therefore, there is an arithmetic operation
in every slot between slot m + 1 and m’. Since PQ contains no empty slots, m’ < ¢. Since

10

PQ@ is contiguous, every slot between slots m and m’ must contain a load operation. Therefore,
pmi—1(PQ) = R. Since PQ,,» = (L, NOP) for some load operation L, p,,/(PQ) = R+ 1, which
is a contradiction. Therefore, the slot m’ cannot exist. We have proven the following theorem.

Lemma 4: Given a k-spill, contiguous parallel evaluation PQ of a computation F that uses R
registers and contains no empty slots, if the last store operation of P(Q) is in slot m, then there
are no empty arithmetic slots after slot m + 1.

We have shown that in a contiguous parallel evaluation there are two empty arithmetic slots
for each store operation (spill), and, if any stores exist, there are R empty arithmetic slots before
the first store operation and no empty arithmetic slots after the last store. If there are no spills
in a contiguous parallel evaluation P@), the number of empty arithmetic slots can be seen to be
p(PQ). If there is at least one spill, p(PQ) = R since PQ is contiguous. Therefore, the cost of
a k-spill contiguous evaluation is p(PQ) + 2k + |A(F)|, as stated in the following theorem.

Theorem 4: The cost of a k-spill contiguous parallel evaluation PQ of a computation F con-

taining no empty slots, with p(PQ) < R, is ¢«(PQ) = p(PQ) + 2k + |A(F)].

It can be seen that the contiguous evaluation in Figure 4 satisfies Theorem 4 in addition to
the preceding lemmas. In the following we only consider parallel evaluations that contain no
empty slots.

7 The optimal parallel evaluation

We now describe an algorithm that solves the parallel scheduling problem, given a compu-
tation, F’, and R available registers. Using the sequential scheduling algorithm, we construct
a k-spill sequential evaluation P. Using the transformation of Section 3.3, we construct a kq-
spill parallel evaluation P@;. Using the transformation of Section 4, we construct a kg-spill
parallel evaluation P@)s. Using the transformation of Section 5, we construct a ks-spill parallel
evaluation P@s3. We show by contradiction that P@3 is the solution to the parallel scheduling
problem.

Assume that there is some k’-spill parallel evaluation PQ’ of F, with p(PQ’) < R and
c(PQ") < ¢(PQ3). We apply the transformation of Section 4 to PQ’, giving a ki-spill parallel
evaluation P@Q,. Using the transformation of Section 5, we construct a k4-spill parallel evaluation
PQY%. By Theorems 2 and 3, ks < ky < ky = k, and £} < k), < k'. By Theorem 1, k < k3, so
k = ks. Similarly, & < k. We consider the following two cases depending on whether or not

k=0.

Case 1: k > 0: By Theorems 2 and 3, ¢(PQ%) < ¢(PQ%) < ¢(PQ’). But by Theorem 4, ¢(PQY%) =
p(PQY) + 2k + |A(F)|, and ¢(PQ3) = p(PQ3) + 2k 4+ |A(F)|. Since k, k" # 0 and PQs
and PQ% are store-contiguous, p(PQs) = p(PQ%) = R. Thus, ¢(PQ3) < ¢(PQY), and
¢(PQ3) < ¢(PQ"), which is a contradiction. So if k£ # 0, PQ’ cannot exist.

Case 2: k = 0: The sequential scheduling algorithm produces the evaluation P such that p(P) is
minimized, if such an evaluation exists without any spills. In Section 3.2 we show that
a parallel evaluation can be transformed into a sequential evaluation without increasing
the maximum number of values in registers. Therefore, p(P) < p(PQs3). If this were not

11

the case, a sequential evaluation using fewer than p(P) registers could be constructed.
By Theorem 2, p(PQ2) < p(PQ1) = p(P). Since PQ, contains no spills, it is already
store-contiguous. Therefore p(PQ3) = p(PQ3) < p(P) and p(P) = p(PQ3). By Theorem
4, ¢(PQ3) = p(PQ3)+ |A(F)|, and ¢(PQ%) = p(PQ%) + |A(F)|. By assumption, ¢(PQ’) <
c(PQ3), and therefore ¢(PQY) < ¢(PQ3). Then p(PQYL) < p(PQs) = p(P), which is a

contradiction. Therefore, if £ = 0, PQ’ cannot exist.
Thus, we have proven the following theorem.

Theorem 5: Gliven a computation F and R available registers, the parallel evaluation PQ)s that
is produced using the algorithm described above is a solution to the parallel scheduling problem.

It can be shown that the worst-case computational complexity of the parallel scheduling
algorithm is O(nk), where n is the number of nodes in F', and k is the number of spills in the
optimal sequential evaluation of F. This result is described in the appendix.

8 Conclusions

We have described an O(nk) algorithm that solves the parallel scheduling problem by ap-
plying a series of transformations to an optimal sequential evaluation. The cost of the k-spill
parallel evaluation P@Q found by the algorithm is shown to be p(PQ) + 2k + |A(F")|. Possible
extensions of this work would include dependence graphs whose arithmetic operations can use
only one value or more than two, arithmetic and load/store operations with varying latencies, a
machine model that allows more than one arithmetic or load/store operation to issue in a slot,
and dependence graphs that are DAGs.

References

[1] A. V. Aho and S. C. Johnson. Optimal code generation for expression trees. Journal of the
ACM, 23:488-501, 1976.

[2] D. Bernstein, J. Jaffe, and M. Rodeh. Scheduling arithmetic and load operations in parallel
with no spilling. STAM Journal of Computing, 18:1098-1127, 1987.

[3] D. Bernstein, M. Rodeh, and I. Gertner. On the complexity of scheduling problems for
parallel/pipeplined machines. IEEE Transactions on Computers, 38:1308-1313, 1989.

[4] P. Bose. Optimal code generation for expressions in super scalar machines. In Proc. Fall
Joint Computer Conference, pages 372-379, 1986.

[5] D. Bradlee, S. Eggers, and R. Henry. Integrating register allocation and instruction schedul-
ing for RISCS. In Proc. 4th Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems, 1991.

[6] J. Bruno and R. Sethi. Code generation for a one-register machine. Journal of the ACM,
23:502-510, 1976.

[7] J. R. Goodman and W. C. Hsu. Code scheduling and register allocation in large basic
blocks. In Proc. 1988 Intl. Conf. on Supercomputing, pages 442-452, 1988.

12

[8] L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index register allocation.
Journal of the Association of Computing Machinery, 13:43-61, 1966.

[9] W. Hsu, C. N. Fischer, and J. R. Goodman. On the minimization of loads/stores in local
register allocation. IEFFE Transactions on Software Engineering, 15:1252-1260, 1989.

[10] 1. Nakata. On compiling algorithms for arithmetic expressions. Communications of the
ACM, 10:492-494, 1967.

[11] R. R. Redziejowski. On arithmetic expressions and trees. Communications of the ACM,
12:81-84, 1969.

[12] R. Sethi. Complete register allocation problems. SIAM Journal of Computing, 4:226-248,
1975.

[13] R. Sethi and J. D. Ullman. The generation of optimal code for arithmetic expressions.
Journal of the ACM, 17:715-728, 1970.

[14] J. D. Ullman. Np-complete scheduling problems. Journal of Computing Systems and Sci-
ences, 10:384-393, 1975.

13

Appendix: Computational complexity

The sequential scheduling algorithm visits every node of the dependence graph once. There-
fore if F' contains n nodes, the algorithm’s worst-case time complexity is O(n).

The transformation of Section 3.3 visits every slot in the sequential evaluation once. A
sequential evaluation containing k spills uses n+ 2k slots. Thus, the transformation’s complexity
is O(n + k).

The load-contiguous transformation in Section 4 can be implemented with two pointers. The
first pointer points to each load operation in turn, starting from the beginning of the evaluation,
and the second pointer always points to the latest empty load/store slot that is earlier than the
first pointer. In the worst case, each pointer scans the n + 2k slots in the parallel evaluation
once. Thus, the transformation’s complexity is O(n + k).

The store-contiguous transformation in Section 5 can be implemented by considering each
store operation in turn, starting from the end of the evaluation. The transformation is repeatedly
applied to the same store, moving it one slot later each time, until the transformation can no
longer be applied. Applying the transformation once takes constant time. In the worst case a
store is moved n + 2k slots, from the first slot in the evaluation to the last slot. Since there are
k stores, the transformation will take time nk + 2k? in the worst case. Each value can be spilled
at most once, so k < n. Thus, the complexity of the store-contiguous transformation is O(nk).
Since k is the minimum number of spills in any parallel evaluation of F’, no stores will be deleted
by the transformation and the load-contiguous transformation will not need to be reapplied.
Empty slots can be deleted from the evaluation in O(n 4 k) time. Thus, the complexity of the
parallel scheduling algorithm is O(nk).

14

