A Reduced Multipipeline Machine Description that

Preserves Scheduling Constraints®

Alexandre E. FEichenberger and Edward S. Davidson

Advanced Computer Architecture Laboratory
EECS Department, University of Michigan
1301 Beal Ave, Ann Arbor, MI 48109-2122

alexe,davidson@eecs.umich.edu

(313) 936-2917

Abstract

High performance compilers increasingly rely on accurate modeling of the machine resources to effi-
ciently exploit the instruction level parallelism of an application. In this paper, we propose a reduced
machine description that results in faster detection of resource contentions while preserving the schedul-
ing constraints present in the original machine description. The proposed approach reduces a machine
description in an automated, error-free, and efficient fashion. Moreover, it fully supports schedulers that
backtrack and process operations in arbitrary order. Reduced descriptions for the DEC Alpha 21064,
MIPS R3000/R3010, and Cydra 5 result in 4 to 7 times faster detection of resource contentions and

require 22 to 90% of the memory storage used by the original machine descriptions.

1 Introduction

Current compilers for VLIW and superscalar machines focus on exploiting more of the inherent parallelism
in an application in order to obtain higher performance. Fine grain schedulers are a critical element in
efficiently exploiting instruction level parallelism and a significant body of research has sought more effective
scheduling algorithms. Several new directions have been explored: schedulers may not schedule operations
in cycle order, focusing initially on operations along critical paths [1][2][3][4][5][6], they may backtrack to
reverse poor scheduling decisions [1][2][3][4][7], and they may hide long latencies by speculating operations
across branches and basic blocks [1][6][7][8][9][10].

High performance compilers have also used precisely detailed machine models [1][3][7][11][12][13] to better
utilize the machine resources of current processors with increasingly wider issue mechanisms, deeper pipelines,
and more heterogeneous functional units. Precise modeling of machine resources is critical to avoid resource
contentions that may stall some of the pipelines or, in the absence of hardware interlocks, corrupt some
of the results. Resource modeling has to cope with rapidly changing processor models while controlling
development cost by reusing existing compiler technology.

To meet these challenges, compilers have increasingly relied on a resource modeling utility, separated

from the rest of the compiler, that can quickly answer the following query: “Given a target machine and a

* Appeared as Technical Report CSE-TR-266-95, University of Michigan, Ann Arbor, MI.

partial schedule, can I place this additional operation in this cycle without resource contention?” Typically,
this functionality has been provided by a contention query module that processes the machine description
of a target machine, generates an internal representation of the resource requirements, and provides for a
querying mechanism [1][3][7][11][12][13]. The IMPACT compiler, for example, implemented such a module
[12] to produce high performance schedules for a wide range of machines, from existing architectures such
as X86, PA-RISC, and Sparc to research architectures such as PlayDoh [14].

With the recent emphasis on exploiting instruction level parallelism, compile time is increasingly spent
in the contention query module as several cycles of a schedule, possibly in several basic blocks [9][10], are
queried per operation in order to achieve good schedules. Optimizing contention query modules therefore
has a significant impact on the overall performance of a compiler, as queries are issued in the innermost loop
of the scheduler. This optimizing issue has recently been addressed in several papers [15][16][17], but these
either over restrict the manner in which operations are placed or approximate the resource requirements of
a schedule.

In this paper, we propose a reduced machine description that results in significantly faster detection
of resource contentions while exactly preserving the scheduling constraints present in the original machine
description. The reduced machine description is expressed using reservation tables that determine the
resource usage for each operation. We demonstrate how to derive a reduced machine description for a given
target machine and present several examples illustrating the effectiveness of our approach.

The proposed approach fully supports unrestricted scheduling models where operations can be scheduled
in arbitrary order and prior scheduling decisions can be reversed. Unrestricted scheduling is essential to
accommodate the elaborate scheduling techniques used by today’s high performance compilers. The Cydra 5
compiler, for example, uses an operation-driven scheduler that reduces the schedule length of a basic block
by scheduling operations along the critical path first [1]. Operation-driven schedulers consider operations
in topological order, not in order of monotonically increasing (or decreasing) schedule time. Also, both
the Cydra 5 and the IMPACT compilers use software pipelining techniques to achieve loop schedules with
high throughput [1][2]. Software pipelining schedulers do not consider operations in topological order as,
in general, no topological order is defined in dependence graphs with loop-carried dependences. Moreover,
experimental results indicate that software pipelined loops can achieve higher throughput in less compilation
time when some limited number of scheduling decisions can be reversed, as shown by Rau [3], and used in
numerous compilers [1][2][3][4][18]. The Multifow compiler also uses a backtracking mechanism to improve
scalar code schedules [7].

The proposed approach also precisely handles basic block boundary conditions, i.e. the dangling resource
requirements from predecessor basic blocks. In general, the resource requirements at the beginning of a basic
block consists of the union of all the resource requirements dangling from predecessor basic blocks. Handling
boundary conditions is even more important for high performance compilers that hide operation latencies by
(speculatively) moving operations across branches and basic blocks [1][6][7][8][9][10]. Both the Cydra 5 and
the Multifow compilers, for example, use scheduling algorithms that handle dangling resource requirements
(107,

Currently, most compilers rely on machine descriptions that have been manually reduced using ad-hoc
methods. This process is error prone and, to avoid errors or reduce the machine description, conservative

assumptions may be employed. Thus, the reduced machine description may prohibit certain operation

sequences that cause no contentions on the target machine. Furthermore, high performance compilers are
often developed in parallel with micro-architecture development during which resource requirements often
change. Manually reducing the machine description must then be carried out several times, introducing more
potential for errors, reduced optimization, and increased maintenance cost. Using our approach, the resource
requirements can be expressed in terms close to the actual hardware structure of the target machine and the
reduced machine description used by the compiler is generated in an error-free and automated fashion.

Experiments with the DEC Alpha 21064 [19], the MIPS R3000/R3010 [20], the and Cydra 5 [21] machines
indicate 4 to 7 times faster contention queries and require 22 to 90% of the memory storage used by the orig-
inal machine descriptions. These improvements are obtained by using highly reduced machine descriptions
instead of the original or manually optimized machine descriptions. Using the operation frequency found
in a benchmark suite of 1327 loops from the Perfect Club, SPEC-89, and the Livermore Fortran Kernels
compiled for the Cydra 5, and modeling all operations in that benchmark suite, our results indicate that the
average contention query is performed by testing only 1.03 words, where a single 64 bit word encodes the
state of 7 consecutive schedule cycles.

In this paper, we present related work in Section 2 and an introductory example in Section 3. Algorithms
to construct reduced machines are developed in Sections 4 and 5. Reduced machine and benchmark examples

are presented in Section 6 and conclusions in Section 7.

2 Related Work

Resource contention in multipipeline scheduling may be based directly on reservation tables, or on the for-
bidden latency sets or contention-recognizing state machines derived from them, as introduced by Davidson
et al [22]. Traditionally, reservation tables contain much redundant information that consumes memory and
increases query response time. As a result, recent advances favor finite-state automata approaches. In this
paper, however, we propose a reduced reservation table approach that eliminates much of the redundancy
and does not suffer from the weaknesses of the automata approaches, as detailed below.

Proebsting and Frazer [15] as well as Miiller [16] proposed a contention query module using a finite
state automaton that recognizes all contention-free schedules. This approach was recently extended for
unrestricted scheduling models by Bala and Rubin using a forward and reverse pair of automata [17]. In
their approach, operations considered in order of monotonically increasing (or decreasing) schedule time are
quickly scheduled using a forward automaton. Additional operations are then inserted in the schedule in
cycles recognized as contention-free by the forward and reverse automata. Because an inserted operation
introduces additional resource requirements, these additional requirements must be propagated in adjacent
cycles, 1.e. the state of scheduled operations in adjacent cycles must be updated in both the forward and
reverse automata. Their approach also addresses the handling of basic block boundary conditions at the
cost of introducing up to O(s?) new states in the automata, where s is the number of cycle-advancing states
in the original automata [17].

The principal advantage of automaton-based approaches is that the next contention-free cycle can be
determined in a single table lookup. A potential problem of this approach, however, is the size of these
automata, especially when up to O(s?) additional states are introduced to handle basic block boundary

conditions. This issue is addressed in the literature in three ways. First, operations of a target machine

can be combined into classes of operations that have compatible resource contentions [15]. Second, large
automata can be factored into sets of smaller ones [16][17], reducing the size of the automata, but increasing
the number of table lookups necessary to process a contention query. Third, the number of additional
states introduced in the automata to handle boundary conditions can be reduced [17], at the cost of making
conservative approximations, potentially resulting in schedules with lower performance.

Another problem arises when supporting unrestricted scheduling models, as the state of the forward and
reverse automaton must be saved after each scheduled operation. As a result, two states per operation
must be stored in addition to the two automata [17], which may result in a large memory overhead per
cycle of the schedule, especially for wide-issue machines. Supporting unrestricted scheduling models also
requires the consistency of the stored state to be maintained when scheduling additional operations [17],
as inserted operations introduce additional resource requirements. Thus, handling unrestricted scheduling

models introduces both memory and computation overhead.

3 Reducing a Machine Description

In this section, we illustrate the three-step process of constructing a synthesized machine, resulting in reduced
numbers of resources and resource usages while exactly preserving the scheduling constraints due to resource
contentions in the target machine.

We begin with a given machine description consisting of a set of reservation tables, one per operation, that
expresses the resource requirements of each operation in terms close to the actual hardware structure of the
target machine. The rows of a reservation table correspond to distinct resources of the target machine and its
columns correspond to the cycles in which resources are used, relative to the issue time of the corresponding
operation. An X entry in row i/column j is made in the reservation table associated with operation X if
there 1s a usage of resource 7 in cycle j by operation X, i.e. if resource ¢ is reserved for exclusive use during
cycle j by operation X. In this paper, we restrict our focus to machines with a single copy of each distinct
resource. This restriction does not preclude machines with replicated resources; it merely requires that the
replicated copies be distinguished in the reservation tables.

Figure la illustrates the reservation tables of a hypothetical machine with 2 operations (A and B) and 5
distinct resources (0,...,4). Operation A is representative of the resource requirements of a fully pipelined
functional unit. Operation B is representative the resource requirements of a partially-pipelined functional
unit, where resource g3 may correspond to a multiply stage used for 4 consecutive cycles and resource ¢4
may correspond to a rounding mode stage used for 2 consecutive cycles. Although this hypothetical machine
was constructed to concisely illustrate our methodology, it is representative of some of the resource usage

patterns found in our benchmark examples (see Figure 4 for example).

Step 1: We extract from the reservation tables of the target machine the set of forbidden latencies, i.e. the
set of initiation intervals for which a resource contention occurs between two operations. Visually, the set
of forbidden latencies between operations X and Y is obtained by overlapping their reservation tables, and
searching for all initiation intervals that result in simultaneous use of one or more shared resources.

To formalize the definition of forbidden latencies, we define the usage set X; as the set of cycles in
which operation X reserves resource i for exclusive use. Figure la illustrates the usage sets of our example

machine. For example, usage set Bj is equal to {2,3,4,5}, as operation B uses resource 3 in cycle 2, 3, 4,

a) Machine description (reservation tables) (usage sets)

cycles cycles
0 1 2 0 1 2 3 4 5 6 7
0]A A0={0} BO= b
@1 A B Al={1} B1={0}
E2 A B A2={2} B2={1}
a3 B/|B BB A3= b B3={2,3,4,5)
4 B/ B Ad= b BA4=(6,7}
b) Forbidden latency set matrix c) Generating set of
operations maximal resources
/ A B cycles
A {0} {-1} 0 1 2 3
ng w {-3,-2,-1, go: B A
0,1,2,3} 1 |B|B BB
d) Reduced machine description (reservation tables) (usage sets)
cycles cycles
0 1 0 1 2 3
g9 A B AO={1} BO'={0}
- B| B B Al'= b B1'={0,1,3}

Figure 1: Reducing a machine description.

and 5. Consider the usages z € X; and y € Y; of resource ¢ by operation X and Y, scheduled at time ¢tx and
ty, respectively. A resource contention occurs when both operations use the shared resource simultaneously,
i.e. when tx + z = ty + y. Consequently, we know that operation X cannot be scheduled (y — 2) cycles
after operation Y. Generalizing this relation to all resources shared by operations X and Y, we obtain

Fxy = {f | operation X cannot be scheduled f cycles after operation Y}, i.e.
Fxy = {(y—z)|foralieQ, z€X;,yeY;} ()

Equation (1) defines a matrix of forbidden latency sets for all pairs of operations, where Fx y is the set
in row X, column Y of the matrix. Figure 1b illustrates this matrix computed for our example machine.
While these sets are computed for each operation of the target machine, we need list these sets only for
each operation class, as presented by Proebsting and Fraser [15], where two operations belong to the same
operation class if they have compatible! sets of forbidden latencies. Note two properties of the forbidden
latency matrix. First, if operation X uses any resources, it necessarily conflicts with itself for an initiation
interval of 0 (i.e. 0 € Fx x). Second, operation X cannot be scheduled f cycles after operation Y if and
only if ¥ cannot be scheduled f cycles before X (i.e. f € Fxy < —f € Fy x).

Formal Problem Definition: Generate a reduced machine description that precisely produces the for-

bidden latencies of the target machine with a reduced number of synthesized resources and resource usages.

1 Operations X and Y belong to the same class if Fx 7z = Fy,z and 'y x = Fy y for each operation Z of the target machine.

One of several objective functions (e.g. the number of resources or resource usages) may be minimized,
depending on the desired internal representation. Querying for resource contentions using either the original
or reduced machine descriptions yields the same answer, as both descriptions enforces the same forbidden

latencies.

Step 2: We build the generating set of mazimal resources which contains all maximal resources associated
with the target machine [23]. A mazimal resource is defined as a synthesized resource such that (a) every
forbidden latency generated by this resource is forbidden in the target machine and (b) no additional usage
by any operation can be added to this resource without generating a forbidden latency that is not forbidden
in the target machine. There are two maximal resources of our example machine, shown in Figure lc. The
first resource, resource 0, is a maximal resource that generates 1 € Fg 4; it also includes forbidden latencies:
0 € Fau,0€ Fpp, and —1 € F4 . Note that no other usages of A or B can be added to resource 0,
as they would necessarily introduce forbidden latencies not present in the forbidden latency matrix of our
example machine. Similarly, the second maximal resource, resource 1’, generates the remaining forbidden
latencies, i.e. {0,%+1,+2,4+3} € Fp p, and no other usages can be added. Since resources 0’ and 1’ cover all

forbidden latencies of our example machine, we know that there are no other maximal resources.

The maximal resources are interesting for several reasons. First, any reservation table that generates the
same forbidden latency matrix can be constructed from subsets of maximal resources, possibly translated
by some number of cycles. Second, no additional forbidden latency can be added to the set of forbidden
latencies generated by a maximum resource because it would otherwise violate part (a) of the maximum
resource definition. As a result, we can use a subset of the maximal resources to cover all the forbidden
latencies of a target machine with the fewest number of synthesized resources. Third, the maximal resources
have the largest feasible number of usages per resources. This property can be exploited to compute a lower
bound on the minimum schedule length of a scalar code or an upper bound on the maximal throughput of

a modulo schedule.

Step 3: We select a subset of the maximal resources and their resource usages which covers all the forbidden
latencies in the forbidden latency matrix. The selection heuristic minimizes an objective function that varies
as a function of the desired internal representation. For our example machine, if the objective is to minimize
the number of synthesized resources, we must select both resources 0’ and 1/, as resource 0’ is the only
resource covering 0 € Fiy 4 and resource 1’ is the only resource covering 3 € Fg p. However, if the objective
function is to minimize the number of resource usages, we may also remove the second or third usage of B in
resource 1, shown Figure lc, as the three remaining usages of B are sufficient to generate all the forbidden

latencies in Fip p.

Comparing Figure la to Figure 1d, we can appreciate the benefit of reducing the reservation tables of a
target machine. First, the reduced machine description reduces the number of resources from 5 to 2, thus
potentially decreasing the memory requirements needed to store the reserved resources of a schedule. Second,
the number of resource usages decreases from 3 to 1 for operation A, and from 8 to 4 for operation B. If
detecting resource contentions is linear in the number of usages, the reduced machine description results in

significantly faster queries. We will refine this view in Section 5.

R1) Fully compatible
0 1 2 3

EEE |
par o X[[Y]

Updated

Resource

Resource

Compatible with
elementary pair

R2) Partially compatible
0 1 2 3
Resource

Elementary
pair

Original
Resource

New
Resource

<z |
X[Y]
x[x][z] |
X[[z]v]

R3) Incompatible with all resources

Elementary

pair ..
Resowce | X|_| |Y]

D Incompatible with
elementary pair

Figure 2: Three situations when adding an elementary pair to a resource (Rules 1, 2, and 3).

4 Building Generating Sets

In this section, we present an algorithm that constructs the generating set of maximal resources, a set
that contains all the maximal resources of a target machine. The algorithm builds the maximal resources
incrementally, adding usages to resources and creating new resources when appropriate. It is an efficient
algorithm that does not backtrack; however, it may produce sub-maximal resources in addition to all maximal
resources. A mechanism to remove sub-maximal resources as well as redundant maximal resources will be
discussed in Section 5.

This algorithm handles each forbidden latency in turn, in order of increasing forbidden latency. Note that
we consider only the nonnegative forbidden latencies of the forbidden latency matrix, as positive and negative
latencies are redundant (f € Fxy < —f € Fy x). The zero self-contention latencies (i.e. 0 € Fx x) are
handled as a special case, after completion of our algorithm.?

When handling a forbidden latency, f € Fxy, the algorithm attempts to add that forbidden latency
to each of the resources currently in the generating set. Since resources deal with usages rather than with
forbidden latencies, the first step is to convert a forbidden latency to an elementary pair of usages. The
elementary pair associated with the forbidden latency f is defined as a usage by operation X in cycle 0 and
a usage by operation Y in cycle f. We make an ordered list of elementary pairs and start with an empty
current generating set.

The second step attempts to add the first elementary pair on the current list to each of the resources of

the current generating set. Three situations may occur when adding an elementary pair p to a resource ¢:

R1: In the first situation, elementary pair p is fully compatible with resource ¢, i.e. the forbidden latencies
generated by each pair of usages in p and ¢ do exist in the forbidden latency matrix. Since elementary
pair p and resource ¢ are fully compatible, we add the usages of p to resource q. This process is referred
to as Rule 1, and is illustrated in Figure 2-R1 for the elementary pair associated with the forbidden
latency 3 € Fxy.

R2: In the second situation, elementary pair p is partially compatible with resource ¢, i.e. the usages of

p and some, but not all, usages of ¢ generate forbidden latencies that are present in the forbidden

2 After completion of our algorithm, we simply create additional resources with a single usage in cycle 0 for each operation
X with 0 € Fix x as unique forbidden latency.

latency matrix. Since elementary pair p is not fully compatible with resource ¢, we may not simply
add the usages of p to resource ¢, as otherwise forbidden latencies not present in the forbidden latency
matrix would be introduced by a resource in the current generating set. Instead, we leave resource ¢
unchanged and create a new resource in the current generating set, a resource that includes the usages
of elementary pair p and each of the usages of resource ¢ that are compatible with p. This process is

referred to as Rule 2, and is depicted in Figure 2-R2.

R3: In the third situation, elementary pair p is incompatible with every usage in resource ¢q. No action is
performed unless elementary pair p is incompatible with every usage of every resource in the current
generating set. In that case, a new resource is created with the usages of elementary pair p. This

process is referred to as Rule 3, and is illustrated in Figure 2-R3.

Theorem 1 (Generating Set of Maximal Resources) Building the generating set of mazimal resources
by applying Rules 1, 2 and 3 to each resource in the current generating set for each elementary pair (in any
order) produces resources that forbid only those latencies that are forbidden in the target machine. Further-

more, the final generating set includes all maximal resources of the target machine.

Proof: Rules 1, 2, and 3 never place a usage in a resource unless it is compatible with each other usage
in that resource, i.e. no resource in the current (and hence final) generating set forbids any latency not
forbidden in the target machine.

We prove the second part of Theorem 1 by contradiction. Suppose there is a maximal resource not in
the generating set. We shift its resource usages so that its earliest usage occurs in cycle 0 and call that
maximum resource ¢. Let ¢ have n usages, u; to u,, with u; in cycle 0. We refer to the forbidden latencies
generated by ul with each other n — 1 usages as f; to f,. Without loss of generality, we may assume that
the forbidden latencies f5 to f, are numbered in the order in which they are processed by our algorithm.

After forbidden latency fa is processed (by Rules 1, 2, and 3), its corresponding elementary pair (u1, us)
is present in at least one resource, q19, of the current generating set. Other forbidden latencies are then
processed, possibly adding usages to ¢12, but never removing any.

Eventually, the algorithm will process forbidden latency f3. From resource ¢, we know that f; and f3
are compatible. Hence Rules 1 and 2 will result in a resource ¢33 containing usages uq, us, us, and possibly
others; Rule 3 will not apply. Repeating this processes with all the remaining forbidden latencies of the
target machine, including f4 through f,, we obtain resource ¢y5. ., containing all usages u; through u,, and
possibly others. Thus resource q is either not maximal or is included in the final generating set, contradicting

the initial assumption. O

Figure 3 illustrates the algorithm, step by step, for our example machine. The algorithm handles the
four nonnegative non-zero self-contention forbidden latencies 1 € Fp 4,1 € Fpp, 2 € Fp p, and 3 € Fp p,
in that order. The generating sets are shown at each step, in Figures 3a, 3b, 3¢, and 3d, respectively. The

rule applied to each resource is also indicated to the right of each resource.

5 Selecting Synthesized Resources and Resources Usages

Once the generating set of maximal resources has been computed, we select a subset of these resources and

their usages that covers all the forbidden latencies in the forbidden latency matrix. The selection heuristic

a)Handle LinFg o ([B[A]) c)Handle2inFp 5 ([B] [B])

0 1 0 1 2
R3: create g0 with
q0 E elementary pair QOB A incompatible
ql|B| B/ B R1: fully compatible-> add

elementary pair

b)Handle 1in Fg 5 ([B]8]) d)Handle3inFg g ([B] [[B])

0 1)) 0 1 2 3 . .
qof[BTA incompatible qof[BA incompatible

gl|B|B

R3: create g1 with
elementary pair ql

B|B| B| B| RLI:fully compatible->add
elementary pair

Figure 3: Building the generating set for our example machine.

attempts to minimize an objective function that varies as a function of the desired internal representation

for partial schedules. In this paper, we consider the two following internal representations.

Discrete-Representation: This representation uses a reserved table with one row per resource and one
column per schedule cycle. Each entry contains a flag indicating whether the corresponding resource has
been reserved by an operation in the current partial schedule. Entries may contain additional fields, such as
the predicate under which a resource is reserved, as proposed in the Enhanced Modulo Scheduling scheme
[2]. The contention query module checks whether operation X can be scheduled in cycle j by checking each
usage in the reduced reservation table for X (offset by j) against the corresponding entry in the reserved
table. Because the number of entries tested is proportional to the number of resource usages overall reduced
reservation tables, the primary objective of the selection heuristic is to reduce the number of resource usages

in the reduced machine description. This objective function is referred to as min-usages.

Bitvector-representation: This representation extracts the flag bits of the discrete representation and
packs them into one bitvector per schedule cycle (and reduced reservation tables are represented likewise).
Checking for one query now amounts to simply “anding” each nonempty bitvector in the reduced reservation
table with the corresponding column bitvector in the reserved table and checking for a 0 result.

If k& bitvectors can be packed per word, the number of “and” operations per query and the memory
requirements for storing the reserved table are reduced. However, we need to store or generate k represen-
tations of each reduced reservation table, word aligned on k successive cycles. The selection heuristic must
now reduce the number of words that need to be tested, i.e. the number of nonempty groups of k£ consecutive
cycles in the reduced reservation tables. A secondary objective is to mazimize the numbers of resource usages
in these nonempty words, as more resource usages per word permit faster (early out) detection of resource

contentions. This objective function is referred to as min-k-cycles.

Selection Heuristic: Although integer programming can solve these minimum cover problems; we have
found a fast and effective heuristic. First, we prune the resources of the generating set by successively
removing each resource that produces a set of forbidden latencies that is generated or covered by a remaining
resource. Second, for each nonnegative forbidden latency, we locate all usage pairs that generate it in the

pruned generating set. Third, we choose one of the forbidden latencies with the shortest list of usage pairs.

The heuristic selects from the list the usage pair that covers the largest number of forbidden latencies not
yet covered by currently selected resource usages. In case of ties, the heuristic selects the usage pair whose
newly covered forbidden latencies have a larger sum. Once a usage pair is selected, the pair of usages and the
corresponding resource are marked as selected. When using the bitvector-representation, the heuristic also
marks every other usage of marked resources within the same word. The selection heuristic then proceeds
with the next forbidden latency until the marked resource usages cover every forbidden latency in the target

machine.

6 Reduced Machine and Benchmark Examples

In this section, we present experimental results for three machines, the DEC Alpha 21064, the MIPS
R3000/R3010, and the Cydra 5. For each machine and internal representation, we present three data points.
First, we present the total number of resources in the machine description. Second, we present the average
number of resource usages per operation type in the machine description. For all but one benchmark, we
assume that each operation types has the same frequency, a pessimistic assumption because complex opera-
tions are usually less frequent than simple operations. Third, we present the number of words of bitvectors
that need to be tested to answer a query i.e. the number of nonempty groups of k£ consecutive cycles. This
number, referred to as word usages, is averaged over all operation types and possible alignments.

As a proof of concept, we investigated our technique on the Cydra 5 machine [21] which has the most
complex resource requirements of the three machines. The machine configuration investigated has 7 func-
tional units: 2 memory port units, 2 address generation units, 1 FP adder unit, 1 FP multiplier unit, and 1
branch unit. The original machine description used by the Cydra 5 Fortran77 compiler models 56 resources
and 152 distinct patterns of resource usages [1]. Note that the original machine description was already
manually optimized, i.e. some of the physical resources of the Cydra 5 were eliminated from the machine
description as they did not introduce any new forbidden latencies [24]. The Cydra 5 machine description
results in 52 distinct operation types and 10223 forbidden latencies. Compared to the most complex machine
description handled in papers on finite state automaton [15], the Cydra 5 has 3.5 times more operation types
and 2.4 times more forbidden latencies. For each internal representation, our algorithm reduces the Cydra 5

machine description in less than 11 minutes on a Sparc-20.

Representation: original | discrete bitvectors (32 bits) (64 bits)
Objective function: - min-uses | min-1-cycles man-2-cycles min-4-cycles
tot. resources 56 15 15 15 15

avg. resource usages/ops. 18.2 8.3 8.8 10.1 11.4
avg. word usages/ops. 13.2 6.7 6.2 4.7 3.3

Table 1: Results for the Cydra 5: 52 operation types, 10223 forbidden latencies (all < 41).

Table 1 presents data for 4 reduced machine descriptions of the Cydra 5 machine and the original
description used by the Cydra 5 Fortran77 compiler[1]. The second column corresponds to a reduced discrete-
representation machine description that attempts to minimize min-uses. The three remaining columns
correspond to reduced bitvector-representation machine descriptions that attempts to minimize min-k-cycles

and maximize min-uses. Underlined numbers correspond to the entries minimized by the respective objective

10

functions.

Compared to the original machine description, the results for the discrete representation indicate a
decrease in the average number of resource usages by a factor of 2.2 (from 18.2 to 8.3 resource usages) and
a decrease in discrete entries by a factor of 3.7 (from 56 to 15 resources). Similarly, the results for the 64
bit word bitvector representation indicate a decrease in the average number of words tested by a factor of
4.0 (from 13.2 to 3.3 words) and require only 25% of the storage used by the original machine description
to store the reserved tables (from 1 to 4 cycles per word). Note the successive increases in the number of
resource usages for the three reduced bitvector representations. These increases permit faster detection of

resource contentions and do not increase memory space for state storage.

Representation: original | discrete bitvectors (32 bits) (64 bits)
Objective function: - min-uses | min-I-cycles min-4-cycles min-9-cycles
tot. resources 8 7 7 7 7

avg. resource usages/ops. 12.8 5.8 5.9 8.1 10.9
avg. word usages/ops. 11.6 5.0 4.8 2.9 2.0

Table 2: Results for the DEC Alpha 21064: 12 operation types, 293 forbidden latencies (all < 58).

Table 2 shows the results of our technique for the DEC Alpha 21064 [19], using the machine description
in Bala and Rubin [17]. Comparing the original description to the 64 bit word bitvector representation, the
reduced machine description decreases the average number of words to test by a factor of 5.8 (from 11.6
to 2.0 words). This reduced representation can detect all resource contentions by testing on average two
64 bit words even though the largest forbidden latency is 58 cycles. Bala and Rubin presented a factored
finite state automaton for this processor with 469 states ignoring boundary conditions and with 3666 states
when boundary conditions with forbidden latencies dangling by up to 7 cycles are precisely modeled and
approximated otherwise (between 8 and 58 cycles) [17]. Encoding the 3666 states in 12 bits, the state
automata requires 4x12 bits of memory per schedule cycle, when caching the states of the forward and

reverse automata for this dual issue microprocessor, compared to 7 bits per schedule cycle for bitvector

representation.
Representation: original | discrete bitvectors (32 bits) (64 bits)
Objective function: - min-uses | min-1-cycles man-4-cycles min-9-cycles
tot. resources 22 7 7 7 7
avg. resource usages/ops. 17.3 7.3 8.1 8.3 8.5
avg. word usages/ops. 11.0 5.6 5.6 2.4 1.6

Table 3: Results for the MIPS R3000/R3010: 15 operation types, 428 forbidden latencies (all < 34).

Table 3 shows the results of our technique for the MIPS R3000/R3010 [20], using the machine description
in Proebsting and Frazer [15]. Comparing the original description to the 64 bit word bitvector representation,
the reduced machine description decreases the average number of words to test by a factor of 6.9 (from 11.0
to 1.6 words). Proebsting and Frazer reported for this processor a finite state automaton of 6175 states, an
automaton that does not handle the boundary conditions [15].

Table 4 presents data for a subset of Cydra 5, namely the 12 operation types actually used in a benchmark

11

Representation: original discrete bitvectors (32 bits) (64 bits)
Objective function: - min-uses | min-I-cycles min-3-cycles min-7-cycles
tot. resources 39 9 9 9 9

avg. resource usages/ops. | 9.4 (5.03) | 2.9 (1.27) | 2.9 (1.27) 3.6 (1.32) 4.2 (1.35)
avg. word usages/ops. 75 (4.02) | 2.6 (1.09) | 2.6 (1.09) 2.0 (1.06) 1.5 (1.03)

Table 4: Results for a subset of the Cydra 5: 12 operation types, 166 forbidden latencies (all < 21).

suite of 1327 loops obtained from the Perfect Club, SPEC-89, and the Livermore Fortran Kernels [3][25][26].
The numbers in parenthesis correspond to the average number of usages, weighted by the relative frequency
of each operation type in the benchmark suite. We see that the weighted average number of resource usages
for the discrete representation is as low as 1.27, 4.0 times better than the original machine description.
Similarly the weighted average number of words to test for bitvector representation is as low as 1.03, 3.9
times better than the original machine description. The reservation tables associated with the machine
descriptions of the original model, the discrete representation, and the 64 bit word bitvector representation
are shown in Figures 4a, 4b, and 4c, respectively.

We will report the dynamic number of usages and words tested for this benchmark in the final submission.

7 Conclusions

In this paper, we present an efficient contention query module that supports the elaborate scheduling tech-
niques used by today’s high performance compilers. In particular, we support unrestricted scheduling models,
where the operation currently being scheduled may be placed before some already scheduled operations and
backtracking is performed to produced highly optimized software-pipelined and critical-path sensitive sched-
ules. We also support precise boundary conditions where resource requirements may dangle from predecessor
basic blocks to permit effective latency-hiding techniques.

Our contention query module is based on a reduced machine description that results in significantly faster
detection of resource contentions while exactly preserving the scheduling constraints present in the original
machine description. This approach achieves two goals. First, it handles queries significantly faster which is
increasingly important as queries for contentions are made in the innermost loop of a scheduler. Second, it
reduces machine descriptions in an error-free and automated fashion, thus, simplifying the interface between
the actual hardware structure of the target machine and the compiler representation of the scheduling
constraints due to resource contentions.

Experiments with three machine descriptions indicate that our approach addresses the perceived weakness
of resource modeling approaches based on reservation tables. Because the machine descriptions are reduced,
all resource contentions are detected on average by 1.6 (MIPS R3000/R3010), 2.0 (DEC Alpha 21064), and
3.3 (Cydra 5) “and” operations when using the 64 bit word bitvector representation. Results taking into
account the relative frequency of each operation type indicate that the number of “and” operations is even
lower, as simpler operations are more frequent than more complex ones. Moreover, the memory requirements
needed to store the reserved resources of a schedule are small, as a 64 bit word may encode the bitvector of

4 (Cydra 5), 9 (MIPS R3000/R3010), or 9 (DEC Alpha 21064) schedule cycles.

12

Acknowledgements

This work was supported in part by the Office of Naval Research under grant number N00014-93-1-0163
and by Hewlett-Packard. The authors would like to thank Santosh Abraham, Scott Mahlke, Bob Rau, and
Michael Schlansker for many useful suggestions and for providing the Cydra 5 machine model. The help of
Todd Proebsting for explaining the MIPS R3000/R3010 machine model and Vasanth Bala for explaining the

Alpha 21064 machine model is also acknowledged.

References

(1]

J. C. Dehnert and R. A. Towle. Compiling for the Cydra 5. In The Journal of Supercomputing, volume 7, pages
181227, 1993.

N. J. Warter, G. E. Haab, and J. W. Bockhaus. Enhanced Modulo Scheduling for loops with conditional branches.
Proceedings of the 25th Annual International Symposium on Microarchitecture, pages 170-179, December 1992.

B. R. Rau. Iterative Modulo Scheduling: An algorithm for software pipelining loops. Proceedings of the 27th
Annual International Symposium on Microarchitecture, pages 63—74, November 1994.

R. A. Huff. Lifetime-sensitive modulo scheduling. Proceedings of the ACM SIGPLAN’98 Conference on Pro-
gramming Language Design and Implementation, pages 258-267, June 1993.

J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in large basic blocs. Proceedings of the
International Conference on Supercomputing, pages 442—452, 1988.

K. Ebcioglu, R. D. Groves, K.-C. Kim, G. M. Silberman, and 1. Ziv. Vliw compilation techniques in a superscalar
environment. In Proceedings of the ACM SIGPLAN’9} Conference on Programming Language Design and
Implementation, pages 36—48. 1994.

G. P. Lowney et al. The multifiow trace scheduling compiler. In The Journal of Supercomputing, volume 7,
pages 51-142, 1993.

P. P. Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu. Three architectural models for
compiler-controlled speculative execution. IEEE Transactions on Computers, 44(4):481-494, April 1995.

D. Bernstein and M. Rodeh. Global instruction scheduling for superscalar machines. In Proceedings of the ACM
SIGPLAN’91 Conference on Programming Language Design and Implementation, pages 241-255, June 1991.
S.-M. Moon and K. Ebcioglu. An efficient resource-constrained global scheduling technique for superscalar and
vliw processors. Proceedings of the 25th Annual International Symposium on Microarchitecture, pages 55-71,
September 1992.

P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu. Impact: An architectural framework
for multiple-instruction-issue processors. In Proceedings of the Fighteenth Annual International Symposium on
Computer Architecture, pages 266275, May 1991.

J. C. Gyllenhaal. A machine description language for compilation. Master’s thesis, Department of Electrical
and Computer Engineering, University of Illinois, Urbana, 1L, 1994.

J. A. Fisher. Trace scheduling: a technique for global microcode compaction. IEEFE Transactions on Computers,
30(7):478-490, July 1981.

V. Kathail, M. S. Schlansker, and B. R. Rau. HPL PlayDoh architecture specification: Version 1.0. Technical
Report HPL-93-80, HP Laboratories, February 1994.

T. A. Proebsting and C. W. Fraser. Detecting pipeline structural hazards quickly. Twenty-First Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 280-286, January 1994.

T. Muller. Employing finite automata for resource scheduling. Proceedings of the 26th Annual International
Symposium on Microarchitecture, pages 12—20, 1993.

V. Bala and N. Rubin. Efficient instruction scheduling using finite state automata. To appear in the Proceedings
of the 28th Annual International Symposium on Microarchitecture, November 1995.

M. Lam. Software pipelining: An effective scheduling technique for VLIW machines. Proceedings of the ACM
SIGPLAN’88 Conference on Programming Language Design and Implementation, pages 318-328, June 1988.

Digital Equipment Corp., Maynard, MA. DecChip 21064 Microprocessor Hardware Reference Manual FC-N0079-
72.

13

[20]
[21]

[22]

G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

G. R. Beck, D. W. .. Yen, and T. L. Anderson. The Cydra 5 mini-supercomputer: Architecture and implemen-
tation. In The Journal of Supercomputing, volume 7, pages 143-180, 1993.

E. S. Davidson, L. E. Shar, A. T. Thomas, and J. H. Patel. Effective control for pipelined computers. Spring
COMPCON-75 digest of papers, pages 181-184, February 1975.

J. H. Patel and E. S. Davidson. Improving the throughput of a pipeline by insertion of delays. Proceedings of
the Third Annual International Symposium on Computer Architecture, pages 159-164, 1976.

M. S. Schlansker. Personal communication. June 1995.

A. E. Eichenberger, E. S. Davidson, and S. G. Abraham. Optimum modulo schedules for minimum register
requirements. Proceedings of the International Conference on Supercomputing, pages 31-40, July 1995.

A. E. Eichenberger and E. S. Davidson. Stage scheduling: A technique to reduce the register requirements of a
modulo schedule. To appear in the Proceedings of the 28th Annual International Symposium on Microarchitecture,
December 1995.

a) Original machine description b) Discrete representation c) Bitvector representation
(39 resources, 132 resource usages) machine description machine description (64 bit word)
(9 resources, 43 resource usages) (9 resources, 63 resource usages)
0000000000111111111122 0000000000111111111122
0123456789012345678901 0123456789012345678901
QOEM I TTTTTTITTTITTTITTITTITTT] qoM I T TTITTTTTITTITITITTITT]

wo
2T

222
45

a
=
N

[N

QM T TTTTTTTITTITITITTITT) oI T T ITTTTTTTITITTITITT]

qTI\\\\\\\\\\\\\\\\\H\\ WM T TTITTITTTTITTITIITTIT]
oM [T TTTTTT]

| EEEEEEE N

} [T oM TTTTIITTTIT T ITITTIITT
} VM I TTTTTTITTTTIIIITITTIT) o7 M T T T T T T T T T I T TITTITITITTT]
M T T TTTTTTITTTITTITITITTIT) a4 M T T TTTTTTTTTITTITTITTT]
M T T T TTTTTTTTTTTTTTITTIT) o8I TTTTTTTTTTTTTITITITTT]
M ITTTTTTTITTTTIITITITITTIT) oM I TTTTTTTTTTTTTITITITTT]

q12 000000000011 1111111122 0000000000111 1L1111122
q13 0123456789012345678901 0123456789012345678901
qial 17
q15 [[] [T

00000000001111111111222222

01234567890123456789012345

Figure 4: Reservation tables for a subset of the Cydra 5.

14

