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Abstract: Memory is commonly vied as an unreliable place to store permanent data because it is per-
ceived to be vulnerable to system crashagt despite all the gative implications of memorg’ unreli-

ability, no data eists that quantifies ko vulnerable memory actually is to system crashes. The goals of
this paper are to quantify the vulnerability of memory to operating system crashes and to propose a method
for protecting memory from these crashes.

We use softare fult injection to induce a wideaviety of operating system crashes in DEC Alpluoakw
stations running Digital Unix, ranging from bit errors in tlegriel stack to deleting branch instructions to
C-level allocation management errorse\&hav that memory is remarkably resistant to operating system
crashes. Out of the 996 crashes we oleskronly 17 corrupted file cache data. Excluding direct corruption
from copy overruns, only 2 out of 820 corrupted file cache data. This data contradicts the common assump-
tion that operating system crashes often corrupt files in mefmrysers who needren greater protec-

tion aguinst operating system crashes, we propose a simplavierhead softare scheme that controls
access to file cacheutbers using virtual memory protection and code patching.

1 Intr oduction

A modern storage hierarglcombines random-access memanagnetic disk, and possibly optical
disk or magnetic tape to try t@&p pace with rapid adrces in processor performance. |/@ides such
as disks and tapes are consideagdyfreliable places to store long-term data such as fileseltg, ran-
dom-access memory is commonlywesd as an unreliable place to stpermanent datéfiles) because it
is perceved to be vulnerable to per outages and operating system crashasdiibaum95, page 146].

Memory’s vulnerability to paer outages is straightfoesd to understand and fix. A simple solution
is to add an uninterruptible pwer supply to the system. Another solution is to switch to a otatie
memory technology such as Flash RAMU%4]. We do not consider peer outages further in this paper

Memory'’s vulnerability to OS crashes is less concrete. Most peapliieel nereus if their system
crashed while the sole cpmf important data as in memoryeven if the paver stayed on [DEC95,
Tanenbaum95 page 146, Silberschatz94 page 200]vidsnee of this vie, most systems periodically
write file data to disk, and transaction processing applicatiomstv@msactions as committed only when
the changes are made to the diskycofthe database.

The reason most people widbattery-backd memory as unreliable yet wiadisk as reliable is the
interfaceused to access thedwtorage media. The intade used to access disksxpleit and complz.
Writing to disk uses dece drivers that form 1/0O control blocks and write to I/@isters. Functions that
use the déce driver are cheakd for errors, and functions that do not use theécdedriver are unlilely to
accidentally mimic the compleactions performed by thedee driver. In contrast, the inteaite used to
access memory is simple—astore instruction by arkernel function can easily changeyatata in mem-
ory simply by using the wrong address. It is hence welgteasy for mapsimple softvare errors (such as
de-referencing an uninitialized pointer) to accidentally corrupt the contents of memoeyqBak

The assumption that memory is unreliable hurts system performance, rejiabiipyicity, seman-
tics, and cost.

* Because memory is unreliable, systems that require high reliabilith as databases, writevngata
through to disk, bt this slavs performance to that of disks. Masystems, such as Unix file systems,
mitigate the performance loss causedXtyaedisk writes by only writing v data to diskwery 30 sec-
onds or so, it this ensures the loss of data written within 30 seconds of a crash [Ousterhout85]. In
addition, 1/3 to 2/3 of wely written data Wes longer than 30 seconds [Ra¥l, Hartman93], so a tpe

1. Itis also vulnerable to p@r loss, bt this paper will not discuss this aspect of reliabilitys possible to mak
memory non-wlatile by using an uninterruptible wer supply or by using Flash RAM.
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fraction of writes mustventually be written through to diskyamay. A longer delay can decrease disk
traffic due to writes, bt only at the cost of losing more data. Tlx&r@me approach is to use a pure
write-back scheme where data is only written to disk when the memory is full. This is only an option
for applications where reliability is not an issue, such as corgeleerated temporary files.

* Memory’s unreliability also increases system comie[Rahm92]. Increased disk tfaf due to &tra
write backs forces the use ofte disk optimizations such as disk scheduling, diskgeeoration, and
group commit. Much of the research in main-memory databases deals with checkpointing\zerd reco
ing data in case the system crashes [GM92, Eich87].

* Ideal semantics, such as atomicity feery transaction, are also sacrificed because disk accesses are
slow and memory is unreliable. Finglimemorys unreliability forces systems tedp a cop of perma-
nent memory data on disk; this shrinks thailable storage capacity

Although it is common to assume that files in memory are vulnerable to operating system crashes,
there is remarkably little data onwmften these crashes actually do corrupt files in menidry objec-
tives of this paper are as folle:

* To quantify the vulnerability of memory to OS crashes. The idegl tw measure ko often system
crashes corrupt files in memoryould be to gamine the behaor of real system crashes. Unfortu-
nately data of this nature is not recorded (or is wailable) from production systems.e\Mse softare
fault injection to induce a wideaviety of operating system crashes in ougeasystem (DEC Alphas
running Digital Unix) and find that the file cache is almster corrupted.

* To propose a softare mechanism that protects memaorgrefurther from system crashese \Wbmbine
the systens virtual memory protection and code-patching tedothe chance that wild stores will cor-
rupt memory

The rest of this paper isganized as folles: Section 2 ndews the vork most closely related to this
research; Section 3 describes the platform and mechanisms usedpédtiments; Section 4 describes
the different types ofdults injected into the system; Sections 5 and 6 describe and discuss the results of
our periments; and Section 7 proposes a saféwnechanism that protects memory from system crashes.

2 Related Work

We divide the research related to this paper into three areas: field stadiesmjéction, and protec-
tion schemes.

2.1 Field Studies of System Crashes

Studies hee shovn that softvare has become the dominant cause of system outages [Gray99]. Man

studies hee irvesticated system softave errors. The studies most ket to this paper iresticgate operat-

ing system errors on production IBM ananfiem systems. Swlin and Chillarge classify softare aults

in the MVS operating system and DB2 and IMS database systems; in partltogdamalyze ults that
corrupt program memory Yerlays) [Sullvan91, Sulvan92]. Lee and lyer study and classify safitev
failures in Bndems$ Guardian operating system [Lee93a, Lee95]. These studiedepvaluable informa-

tion about &ilures in production eronments; in &ct mary of the fult types in Section 3 were inspired by
the major error cagmories from [Sulvan91] and [Lee95]. Heever, they do not preide specific informa-

tion about hav often system crashes corrupt the permanent data in memory

2.2 Using Softwae to Inject Faults

Software fault injection is a popular technique foratuating hav prototype systems bel&in the
presence of hardave and softare faults. W review some of the most ralant prior vork; see [lyer95] for
an &cellent introduction to theverall area and a summary of much of the pagt fnjection techniques.

The most releant work to this paper is the FINERdIt injector and monitoring gmonment [Kao93].
FINE uses softare to emulate hardwe and softare lugs and monitors thefett of the &ult on the Unix
operating system. Another tool, ATAuUses softare to inject memory bigllts into arious code and data
sggments [Sgall88, Barton90] of an application program. FERRARI also uses a@tto inject grious
hardware faults [Kanavati95, Kanavati92]. FERRARI is gtremely flible: it can emulate a lge number
of data, address, and contralfts, and it can inject transient or permanauntt§ into user programs or the
operating system.

As with field studies of system crashes, these papeudirirfjection inspired manof the fwult cate-
gories used in this papdiowever, no paper ondult injection hae specifically measured thefasfts of
faults on permanent data in memory
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2.3 Protecting Memory

Several researchers va proposed ays to protect memory from sofne filures [Copeland89],
though to our knwledge none he esaluated hw effectively memory withstood thesaifures.

The only file system we arevare of that attempts to malall permanent files reliable while in mem-
ory is Phoenix [Gait90]. Phoenixekps tw versions of an in-memory file system. One of thegsions is
kept write-protected; the otheension is unprotected angtadves from the write-protected one via goep
on-write. At periodic checkpoints, the system write-protects the unproteetsidrv and deletes obsolete
pages in the originalersion. Our proposed mechanism in Section féediffrom Phoenix in tev major
ways: 1) Phoenix does not ensure the reliabilityvefg write; instead, writes are only made permanent at
periodic checkpoints; 2) Phoenirdps multiple copies of modified pages, while wegkonly one cop

The Harp file system protects a log of recent modificationgicatingit in volatile, battery-bacd
memory across seral serer nodes [Liskv91]. The Receery Box leeps special system state in gioa
of memory accessed only through a rigid irde€f [Baler92b]. No attempt is made to peat other func-
tions from accidentally modifying the reary box, although the system detects corruption by maintaining
checksums. Banatre, et. al. implement stable transactional mesici protects memory contents with
dual memory banks, a special memory controlad eplicit calls to allav write access to specified mem-
ory blocks [Banatre86, Banatre88, Banatre91]. Oarkwseeks to mak main memory reliable without
needing special-purpose hamhe or dual memory banks.

General mechanisms may be used to help protect memory fromasoftwits. [Needham83] sug-
gests changing a machiseghicrocode to check certain conditions when writing a memorg;whe con-
dition they suggest is that a certairgister has been pre-loaded with the memooydig previous content.
This is similar to modifying the memory controller to enforce protection, as are JohiasuhVehbes
suggestions forarious hardwre mechanisms to trap the updates of certain memory locations [Johnson82,
Wahbe92]. Hre uses the Flash fisall to protect memory agnst wild writes by other processors in a mul-
tiprocessor [Chapin95]. Mé preemptiely discards pages that are writable ayeld processors, an option
not available when storing permanent data in memeéigally, object code modification has been sug-
gested as aay to provide data breakpoints p&sler90, \hbe92] anddult isolation between softwe
modules [Vhbe93].

Other projects seek to impm® the reliability of memory agnst hardwre fults such as peer out-
ages and boardilures. eNVy implements a memory board based on flash RAM, which isohetiiev
[Wu94]. eNVy uses cgpon-write, page remapping, and a small, battery-bdclSRAM Hliffer to hide
flash RAM’s slav writes and blk erases. The Durable Memory RS/6000 uses batteries, replicated proces-
sors, memory ECC, and alternate paths to tolerate a ity of hardware filures [Abbott94].

Finally, several papers hee examined the performance ahtages and management of reliable mem-
ory [Copeland89, Bad92a, Bisvas93, Alyurek95].
3 Experimental Environment and Mechanisms

Our periments were run on DEC Alpha 3000/600rkstations (&ble 1) running the Digital Unix
V3.0 operating system. Digital Unix is a monolitherkel dewed from Mach 2.5 and OSF/1.

machine type DEC 3000

model 600

CPU chip Alpha 21064, 175 MHz
SPECint92 114

SPECp92 165

memory bandwidth 207 MB/s

memory capacity 128 MB (512 MB max capacity)
system bs Turbochannel

system ks bandwidth 100 MB/s

Table 1: Specifications of Experimental Platdrm [Dutton92].
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What data does the usepect and \ant to remain intact after a system crash? The user probably does
not really vant or &pect all memory data to suve; after all if the entire state of the machine were pre-
sened, the nelly rebooted machine ould likely crash agin! The abstraction used to distinguish perma-
nent data from transient datafies’. We thus vant to preser the file cache—all data in memory that
relates to files, including both file data and metadata.

Digital Unix stores file data in twdistinct luffers. Directories, symbolic links, inodes, and super-
blocks are stored in the traditional Uniuffer cache [Leter89], while rgular files are stored in the Uni-
fied Bufer Cache (UBC). Theuifer cache is stored in wired virtual memory and is usually onlya fe
megabytes. ® consere TLB slots, the UBC is not normally mapped into tleenkels virtual address
space; instead it is accessed usingsptal addresses. The virtual memory system and UBC dynamically
trade of pages depending on systenonkload. for the 1/0-intensie workloads we use, the UBC uses
about 60% of the ptsical memory (80 MB of the 128 MB on each computer).

We use tw stratgies to detect corruption of the file cache: checksums and a syntlekioad
calledmemést

3.1 Checksum Detection of Corruption

Our primary method to detect corruption is to maintain a checksum of each memory block in the file
cache [Bakr92b]. W update the checksum in all functions that write the file cache; unintentional changes
to file cache bffers will result in an inconsistent checksume Wilentify blocks that are being modified
during a crash by marking a block @sanging(by using a special checksuralwe) before writing to the
block. Because file cache updates are not yet atomic, blocks being modified during a crash cannot be iden-
tified as corrupt or intact

User programs that use the mmap irsteef pose a special problem for our mechanism for detecting
corruption. Programs that mmap files into their virtual address space need noy &alireh functions to
update the file image. Instead, stores into their address ispalt@tly change the file cache. Because the
changes do not go throughyakernel function, we ha no opportunity to update the checksum. If this
happens, the system will erroneouslywshbe block as corrupted. &\etect this situation by marking
mmap’ed blocks in the file cache @sanging This limits our ability to detect corruption of these pages.
Fortunately programs that use mmap (with @R WRITE and MAP_SHARE@ are relatrely rare, and
the general-purpose file systeronikload we use to stress the system contains no programs that write to
mmap’ed files.

3.2 Workload Detection of Corruption

One could aue that&ults could indirectly call file caching routines with erroneogsiaents. These
would not be caught by the checksum mechanlsm since these file cache rootildesorrectly manipu-
late the checksum of wrouffers the corrupt? Catchlng these errors requires a higleeel check on spe-
cific data, so we create a speciaritoad callednemE&stwhose actions and data are repeatable and can
be checkd after a system crash. Checksumsraath€stcomplement each othefhe checksum mecha-
nism praides a means for detecting corruption foy ambitrary workload; memest provides a higher
level check on certain data by kmimg its correct glue at gery instant. In practice, checksumsy@d to
be suficient; all crashes that memadt detected as Yiag corruption were also detected by checksums.

memeEest generates a repeatable stream of file and directory creations, deletions, reads, and writes,
reaching a maximum file set size of 100 MB. Actions and dateemEstare controlled by a pseudo-ran-
dom number generatokfter each iteratiormem€strecords its progress in a status file on disk. After the

2. File systems and databases are tloent@jor systems that store permanent, long-term data, that is, data the user
intends to survie system crashes. In this papee use file-system terminologuch as files and file caches, because
our implementation to date in Digital Unix has focused on file systemsy Mdhe ideas described here apply to
databases, and we plan to test our ideas in this arena as evaBe\the terriile cadeto include ag area of memory

that caches long-term data, such as the Uaifebcache, a databasefter cache, or the virtual memory system for
operating systems that map files into memw¥y also include anmapping information necessary to find and inter-
pret the contents of files in memory

3. Similarly writes to disk blocks that occur when the system crashed are not guaranteed to be @amdendd-
ifying the file caching code to makile cache updates atomic.

4. PROT_WRITE indicates that the page is writable. MAP_SHARED indicates that changes to the page update the
permanent file image (UuNBKMAP_PRNMNATE).

5. As an aside, note that undetected indirect errotgdnikely propagte corrupted data to disk.
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system crashes, we reboot the system andhem€stuntil it reaches the point when the system crashed.

This reconstructs the correct contents of the test directory at the time of the crash, and we then compare the
reconstructed, correct contents with the file cache image in mefioegamine the file cache image in
memory we perform avarm rebootduring which all files in memory at the time of the crash are restored

to disk [Chen95].

We have two other goals in designing theovkload. First, we ant a general-purposeovkload that
calls mawy different programs. Second, went to stress the file system with real programs ttzdreded
the file cache to include most of main memdky create a general-purposenkload, we run four copies
of the Andrev benchmark [Hward88, Ousterhout90]. Andkecreates and copies a source hiengrch
examines the hierarghusing find, Is, du, grep, and wc; and compiles the source higr&icice the file
working space for Andre is quite small (a f& MB), we supplement this general-purposarkioad with
three copies of a script that copies, compresses, and uncompressesnétenkage (9.3 MB). This
expands the UBC to about 60% ofysical memory (80 MB out of 128 MB). Running more copies did not
expand the UBC further; the machine merely started to thrash.

4 Description of Faults

This section describes the types aidilfs we inject to measure memaryésistance to operating sys-
tem crashes. Mardifferent hardware and softare faults can cause operating system crashes. Our primary
goal in designing thesexgeriments is to generate a widariety of system crashes.eWise softare to
emulate both softare and hardare faults because sofase fault injection has pren to be an easy and
effective injection mechanism [Kanati95].

The faults we inject range fromwelevel hardvare faults such as flipping bits in memory to high-
level software faults such as memory allocation errors. Hananawults are usually specific and relaty
easy to model [Lee93b], andnous techniques such as ECC and redundaa® been successfully used
to protect aginst these errors [Abbott94, Banatre93g ¥cus primarily on softare fults because:

* Kernel programming errors are the errors mostyiko circument hardvware error correction schemes
and corrupt memory

» Software errors (lik most design flas) are dificult to model and understand. After all, if you kne
exactly what vas wrong with your program, yalfix it! Our understanding of sofawe errors is hazy
and this erodes our confidence that memory will sergi crash caused by a saite lug.

In choosing what type offilt to inject, there is a tradédfetween the size of thadlt universe it can
generate and lorealistic the dult is. Randomdults such as changing memorgnds are gry general,
because almost grreal fault can be xpressed as a change in memory stataveder, it is difficult to
relate specific softare or hardware errors to the changes of state that are injected. On the other hand,
faults such as misallocating memory can be quite realistiwelés these can only mimic specific real
faults. For example, misallocating memory can not precisely mimic the \oehaf most erroneous if
statements. W classify the dults we inject into three caeries: random bit flips, W-level software
faults, and high-kel software faults. Each succeedinguit catgory is progressely more realistic.

4.1 Random Bit Flips

The first catgory of faults flips randomly chosen bits in therkels address space [Barton90,
Kanawvati95]. We taget three areas of thekels address space: therkel tet, heap, and stackoFker-
nel text tests, we corrupt ten randomly chosen instructions in memory after the system is up and running.
We corrupt ten instructions rather than one to increase the probability that a corrupted instruction will be
executed. Br kernel heap tests, we corrupt ten randomly chosedsin the krnel heap. & kernel stack
tests, we corrupt oneakd near the top of eacleinel thread stack.

Most crashes occurred within 15 seconds afterdh# fhas injected for alldults in this papeif a
fault does not crash the machine after ten minutes, we halt and reboot the system.

These &ults are easy to inject, andyhemause aariety of diferent crashes. Theare the least realistic
of our tugs, havever. It is difficult to relate a bit flip with a specific error in programming, and most hard-
ware bit flips vould be caught by parity on the data or address b

4.2 Low-Level Software Faults

The second cafery of fault changes indidual instructions in the éknel tet. These &ults are
intended to approximate the assemblyelemanifestation of real Cakel programming errors [Kao93].
The first awlt in this catgory is an assignmeradlts. One type of assignmentft changes the destination
register used by an instruction; the other changes a sowgistereThe secondault is a condition check
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fault; these are injected by changing a branch to a noe@l8% change random instructions (both branch
and non-branch) to noops.evihject ten dwults for each specifiafilt type (corrupt destinationgistet cor-
rupt source rgister change branch to noop, change random instruction to noop).

4.3 High-Level Software Faults

The last catgory of faults imitate specific programming errors. These are magetédt at specific
programming errors thanwelevel software fwults are. W inject an initializationdult by deleting (turning
into noops) the instructions in therkel text responsible for initializing aariable at the start of a function
[Ka093, Lee93a]. W inject pointer corruption by 1) finding agister that is used as a basgister of a
load or store and 2) deleting the most recent instruction before the load/store that modifiggstikat re
[Sullivan91l, Lee93a]. ¥/ do not corrupt the stack pointegister, as this is used to access locatiables
instead of as a pointeasiable. Br both initialization and pointer corruptioatfit tests, we inject teradlts
and halt the system if it stays up for more than ten minutes.

We also inject tw of the common, highel programming errors described by [Swdh91]: alloca-
tion management and cppverruns. In an allocation managemeatlf, a module continues to use a
region of memory after it has deallocated ite Wiject this &ult by modifying the &rnel malloc function to
occasionally prematurely free thewlg allocated memoryWe implement this by kéng malloc start a
new thread that sleeps for a random ingtref 0-256 ms, then calls fréavialloc is set to inject this error
every 1000-4000 times it is called; this occurs approximatedyyel5-30 seconds.

A copy overrun occurs when a module copies bytes past the enduffea Ve inject this &ult by
modifying the lernels bcopy function to occasionally increase the number of bytes it copies. The length of
the orerrun was distriluted as follavs: 50% corrupt one byte; 44% corrupt 2-1024 bytes; 6% corrupt 2-4
KB. This distrilution was chosen by starting with the datdhgered in [Sullian91] and modifying it some-
what according to our specific platform angerience. bcopis set to inject this errowvery 1000-4000
times it is called; this occurs approximatelery 15 seconds.

5 Results

This section focuses on damajor results from thetilt-injection eperiments: the ariety of crashes
and their gect on memory-resident files.

The faults listed in Section 4 were designed to generate ag different realistic crashes as possible,
and thg were \ery successful at this. 8\generated a total of 996 crashes (approximately 90 of each type
of fault) over a one-month period on threenkstations. W obsered 76 unique crash error messages and
used these error messages taddi the crashes into six cgtwies. The first catpry is kernel memory
fault/unaligned access. These accounted for tigedafraction of crashes (78%), which is consistent with
prior results in the field [Lee93a, Ka093]. The secongelstrcatgory is kernel consisteryccheck (11%),
followed by user procesaifure (4%), hardare error (2%), illgal instruction (2%), and unkmnam (3%).

Table 2 shass the distrilntion of crashes for each type atift.

Our primary goal in performing thiadilt-injection &periment vas to measure hooften crashes cor-
rupt the file cache. The data iable 3 sha that the @erwhelming majority of crashes dot corrupt ag
data in the UBC ordtdfer cache. The circled column indicates those runs that corrupt the file cache without
completely corrupting the disk. These are the corruptions we are most concerned with, gimzidie
memorys increased vulnerability to crashes. A number of other crashes irreparably corrupted the disk
image of the file system; that is, the disk had to be reformatted. These are indicated by the rightmost col-
umn and illustrate that disks are similarly vulnerable to crashesard&/unable to determine if the file
cache vas corrupted by these disk corruptions, though this isvastesince the file cache does no good if
the underlying disk image is desteml. We do nothing special to detect disk corruption, so some of the
crashes that corrupted file cache data may ale® ¢@rupted some data on disk.

Apart from copy overrun faults, only tvo crashes out of 820 (a mere 0.2%) corrupted file cache data.
One of these corruptionsas caused by a bit-flip in thetel tet and corrupted three UBQuftfers. The
other corruption w&s caused by a bit-flip in thetnel stack and corrupted three UBdfers. Note that
these are among the least realistic typesawits.

Most corruptions (15 out of 17) resulted from gaperrun faults. 14 of these 15 crashes each cor-
rupted one UBC tiifer; the other crash corrupted ondfbr cache bffer. Copy overruns hge a relatiely

6. W& also had to modify free to first check to makire the original module had not already freed the block of
memory
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high chance (8.5%) of corrupting the file cache because the injectiedifectly werwrites a portion of
memory and this portion of memory has a reasonable chanceedapping with a file cacheulier. We
distinguish betweedirect corruption of the file cache, where ttault itself corrupts the file cache, and
indirectcorrupt of the file cache, where trauk triggers a chain ofvents that eentually corrupts the file
cache. ¥ beliere all corruptions caused by bgowere direct corruptions of the file cache rather than indi-
rect corruptions. @ support this ypothesis, we note that 1) the corrupted area of eaftér laways bgan
from the bginning of the bffer and 2) corruptions from the other typesaflfs were etremely rare.

Fortunately direct corruption fromdults such as cgpoverruns are the easiest type of corruption to
protect aginst. Section 7 describes a method feeging pages write-protected when notvatyi being
written by the file cache code. Gopverruns caused by non-file cache routines will not unlock a file cache
page before attempting to write to it, so these writes will trigger a protection violation.

To sum up the results of thaulit-injection &periments, file cache corruptions ofyasort were
exceedingly rare. This stands in sharp contrast to the general feeling among computer scientists that oper-

0]
% kef?]el % user % %
Fault Tvoe # of kernel consis- ?ocess hard- illegal %
yp crashes | memory br ware instruc- | unknown
f tency failur es :
aults errors tions
checks
Egr':']'glst:t 74 67.6% | 5.4% 108% | 2.7% 13.5% 0%
Egrﬂ'slsh'gap 73 87.7% 8.2% 0% 2.7% 0% 1.4%
Egrﬂ'glss'tgck 120 85.0% 2.5% 0% 5.0% 2.5% 5.0%
ﬁgﬁggi;w' 75 85.3% 4.0% 8.0% 1.3% 1.3% 0%
ggﬁ?feerg 75 77.3% 6.7% 10.7% 0% 2.7% 2.7%
change
branch to 62 51.6% | 27.4% | 14.5% 0% 0% 6.5%
noop
change
irr?;‘tfjgt‘ion 97 722% | 14.4% 6.2% 2.1% 1.0% 4.1%
to noop
'f::;'ﬁ"'zat'on 76 81.6% | 145% | 2.6% 0% 0% 1.3%
Eg:ﬁ;ion 65 81.5% 7.7% 4.6% 0% 0% 6.2%
;'gf:;‘ggem 103 748% | 23.3% 0% 0% 0% 1.9%
copy
i 176 84.1% 6.8% 0% 2.8% 1.7% 4.5%

Table 2: Distribution of Crashes br Each Type of Fault. The faults described in Section
successfully generated avelise set of crashes.eVgenerated a total of 996 crashes and obderé
unique crash error messages.
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ating system crashes often corrupt files in memoanghbaum95 page 146, Silberschatz94 page 200].
Nearly all corruptions that did occur were gaperruns that directly wrote into memory-resident files, not
some mysterious chain ofents wheredulty modules décted other &rnel modules andventually cor-
rupted the file cache. This is consistent with results from FINE that stast fwilts do not propage to
other lernel modules [Kao93]. @vall, only 1.7% of all crashes corrupted the file cache. Excluding direct
corruption from cop overruns, only 0.2% of crashes corrupted the file cache.

6 Discussion

In this section, we discuss wlthe diference between disk and memory reliability is not as great as
one might think. The first reason is that the huge majority of operating system crashes do not corrupt files
in memory Systems tend tail quickly due to virtual memory protection anerkel consistencchecks,
and errors do not tend to projadg between dérent lernel modules [Kao93].

To illustrate memong reliability, consider a system that crashes once per month (a pessimistic esti-
mate for production-quality operating systems). If 1% of crashes corrupt files in melawaryvill be lost
only about oncewery eight years! This is comparable to the MTTF (mean timailioré) of disks, which
indicates that memory’ vulnerability to system crashes is norge than disk' vulnerability to disk
crashes.

Second, een if operating system errors did corrupt memurgse corruptions auld often find their
way back to the on-disk cgpf the file. This is because memory €as an intermediary between the

#/0f crashes that | # of crashes that
Fault Type # of crashes cgg;gjscirﬂiut (arﬁgrg)ltj)gtsiotl)li/kﬁle
corrupting disk cache as well)
bit flips in kernel text 74 / 1 4
bit flips in kernel heap 73 / 0 \ 0
bit flips in kernel stack 120 | 1 \ 0
change destinationge 75 0 0
change source ge 75 0 1
change branch to noop 62 0 0
change random instruction to noop 97 \ 0 / 4
initialization fault 76 | 0 | 6
pointer corruption 65 0 0
allocation management 103 0 / 7
copy overrun 176 \ 15 / 0
total 996 N 17/ 22

Table 3: Effect of Crashes on File Cache and DisR‘.hisM that very few of the 996
crashes we generate corrupt the file cache. This stands in sharp contrast to the general fe
operating system crashes are quitelliko corrupt files in memoryhe circled column indicate
those runs that corrupt the file cache without completely corrupting the disk. These

corruptions we are primarily concerned with, sinceythirdicate memorg increasec
vulnerability to crashes. A number of crashes irreparably corrupted the disk image of

system; that is, the disk had to be reformatted. These are indicated by the rightmost col
illustrate that disks are also vulnerable to crashesaw unable to determine if the file ca
was corrupted by these crashes, though this isveetesince the file cache does no good if
underlying disk image as destrged. Note that some of the crashes that corrupted file cach
may also hee corrupted some data on disk.
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processor and disk. Most systemséha file cache, and wmorruption of the file cache wilventually get

written back to disk if the system stays up long enough. Ironjeatiye-through systems—which stei

for optimal safety by writing data immediately through to disk—are the systems most vulnerable to propa-
gating memory errors back to disk.&tvif a system crashes soon after an error (before the corrupted mem-
ory has a chance to get written to disk), ynapstems try to write all dirty file cache data back to disk as
the last step before halting. If memory is corrupted as a result of the crashultyisiata is guaranteed to

be made permanent!&\are conducting tests to precisely measuvedften faults corrupt data on disk.

Some may claim that the 30-second write-back delay imposed by most Unix systems actually
increasedlisk reliability by not writing back the last 30 seconds of data before a crashiffis is true,
it is trivial to implement the same delay for memory data; simply mark memory data as permanent 30 sec-
onds after you write it.

7 A Proposal br Protecting Memory from Operating System Crashes

Our results sha that files in memory are almostays preserd without corruption during operat-
ing system crashes. Some usersydver, need anwen higher legel of assurance that files in memory are
safe. This section describes a proposal fov toprotect file in memoryven further from operating sys-
tem crashes.

A disk is protected from operating system crashes by itsdeerfto change its contents, the system
must go through the disk dee driver (or closely imitate it). & belie’e memory-resident files can be pro-
tected from crashes in much the samayvby strictly controlling the ay memory can be written
[Baker92b]. © accomplish this protection, we propose addingeanory deice driverto check for errors
and preent misbehang software from corrupting memoryrhe memory déce drier is the only module
in the operating system alled to change files in memory—awrite to the file cache that does not use
the memory déce driver should cause axeeption [Chapin95]. The main question then isgtwection
medanism how does the system cause aneption when other modules try to change the file cache with-
out using the memory dee drver?

An ideal protection mechanisnmowld have the follaving characteristics:

* Lightweight: the protection mechanism should add little or merbead to file cache accesses: it should
not need to be iloked on memory reads [Needham83] and shouke hainimal werhead on writes.

e Enforced it should be etremely unlilely for a non-maliciousdrnel function to accidentally bypass
the protection mechanism. Thast majority of errors should be trapped.

* Simple: the protection mechanism should require little change to Xiséing system. In particular
avoiding custom hardare would enable us to modify the system more quickly andentak results
more widely applicable.

At first glance, the virtual memory protection of a system seems ideally suited to protect the file cache
from unauthorized stores [Copeland89]. Bseking the write-permission bits in the page table entries
turned of for the file cache pages, the system will cause most unauthorized stores to encounter a protection
violation. To write a page, the memoryviee driver enables the write-permission bit in the page table,
writes the page, then disables writes to the page. The only time a file cache page is vulnerable to an unau-
thorized store is while it is being written by the memonicedriver, and disks ha the same vulnerabil-
ity, since the disk sector being written during a system crash can be corrupted. The meivengyrider
can check for corruption during this windw@erifying the data after the write is completed. Or the memory
device driver can create a shad@opy and implement atomic writes.

Unfortunately mary systems alle certain lernel accesses to bypass the virtual memory protection
mechanism and directly access/pilsal memory [Kane92, Sites92]ofFexample, addresses in the DEC
Alpha processor with the twmost significant bits equal to ABypass the TLE.To protect aginst these
physical addresses, we can modify tleerel object code, inserting a check befarerg kernel store; this
is calledcode pathing [Wahbe93]. If the address is aygical address, the system checks toerslce the
address is not in the file cache, or that the file cachexiplisitty registered the address as writable.

Initially, the idea of inserting code befongegy store instruction sounds prohibdly slov. However,
several optimizations makthe actual werhead quite reasonable. First, modifications to the stack pointer

7. It may be possible to configure the system to disgllysical addressesubthis presents other fdulties
because the system useygibal addresses to initialize the virtual memory system, accesswvi€2sleand manipu-
late page tables.
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occur much less frequently than stores to memory that use the stack poiadeglition, the stack pointer is
almost alvays modified in small increments, and these small increments cannot change a virtual address to
a plysical address. @/can therefore decrease the number of checks by replacing the checks on local, stack
variables with a f& checks on the stack pointer fitbe93]. Another method tower the checking\er-
head is to replace inddual checks in loops with aviehigherlevel checks. Br example, functions such
as bcop modify sequential blocks of data; these blocks can be ebeahce rather than checkingeey
individual store. Initial performance data for Digital Unix indicates that Wteeh®ad of code patching is
only 2-10% [Chen95].

We are currently completing an initial implementation of this protection mechanism and plah to e
uate hav effectively it lowers the risk of memory corruption for theufts described in Section 3.

8 Conclusions and Futue Work

We hare shavn that memory is remarkably resistant to operating system crashes. Out of the 996
crashes we obserd, only 17 corrupted grfile cache data (1.7%). Excluding direct corruption fromycop
overruns, only 2 out of 820 corrupted file cache data (0.2%). This data contradicts the common assumption
that operating system crashes often corrupt files in memory

Thus, @en without special mechanisms for protecting files in meniatery-backd memory may
already be as reliable as disksr Bituations where greater protectiormiagt operating system crashes is
required, we proposed a simplewloverhead softa@re scheme that controls access to file cacfferb
using virtual memory protection and code patching.

One direction for future ark is to redo this study on a fdifent operating system or to perform a sim-
ilar fault-injection &periment on a database systene bélieve these will gtend the applicability of our
conclusions.

If main memory is indeed safe from system crashes, battergdackin memory should be wed
as stable storage in the sammywhat disks are. This has striking implications for future system designers.
Write-backs to disk are needed much less often; optimizations such as group commit may disappeatr;
checkpointing data in main-memory databases may no longer be needed.
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