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Abstract:  Memory is commonly viewed as an unreliable place to store permanent data because it is per-
ceived to be vulnerable to system crashes.1 Yet despite all the negative implications of memory’s unreli-
ability, no data exists that quantifies how vulnerable memory actually is to system crashes. The goals of
this paper are to quantify the vulnerability of memory to operating system crashes and to propose a method
for protecting memory from these crashes.

We use software fault injection to induce a wide variety of operating system crashes in DEC Alpha work-
stations running Digital Unix, ranging from bit errors in the kernel stack to deleting branch instructions to
C-level allocation management errors. We show that memory is remarkably resistant to operating system
crashes. Out of the 996 crashes we observed, only 17 corrupted file cache data. Excluding direct corruption
from copy overruns, only 2 out of 820 corrupted file cache data. This data contradicts the common assump-
tion that operating system crashes often corrupt files in memory. For users who need even greater protec-
tion against operating system crashes, we propose a simple, low-overhead software scheme that controls
access to file cache buffers using virtual memory protection and code patching.

1 Intr oduction
A modern storage hierarchy combines random-access memory, magnetic disk, and possibly optical

disk or magnetic tape to try to keep pace with rapid advances in processor performance. I/O devices such
as disks and tapes are considered fairly reliable places to store long-term data such as files. However, ran-
dom-access memory is commonly viewed as an unreliable place to storepermanent data (files) because it
is perceived to be vulnerable to power outages and operating system crashes [Tanenbaum95, page 146].

Memory’s vulnerability to power outages is straightforward to understand and fix. A simple solution
is to add an uninterruptible power supply to the system. Another solution is to switch to a non-volatile
memory technology such as Flash RAM [Wu94]. We do not consider power outages further in this paper.

Memory’s vulnerability to OS crashes is less concrete. Most people would feel nervous if their system
crashed while the sole copy of important data was in memory, even if the power stayed on [DEC95,
Tanenbaum95 page 146, Silberschatz94 page 200]. As evidence of this view, most systems periodically
write file data to disk, and transaction processing applications view transactions as committed only when
the changes are made to the disk copy of the database.

The reason most people view battery-backed memory as unreliable yet view disk as reliable is the
interface used to access the two storage media. The interface used to access disks is explicit and complex.
Writing to disk uses device drivers that form I/O control blocks and write to I/O registers. Functions that
use the device driver are checked for errors, and functions that do not use the device driver are unlikely to
accidentally mimic the complex actions performed by the device driver. In contrast, the interface used to
access memory is simple—any store instruction by any kernel function can easily change any data in mem-
ory simply by using the wrong address. It is hence relatively easy for many simple software errors (such as
de-referencing an uninitialized pointer) to accidentally corrupt the contents of memory [Baker92a].

The assumption that memory is unreliable hurts system performance, reliability, simplicity, seman-
tics, and cost.
• Because memory is unreliable, systems that require high reliability, such as databases, write new data

through to disk, but this slows performance to that of disks. Many systems, such as Unix file systems,
mitigate the performance loss caused by extra disk writes by only writing new data to disk every 30 sec-
onds or so, but this ensures the loss of data written within 30 seconds of a crash [Ousterhout85]. In
addition, 1/3 to 2/3 of newly written data lives longer than 30 seconds [Baker91, Hartman93], so a large

1.  It is also vulnerable to power loss, but this paper will not discuss this aspect of reliability. It is possible to make
memory non-volatile by using an uninterruptible power supply or by using Flash RAM.
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fraction of writes must eventually be written through to disk anyway. A longer delay can decrease disk
traffic due to writes, but only at the cost of losing more data. The extreme approach is to use a pure
write-back scheme where data is only written to disk when the memory is full. This is only an option
for applications where reliability is not an issue, such as compiler-generated temporary files.

• Memory’s unreliability also increases system complexity [Rahm92]. Increased disk traffic due to extra
write backs forces the use of extra disk optimizations such as disk scheduling, disk reorganization, and
group commit. Much of the research in main-memory databases deals with checkpointing and recover-
ing data in case the system crashes [GM92, Eich87].

• Ideal semantics, such as atomicity for every transaction, are also sacrificed because disk accesses are
slow and memory is unreliable. Finally, memory’s unreliability forces systems to keep a copy of perma-
nent memory data on disk; this shrinks the available storage capacity.

Although it is common to assume that files in memory are vulnerable to operating system crashes,
there is remarkably little data on how often these crashes actually do corrupt files in memory. The objec-
tives of this paper are as follows:
• To quantify the vulnerability of memory to OS crashes. The ideal way to measure how often system

crashes corrupt files in memory would be to examine the behavior of real system crashes. Unfortu-
nately, data of this nature is not recorded (or is not available) from production systems. We use software
fault injection to induce a wide variety of operating system crashes in our target system (DEC Alphas
running Digital Unix) and find that the file cache is almostnever corrupted.

• To propose a software mechanism that protects memory even further from system crashes. We combine
the system’s virtual memory protection and code-patching to lower the chance that wild stores will cor-
rupt memory.

The rest of this paper is organized as follows: Section 2 reviews the work most closely related to this
research; Section 3 describes the platform and mechanisms used in the experiments; Section 4 describes
the different types of faults injected into the system; Sections 5 and 6 describe and discuss the results of
our experiments; and Section 7 proposes a software mechanism that protects memory from system crashes.

2 Related Work
We divide the research related to this paper into three areas: field studies, fault injection, and protec-

tion schemes.

2.1 Field Studies of System Crashes
Studies have shown that software has become the dominant cause of system outages [Gray90]. Many

studies have investigated system software errors. The studies most relevant to this paper investigate operat-
ing system errors on production IBM and Tandem systems. Sullivan and Chillarege classify software faults
in the MVS operating system and DB2 and IMS database systems; in particular, they analyze faults that
corrupt program memory (overlays) [Sullivan91, Sullivan92]. Lee and Iyer study and classify software
failures in Tandem’s Guardian operating system [Lee93a, Lee95]. These studies provide valuable informa-
tion about failures in production environments; in fact many of the fault types in Section 3 were inspired by
the major error categories from [Sullivan91] and [Lee95]. However, they do not provide specific informa-
tion about how often system crashes corrupt the permanent data in memory.

2.2 Using Software to Inject Faults
Software fault injection is a popular technique for evaluating how prototype systems behave in the

presence of hardware and software faults. We review some of the most relevant prior work; see [Iyer95] for
an excellent introduction to the overall area and a summary of much of the past fault injection techniques.

The most relevant work to this paper is the FINE fault injector and monitoring environment [Kao93].
FINE uses software to emulate hardware and software bugs and monitors the effect of the fault on the Unix
operating system. Another tool, FIAT, uses software to inject memory bit faults into various code and data
segments [Segall88, Barton90] of an application program. FERRARI also uses software to inject various
hardware faults [Kanawati95, Kanawati92]. FERRARI is extremely flexible: it can emulate a large number
of data, address, and control faults, and it can inject transient or permanent faults into user programs or the
operating system.

As with field studies of system crashes, these papers on fault injection inspired many of the fault cate-
gories used in this paper. However, no paper on fault injection have specifically measured the effects of
faults on permanent data in memory.
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2.3 Protecting Memory
Several researchers have proposed ways to protect memory from software failures [Copeland89],

though to our knowledge none have evaluated how effectively memory withstood these failures.
The only file system we are aware of that attempts to make all permanent files reliable while in mem-

ory is Phoenix [Gait90]. Phoenix keeps two versions of an in-memory file system. One of these versions is
kept write-protected; the other version is unprotected and evolves from the write-protected one via copy-
on-write. At periodic checkpoints, the system write-protects the unprotected version and deletes obsolete
pages in the original version. Our proposed mechanism in Section 7 differs from Phoenix in two major
ways: 1) Phoenix does not ensure the reliability of every write; instead, writes are only made permanent at
periodic checkpoints; 2) Phoenix keeps multiple copies of modified pages, while we keep only one copy.

The Harp file system protects a log of recent modifications byreplicating it in volatile, battery-backed
memory across several server nodes [Liskov91]. The Recovery Box keeps special system state in a region
of memory accessed only through a rigid interface [Baker92b]. No attempt is made to prevent other func-
tions from accidentally modifying the recovery box, although the system detects corruption by maintaining
checksums. Banatre, et. al. implement stable transactional memory, which protects memory contents with
dual memory banks, a special memory controller, and explicit calls to allow write access to specified mem-
ory blocks [Banatre86, Banatre88, Banatre91]. Our work seeks to make main memory reliable without
needing special-purpose hardware or dual memory banks.

General mechanisms may be used to help protect memory from software faults. [Needham83] sug-
gests changing a machine’s microcode to check certain conditions when writing a memory word; the con-
dition they suggest is that a certain register has been pre-loaded with the memory word’s previous content.
This is similar to modifying the memory controller to enforce protection, as are Johnson’s and Wahbe’s
suggestions for various hardware mechanisms to trap the updates of certain memory locations [Johnson82,
Wahbe92]. Hive uses the Flash firewall to protect memory against wild writes by other processors in a mul-
tiprocessor [Chapin95]. Hive preemptively discards pages that are writable by failed processors, an option
not available when storing permanent data in memory. Finally, object code modification has been sug-
gested as a way to provide data breakpoints [Kessler90, Wahbe92] and fault isolation between software
modules [Wahbe93].

Other projects seek to improve the reliability of memory against hardware faults such as power out-
ages and board failures. eNVy implements a memory board based on flash RAM, which is non-volatile
[Wu94]. eNVy uses copy-on-write, page remapping, and a small, battery-backed, SRAM buffer to hide
flash RAM’s slow writes and bulk erases. The Durable Memory RS/6000 uses batteries, replicated proces-
sors, memory ECC, and alternate paths to tolerate a wide variety of hardware failures [Abbott94].

Finally, several papers have examined the performance advantages and management of reliable mem-
ory [Copeland89, Baker92a, Biswas93, Akyurek95].

3 Experimental Envir onment and Mechanisms
Our experiments were run on DEC Alpha 3000/600 workstations (Table 1) running the Digital Unix

V3.0 operating system. Digital Unix is a monolithic kernel derived from Mach 2.5 and OSF/1.

Table 1: Specifications of Experimental Platform [Dutton92].

machine type DEC 3000

model 600

CPU chip Alpha 21064, 175 MHz

SPECint92 114

SPECfp92 165

memory bandwidth 207 MB/s

memory capacity 128 MB (512 MB max capacity)

system bus Turbochannel

system bus bandwidth 100 MB/s
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What data does the user expect and want to remain intact after a system crash? The user probably does
not really want or expect all memory data to survive; after all if the entire state of the machine were pre-
served, the newly rebooted machine would likely crash again! The abstraction used to distinguish perma-
nent data from transient data isfiles2. We thus want to preserve the file cache—all data in memory that
relates to files, including both file data and metadata.

Digital Unix stores file data in two distinct buffers. Directories, symbolic links, inodes, and super-
blocks are stored in the traditional Unix buffer cache [Leffler89], while regular files are stored in the Uni-
fied Buffer Cache (UBC). The buffer cache is stored in wired virtual memory and is usually only a few
megabytes. To conserve TLB slots, the UBC is not normally mapped into the kernel’s virtual address
space; instead it is accessed using physical addresses. The virtual memory system and UBC dynamically
trade off pages depending on system workload. For the I/O-intensive workloads we use, the UBC uses
about 60% of the physical memory (80 MB of the 128 MB on each computer).

We use two strategies to detect corruption of the file cache: checksums and a synthetic workload
calledmemTest.

3.1 Checksum Detection of Corruption
Our primary method to detect corruption is to maintain a checksum of each memory block in the file

cache [Baker92b]. We update the checksum in all functions that write the file cache; unintentional changes
to file cache buffers will result in an inconsistent checksum. We identify blocks that are being modified
during a crash by marking a block aschanging (by using a special checksum value) before writing to the
block. Because file cache updates are not yet atomic, blocks being modified during a crash cannot be iden-
tified as corrupt or intact.3

User programs that use the mmap interface pose a special problem for our mechanism for detecting
corruption. Programs that mmap files into their virtual address space need not call any kernel functions to
update the file image. Instead, stores into their address spaceimplicitly change the file cache. Because the
changes do not go through any kernel function, we have no opportunity to update the checksum. If this
happens, the system will erroneously show the block as corrupted. We detect this situation by marking
mmap’ed blocks in the file cache aschanging. This limits our ability to detect corruption of these pages.
Fortunately, programs that use mmap (with PROT_WRITE and MAP_SHARED4) are relatively rare, and
the general-purpose file system workload we use to stress the system contains no programs that write to
mmap’ed files.

3.2 Workload Detection of Corruption
One could argue that faults could indirectly call file caching routines with erroneous arguments. These

would not be caught by the checksum mechanism, since these file cache routines would correctly manipu-
late the checksum of any buffers they corrupt.5 Catching these errors requires a higher-level check on spe-
cific data, so we create a special workload calledmemTest whose actions and data are repeatable and can
be checked after a system crash. Checksums andmemTest complement each other. The checksum mecha-
nism provides a means for detecting corruption for any arbitrary workload;memTest provides a higher-
level check on certain data by knowing its correct value at every instant. In practice, checksums proved to
be sufficient; all crashes that memTest detected as having corruption were also detected by checksums.

memTest generates a repeatable stream of file and directory creations, deletions, reads, and writes,
reaching a maximum file set size of 100 MB. Actions and data inmemTest are controlled by a pseudo-ran-
dom number generator. After each iteration,memTest records its progress in a status file on disk. After the

2.  File systems and databases are the two major systems that store permanent, long-term data, that is, data the user
intends to survive system crashes. In this paper, we use file-system terminology, such as files and file caches, because
our implementation to date in Digital Unix has focused on file systems. Many of the ideas described here apply to
databases, and we plan to test our ideas in this arena as well. We use the termfile cache to include any area of memory
that caches long-term data, such as the Unix buffer cache, a database buffer cache, or the virtual memory system for
operating systems that map files into memory. We also include any mapping information necessary to find and inter-
pret the contents of files in memory.
3.   Similarly, writes to disk blocks that occur when the system crashed are not guaranteed to be atomic. We are mod-
ifying the file caching code to make file cache updates atomic.
4.  PROT_WRITE indicates that the page is writable. MAP_SHARED indicates that changes to the page update the
permanent file image (unlike MAP_PRIVATE).
5.  As an aside, note that undetected indirect errors would likely propagate corrupted data to disk.
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system crashes, we reboot the system and runmemTest until it reaches the point when the system crashed.
This reconstructs the correct contents of the test directory at the time of the crash, and we then compare the
reconstructed, correct contents with the file cache image in memory. To examine the file cache image in
memory, we perform awarm reboot during which all files in memory at the time of the crash are restored
to disk [Chen95].

We have two other goals in designing the workload. First, we want a general-purpose workload that
calls many different programs. Second, we want to stress the file system with real programs that expanded
the file cache to include most of main memory. To create a general-purpose workload, we run four copies
of the Andrew benchmark [Howard88, Ousterhout90]. Andrew creates and copies a source hierarchy;
examines the hierarchy using find, ls, du, grep, and wc; and compiles the source hierarchy. Since the file
working space for Andrew is quite small (a few MB), we supplement this general-purpose workload with
three copies of a script that copies, compresses, and uncompresses the kernel image (9.3 MB). This
expands the UBC to about 60% of physical memory (80 MB out of 128 MB). Running more copies did not
expand the UBC further; the machine merely started to thrash.

4 Description of Faults
This section describes the types of faults we inject to measure memory’s resistance to operating sys-

tem crashes. Many different hardware and software faults can cause operating system crashes. Our primary
goal in designing these experiments is to generate a wide variety of system crashes. We use software to
emulate both software and hardware faults because software fault injection has proven to be an easy and
effective injection mechanism [Kanawati95].

The faults we inject range from low-level hardware faults such as flipping bits in memory to high-
level software faults such as memory allocation errors. Hardware faults are usually specific and relatively
easy to model [Lee93b], and various techniques such as ECC and redundancy have been successfully used
to protect against these errors [Abbott94, Banatre93]. We focus primarily on software faults because:
• Kernel programming errors are the errors most likely to circumvent hardware error correction schemes

and corrupt memory.
• Software errors (like most design flaws) are difficult to model and understand. After all, if you knew

exactly what was wrong with your program, you’d fix it! Our understanding of software errors is hazy,
and this erodes our confidence that memory will survive a crash caused by a software bug.

In choosing what type of fault to inject, there is a tradeoff between the size of the fault universe it can
generate and how realistic the fault is. Random faults such as changing memory words are very general,
because almost any real fault can be expressed as a change in memory state. However, it is difficult to
relate specific software or hardware errors to the changes of state that are injected. On the other hand,
faults such as misallocating memory can be quite realistic. However, these can only mimic specific real
faults. For example, misallocating memory can not precisely mimic the behavior of most erroneous if
statements. We classify the faults we inject into three categories: random bit flips, low-level software
faults, and high-level software faults. Each succeeding fault category is progressively more realistic.

4.1 Random Bit Flips
The first category of faults flips randomly chosen bits in the kernel’s address space [Barton90,

Kanawati95]. We target three areas of the kernel’s address space: the kernel text, heap, and stack. For ker-
nel text tests, we corrupt ten randomly chosen instructions in memory after the system is up and running.
We corrupt ten instructions rather than one to increase the probability that a corrupted instruction will be
executed. For kernel heap tests, we corrupt ten randomly chosen words in the kernel heap. For kernel stack
tests, we corrupt one word near the top of each kernel thread’s stack.

Most crashes occurred within 15 seconds after the fault was injected for all faults in this paper. If a
fault does not crash the machine after ten minutes, we halt and reboot the system.

These faults are easy to inject, and they cause a variety of different crashes. They are the least realistic
of our bugs, however. It is difficult to relate a bit flip with a specific error in programming, and most hard-
ware bit flips would be caught by parity on the data or address bus.

4.2 Low-Level Software Faults
The second category of fault changes individual instructions in the kernel text. These faults are

intended to approximate the assembly-level manifestation of real C-level programming errors [Kao93].
The first fault in this category is an assignment faults. One type of assignment fault changes the destination
register used by an instruction; the other changes a source register. The second fault is a condition check
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fault; these are injected by changing a branch to a noop. We also change random instructions (both branch
and non-branch) to noops. We inject ten faults for each specific fault type (corrupt destination register, cor-
rupt source register, change branch to noop, change random instruction to noop).

4.3 High-Level Software Faults
The last category of faults imitate specific programming errors. These are more targeted at specific

programming errors than low-level software faults are. We inject an initialization fault by deleting (turning
into noops) the instructions in the kernel text responsible for initializing a variable at the start of a function
[Kao93, Lee93a]. We inject pointer corruption by 1) finding a register that is used as a base register of a
load or store and 2) deleting the most recent instruction before the load/store that modifies that register
[Sullivan91, Lee93a]. We do not corrupt the stack pointer register, as this is used to access local variables
instead of as a pointer variable. For both initialization and pointer corruption fault tests, we inject ten faults
and halt the system if it stays up for more than ten minutes.

We also inject two of the common, high-level programming errors described by [Sullivan91]: alloca-
tion management and copy overruns. In an allocation management fault, a module continues to use a
region of memory after it has deallocated it. We inject this fault by modifying the kernel malloc function to
occasionally prematurely free the newly allocated memory. We implement this by having malloc start a
new thread that sleeps for a random interval of 0-256 ms, then calls free.6 Malloc is set to inject this error
every 1000-4000 times it is called; this occurs approximately every 15-30 seconds.

A copy overrun occurs when a module copies bytes past the end of a buffer. We inject this fault by
modifying the kernel’s bcopy function to occasionally increase the number of bytes it copies. The length of
the overrun was distributed as follows: 50% corrupt one byte; 44% corrupt 2-1024 bytes; 6% corrupt 2-4
KB. This distribution was chosen by starting with the data gathered in [Sullivan91] and modifying it some-
what according to our specific platform and experience. bcopy is set to inject this error every 1000-4000
times it is called; this occurs approximately every 15 seconds.

5 Results
This section focuses on two major results from the fault-injection experiments: the variety of crashes

and their effect on memory-resident files.
The faults listed in Section 4 were designed to generate as many different realistic crashes as possible,

and they were very successful at this. We generated a total of 996 crashes (approximately 90 of each type
of fault) over a one-month period on three workstations. We observed 76 unique crash error messages and
used these error messages to divide the crashes into six categories. The first category is kernel memory
fault/unaligned access. These accounted for the largest fraction of crashes (78%), which is consistent with
prior results in the field [Lee93a, Kao93]. The second largest category is kernel consistency check (11%),
followed by user process failure (4%), hardware error (2%), illegal instruction (2%), and unknown (3%).
Table 2 shows the distribution of crashes for each type of fault.

Our primary goal in performing this fault-injection experiment was to measure how often crashes cor-
rupt the file cache. The data in Table 3 show that the overwhelming majority of crashes donot corrupt any
data in the UBC or buffer cache. The circled column indicates those runs that corrupt the file cache without
completely corrupting the disk. These are the corruptions we are most concerned with, since they indicate
memory’s increased vulnerability to crashes. A number of other crashes irreparably corrupted the disk
image of the file system; that is, the disk had to be reformatted. These are indicated by the rightmost col-
umn and illustrate that disks are similarly vulnerable to crashes. We are unable to determine if the file
cache was corrupted by these disk corruptions, though this is irrelevant since the file cache does no good if
the underlying disk image is destroyed. We do nothing special to detect disk corruption, so some of the
crashes that corrupted file cache data may also have corrupted some data on disk.

Apart from copy overrun faults, only two crashes out of 820 (a mere 0.2%) corrupted file cache data.
One of these corruptions was caused by a bit-flip in the kernel text and corrupted three UBC buffers. The
other corruption was caused by a bit-flip in the kernel stack and corrupted three UBC buffers. Note that
these are among the least realistic types of faults.

Most corruptions (15 out of 17) resulted from copy overrun faults. 14 of these 15 crashes each cor-
rupted one UBC buffer; the other crash corrupted one buffer cache buffer. Copy overruns have a relatively

6.   We also had to modify free to first check to make sure the original module had not already freed the block of
memory.
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high chance (8.5%) of corrupting the file cache because the injected fault directly overwrites a portion of
memory, and this portion of memory has a reasonable chance of overlapping with a file cache buffer. We
distinguish betweendirect corruption of the file cache, where the fault itself corrupts the file cache, and
indirect corrupt of the file cache, where the fault triggers a chain of events that eventually corrupts the file
cache. We believe all corruptions caused by bcopy were direct corruptions of the file cache rather than indi-
rect corruptions. To support this hypothesis, we note that 1) the corrupted area of each buffer always began
from the beginning of the buffer and 2) corruptions from the other types of faults were extremely rare.

Fortunately, direct corruption from faults such as copy overruns are the easiest type of corruption to
protect against. Section 7 describes a method for keeping pages write-protected when not actively being
written by the file cache code. Copy overruns caused by non-file cache routines will not unlock a file cache
page before attempting to write to it, so these writes will trigger a protection violation.

To sum up the results of the fault-injection experiments, file cache corruptions of any sort were
exceedingly rare. This stands in sharp contrast to the general feeling among computer scientists that oper-

Table 2: Distribution of Crashes for Each Type of Fault. The faults described in Section 4
successfully generated a diverse set of crashes. We generated a total of 996 crashes and observed 76
unique crash error messages.

Fault Type
# of

crashes

%
kernel

memory
faults

%
kernel
consis-
tency

checks

% user
process
failur es

%
hard-
ware
errors

%
illegal

instruc-
tions

%
unknown

bit flips in
kernel text

74 67.6% 5.4% 10.8% 2.7% 13.5% 0%

bit flips in
kernel heap

73 87.7% 8.2% 0% 2.7% 0% 1.4%

bit flips in
kernel stack

120 85.0% 2.5% 0% 5.0% 2.5% 5.0%

change desti-
nation reg

75 85.3% 4.0% 8.0% 1.3% 1.3% 0%

change
source reg

75 77.3% 6.7% 10.7% 0% 2.7% 2.7%

change
branch to
noop

62 51.6% 27.4% 14.5% 0% 0% 6.5%

change
random
instruction
to noop

97 72.2% 14.4% 6.2% 2.1% 1.0% 4.1%

initialization
fault

76 81.6% 14.5% 2.6% 0% 0% 1.3%

pointer
corruption

65 81.5% 7.7% 4.6% 0% 0% 6.2%

allocation
management

103 74.8% 23.3% 0% 0% 0% 1.9%

copy
overrun

176 84.1% 6.8% 0% 2.8% 1.7% 4.5%
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ating system crashes often corrupt files in memory [Tanenbaum95 page 146, Silberschatz94 page 200].
Nearly all corruptions that did occur were copy overruns that directly wrote into memory-resident files, not
some mysterious chain of events where faulty modules affected other kernel modules and eventually cor-
rupted the file cache. This is consistent with results from FINE that show most faults do not propagate to
other kernel modules [Kao93]. Overall, only 1.7% of all crashes corrupted the file cache. Excluding direct
corruption from copy overruns, only 0.2% of crashes corrupted the file cache.

6 Discussion
In this section, we discuss why the difference between disk and memory reliability is not as great as

one might think. The first reason is that the huge majority of operating system crashes do not corrupt files
in memory. Systems tend to fail quickly due to virtual memory protection and kernel consistency checks,
and errors do not tend to propagate between different kernel modules [Kao93].

To illustrate memory’s reliability, consider a system that crashes once per month (a pessimistic esti-
mate for production-quality operating systems). If 1% of crashes corrupt files in memory, data will be lost
only about once every eight years! This is comparable to the MTTF (mean time to failure) of disks, which
indicates that memory’s vulnerability to system crashes is no worse than disk’s vulnerability to disk
crashes.

Second, even if operating system errors did corrupt memory, these corruptions would often find their
way back to the on-disk copy of the file. This is because memory serves as an intermediary between the

Table 3: Effect of Crashes on File Cache and Disk. This table shows that very few of the 996
crashes we generate corrupt the file cache. This stands in sharp contrast to the general feeling that
operating system crashes are quite likely to corrupt files in memory. The circled column indicates
those runs that corrupt the file cache without completely corrupting the disk. These are the
corruptions we are primarily concerned with, since they indicate memory’s increased
vulnerability to crashes. A number of crashes irreparably corrupted the disk image of the file
system; that is, the disk had to be reformatted. These are indicated by the rightmost column and
illustrate that disks are also vulnerable to crashes. We are unable to determine if the file cache
was corrupted by these crashes, though this is irrelevant since the file cache does no good if the
underlying disk image was destroyed. Note that some of the crashes that corrupted file cache data
may also have corrupted some data on disk.

Fault Type # of crashes

# of crashes that
corrupt file

cache without
corrupting disk

# of crashes that
corrupt disk

(and possibly file
cache as well)

bit flips in kernel text 74 1 4

bit flips in kernel heap 73 0 0

bit flips in kernel stack 120 1 0

change destination reg 75 0 0

change source reg 75 0 1

change branch to noop 62 0 0

change random instruction to noop 97 0 4

initialization fault 76 0 6

pointer corruption 65 0 0

allocation management 103 0 7

copy overrun 176 15 0

total 996 17 22
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processor and disk. Most systems have a file cache, and any corruption of the file cache will eventually get
written back to disk if the system stays up long enough. Ironically, write-through systems—which strive
for optimal safety by writing data immediately through to disk—are the systems most vulnerable to propa-
gating memory errors back to disk. Even if a system crashes soon after an error (before the corrupted mem-
ory has a chance to get written to disk), many systems try to write all dirty file cache data back to disk as
the last step before halting. If memory is corrupted as a result of the crash, this faulty data is guaranteed to
be made permanent! We are conducting tests to precisely measure how often faults corrupt data on disk.

Some may claim that the 30-second write-back delay imposed by most Unix systems actually
increases disk reliability by not writing back the last 30 seconds of data before a crash. Even if this is true,
it is trivial to implement the same delay for memory data; simply mark memory data as permanent 30 sec-
onds after you write it.

7 A Proposal for Protecting Memory from Operating System Crashes
Our results show that files in memory are almost always preserved without corruption during operat-

ing system crashes. Some users, however, need an even higher level of assurance that files in memory are
safe. This section describes a proposal for how to protect file in memory even further from operating sys-
tem crashes.

A disk is protected from operating system crashes by its interface—to change its contents, the system
must go through the disk device driver (or closely imitate it). We believe memory-resident files can be pro-
tected from crashes in much the same way by strictly controlling the way memory can be written
[Baker92b]. To accomplish this protection, we propose adding amemory device driver to check for errors
and prevent misbehaving software from corrupting memory. The memory device driver is the only module
in the operating system allowed to change files in memory—any write to the file cache that does not use
the memory device driver should cause an exception [Chapin95]. The main question then is theprotection
mechanism: how does the system cause an exception when other modules try to change the file cache with-
out using the memory device driver?

 An ideal protection mechanism would have the following characteristics:
• Lightweight : the protection mechanism should add little or no overhead to file cache accesses: it should

not need to be invoked on memory reads [Needham83] and should have minimal overhead on writes.
• Enforced: it should be extremely unlikely for a non-malicious kernel function to accidentally bypass

the protection mechanism. The vast majority of errors should be trapped.
• Simple: the protection mechanism should require little change to the existing system. In particular,

avoiding custom hardware would enable us to modify the system more quickly and make our results
more widely applicable.

At first glance, the virtual memory protection of a system seems ideally suited to protect the file cache
from unauthorized stores [Copeland89]. By keeping the write-permission bits in the page table entries
turned off for the file cache pages, the system will cause most unauthorized stores to encounter a protection
violation. To write a page, the memory device driver enables the write-permission bit in the page table,
writes the page, then disables writes to the page. The only time a file cache page is vulnerable to an unau-
thorized store is while it is being written by the memory device driver, and disks have the same vulnerabil-
ity, since the disk sector being written during a system crash can be corrupted. The memory device driver
can check for corruption during this window verifying the data after the write is completed. Or the memory
device driver can create a shadow copy and implement atomic writes.

Unfortunately, many systems allow certain kernel accesses to bypass the virtual memory protection
mechanism and directly access physical memory [Kane92, Sites92]. For example, addresses in the DEC
Alpha processor with the two most significant bits equal to 102 bypass the TLB.7 To protect against these
physical addresses, we can modify the kernel object code, inserting a check before every kernel store; this
is calledcode patching [Wahbe93]. If the address is a physical address, the system checks to make sure the
address is not in the file cache, or that the file cache has explicitly registered the address as writable.8

Initially, the idea of inserting code before every store instruction sounds prohibitively slow. However,
several optimizations make the actual overhead quite reasonable. First, modifications to the stack pointer

7.  It may be possible to configure the system to disallow physical addresses, but this presents other difficulties
because the system uses physical addresses to initialize the virtual memory system, access I/O devices, and manipu-
late page tables.
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occur much less frequently than stores to memory that use the stack pointer. In addition, the stack pointer is
almost always modified in small increments, and these small increments cannot change a virtual address to
a physical address. We can therefore decrease the number of checks by replacing the checks on local, stack
variables with a few checks on the stack pointer [Wahbe93]. Another method to lower the checking over-
head is to replace individual checks in loops with a few higher-level checks. For example, functions such
as bcopy modify sequential blocks of data; these blocks can be checked once rather than checking every
individual store. Initial performance data for Digital Unix indicates that the overhead of code patching is
only 2-10% [Chen95].

We are currently completing an initial implementation of this protection mechanism and plan to eval-
uate how effectively it lowers the risk of memory corruption for the faults described in Section 3.

8 Conclusions and Future Work
We have shown that memory is remarkably resistant to operating system crashes. Out of the 996

crashes we observed, only 17 corrupted any file cache data (1.7%). Excluding direct corruption from copy
overruns, only 2 out of 820 corrupted file cache data (0.2%). This data contradicts the common assumption
that operating system crashes often corrupt files in memory.

Thus, even without special mechanisms for protecting files in memory, battery-backed memory may
already be as reliable as disks. For situations where greater protection against operating system crashes is
required, we proposed a simple, low-overhead software scheme that controls access to file cache buffers
using virtual memory protection and code patching.

One direction for future work is to redo this study on a different operating system or to perform a sim-
ilar fault-injection experiment on a database system. We believe these will extend the applicability of our
conclusions.

If main memory is indeed safe from system crashes, battery-backed main memory should be viewed
as stable storage in the same way that disks are. This has striking implications for future system designers.
Write-backs to disk are needed much less often; optimizations such as group commit may disappear;
checkpointing data in main-memory databases may no longer be needed.
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