Protocols for Authenticated Download to Mobile
Information Appliances

Trent Jaeger *

Jaegert@eecs.umich.edu
Software Systems Research Lab
EECS Department

University of Michigan
Ann Arbor, MI /8105

Abstract

Mobile hosts download files from untrusted net-
works to obtain application software, information
services, documents, etc. However, attackers can
modify the contents of these files, either in transit
or on a compromised machine. Attacks are more
likely on a mobile network than a fized network be-
cause attackers can send a malicious message to a
mobile host without having to break into any ma-
chine in the network. If an attack goes undetected,
the mobile host may download a file that contains:
(1) erroneous or misleading data; (2) faulty appli-
cations; and (3) Trojan horses or viruses. There-
fore, mobile hosts need the ability to authenticate
the files they download to verify that the file down-
loaded 1s the file requested. It s difficult to au-
thenticate files because, in general, a mobile host
cannot trust any of the servers that provide loca-
tion wnformation. In this paper, we define down-
load protocols that locate and retrieve files from an
untrusted network and authenticate the downloaded
file using only a single trusted principal. FEnergy
consumption s also a concern for mobile hosts, so
the protocols are designed to minimize the amount
of information a mobile host will need to download.
Keywords: Mobile computing systems, file in-
tegrity, digital signatures, cryptographic digests,
wide-area network file location, trusted authorities.

1 Introduction

We present a file download protocol for mobile
hosts that automatically locates, retrieves, and ver-

*This work was done while this author was a summer
intern at Bellcore.

Aviel D. Rubin

rubin@bellcore.com
Security Research Group
Bellcore
445 South Street
Morristown, NJ 07960

ifies the integrity of files in an untrusted environ-
ment. Mobile hosts download files to obtain ap-
plication software, information services, and var-
ious other kinds of data. For example, a mobile
user may wish to download a newly available soft-
ware package. Also, some mobile hosts have little
or no disk space and a limited amount of RAM,
so the application software used by these machines
may need to be downloaded when needed. In addi-
tion, a number of the applications of mobile hosts
are based on the download of files from informa-
tion services on traffic, weather, and stock quotes,
etc [7]. In general, file download consists of two
tasks: (1) file location and retrieval and (2) file in-
tegrity verification. To improve availability, read-
only files are often replicated, so a file download
protocol should be able to find a nearby copy of the
file. Once a mobile host retrieves a file, it should
verify the integrity of the file to ensure that the
file received is the one requested. Our file down-
load protocol is designed to provide mobile hosts
with automated support for both tasks.

Files are often downloaded from the Internet
and used without verifying their integrity. In a
fixed network, this is a very dangerous practice,
but in a mobile environment, the danger is even
greater. In a fixed network, a malicious attacker
may become able to modify a file by: (1) compro-
mising the server that stores the file; (2) connecting
a machine to the server’s LAN; or (3) compromis-
ing a machine on the network path of the file down-
load. In a mobile environment, attacks can also be
made on requests to and from the mobile host it-
self. For example, an attacker can transmit a ma-
liciously tampered software package to an unsus-
pecting mobile host. Since the malicious software
is run with the user’s access rights, this software

can: (1) access the user’s private data; (2) delete
the user’s data; (3) access system information, such
as a password file; and (4) tie up system resources.
Even worse, the malicious software may contain a
virus or a Trojan horse. Bellcore’s Trusted Soft-
ware Integrity (Betsi) system [17] enables users to
manually verify the integrity of a file obtained from
the Internet. However, Betsi requires user involve-
ment to verify that the certificate 1s for the file re-
quested and to compare cryptographic digests and
digital signatures to those in the certificate, so it
cannot be integrated with our protocols in its cur-
rent form.

File location 1s also a difficult problem because:
(1) trust in all system components and their com-
munications is not possible and (2) it can be expen-
sive to find a file in a large network. Distributed
file systems [2, 4, 20] and shared virtual mem-
ory systems [10, 12] define protocols for locating
distributed services, but these protocols trust the
servers providing location information. The prob-
lem is that machines connected to the Internet can
be compromised by attackers. For example, the
machines that mobile hosts use to obtain network
connectivity are connected to the Internet, so trust
in an arbitrary server is not advisable. Therefore,
even if the location information is signed (e.g., us-
ing RSA [16]) by each machine, it cannot be trusted
because one of these machines may have been com-
promised. Second, these distributed systems pro-
tocols are designed to make an entire name space
accessible. We expect that only a small percentage
of files, such as commonly-used applications and
information services, need to be located dynami-
cally, so it is not necessary to make the entire name
space accessible. In a previous paper, we defined a
service for downloading files in an untrusted, fixed
network [9]. This protocol requires trust in only
one system principal and limits the cost to locate
a file, but it is not designed for a mobile network.

File download protocols must be efficient to pre-
serve the limited energy resources of mobile hosts.
It is not expected that the rate of improvement in
battery lifetimes is going to keep pace with the rate
of improvement in CPU performance [18], so the
power available to mobile hosts will continue to be
limited. Thus, any file download protocols should
use as few mobile host resources as possible. The
fixed network protocol described above [9] requires
that the principal downloading the file control all
file download and error recovery tasks. In a mo-
bile environment, we would like to delegate some
of these tasks to other processors to reduce the ef-

Wide-Area Network

cdl 2|

Fixed
Network

Figure 1: Two cells in a Personal Communi-
cation Network (PCN) — MSS: Mobile Support
System; MH: Mobile Host

fort of the mobile host.

The goal of our service is to automate the file
location, retrieval, and authentication tasks of mo-
bile hosts. Using our protocols, a mobile host can
specify the file to be retrieved and expect the ser-
vice to return a copy that meets those specifica-
tions, if one is available. Files can be located and
verified without requiring trust in the locating ser-
vices. In fact, only one trusted principal is required
for the protocol to succeed. Also, the use of mo-
bile host resources to download location informa-
tion and files is minimized.

In the next section, we describe the mobile sys-
tem architecture our protocol is designed to sup-
port. In section 3, we formally define the file down-
load problem. In section 4, we present the protocol
architecture. In section 5, we detail the authenti-
cated download protocols.

2 Mobile System Architecture

It is envisioned that a personal communication
network (PCN) will be developed that will provide
mobile hosts with nearly ubiquitous communica-
tion coverage [7]. The PCN (see Figure 1) will
consist of a number of mobile support servers [8]
(MSS’s) that are attached to fixed networks and
service mobile hosts in a specific area called a cell.
MSS’s are expected to provide mobile hosts with
wide-area network connectivity. The PCN will en-
able a mobile host to obtain access to information
services, application software, its home machine,
ete.

The capabilities of mobile hosts themselves may
vary markedly. At the two extremes are the “dumb
terminals” and the “workstations.” The dumb ter-

minals merely display information while the MSS’s
perform all computations for the mobile host. On
the other hand, a mobile host may be a fully
functional workstation with its own operating sys-
tem and support software. Intermediate options
include systems with CPU’s that possess limited
memory, such as palmtops, Tabs [21], and “ter-
minals with the possibility of downloading some
code [6].”

Examples of the types of data mobile hosts may
download can be categorized as: (1) information
services and (2) application software. All the types
of mobile hosts described above may download in-
formation services, such as traffic, weather, stock
quotes, e-mail, etc. Also, mobile workstations and
limited memory CPU’s may download application
software for local execution. For example, a palm-
top may need to download the proper application
software to view data obtained from an informa-
tion service. Also, a mobile workstation user may
want to download new software developed within
his organization. The mobile workstation user does
not want to wait until he is physically connected
to his organization’s computers to download this
software.

If the PCN is to provide truly ubiquitous con-
nectivity, then a mobile host must be able to down-
load a file from any MSS. File download from an
arbitrary MSS without verification is dangerous,
however, because of the threat of attacks against:
(1) the fixed network; (2) the MSS’s; and (3) the
wireless communications. Attackers on the fixed
network can replace files either on compromised
machines or in transit. An attack may result in
compromised servers responding to software re-
quests by mobile hosts with malicious files.

Unfortunately, it is also impractical to assume
that a mobile host can trust all MSS’s in the PCN.
The ability of a mobile host to trust an arbitrary
MSS is limited by: (1) key management for MSS’s
and (2) the fact that MSS’s may be compromised.
Currently, mobile cells cover an area only 1-2 miles
in diameter and are expected to decrease in size,
so the number of MSS’s, and hence the number of
public keys, will be large. The black pages [3] ser-
vice has been proposed to provide bindings of prin-
cipals to keys, but use of this service costs time. In
addition, MSS’s are connected, at least indirectly,
to the Internet, so there exists a possibility that
an MSS will be compromised. Thus, even signed
messages may not be trustworthy.

Even if a mobile host can trust its current MSS,
attackers can also compromise transmissions be-

tween the MSS and the mobile host. Attackers
with sufficient motivation can determine the trans-
mission frequencies of the MSS (even if frequency
hopping or multifrequency spread are used [14]).
Therefore, attackers can arbitrarily delete, insert,
and modify information destined for a mobile host
without compromising the security of a single ma-
chine.

3 Problem Statement

An authenticated download protocol must solve
two basic problems: (1) it must be able to locate
and retrieve the file requested by the mobile host
and (2) it must be able to verify that the file re-
trieved satisfies the mobile host’s request. In this
section, we formally define these two problems.

3.1 File Location and Retrieval

Before defining the file location and retrieval
problem we define the following concepts:

e Definition 1: A file identifier is a tuple that
includes the identifying characteristics of a file,
such as its name, its author, its date, etc !.

e Definition 2: A file is a stream of bits refer-
enced by a file identifier.

e Definition 3: A client is a principal that re-
quests a file using a file identifier.

e Definition 4: A distribution server is a prin-
cipal that can process a file identifier and de-
termine if it possesses a file that maps to the
identifier.

When the client wants to retrieve a file, it speci-
fies a file identifier. The file location problem is for
a client to identify a distribution server that can
map the file identifier to a file that it possesses.
The file retrieval problem is for the client to obtain
an authentic version of that file from a distribution
server.

File location protocols for distributed systems
can be divided into two categories: (1) pull and
(2) push. Pull systems [4, 10, 12] download and
cache location information on demand while push
systems [2, 11, 20] use file location information
that has been previously uploaded to their loca-
tion servers (i.e., servers that help clients find files).

TA detailed definition of a file identifier is provided in
Section 5.2.

Pull systems provide scalable, flexible access to a
global name space, but must search for file loca-
tion information on demand. However, we expect
that people responsible for distribution servers will
know what files they want to offer, such as in the
WWW where users make file URL’s available, so
the search of the entire, global name space should
not be necessary. Push systems are more efficient
than pull systems because all the file location infor-
mation is stored in the location servers, but some
of these systems use techniques that are unaccept-
able from a security standpoint. For example, the
Ameoba system [20] requires servers to be able to
create daemons on client machines that handle lo-
cation requests. Allowing processes to be triggered
by the actions of foreign machines presents a poten-
tial security vulnerability, particularly when these
processes may affect the way that the client exe-
cutes future processes.

The primary security limitation of these proto-
cols 1s the amount of trust that is required between
the client and the servers. In each of these proto-
cols, clients trust that the servers provide the cor-
rect location information (only the V system [4, 5]
actually authenticates the servers, however). As
mentioned above, even if the servers are authenti-
cated, trust in all servers is not possible because
any one of them may have been compromised.
Also, a malicious attacker can modify the file iden-
tifier when it is sent from the mobile host to the
MSS, so the mobile host will receive the wrong file.
The mobile environment is ideally suited to such
an attack.

Other mobile systems issues that these file loca-
tion protocols do not address include: (1) varying
mobile host location and (2) arbitrary mobile host
disconnection. The location of a mobile host can
change, so the file location protocols must be able
to find mobile hosts and forward information to
them. Also, mobile hosts will spend a great deal of
time disconnected from the network. File location
protocols should not require synchronous interac-
tion with a mobile host to be completed.

3.2 File Authentication

The file authentication problem is to prove
that the file retrieved meets the requirements of
a client’s file request. For example, a client may
request a software package named f. However, if a
distribution server supplies a file named f, that is
not sufficient to verify to the client that the pack-
age 1s indeed software package f. The distribution
server could have just renamed another file f.

More formally, the file authentication problem is
for a client to verify that the following statements
about a file f are true:

e Statement 1: The identity of a file fmatches
the identity in the file identifier provided by
the client.

e Statement 2: The author of file f matches
one of the authors in the file identifier for f.

e Statement 3: A cryptographic digest of file f
matches a cryptographic digest of a file whose
identity matches f.

e Statement 4: The expiration date of the
cryptographic digest, identity, and author of
a file f has not passed.

Statement 1 says that the retrieved file’s iden-
tity matches that of the request. Statement 2 says
that the file is authored by an author approved by
the client. Statement 3 says that the retrieved file’s
contents correspond to the file contents expected.
Statement 4 says that the file authentication infor-
mation is current.

We assume that a client believes any statement
made and digitally signed by a trusted authority.
The X.509 Extended File System (XEFS) [19] per-
mits authors to sign statements endorsing the in-
tegrity of their files, and other principals sign en-
dorsements of other aspects of files (e.g., checked
for viruses). In the XEFS, files are annotated
with attributes whose values contain these endorse-
ments, but trust in the principals endorsing the file
may vary. In the Betsi system [17], a single trusted
authority is defined that vouches for the integrity
of the files. Therefore, a client can compare the file
retrieved to authentication information signed by a
trusted authority to determine if a file is authentic.

In Betsi, a trusted certification authority (CA)
creates certificates that associate a registered au-
thor with a file identifier and a cryptographic di-
gest of the file. Betsi’s author registration pro-
tocol prevents an attacker from masquerading as
another registered author. These certificates are
digitally signed by the CA to ensure their authen-
ticity. Therefore, a user can verify that a file is the
one specified in the certificate and that its integrity
is preserved.

Betsi uses the following protocol to verify file au-
thenticity. First, a user compares the file identifier
and author in the certificate to the file identifier
and author expected by the user. Next, the user
computes a cryptographic digest of the file (using

a one-way hash function, such as MD5 [15]) and
compares this digest to the cryptographic digest
in the certificate to verify the file’s integrity. If
the user trusts the CA and the two comparisons
succeed, then the file satisfies the Betsi verification
protocol. The requirement for the file to be current
is implemented in Betsi via a certificate revocation
list (CRL). CRL’s are more difficult to implement
in mobile environments because they require high
availability, and mobile users may be off-line at any
given time.

The Betsi system requires manual intervention
to verify a file which prevents it from being inte-
grated in a fully automated file download protocol.
An automated file download protocol for fixed net-
works that verifies the integrity of retrieved files is
described in [9]. In this protocol, a service on the
client’s machine controls the location process and
verifies the authenticity of any downloaded files.
Mobile hosts have energy limitations due to fact
that they are often battery-powered. Therefore,
an authenticated download protocol for mobile sys-
tems should minimize the effort of the mobile host
in network operations, so it can preserve energy for
computation.

4 Architecture

Our architecture is based on the following as-
sumptions. First, each mobile host can securely
obtain and store a copy of the CA’s public key. An
off-line mechanism must be used to distribute this
key. Second, we assume that an attacker cannot
certify files using another author’s identity. Betsi
uses an off-line mechanism to verify an author’s
identity during registration of an author’s public
key. We do not expect that Betsi’s mechanism will
be used for this application, but we require that
some off-line verification is performed. Third, we
assume that trusted software for generating crypto-
graphic digests and for verifying digital signatures
are available at each mobile host. Finally, denial-
of-service attacks are generally easy to detect and
hard to prevent, so we assume that they can be
detected by the system and are repaired off-line.

The trust model includes the following princi-
pals:

e Mobile Hosts: Principals that request files

¢ Mobile Support Servers (MSS’s): Princi-
pals that provide mobile hosts with wide-area
network connectivity

e Distribution Servers: Principals that store
and distribute files

e Location server: Principals that map file
identifiers to distribution servers

e Authors: Principals responsible for a file
(e.g., the system administrator of a server)

e Certification authorities (CA’s): Princi-

pals trusted by clients to certify authors’ files

Mobile hosts represent the client role in the file
location problem. Mobile support servers (MSS’s)
enable mobile hosts to make file requests by pro-
viding network connectivity. Some of the tasks of
the client may be replicated in the MSS to reduce
the effort of the mobile host. For example, mobile
support systems should try to verify the integrity
and authenticity of a file before forwarding it to
a mobile host. Therefore, only if the mobile host
does not trust the mobile support system does it
need to verify the integrity of a file, and even in
most of these cases, the verification should be suc-
cessful.

Distribution and location servers implement the
file system for the mobile hosts. Distribution
servers store files to be downloaded and forward
these files to MSS’s. Location serverslocate distri-
bution servers that claim to possess a valid copy
of the requested file. In our architecture, the loca-
tions of all distributed files are uploaded to at least
one location server, as in the push model. We also
expect that location servers will maintain informa-
tion about which location server administers which
domains, so a location server can find a file that is
not in its domain efficiently, similar to the V sys-
tem [4, 5].

Certification authorities (CA’s) certify the au-
thenticity of the authors’ files. An author sends
the CA a signed message containing a file’s certifi-
cation information. After verifying the signature,
the CA generates a certificate for the author stat-
ing that the author certified the file at the current
time (see section 5.1 for the certificate definition).
This contrasts with the PEM [1] model where a CA
would certify the public key of each author, and au-
thors would certify files directly. The advantages of
CA’s certifying files are that: (1) the certification
date of the file can be trusted; and (2) certification
using previously revoked public keys is prevented.
The authenticity of some documents, such as le-
gal documents, may depend on the date that they
were certified. Since the CA creates the certificate
containing the certification date, this date can be

trusted. Also, the CA generates all certificates,
so the CA can prevent certification of files signed
using a revoked key. In addition, our CA can also
support implementation of certificates based on the
PEM model, where appropriate.

A mobile host need only trust a single CA in
our architecture. At present, we assume that each
organization will have one CA. If a group of or-
ganizations wants to share information, a web of
trust between the CA’s of those organizations can
be created using the mechanism used for PEM [1]
or PGP [22] 2.

Mobile hosts need not trust any mobile support
servers, location servers, or distribution servers. If
an MSS or distribution server delivers an incor-
rect or tampered file, the client recognizes it. Any
change to the certificate 1s detected by signature
verification, and any change to the file is detected
by the digest comparison. If a location server is
compromised, the client can use another location
server. At worst, a compromised server can cause
a denial of service.

5 Protocol Definitions

The authenticated download protocol is shown
in Figure 2. In step 1, distribution servers an-
nounce to location servers that they possess a spe-
cific file. In step 2, a mobile host sends a message
requesting a file’s location to an MSS. In step 3,
the MSS forwards this request to a location server.
In step 4, the location server returns a list of dis-
tribution servers for the file to the MSS. In step 5,
the MSS chooses a distribution server and requests
the specified file and its certificate. In step 6, a
distribution server returns a copy of the file and
its certificate to the client. The MSS may verify
the authenticity of the file itself. If the verification
fails, the MSS can repeat steps 5 and 6 until an au-
thentic version of the file is retrieved. In step 7, the
MSS forwards the file and its certificate to the mo-
bile host which then verifies the file’s integrity. If
the mobile host’s verification fails, the mobile host
can request that the file be resent from the MSS
(step 8). Tt is assumed that the mobile host can ob-
tain network connectivity from only one MSS, so
only this MSS can download the file for the mobile
host.

The authenticated download protocol i1mple-
ments the location and retrieval of files and the
verification of their integrity. The locations of the

2PGP is a trademark of Philip Zimmermann.

Location
Server

Fixed
Network

Distribution
Server

Wireless

Cell Mobile

Host

Figure 2: Authenticated Download Protocol:
(1) distribution server publishes a file; (2) mobile
host requests a file; (3) MSS forwards mobile hosts
request; (4) location server returns a set of distribu-
tion servers for a file; (5) MSS requests a file from a
distribution server; (6) distribution server returns
a file and its certificate; (7) MSS forwards file and
its certificate; and (8) a mobile host requests the

file be resent by the MSS.

files that are available to mobile hosts are published
in step 1. The remaining steps involve the transfer
of file and/or location information between prin-
cipals. Integrity verification is performed by both
the MSS and the mobile host. The MSS verifies
the integrity of the file received in step 6. Thus, if
the MSS is working properly, it will always deliver
a valid copy of the file to the mobile host. The
mobile host still needs to verify the file it obtains
in step 7 because transmission from the MSS may
be forged or disrupted or the MSS may already be
compromised.

This authenticated download protocol differs
from the protocol for a fixed network [9] in the ef-
fort required in the mobile hosts. A client in a fixed
network has the energy resources to perform re-
peated requests and downloads of a file. However,
the number of file downloads should be minimized
for mobile hosts because their energy resources are
limited. In the protocol above, the MSS detects
the download of false files from the fixed network.
Thus, a mobile host will obtain an authentic copy
of the file requested on the first request as long as
the following attacks do not occur: (1) the compro-
mise of the MSS and (2) an attack on the wireless
transmission.

Other problems that are unique to mobile sys-
tems are: (1) a mobile host may change MSS’s and
(2) a mobile host may disconnect temporarily. For
example, after a mobile host requests a file from
an MSS, the mobile host moves to a new cell that
is administered by a different MSS. It is expected
that state information about a mobile host must be
transferred between MSS’s when responsibility for
amobile host is transferred [7]. Therefore, informa-
tion about outstanding requests should be included
in this state information. If a mobile host becomes
unreachable (e.g., due to shutdown) during the al-
gorithm, the MSS will time-out the request when
step 7 cannot be completed. The mobile host must
then reissue the request when it comes back online.
Since the MSS has already downloaded the file, the
MSS can forward it to the mobile host immediately
upon receipt of the request.

Integrity verification in the authenticated down-
load protocol requires the support of cryptographic
algorithms: (1) one-way hash functions and (2)
digital signature algorithms. One-way hash func-
tions generate cryptographic digests that can be
used to verify a file’s integrity. A one-way hash
function has the following features: (1) it is a one-
way function because it is thought to be computa-
tionally infeasible to derive the input to a calcula-
tion given the output and (2) it is a collision-free
function because, given an input and an output,
it 1s possible to find another input that hashes to
that same output with only a negligible probability.
These two features prevent an attacker from being
able to modify a file, yet still obtain the crypto-
graphic digest of the original file. In our fixed net-
work implementation, we used the MD5 one-way
hash function [15] because its code is in the public
domain and it is the RFC standard one-way hash
function.

Digital signatures are used to verify that the CA
generated a certificate. A digital signature is cre-
ated from a combination of a principal’s private
key and a message. The signature has the prop-
erty that anyone in possession of that principal’s
public key can verify the integrity and authen-
ticity of the message, and that nobody without
the private key can create it. Therefore, MSS’s
and mobile hosts can verify that the CA created
a certificate by checking the associated digital sig-
nature. In our fixed network implementation, all
digital signatures are generated using the Digital
Signature Algorithm (DSA) [13]. Our choice of
DSA was made on the basis that NIST claims that

DSA can be exported and that it is royalty-free 3.
An alternative algorithm for digital signatures is
the RSA algorithm [16], but RSA has the disad-
vantages that its exportation is tightly controlled
and 1ts use requires royalty payments to the patent
holders. However, RSA is a significantly more ef-
ficient algorithm than DSA, particularly for verifi-
cation.

Below, we detail the authenticated download
protocol. First, we describe the information that
must be available when the protocol is initiated.
Next, we describe the actions taken in each step of
the protocol.

5.1 Initial Conditions

Before detailing the protocol, we identify the ini-
tial conditions assumed by the protocol. Specifi-
cally, we assume that the distribution servers have
obtained copies of the files to be published and
their certificates.

Registered authors certify their files with a CA
trusted by those clients who will want to use the
file. This enables clients to verify the contents of
the file, its identifying attributes, and its certifica-
tion date. The CA provides the author with an
authentication certificate for the file. We assume
that the distribution server obtains a copy of the
file and its authentication certificate off-line.

Effectively, a file authentication certificate as-
soclates an author with a cryptographic digest of
a specified file. Digests are used in the place of
files because they have a small, fixed size (e.g., 128
bits for MD5). Mobile hosts can compare a digest
of the file to the digest provided in the certificate
to verify the integrity of the file. The integrity of
the certificate is guaranteed by the signature of the
trusted CA.

Other information is needed in the certificate to
verify that the requested file was retrieved. There-
fore, a certificate has the following fields:

e Identity of CA
e Author Name

e Author’s Organization

Author’s E-Mail Address

Name of the File

e Version Number

3Tt is currently unresolved as to whether a patent by
Schnorr covers DSA, however.

e Machine

e Machine ID

e O/S

e O/S version

e Cryptographic Digest
e Expiration Date

e Latest Version?

e Date

The fields in the certificate have the following
meanings. The identity of CA is used so the mo-
bile host can determine which public key to use to
verify the authenticity of the certificate. Author
information enables the mobile host to verify the
author of the file. The version number of the file
enables the mobile host to verify that the file is the
proper version. The machine and O/S information
are used to verify that the file 1s appropriate for
a specific platform. These fields are applicable to
software. As described above, the cryptographic
digest is used to verify the integrity of the file.
The expiration date indicates the date when the
certificate becomes invalid. The latest version?
field specifies that the author claims that this file
is the latest version at the date the certificate was
created and should continue to be the latest version
until the expiration date is reached. The date is
the date of certification. The protocol for verifying
the authenticity of a file using these certificates is
detailed in the File Authentication Section below.

5.2 File Publication

Mobile hosts can locate a file on a particu-
lar distribution server because it has been ‘pub-
lished.” The act of ‘publishing’ was first used in the
Ameoba system [20] as a way to advertise that a
particular service resides on a particular server. In
Ameoba, a file publication protocol activates server
agents on client machines to catch and forward ser-
vice requests. In contrast, our protocol involves up-
load of the location information of a file to location
servers.

An important consideration in file publication is
the specification of a file. A file must be specified
in a way that it can be uniquely referenced. A
unique file is specified using a file identifier. A file
identifier consists of the following fields:

e File Name

Distribution Location

Server Server

Figure 3: The file publication protocol: (1)
Distribution server stores a new file identifier-to-
pathname mapping and (2) distribution server up-
loads a file identifier-to-distribution server map-
ping to a location server.

e Author Set
e Version Number (optional)
e Machine (required for compiled software only)

e Machine version (required for compiled soft-
ware only)

e O/S (required for compiled software only)

e O/S version (required for compiled software
only)

e Latest Version? (optional)

A mobile host is required to know the execu-
tion platform for compiled software. For ascii files,
these values are not required. If the version 1s
not specified, then it is assumed that the latest
version? of the file is requested.

Location servers store a map of file identifiers
to the set of distribution servers that provide the
associated files. Location servers should be associ-
ated with a set of distribution servers, as location
servers in the V operating system [5] (called liai-
son servers) are, so a file on a specific distribution
server can be found efficiently. Therefore, a dis-
tribution server publishes the file to the location
server responsible for its domain.

Distribution servers store a map from a file iden-
tifier to the file pathname and the file’s certificate
pathname. This enables a distribution server to
quickly locate a file requested.

The file publication protocol i1s shown in Fig-
ure 3. The protocol steps are as follows:

1. The distribution server stores a new set of
file location information in its file identifier-to-
pathname database. Each distribution server
database entry has the following fields:

o File Identifier
e File Pathname

o Certificate Pathname

2. The distribution server tells a location server
to update its file identifier-to-server database.
Each location server database entry has the

following fields:
e File Identifier

e Distribution Server

The results of the file publication protocol are:
(1) the location server can list the set of distri-
bution servers that claim to possess a file that
matches a file identifier and (2) the distribution
server can locate that file and the file’s certificate
given a file identifier.

In this protocol, it is possible for attackers to
publish false files on a location server. This at-
tack will not result in a mobile host accepting a file
that is not authentic, but can result in a denial-of-
service if the location server database becomes full
of false file locations. Attackers can be prevented
from publishing false files if the location server also
requires a publication message to include a valid
certificate for the file. This does not prevent an
attacker from publishing legitimate files in false lo-
cations, however. Off-line verification of published
files by system administrators can be used to limit
the number of false entries.

5.3 File Location

In the file location protocol, the MSS acts on be-
half of a mobile host to obtain a set of distribution
servers that claim to possess a file that matches
a file identifier. If a mobile host already knows a
distribution server with the desired file or the MSS
has a copy of the file, then the file location protocol
1s not necessary.

The file location protocol is shown in Figure 4.
The steps in the protocol are as follows:

1. A mobile host sends a file identifier to its cur-
rent MSS. The file identifier is defined in the

File Publication Section above.

2. The MSS forwards this request to its location
server.

Other
Location
Server

Location
Server

#5

Other
Location
Server

Mobile
Host

Figure 4: The file location protocol: (1) Mobile
host sends a file identifier to its current MSS; (2)
the MSS forwards this file request to its location
server; (3) The MSS’s location server requests that
other location servers find the distribution servers
that possess a file (optional); (4) Other location
servers return to the MSS’s location server a set of
distribution servers that possess a file; (5) MSS’s
location server returns a set of distribution servers
that possess the file to the MSS.

3. (Optional) The MSS’s location server sends
the file identifier to some number of the other
location servers. This is only done if the MSS’s
location server has no knowledge of any distri-
bution servers that possess the file.

4. (Optional) These other location servers each
return a set of distribution servers to the
MSS’s location server.

5. The MSS’s location server unions the set of
distribution servers collected and returns the
resultant set to the MSS.

The result is that the MSS collects a set of dis-
tribution servers (possibly empty) that its location
server claims possess the requested file. We have
no requirement that location servers be consistent,
so if a location server has no entry that matches a
file identifier then it can request the help of other
location servers. Also, there is no requirement that
the location server return the complete set of dis-
tribution servers possessing the file. Only one valid
copy is needed. The MSS’s location server caches
any new information it obtains from these other
location servers. Therefore, the next time a client
requests the same file, the location server can pro-
vide the set of distribution servers found previ-
ously. We expect that location servers will publish
new files among one another at regular increments

#1

Distribution

Server

#2

Figure 5: The file retrieval protocol: (1) MSS
sends a file identifier to a distribution server; (2)
the distribution server returns the corresponding
file and its certificate.

(e.g., daily) or after a threshold number of updates
have been made to them.

The main attack against file location is for an
attacker to modify the location server’s return mes-
sages (the location structure messages) with a false
reply. Again this attack will only result in a denial-
of-service, so MSS retries can overcome this attack.

5.4 File Retrieval

The file retrieval protocol enables the MSS to
retrieve the file and its certificate using the set of
servers obtained in the file location protocol. The
file retrieval protocol is fairly straightforward, but
it may need to be rerun if the file authentication
fails. Because file authentication can fail, the MSS
treats the file location information as a hint to the
possible locations of the file. The file retrieval pro-
tocol determines how these hints are used.

The basic file retrieval protocol is shown in Fig-
ure 5. The MSS sends the same file identifier it
sent to the location server in the file location pro-
tocol to a distribution server. The distribution
server returns the corresponding file and its cer-
tificate. A null file indicates that the distribution
server does not possess the file (or that an attack
has occurred). If a file and its certificate are re-
turned, the file authentication protocol described
in the next section is run.

If file authentication fails, then the MSS must
determine what the next action should be. The
MSS has four options: (1) retry the retrieval us-
ing the same distribution server; (2) try the re-
trieval using another distribution server; (3) ob-
tain a new distribution server set from the same
location server; and (4) obtain a new distribution
server set from another location server. Since we
expect relatively few failures, we recommend the
use of a simple, round-robin algorithm to locate a
distribution server with an authentic copy of the
file. First, each distribution server in the distribu-
tion server set is tried in succession. If all the dis-

10

tribution servers fail (the MSS can specify a limit
for the number of failures), another location server
is queried for a new set of distribution servers and
the algorithm is repeated. If an MSS detects a
failure, it notifies the server’s system administra-
tor. Verification of server state and failure repair
are performed off-line.

5.5 File Authentication

When the MSS receives the file and its certifi-
cate, it should verify the authenticity of the file
before forwarding it to the mobile host. This re-
duces the likelihood that the mobile host will re-
ceive a false or corrupted file. The file authenti-
cation protocol is used by the MSS to verify the
file’s authenticity. The file authentication protocol
compares the file identifier generated by the MSS
and the file itself to the information in the file’s
certificate. The result is that the MSS verifies that
the file is authentic or discards the file.

The file authentication protocol consists of two
steps: (1) verifying the CA’s signature and (2) ver-
ifying the information in the certificate. The verifi-
cation of the CA’s signature is necessary to ensure
that the certificate has not been modified. Any
change to the certificate will cause the digital sig-
nature verification process to fail.

Once the CA’s signature is verified, the infor-
mation in the certificate is checked to ensure that
the correct file has been retrieved. The file and
its identifier are compared to the following compo-
nents of the certificate:

1. Expiration Date of the Certificate
2. File Name

File Author

Version Number (optional)

Latest Version Number (optional)

SR R

Machine (optional)

-~

. Machine Version (optional)

8. O/S (optional)

9. O/S Version (optional)

10. Cryptographic Digest of the File

First, the expiration date of the certificate is
checked. The expiration date indicates the time at
which a certificate becomes invalid. An author can

use this capability to register files until a certain
date. Then, the author can either re-certify the
file or certify a new version of the file. This is
useful for releasing updated versions of documents
or software.

Next, the file identifier information (entries 2-
9 above) can be verified. This is accomplished by
matching the file identifier information supplied by
the mobile host against the values of the file iden-
tifier attributes in the certificate. The author field
verification is satisfied if the author matches one of
the author’s in the file identifier’s author set.

Lastly, the integrity of the file itself is checked
by computing the cryptographic digest of the file
(e.g., using MDb)) and comparing that value to the
cryptographic digest in the certificate. If the di-
gests match, the integrity of the software is assured
with a large degree of confidence. This assurance
is possible because the CA’s signature guarantees
that the validity of the digest and the probability
that a one-way hash function computes the same
digest for two distinct inputs is negligible.

Even if the hashes match, it is possible that the
author may have certified malicious software in the
first place. In this case, the author is directly linked
to the software, so any malicious actions by the
software can be attributed to the author.

5.6 Mobile Host File Authentication

Once the MSS has verified the authenticity of
the file, the MSS forwards the file and its certifi-
cate to the mobile host. Even though the MSS
has verified the authenticity of the file, the mo-
bile host must re-verify the file’s authenticity be-
cause: (1) the file may have been corrupted or re-
placed in transmission or (2) the MSS itself may
have been compromised. The file authentication
protocol used by the mobile host is identical to the
protocol used by the MSS and described in the pre-
vious section.

If transmission is not attacked and the MSS
has not been compromised, then file download to
a mobile host requires minimum download effort.
The mobile host sends only one request to down-
load a file. The only data downloaded to the mo-
bile host are the file and its certificate. No pub-
lic keys need to be downloaded since the mobile
hosts should already have a copy of the CA’s public
key. Therefore, authenticated download is optimal
in the number of messages that the mobile host
must process. The amount of data downloaded 1s
minimal because the because the mobile host must

11

download the certificate to verify the file’s authen-
ticity. If the mobile host already possesses a cer-
tificate for this file, then the mobile host should
request download of the file without the certificate.

If file authentication fails, the mobile host needs
to retry downloading the file. If the MSS is work-
ing properly, then the MSS should have obtained
a valid copy of the file before forwarding it to the
mobile host. That is, after running the file location
and retrieval protocols, the MSS is a distribution
server of the retrieved file for the mobile hosts in
its cell. Therefore, the mobile host should repeat
its request for the file to the MSS.

If several retries have failed, the mobile host can
conclude that either transmission is not secure or
the MSS is behaving improperly. In either case,
the mobile host should terminate its requests to the
MSS. The failure of this MSS should be reported
to the appropriate system administrator and fixed
off-line.

6 Conclusions

Mobile systems are growing in functionality and
popularity. These systems give users the potential
to continue working in their favorite computing en-
vironment regardless of their location. There are
several technological barriers to realizing the po-
tential of mobile computing. Of these, security is a
particularly difficult challenge. Cryptographic op-
erations are, by nature, expensive, and protocols
for mobile networks are further constrained by the
nature of the environment. Protocols must be opti-
mized for low power consumption, low bandwidth,
and low availability. These are not the normal
constraints one thinks of when designing crypto-
graphic protocols.

We present an architecture and protocols for au-
thenticated download to mobile computers. These
protocols guarantee that any modification to the
downloaded data/software/information will be de-
tected. Digital signatures and one-way hash func-
tions are used to ensure that authentication certifi-
cates signed by a trusted authority can vouch for
the integrity and authenticity of any file. The ar-
chitecture requires one trusted authority and valid
verification software for each mobile host.

Although a substantial amount of research has
already been done in the area of cryptographic pro-
tocols, their application to mobile systems 1s new.
Requirements in the areas of mobility, trust, avail-
ability, and energy efficiency complicate the design

of protocols for mobile networks. Our protocol is
an example of how existing cryptographic technol-
ogy can be applied to a problem in mobile comput-

ng.

References

(1]

2]

[10]

[11]

[12]

D. Balenson. Privacy enhancement for Internet
electronic mail: Part III: algorithms, modes, and

identifiers. Internet RFC 1423, February, 1993.

A. D. Birrell, R. Levin, R. M. Needham, and
M. D. Schroeder. Grapevine:
distributed computing. Communications of the
ACM, 25(4):260-274, April 1982.

An exercise in

M. Blaze. Transparent mistrust: OS support for
cryptography-in-the-large. In Proceedings of the
4th Workshop on Workstation Operating Systems,
pages 98-102, 1993.

D. R. Cheriton. The V distributed operating sys-
tem. Communications of the ACM, 31(3):314-333,
March 1988.

D. R. Cheriton and T. P. Mann. Decentralizing
a global naming service for improved performance
and fault-tolerance. ACM Transactions on Com-
puter Systems, 7(2):147-183, May 1989.

D. Goldberg and M. Tso. How to program net-
worked portable computers. In Proceedings of the
4th Workshop on Workstation Operating Systems,
pages 30-33, 1993.

T. Imielinski and B. R. Badrinath. Mobile wire-
less computing: challenges in data management.
Communications of the ACM, 37(10):18-28, Oc-
tober 1994.

J. loannidis and G. Q. Maguire Jr. The design
and implementation of a mobile internetworking
architecture. In Proceedings of the Winter Usenix
Conference, pages 491-502, 1993.

T. Jaeger and A. D. Rubin. Preserving integrity in
remote file location and retrieval. In Proceedings
of the Internet Society Symposium on Network and
Distributed System Security, 1996. To appear.

E. Jul, H. Levy, N. Hutchison, and A. Black. Fine-
grained mobility in the Emerald system. ACM
Transactions on Computer Systems, 6(1):109-133,
February 1988.

B. Lampson. Designing a global name service. In
Proceedings of the Fifth ACM Symposium on Prin-
ciples of Distributed Computing, pages 1-10, 1986.

K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on
Computer Systems, 7(4):321-359, November 1989.

12

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

NIST FIPS PUB XX. Digital Signature Standard.
National Institute of Standards and Technology,

U.S. Department of Commerce, February 1993.
DRAFT.

M. Nemzow. Implementing Wireless Networks.
McGraw-Hill, 1995.

R. Rivest. The MD5 message digest algorithm.
Internet RFC 1321, April, 1992.

R. Rivest, A. Shamir, and L. Adleman. On digital
signatures and public-key cryptosystems. Com-
munications of the ACM, 21(2):120-126, February
1978.

A. D. Rubin. Trusted distribution of software over
the internet. In Proceedings of the Internet Soci-
ety Symposium on Network and Distributed Sys-
tem Security, 1995.

S. Sheng, A. Chandrasekaran, and R. W. Broder-
son. A portable multimedia terminal for personal
communications. [EFE Communications, pages
64-75, December 1992.

R. K. Smart. The X.509 extended file system. In
Proceedings of the 1994 Internet Society Sympo-
stum on Network and Distributed System Security,
pages 129-137, February 1994.

A. S. Tannenbaum, R. van Renesse, H. van
Staveren, G. Sharp, S. Mullender, J. Jansen, and
G. van Russom. Experiences with the Ameoba
distributed operating system. Communications of
ACM, 33(12):46-63, December 1990.

M. Weiser. The computer for the twenty-first cen-
tury. Scientific American, 265(3):94-104, Septem-
ber 1993.

P. Zimmermann. PGP user’s guide. Distributed

by the Massachusetts Institute of Technology, May
1994.

