The Publish/Subscribe Paradigm for Scalable Group Collaboration
Systems

Amit G. Mathur, Robert W. Hall, Farnam Jahanian, Atul Prakash, and Craig Rasmussen
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109.
(313) 936-2974

November 20, 1995

Contact Author: Farnam Jahanian

CSE-TR-270-95

The Publish/Subscribe Paradigm for Scalable Group Collaboration
Systems

Abstract

We consider the problem of disseminating data generated in real-time to large groups of distributed
users in group collaboration systems. We present an architecture based on the publish/subscribe
paradigm to design communication services appropriate for large-scale group collaboration systems.
In this model, one or more data sources or publishers sends data to multiple clients or subscribers.
The distinguishing characteristic of this paradigm is the anonymous nature of communication. While
a publisher knows about the set of subscribers, the subscribers are unaware of each other and only
know about the publisher that they are receiving data from. We exploit this fact in the protocols that
we use to meet the reliability and scalability requirements. We provide a formal characterization of
the semantics associated with the delivery of data within this publish/subscribe framework. We then
show that it is possible to use a weaker and less costly (in terms of scalability and latency) notion
of synchrony in comparison to traditional work on group communication protocols. The protocols
presented are based on this weaker synchrony model.

1 Introduction

With the recent explosion in the usage of the Internet, timely dissemination of data generated in real-
time is gaining increasing importance. For example, ticker services that provide real-time stock quotes
are becoming increasingly popular. Similarly, data generated from monitoring instruments such as
radars and telescopes needs to be made available to large groups of distributed scientists and other
interested users in a timely and reliable manner. Such dissemination of data gives rise to many issues,
such as what are the appropriate set of semantics with respect to ordering of the information at the
destinations and what kind of reliability guarantees can be made. Can these properties be achieved in
a wide-area network such as the Internet that is subject to varying degrees of congestion (and hence
varying latency) and varying degrees of connectivity (i.e., transient partitions)? Further, will the system
be able to scale, i.e., when the data needs to be disseminated to thousands, even millions, of users, can
we ensure the above properties, and yet get reasonable performance?

We have been looking at some of these issues within the context of the Upper Atmospheric Research
Collaboratory (UARC) project at our institution. UARC is a multi-disciplinary effort linking research
in computer science, behavioral science, and upper atmosphere and space physics [4]. We view a collab-
oratory as an advanced information environment that provides (1) human-to-human communications
using shared computer tools and work spaces; (2) group access and use of a network of information,
data, and knowledge sources; and (3) remote access and control of instruments for data acquisition. As
part of this project we are developing a collaborative system to provide space scientists with the means
to effectively view and analyze data collected by various remote instruments, present ones being located
in Greenland. The goal of the UARC system is to develop groupware technologies that would not only
largely eliminate the needs for costly trips to remote sites to collect data, but also provide facilities for
better and more frequent collaboration between the scientists.

In the UARC system, during a scientific campaign, data generated by remote data sources such as
radars, Fabry-Perot interferometers, All-Sky Imagers, IRIS riometers, and magnetometers is dissemi-
nated over wide-area networks to space scientists at their home institutions around the world (for e.g.,
Maryland, California, Alaska, Florida, Denmark, etc.). A “ data server” gathers data from the instru-
ments and broadcasts them to clients which run at various sites around the world. The clients then
graphically display the data in various data windows.

Figure 1: A snapshot of the interface presented by the multi-user UARC software to a user

Figure 1 shows the typical user interface provided by a UARC client. The three windows to the left
display plots of data while the two to the right display images. Different UARC clients have access
to the same data, obtained from the remote instruments, and can display different views of that data,
depending on the needs of the individual scientists. A message window (bottom left in Figure 1) supports
n-way textual talk.

Over the past two years, several versions of UARC (the latest being UARC 5.0) have been developed,
with each prototype used by scientists in their scientific campaigns with increasing effectiveness. The
usage has also led to higher demands on the system in terms of tolerance to network and system
unreliability and scalability to a larger number of users. Furthermore, it has become desirable to
generalize the collaborative technologies developed in UARC so that they can be used for building other
collaboratories. This has led us to identify a set of “common services” that can be used to support data
dissemination and tools for collaborating using this data. One can view these services as the building
blocks of a collaboratory. Some of these common services include multicast communication services,
cluster/server group membership and topology services, collaboration group membership services, object
replication, and window sharing and annotation services.

In this paper we present an architecture and set of protocols for disseminating data generated in
real-time (such as in UARC), to large numbers of users connected by wide-area networks. The data
is delivered reliably and in a timely manner, and care is taken to ensure that these properties hold
even when the system scales to large numbers of users. The key requirements of the system thus are
reliability, scalability, and latency.

We present an architecture based on the publish/subscribe paradigm to design communication ser-
vices appropriate for large-scale group collaboration systems. The basic idea of the publish/subscribe
paradigm is relatively simple. Essentially one or more data sources or publishers sends data to multiple
clients or subscribers. The distinguishing characteristic of this paradigm is the anonymous nature of
communication. While a publisher knows about the set of subscribers, the subscribers are unaware of
each other and only know about the publisher that they are receiving data from. We exploit this fact
in the protocols that we use to meet the reliability and scalability requirements. We provide a formal
characterization of the semantics associated with the delivery of data within this publish/subscribe
framework. We then show that it is possible to use a weaker and less costly (in terms of scalability
and latency) notion of synchrony in comparison to traditional work on group communication protocols,
much of which is based on the virtual synchrony model [3]. The protocols presented are based on this

weaker synchrony model.

The rest of this paper is organized as follows: Section 2 describes the architecture and details of the
publish /subscribe paradigm to support dissemination of data in group collaboration systems. Section 3
formally specifies the semantics associated with the delivery of data with respect to reliability and
ordering of messages. Section 4 describes protocols to achieve these semantics. Section 5 compares our
work with related work in the area, and Section 6 concludes this paper and briefly describes future
work.

2 A Hierarchical System Architecture

The publish /subscribe paradigm is characterized by a publisher publishing data to multiple subscribers,
where the subscribers are unaware of each other and know only about the publisher. We define a
subscription service as the stream of messages from a publisher to a set of subscribers associated with a
single application. Thus data is published for a given subscription service and subscribers can subscribe
or unsubscribe to one or more such services. In the rest of the paper, we refer to a subscription service
simply as a ‘service’.

In order to implement this paradigm to achieve reliable dissemination of data, we propose a hier-
archical architecture. In this architecture a publisher multicasts data to a set of intermediate nodes,
referred to as distributors. The distributors then route the data to other distributors and so on until
the data reaches the subscribers located at the lowest level of the hierarchy. The architecture shown
in Figure 2 has a two-level hierarchy, where the publisher multicasts the data to a set of distributors.
Each distributor then routes the message to its local set of subscribers. In the rest of the paper we will
focus on this two-level hierarchy, although the ideas are general and can be extended to a multi-level
hierarchy of distributors.

A key point of the architecture is that by introducing a hierarchy of distributors we are minimizing
system-wide knowledge and change. A distributor has knowledge of only its local set of subscribers and
has no knowledge of any of the other subscribers in the system. This allows the system to scale nicely as
subscribers can join and leave without affecting the entire system. Furthermore, since distributors act
as routers and multicast the messages down the hierarchy, the burden of a single source multicasting
a message to a very large number of destinations and dealing with the associated ACK-implosion is
alleviated to a large extent.

In summary the proposed publish/subscribe architecture is characterized by three types of processes
(or active entities): publisher, distributor, and subscriber. Each process (publisher, subscriber, distrib-
utor) in this architecture is implemented on the protocol stack illustrated in Figure 3.

The publish/subscribe group layer provides the application programming interface for creating services,
joining and leaving services, publishing and receiving messages. The process group layer provides process
view management for subscribers and distributors, a multicast interface, message ordering and failure
detection and recovery. The transport layer provides unreliable point-to-point transport of data packets
provided by a datagram protocol such as UDP. A multicast can be a series of such point-to-point
unicasts. It can also hide the exploitation of underlying multicast mechanisms such as IP multicasting
[5] or hardware broadcasts available on local-area networks.

Distributor Group
Subscription Service

Local Subscriber View

. Distributor
‘ Publisher
Q Subscriber

Figure 2: System Architecture

Publish/
Subscribe Peer
Groups Groups

ProcessGroup Layer

Transport Layer

Figure 3: Protocol Stack

3 Semantics of the Publish/Subscribe Paradigm

3.1 Preliminaries

The set of processes in the system is denoted P = {py,ps,....}. As discussed previously, there are three
classes of processes in the publish-subscribe model: publishers, denoted P,, subscribers, denoted P,
and distributors, denoted P;. The set of processes that a process p considered to be up (formally defined
below) is called the view of p and is denoted by view,.

We make no assumptions regarding delay bounds about the underlying network and system, i.e., we
assume that the system is asynchronous. We only consider non-Byzantine failures including communi-
cation omission and performance failures.

The execution of a process is modeled as a sequence of primitive events. These primitive events form
the basis for defining the various ordering and atomicity constraints in the system. An event can be
one of the following event types:

1. Send: The send event models the sending of message m by process p to process ¢ and is denoted
by send,(m, q).

2. Receive: The receive event models the receipt of message m by process p from process ¢ and is
denoted by rcwv,(m, q).

3. View_change: The view_change event models the act of process p learning of an existing view and
is denoted by view_change,(v), where v denotes a view. How a process combines the received view
information with its own local view is left unspecified and is determined by individual protocols.

4. Crash: The failure of process p is modeled by the local event crash,. A process executes no
further events after executing the crash event.

The history of a process p is a sequence of events executed by the process up to some kth event,
beginning with the internal event start: h;j =< starty, 621?, 672), ...,€3 >. For convenience, we will denote hg
by h, when the value of £ is not of particular significance. A cut C' is an n-tuple of process histories, and
is denoted C' =< hfl,hé{z’, ..., hEn > Events are partially ordered as defined by Lamport’s happened-

before relation (denoted —) [8]:
1. If e’;, eé € hy and £ < [, then e’; — eé.
2. If e, = send,(m, q) and e, = rcvy(m,p), then e, — e,.

3. If e — € and € — €”, then e — €.

Note that it is possible that for certain events e and €', neither e — €’ nor ¢/ — e. In such cases we
say that e and €’ are concurrent.

A cut is said to be consistent if for all receive events there is a corresponding send event. In the rest
of the paper, when we refer to a cut, we mean a consistent cut. Informally, we use temporal logic to
specify the various properties of protocols in this paper. All predicates are evaluated along consistent
cuts. Given predicate ¢ and cut ¢ the temporal logic formula O¢ means that ¢ is true along ¢ and all
future cuts, while ¢ means that ¢ holds at some future cut of the execution of the system.

Detection of process joins and failures in the system is live but not accurate since we are assuming that
the system is asynchronous. This follows from the impossibility of distributed consensus in asynchronous

systems as it is impossible to distinguish with certainty between a slow and a failed process [6]. In order
to formalize the properties of membership changes, we define the following predicates:
JOINED,y(q): The predicate JOIN ED,(q) is true if ¢ € view,, false otherwise.

DOW N,: The predicate DOW N, holds on cut ¢ = (hy, ..., hy, ..., hy) if crash, is the last event in h,.

UP,: The predicate UP, holds on cut ¢ = (hq,...,hq, ..., h,) if crash, is not an event in h,, and
JOINED,(q). Note that when a process crashes and comes back up it has a process identifier different
from its original process identifier.

The membership changes satisfy the following properties:

1. (Failures/Leaves) If ¢ crashes, then eventually either p removes ¢ from its view or p crashes:

DOWN, = O(~JOINED,(q) vV DOWN,).

2. (Joins) If ¢ is up, then eventually either p adds ¢ to its view or p crashes: UP, = Q(JOINED,(q)V
DOWN,).

3. (Reciprocity) If p suspects ¢ is inaccessible, then if ¢ does not crash, it eventually suspects p is

inaccessible: ~JOINED,(q) = O(~JOINED,p)Vv DOWN,V JOINED,(q)).

To simplify presentation of the semantics below, we assume, without loss of generality, that there is a
single publisher in the system. The case where there are multiple publishers/services is a straightforward
extension wherein each distributor d maintains a separate view for each service.

To model send and receive events, we define the following predicates:

SEN Dy(m,q): The predicate SEN D,(m,) is true on cut ¢ = (hq, ..., hy, ..., hy,), if send,(m,q) is the
last event in history £,,.

RCV,(m,q): The predicate RC'V,(m,q) is true on cut ¢ = (hq,..., hyp, ..., hy), if rev,(m,q) is the last
event in history h,,.

We next define the following partial ordering on views (denoted <) [7]:

1. Let view and view’ be two views. If view = view; and view' = 'vie'w;fﬂ, then view ¢ view'.

2. (Irreflexivity) view £ view.
3. (Asymmetry) If view < view’ then view' £ view.

4. (Transitivity) If view < view’ and view' < view”, then view < view".

An execution of a membership protocol generates a set of views. The weak membership protocols, in
[7] and [15], generate a set of views such that the views are partially ordered by the relation < described
above. On the other hand, the set of views generated by the strong group membership protocols, such
as those described in [14, 13, 7, 15], satisfy the partial ordering <, but in addition satisfy the following
two properties:

1. Mutual Exclusion and Concurrent Views: If view £ view’, then Vp € view = p & view’.

2. Total Order on View Changes: There exists a predicate 7 defined on the set of views which
converts the partial ordering into a total ordering on a subset of the views. An example of the
predicate 7 is a majority, where views with majority of processes are totally ordered.

Publisher
&:‘b“* Data / Ack Publish Data
Distributor
Disseminate
toothers
Distributor

Distributor

Figure 4: Publish Data for a Service

3.2 The Semantics

We are now ready to give the formal semantics of the primitives that constitute the publish/subscribe
paradigm.

In the following we denote a subscriber process by s (s € P;), a publisher process by pub (pub € P,),
a distributor process by d (d € P;). A distributor d’s view of the set of distributor processes is
denoted wview_disty, and its view of its subscriber processes is denoted wiew_sub;. A subscriber s’s
view of the distributors is denoted wview dists. Equivalently, a publisher p’s view of the distributors is
denoted view_dist,. These views that publishers/subscribers maintain is not explicitly maintained by
a membership protocol, but instead represents a core group of distributors that are likely to be up [7],
and can be obtained from a well-known located . This set of processes consists of a primary distributor
and some other likely secondary distributors.

Since a publisher/subscriber has no knowledge of the other publishers/subscribers in the system, it
maintains no view of the other publishers/subscribers in the system.

e Publish to a service:
A publisher pub sends a publish message m to distributor d. Upon receiving m, d sends m to each
d; € view_disty. Upon receiving m, each d sends m to each s; € view_subgy,. This is illustrated in
Figure 4.

1. If publisher pub sends message pub_msg to a distributor d in pub’s distributor view, we
guarantee that eventually either d receives pub_msg or pub is down or d is down.

(SEN Dpyp(pub_msg,d) N d € view_dist,,,) =
O(RCVy(pub_msg, pub)V DOW N, V DOW Ny)
2. If d receives pub_msg from pub, then eventually each d’ in d’s view will receive pub_msg or
will be down. “*’ below indicates d doesn’t care where it receives pub_msg from.
Vd' € view_disty, RCVy(pub-msg, pub) =
O(RCV y(pub_msg,)V DOWN ;)

Note that this does not guarantee atomic delivery from the publisher to the distributors. All
it guarantees is that once it gets from the publisher to any one correct distributor, then all
other correct distributors will get it. Note also that if pub and d fail right after p sends m to
d, then this is indistinguishable from p failing before it sent m.

3. A publisher generates a sequence of messages, each having a sequence number one more than
the previous message. Messages are delivered in this order (sender-based FIFO) at both
distributors and subscribers.

4. There may be a gap in the sequence of messages from a distributor as seen by a subscriber.
Two semantics are possible for delivery of messages to subscribers, with different scalability
implications as shown later. One possible semantic tolerates gaps in a message stream from
a distributor as seen by a subscriber, the other does not.

(a) Gap semantic: If d receives pub_msg then eventually s receives pub_msg or s is down or
d is down, i.e.,
(RCVy(pub_msg,*) A s € view_suby) =

Q(RCV(pub_msg,d)V DOWN;Vv DOW Ny)

A gap can occur in the message sequence received by s because the above semantic only
ensures that s receives the messages if d does not crash.
(b) No gap semantic: If d receives pub_msg then eventually s receives pub_msg or s is down,
i.e.,
(RCVy(m,*) A s € view_subg) =

O(RCVy(pub_msg,d)v DOW N)
A gap does not occur in the message sequence received by s because the above semantic
ensures that s receives the message even if d does crash.
¢ Subscribe to a service:

A subscriber s sends a subscribe message, send,(sub_msg, d), to its primary distributor, d. We
support two different semantics, depending on requirements, and with different scalability assump-
tions.

1. If d receives subscription request sub_msg from s, and for all future published messages
pub_msg that d receives, eventually s receives pub_msg or s is down or d is down or s has
unsubscribed:

(RCVy(sub_msg, s)) =

O((Ypub_msg, RCVy(pub_msg, *) =
O(RCV(pub_msg,*)V DOWNgzV DOWN;V RCVy(unsub-msg,s)))

2. If d receives subscription request sub_msg from s, then for all future published messages
pub_msg that d receives, eventually s receives pub_msg or s is down or s has unsubscribed:

(RCVy(sub_msg, s)) =

O((Ypub_msg, RCVy(pub_msg, *) =
O(RCVy(pub_msg,*)V DOW Ny VvV RCVy(unsub_-msg, s)))

Upon receipt of a subscribe message, rcvg(sub_msg, s), the distributor d adds this subscriber to
its subscriber view, view_suby. Since s is now in view_suby, any data messages delivered to d will
now be sent to s. d sends an acknowledgment message to s, as s needs this to publish or receive
messages. This is illustrated in Figure 5Ha.

Subscriber
Req-Svc-List\S\/c-Lis/ Subscrik% /ck and Data

Distributor

(a) Subscribing to a Service

Subscriber
Leave Service\ /Ack

Distributor

(b) Unsubscribing from a Service
Figure 5: Subscribing and Unsubscribing a Service

e Unsubscribe from a service:

A subscriber s sends an unsubscribe message, send;(unsub_msg, d), to its primary distributor, d.
Formally we specify this as:

(SEN Ds(unsub-msg,d)) =

O(s & view_subg V DOW Ny)

Upon receipt of an unsubscribe message, the distributor d removes this subscriber from its view,
view_subg. Since s is no longer in view_subgy, any future data messages delivered to d are not
delivered to s. Lastly, d sends an acknowledgment to s. This is illustrated in Figure 5b.

o Create a service:

To publish to a new service, a publisher must create the service first. The publisher p that does
this is referred to as the service creator. It sends a create message, send,(create_service_S,d) to
its primary distributor d, where $ is the new service. d establishes a view for the service that
contains only the publisher initially. d sends a publicize message to each d' € view_dist, to notify
them of this new service. Each receiving d’ creates a local subscriber view for the service, initially
empty.

4 Protocols for Publish/Subscribe

The protocols that implement the publish/subscribe primitives described above address two related
issues of view management and multicasting. View management involves maintaining state about pro-
cesses in the system and changes to that state. Multicasting involves sending messages from one process
to processes in its view.

10

4.1 View Management

We describe view management at a subscriber process and at a distributor process. View management
at a publisher process is handled in a similar way to the view management at a subscriber.

4.1.1 View Management at a Subscriber

Each subscriber connects to a distributor referred to as the primary distributor, and receives its data
from this distributor. As described in section 3.2, the subscriber maintains a view of the set of dis-
tributors in the system (view_dists). The other distributors, referred to as secondary distributors, are
available as backups that the subscriber can connect to if the primary distributor were to fail. The
subscriber obtains this list from a well-known location. This list may not represent the most recent
view of the distributors.

Recall that in the publish/subscribe model, for scalability reasons, a distributor knows only about
its local set of subscribers and has no knowledge of the other subscribers in the system. Furthermore,
each subscriber is responsible for detecting the failure of the distributor to which it is connected and
for connecting to another distributor. Hence, in the presence of distributor failures,distributors have no
way of ensuring that each subscriber in the system has a consistent view of the current set of functioning
distributors. For example, consider the case where a distributor with one or more subscribers connected
to it crashes. Knowledge of the set of subscribers connected to this distributor is lost from the system
with the crash of the distributor. So when the remaining functioning distributors reconfigure and a new
view gets established, the set of subscribers that were connected to the failed distributor have no way
of being informed about this view other than by doing a look up at the well-known location where this
information may be posted. In other words, subscribers do not run an agreement protocol to maintain
a consistent view of the distributors.

We can now describe how a subscriber, s, reconfigures after it detects the failure of its primary
distributor, d:

1. s removes d from its view of distributors view _dists, i.e., view_dist; = view _dists — {d}.

2. Optionally, s attempts to connect to one of the secondary distributors, d’,d/ € view_dists. Oth-
erwise, s obtains a new view_dist as described in 4 below.

3. If s is successful in connecting to a distributor d’ then d’ adds s to its set of local subscribers, i.e.,
view_suby = view_suby U {s}. s then begins to receive messages from d’.

4. If s is unable to connect to any of the distributors, then either all distributors are unavailable or
s’s view of distributors is stale and it needs to be updated by obtaining a more recent version
from the well-known location.

Note that it is possible s may have incorrectly suspected its original distributor of crashing. In such a
situation, s will be in the view of both the original distributor and the new distributor that it connected
to, and will receive messages from both. s will then close its connection to one of the two distributors
by unsubscribing to it. Notice that subscribers can make decisions regarding failure of their primary
distributor without reaching any sort of agreement with other processes in the system. This is a key
design decision for achieving scalability as the number of subscribers increases in a system.

11

4.1.2 View Management at a Distributor

As defined formally in section 3.2, each distributor process d maintains two views: the view consisting
of the set of local subscribers (denoted by view_suby) and the view consisting of the other distributors
in the system (denoted by view_disty).

View changes to view_subgy, the set of local subscribers, are handled strictly locally without involving
the other distributors. As subscribers join and leave, the distributor respectively adds and removes
them from view_suby. When the distributor detects the failure of a subscriber s, s is simply removed
from view _subgy, as defined formally in section 3.2.

View changes to view_disty, the set of distributors, are done cooperatively among the set of distribu-
tors, i.e., agreement is reached amongst the distributors before there can be a change in the membership
of view_disty at any distributor. This ensures that membership changes to view_dist; are totally or-
dered at each distributor. The protocol to achieve this is exactly the strong group membership protocol
presented in the literature [14, 13, 7, 15]. Briefly, a common protocol for strong group membership
operates by designating a distributor process as the coordinator of the set of distributor processes. The
coordinator d, initiates changes in view _disty by executing a 2-phase protocol, as follows:

e In phase one, d. sends a message to all other distributors proposing a new membership for
view_disty.

o d. gathers acknowledgments from the distributors.

e In phase two, d. sends a view-change message to each of the processes that acknowledged and
gives them the new agreed-upon membership of view_disty.

This protocol is also able to handle the case when the coordinator crashes during execution of the
2-phase view change protocol. Essentially a new coordinator is elected that takes over the responsibility
of the failed coordinator.

4.2 Multicasting

There are two kinds of multicasts in the system. The first kind, referred to as a distributor multicast
involves the multicast of messages received by a distributor from a publisher to all other distributors in
the system. The second kind of multicast, referred to as a subscriber multicast, involves the multicast
of messages received by each distributor to its local view of subscribers.

4.2.1 Distributor Multicast

The semantics specified for the distributor multicast in section 3.2 requires that if a message is received
by any distributor, then as long as that distributor stays functional, all correct distributors will receive
that message. To ensure this, distributors need to buffer messages until they are stable. ' A message
is said to be stable amongst a group of processes when each process knows that the message has been
received by every other process in the group. A process can discard a message once it becomes stable.
The group of distributor processes exchange periodic messages amongst each other indicating the highest
message sequence number received. When there is a distributor failure and a new view is established as
described above, messages do not need to be flushed from the previous view before any new messages
can be delivered in the new view. All our semantics requires is that messages get delivered eventually.

!For a formal definition of stability see [2] and the references therein.

12

Crash during multicast

e
ANNATAY

[IRNEIERNRN

View-change View-change

Distributor 3

Distributor 4

Figure 6: Scenario to illustrate the weaker notion of synchrony used in the publish/subscribe paradigm

They could get delivered at two distributors that progressed from a given group to the next group in
different views.

This differs from typical flush protocols used by systems such as Isis and Transis which ensure the
virtual synchrony property [3, 11]. Here we exploit the semantics of the publish/subscribe paradigm
to give a weaker notion of synchrony as compared to virtual synchrony ([3]) and its variant, extended
virtual synchrony ([11]).

To illustrate this weaker synchrony, consider the scenario shown in Figure 6. The initial group of
processes includes distributors 1 through 4.

1. Distributor 1 multicasts message m1 to the entire group.

2. During the multicast of m2, distributor 1 crashes after sending the message to distributor 2, but
before it is able to send it to distributors 3 and 4.

3. The failure of 1 is detected and a new group is established consisting of 2, 3, and 4.
4. Distributor 2 forwards m2 to 3 and 4, but this happens once the new view has been established.

Thus message m2 is delivered in different views by distributor 2 and distributors 3 and 4. In the
virtual synchrony model, the new view would not be established until distributor 3 and 4 also delivered
m?2 in the old view.

4.2.2 Subscriber Multicast

In section 3.2 we defined two possible semantics for the multicast of messages from the distributor to
its set of subscribers. The first semantic tolerated gaps in the message stream from the distributor to a
subscriber, while the other did not. Let us consider each semantic and see its impact on the multicast
protocols.

The first semantic ensures that if a distributor receives a message m, then as long as both the
distributor and the subscriber stay up, the subscriber will receive the message. This is easy to ensure.
The distributor simply multicasts the messages it receives to its set of subscribers. If the distributor
fails during any of these multicasts, the subscribers may not receive the message, leading to a possible
gap in the sequence of messages received. After the subscriber connects to a new distributor, it will
start receiving messages from that distributor. It is possible that the new distributor may still have the
messages that a subscriber missed, but this cannot be guaranteed with certainty. 2.

2Note that if were to assume infinite buffering, then the problem of gaps is easily solved.

13

The second semantic guarantees that there will be no gaps in the sequence of messages received at a
subscriber even if its primary distributor fails. In this case each distributor may need to buffer a message
until it knows that every subscriber in the system has received it. This implies that a distributor needs
to maintain global membership information about subscribers at other distributors in the system. This
imposes a severe limitation on the scalability of the system.

Note that subscribers do not need to buffer any messages as they will never be called upon to forward
that message to some other process in the system for stability reasons.

5 Related Work

The publish/subscribe paradigm as a basis for structuring dissemination-style communication has been
considered in earlier work. Oki et al [12] use the paradigm to develop the notion of an Information
Bus which acts as an intermediary between the publisher and subscriber. In our work, the hierarchy
of distributors connects the publisher to the subscribers. Further, Oki et al do not address aspects
of fault-tolerance related to maintaining message delivery and membership atomicity. Rajkumar et
alsha:95 have extended the publish/subscribe paradigm to support distributed real-time applications
although they do not address fault-tolerance aspects.

Systems such as Isis [3], Consul [9, 10], Transis [1], and Horus [16] are based on the virtual synchrony
model and are geared more towards a general class of fault-tolerant distributed applications. We have
focussed on a smaller class of distributed applications, viz., dissemination of data in group collaboration
systems, and by exploiting semantics of this application class have developed a weaker synchrony model
that allows for protocols that can scale better than protocols within the virtual synchrony framework.

6 Conclusions and Future Work

The publish/subscribe communication model described in this paper allows for dissemination of data
in group collaboration applications to a large set of distributed subscribers. Scalability is addressed
through identifying distinct roles of publishers, distributors, and subscribers and the lack of globally
shared state that results from view management properties associated to these roles. Reliability is
addressed by providing guarantees on message delivery that arise from the weak form of synchrony we
provide.

The UARC software (UARC 5.0) has been implemented and is in use by space scientists at many sites
in Europe and North America. The next-generation (UARC 6.0) is in the prototype stage. The proto-
type system implements the proposed publish/subscribe architecture and protocols. The implemented
transport layer provides FIFO, reliable datagram multicast over UDP sockets in a UNIX environment,
specifically SunOS 4.2.X, HP-UX, and NeXTStep Mach. The process group layer implementation
provides distributor view management based on a strong group membership protocol for a group of
distributor processes, as well as view management for publishers/subscribers and the capability of pro-
viding multiple subscription services. A C++ publish/subscribe application interface library for use by
publisher and subscriber applications has been implemented and is being used by UARC applications.

Acknowledgments

This work is supported in part by the National Science Foundation under cooperative agreement IRI-
9216848.

14

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A Communication Sub-System for High
Availability. Technical Report TR CS91-13, Computer Science Dept., Hebrew University, April
1992.

[2] O. Babaoglu and K. Marzullo. Distributed Systems, chapter Consistent Global States of Distributed
Systems: FFundamental Concepts and Mechanisms. Addison-Wesley, 1993.

[3] K. P. Birman and T. A. Joseph. Reliable Communication in the Presence of Failures. ACM Trans.
on Computer Systems, 5(1):47-76, Feb. 1987.

[4] C. R. Clauer, D. E. Atkins, T. E. Weymouth, G. M. Olson, R. Niciejewski, T. Finholt, A. Prakash,
C. E. Rasmussen, T. J. Rosenberg, J. D. Kelly, Y. Zambre, P. Stauning, E. Friis-Christensen, and
S. B. Mende. A Prototype Upper Atmospheric Research Collaboratory (UARC). FEOS, Trans.
Amer. Geophys. Union, 74, 1993.

[5] S. E. Deering and D. R. Cheriton. Multicast Routing in Datagram Internetworks and Extended
LANs. ACM Trans. on Computer Systems, 8(2):85-110, May 1990.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Consensus with One
Faulty Process. Journal of the ACM, 32(2):374-382, April 1995.

[7] F. Jahanian, S. Fakhouri, and R. Rajkumar. Processor Group Membership Protocols: Specification,
Design, and Implementation. In Proc. of Symposium on Reliable Distributed Systems, Oct. 1993.

[8] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Comm. of the
ACM, 21(7):558-565, July 1978.

[9] S. Mishra, L. L. Peterson, and R. D. Schlichting. A Membership Protocol Based on Partial Order.
In Proc. of the 2nd. Intl. Conf. on Dependable Computing for Critical Applications, pages 309-332,
Tucson, AZ, Feb. 1991.

[10] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A Communication Substrate for Fault-
Tolerant Distributed Programs. Distributed Systems Engineeering Journal, 1(2):87-103, Dec. 1993.

[11] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended Virtual Synchrony. In
Proceedings of the Fourteenth International Conference on Distributed Computing Systems, pages
56-65, Poznan, Poland, June 1994.

[12] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus-An Architecture for Extensible
Distributed Systems. In Proc. of the ACM Symposium on Operating Systems Principles, pages
58-68, North Carolina, December 1993.

[13] A. M. Ricciardi. The Group Membership Problem in Asynchronous Systems. Technical Report
TR92-1313, Computer Science Dept., Cornell University, Nov. 1992.

[14] A. M. Ricciardi and K. P. Birman. Using Process Groups to Implement Failure Detection in
Asynchronous Environments. In Proc. of 10th. Annual ACM Symp. on Principles of Distributed
Computing, Aug. 1991.

15

[15] A. Schi’per and A. Ricciardi. Virtually-Synchronous Communication Based on a Weak Failure
Suspector. In Proceedings on the 13th International Symposium on Fault-Tolerant Computing,
pages 534-568, Toulouse,France, June 1993.

[16] R. van Renesse, T. M. Hickey, and K. P. Birman. Design and Performance of Horus: A Lightweight
Group Communications System. Technical Report TR94-1442, Computer Science Dept., Cornell
University, Aug. 1994.

16

