Using Simulation and Performance Improvement Knowledge for
Redesigning Business Processes

Trent Jaeger and Atul Prakash
Software Systems Research Laboratory
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109-2122.

Emails: {jaegert|aprakash }@eecs.umich.edu

Abstract

Recent business improvement methodologies, such as Business Process Reengi-
neering, advocate the redesign of business processes as the primary method to obtain
improvement in business performance. Current approaches to process redesign assist
the reengineer in identifying problems in meeting business goals, but provide little
support in determining how to resolve those problems to meet the desired goals. The
number of feasible changes to the business that can potentially resolve the problems is
large and it is hard to predict the effect that each change will have on overall business
performance. We present a process redesign methodology that helps reengineers to
efficiently generate changes that can help meet business performance goals. Based
on the methodology, we describe a system that includes: (1) an executable business
model for specifying business processes and business performance goals; (2) a sim-
ulator that executes these processes to determine actual performance and to help
reengineers identify problems in meeting the specified goals; and (3) a performance
improvement knowledge base that suggests changes to resolve these problems and
meet the specified goals. We demonstrate the use of the process redesign method-
ology and the system on two non-trivial process redesign examples, and report our
experience.

Keywords: Business process redesign, workflows, simulation, knowledge-based systems,

search algorithms, knowledge acquisition, parallel program metrics, queuing theory.

1 Introduction

Most recent business improvement methodologies operate under the assumption that the
performance ! of a business is determined by the performance of its constituent business
processes. Methodologies, such as Business Process Reengineering [13], Business Process
Innovation [7], and Business Process Improvement [14], all advocate the redesign of business
processes as the means to obtain overall business improvement. Process redesign generally
involves the following sequence of tasks:

IThe term performance in this paper refers to the combination of all measurable dimensions of the
business, such as cost, response time, quality, etc.

1. Understand the business processes, resources, and goals
2. Identify business problems
3. Suggest modification options to the business processes/resources

4. Evaluate modification options to determine if they would help meet the desired goals.

First, an understanding of the business processes and goals is necessary to guide the
remaining redesign tasks. Next, business problems are identified, so process redesign can
be focused on the problems most in need of resolution. Once the major problems have been
identified, the reengineers must suggest options for resolving these problems. Processes
interact in complex ways, so any modification option needs to be carefully evaluated prior
to its implementation.

Current process redesign approaches provide little or no support to the reengineers for
generating modification options, so reengineers may waste a significant amount of time
pursuing bad options and miss a number of potentially good modification options. In this
paper, we describe a process redesign methodology that uses simulation and performance
improvement knowledge to assist the reengineers in the generation of modification options
to find a process design that satisfies their goals.

Much of the current process redesign is performed using informal reengineering teams
(see [7, 11, 13, 35] for illustrative descriptions, [5, 12, 32, 34] for case studies, and [8, 30, 38]
for redesign data management systems ?). Informal process redesign permits the reengineers
a great deal of flexibility in decision making, but the complexity of process interactions
caused by competition for resources makes it difficult to identify business problems. Thus,
the generation of modification options can be misguided. The techniques presented in this
paper can be used to augment the reengineering teams approach, by providing a formal
basis to prune the search for effective modification options.

Current simulation-based and knowledge-based systems help reengineers to better un-
derstand processes, identify certain business problems, and evaluate modification options.
However, these systems do not directly assist the reengineer in generating solutions to these
problems. In simulation-based redesign [2, 3, 4, 24, 33|, the reengineers are required to
build a formal, executable model of the business. This model is simulated to help identify
performance problems and evaluate suggested modification options. Knowledge-based re-
design [25, 37, 39] involves the construction of semantic models that enable the reengineers
to assess the semantic impact of modifications. In both of these approaches, the reengi-
neers must suggest the modification options for resolving any business problems. FEven
given specific problems, the suggestion of modification options is difficult because there

are a variety of ways to solve a problem, so it may be hard to identify the better options.

2A fairly extensive summary of process redesign MIS publications through 1994 is provided in [1].

In particular, when a modification option eliminates one problem it often exposes another
business problem, so finding options that balance these trade-offs appropriately is difficult.

We present a process redesign system (PRS) that supports the reengineers in all the pro-
cess redesign tasks listed above. This system has a formal, business specification model that
can be used to define an executable business system [19]. Simulation of this business sys-
tem measures its current performance and identifies performance problems. A performance
improvement knowledge base represents how the simulation results are used to generate the
modification options that are most likely to improve business performance [20, 21]. Also,
the PRS enables reengineers to extend the performance improvement knowledge base with
domain-specific knowledge [20]. The PRS has a search mechanism that uses the perfor-
mance improvement knowledge base to automatically generate a sequence of modification
options whose predicted performance meets the business’s performance goals. Implemen-
tation of the modifications in the business is outside the scope of the PRS.

This paper is organized as follows. In Section 2, we define a simple business example
that demonstrates some important problems in process redesign. In section 3, we describe
a traditional process redesign problem: improving the performance of a process in a sample
sales distributorship. In section 4, we formally define the process redesign problem. In
Section 5, we review the previous work related to solving the process redesign problem. In
Section 6, we describe the PRS architecture. In Section 7, we detail the implementation of
the PRS in solving the simple business example. In Section 8, we demonstrate the PRS on
the sales distributorship example. In Section 9, we outline conclusions and discuss future

work.

2 JiffyBurger Example

The example we will use to analyze the PRS is Dowdy and Lowery’s JiffyBurger sys-
tem [10]. JiffyBurger is a hamburger restaurant run by two employees. The goal of this
example is to determine the best process for the two employees to provide hamburgers for
their customers. The JiffyBurger employees service customers using two steps: 1) taking
a customer order and 2) filling a customer order. Dowdy and Lowery suggest five possible

process options for performing these steps:

1. Twice-As-Fast (TAF): The two workers work together on each step. The steps are
performed twice-as-fast with two workers than one. The customers wait in a single

line for both steps to be completed.

2. Sequential, Common-Line (SCL): For every customer, one worker performs one
step, and the other worker performs the other step. There are two customer lines:

one for each step.

3. Autonomous, Random-Line (ARL): Each worker can perform both steps for each
individual customer. There is one line per worker. The choice of line is made ran-

domly.

H Option ‘ X ‘ R ‘ w H

TAF 0.466 | 1.571 | 0.571
Sequential 0.423 | 2.909 | 0.909
Random 0.423 | 2.909 | 0.909

Shortest-Line | 0.450 | 2.333 | 0.333
Common-Line | 0.454 | 2.202 | 0.202

Table 1: Queuing theory results for the 5 JiffyBurger options where: (1) X is throughput
in customers per minute; (2) R is response time in minutes; and (3) W is waiting time in
minutes

4. Autonomous, Shortest-Line (ASL): Each worker can perform both steps for each
individual customer. There is one line per worker. Each customer chooses the shortest

of the two lines.

5. Autonomous, Common-Line (ACL): Each worker can perform both steps for each
individual customer. All customers wait in a single line for the next worker to become

free.
Input data for the problems are:

e Exponential distribution of arrival and service times is assumed.

o Average time for one worker to perform either job is 1 minute.

o Average time for one worker to perform both jobs is 2 minutes.

o Average time for both workers to perform both jobs for one customer is 2 minutes.

e Customers enter the store with an average arrival rate of one customer every 2 min-

utes.

o If there are 3 customers in line when a new customer enters the store, then the new

customer leaves the store.

Dowdy and Lowery use queuing theory to analyze the performance of the five options for:
1) average throughput; 2) response time; and 3) waiting time. Analytical solutions for the
five options are shown in Table 1. The ACL option has the shortest waiting time, while the
TAF option has the best throughput and response time. The choice of which option is best
overall depends on the goals of the reengineers (and their management). We will assume
that the performance of the TAF option represents the reengineers’ goal.

An effective PRS should be able to start from any of the five process options and choose

an option that meets the reengineers’ goal. For example, if the current process is the SCL

4

Name (count) | Dept |

Sales Mgr (1) Outside Sales

Sales Person (5) Outside Sales

Inside Mgr (1) Inside Sales

Sales Assoc (3) Inside Sales, Operations
Sales Engr (1) Inside Sales, Outside Sales
Operations Mgr (1) || Operations

Stock Person (2) Operations

Table 2: Sales distributorship employees and their departments

option, then the PRS should redesign that process option into either the TAF option or
another, thus far unknown, option that has equivalent or better performance.

This example is interesting because it is simple, but it presents difficulties for a PRS.
Consider the transition from the SCL option to the TAF option. This transition requires two
incremental modifications: (1) convert the take order step from a 1-employee step to a 2-
employee step and (2) convert the £i11 order step from a 1-employee to a 2-employee step.
The problem is that either of the intermediate process designs that has one 1-employee step
and one 2-employee step performs badly (R = 3.79 min. and W = 2.29 min. according
to the simulator); there is a long waiting time for the employee that performs both steps.
There are several other incremental modifications that can modify the business system such
that its predicted performance is better than this state, so the PRS needs the knowledge
to recognize that a combination of improvements is necessary to find a design that satisfies

the goal.
3 Sales Distributorship Example

As a more traditional process redesign example, consider the sample sales distributorship
described below (redesign of this example is described in Section 8). This business consists
of three interacting departments: 1) outside sales which solicits customer orders; 2)
inside sales which processes customer orders; and 3) operations which fills the orders
and maintains the inventory. This business has 14 employees that are assigned to the three
departments as shown in Table 2.

The employees in these departments perform 11 types of processes that enable the busi-
ness to sell goods and maintain its inventory. An example is the make sales call process
which specifies how sales people meet with potential customers to solicit orders. The 11
process types and a brief description of each is provided in Table 3. Exponential distribution
of the arrival and service times of all processes is assumed.

The sales distributorship management’s goal is to improve the responsiveness of its pro-

Process Name Process Function A R
Receive Products Receive a product delivery 441 110
Order Products Send a product order 24+ 3 210
Mgmt Review Operations Review dept. performance 48+ 4 60
Mgmt Review Inside Review dept. performance 724+ 4 317
Mgmt Review Qutside Review dept. performance 48 £ 24 60
Followup Sales Call Review sales call 441 90
Make Sales Call On-site product pitch 1/3+1/6 | 328
Make Quotation Quote the price of a possible order | 11/24+1 | 694
Make Order Take an order for products 6+4 413
Salesperson Inquiry Salesperson status inquiry 1+1/2 373
Customer Inquiry Respond to customer inquiry 1+3/4 434

Table 3: Sales distributorship processes: A is the average arrival rate in hours (4 the
maximum variance); R is the average response time in minutes predicted by the simulator
using the resource model in Section 8.1.

cesses with little or no increase in salary costs. According to a simulation of the business 2,

some of the processes that handle customer requests have high average response times (see
Table 3, column R). Since these processes provide answers to customer questions, slow
response times for these processes probably translate into a perception of poor customer
service. Since the make quotation process has the worst response time, the reengineers
choose to focus the redesign problem on that process first.

Generating modification options for redesigning the make quotation process is difficult
because: (1) the number of reasonable modifications is large and (2) each modification to
solve one problem may create new business problems. From the simulation results, it is
known that the inside mgr and sales engr resources are highly utilized, so reduction
of their utilizations is necessary. However, there are several ways to reduce the demand
on these resources. For example in Table 4, we estimate that there are 31 reasonable
simple modifications that can reduce the demand on these two resources. Note that this is
not all the possible modifications, but only the ones that intuitively look like they could be
effective. Also, if it takes a sequence of 10 operators to meet the goal* and each search node
has the same number of reasonable choices, then the search space has a size of 3,2, 31" ~
10'® (ignoring duplicates). The choice among modifications is complicated because each
modification can introduce new problems in satisfying the goal. For example, the option to

add a resource increases the salary cost of the business. If the cost increase is high enough,

3See Section 8.1 for the definitions of the business resources and the make quotation process used by
the simulation. Space limits prevent the specification of the other business processes.

*The solution generated by our system and given in Section 8 requires 10 operators to meet the specified
goal.

H Operator Type H Applicable Objects ‘ # of instances H

Add Resource Add a sales engr or inside mgr 2
Modify Resource Change skill set for relevant resource types | 5 types * 2 skills = 10
Modify Step Change skills required to complete step 10
Remove Step Delete 1 of 3 optional steps 3
Add automation Add 1 of 3 automated systems 3
Modify sub-process || Change which of 3 sub-processes is called 3

Table 4: Operator types and estimate of the number of “reasonable” instances that can

reduce the utilization of the sales engr and/or the inside mgr

then adding a resource may prevent the salary cost goal from being satisfied.

4 Problem Definition

Before we state the problem, we first define the major concepts:

Definition 1: A workflow, w € W, is a double, w = (N,,G), where N,, is the
workflow’s name and GG = (V| F) is a directed graph where V' is the set of steps and
E is the set of precedence constraints between steps. A workflow is a formal model

for defining the relationships between individual tasks in a process [22, 27].

Definition 2: A business flow, bf € BF, is a double, bf = (winit, Wss), where
Winit 1s the workflow which is initiates the business flow given an external event (e.g.,
customer request) and Wy is the set of workflows that may be used in bf. A business

flow is the formal representation of a business process.

Definition 3: A step, v € V, is a triple, v = (¢, SK, pg), where: (1) ¢ is a command
to be executed by v; (2) SK is a set of resource skills necessary to execute ¢; and (3)
pg is the process goal satisfied by the execution of the step. Conditional statements
are also steps. The result of evaluating a conditional statement determines the next

set of steps to execute in the workflow.

Definition 4: A trigger, t € T, is a double, t = (An, N,,), where: (1) An is an
antecedent, which is a set of boolean conditions and (2) N, is a workflow name. If a

An is true, then an instance of the workflow named N,, is activated.

Definition 5: A resource, r € R, is a quadruple, r = (N,, Sk,,¢,, T B), where: (1)
N, is the name of the resource; (2) Sk, is r’s set of skills; (3) ¢, is the cost rate per
hour for the resource; and (4) T'B is a sequence of time blocks that indicate when r

is available to perform a step.

Definition 6: A department, d € D, is a double, d = (Ny, R4), where Ny is the name

of the department and Rj is the set of resources that are available to a department.

e Definition 7: A business information system, S is a quintuple, S = (BF, D, W, T, R),
where: (1) BF' is a set of business flows; (2) D is a set of business departments; (3)
W is a set of workflows; (4) T is a set of workflow triggers; and (5) R is a set of

resources.

e Definition 8: A performance goal, G, for a business information system, S, is a
set of goal elements, Gs = {gey, gea, ...,ge,}. A goal element, ge;, is a quadruple,
ge; = (bf,p,g, fn), where: (1) bf € BF; (2) p is a performance parameter for
evaluating the performance of bf; (3) g is the desired goal value of a performance
parameter, p; and (4) fn is a predicate over p and ¢ that returns true if the current

value of p in bf satisfies the goal.

e Definition 9: An operator, op, modifies an instance of the business information
system S; to create a new business information system S;. A more detailed definition

of operators is provided in Section 6.1.

We informally describe the process redesign problem as the search for a process design
whose predicted performance satisfies a performance goal. Formally, the process redesign
problem is to determine a sequence of operators, OP = (op1, opz, ..., 0p,,), that transform a
business information system, Sj,itiar, into another business information system, S;,,1, whose
predicted performance satisfies a performance goal, (Gg. Implementation of the resultant
design in the business is outside the scope of the problem.

Our definition of process redesign is closest to goals of Business Process Innovation [7].
Davenport grants that both radical and incremental process redesign have their place in
business improvement. Our problem definition makes no commitment to whether radical
or incremental improvement is required. It is the job of the reengineers to determine the
aggressiveness of the goals. If aggressive goals are set, then radical redesign, as advocated
in Business Process Reengineering, should be undertaken. If less ambitious goals are set,
then the process redesign may require only incremental changes, as in Business Process
Improvement [14].

The process redesign problem is theoretically complex because: (1) operators interact by
clobbering the effects of prior modifications and (2) the number of operators for a large
number of steps, triggers, and resources is large. One operator can undo a goal achieved by
another operator in a manner analogous to clobbering in non-linear planning [6]. As we saw
in the sales distributorship example, the achievement of a response time goal by adding a
resource can undo the satisfaction of the cost goal. Because of this interaction, the solution
space must be reevaluated after each operator application. Thus, the solution space forms
a graph of business information system specifications created by operators (see Figure 1).
The size of this space is exponential in the number of steps, triggers, and resources, so
a solution mechanism needs to constrain the search to make the problem tractable. The
simulation results and knowledge about how to use these results to select operators are two

tools we can use to constrain the search.

Figure 1: Process redesign problem search space

5 Related Work

In order to generate an operator sequence that is a solution to the process redesign prob-
lem, operators which solve current business problems need to be found. Simulation-based
and knowledge-based analysis systems identify two important types of problems to solve
(or prevent). We describe how these systems have motivated the problem identification
capabilities we have built into the PRS.

Simulation-based analysis systems [2, 3, 4, 24, 33] identify performance problems in the
business (i.e., primarily problems affecting its response time performance). Identification
of performance problems is done using either sensitivity analysis (see [2] for an example) or
performance metrics for specific problems (see [4]). Sensitivity analysis involves modifying
inputs and measuring the resulting outputs of the system to see what changes make the
greatest positive impact. Performance metrics are calculations that estimate the causes of
specific problems in the model. Sensitivity analysis can more accurately identify a problem
in a model, but is much more time-consuming because a large number of simulations must
be run. Performance metrics can be computed after a single simulation, but do not always
provide the best order for addressing problems [17]. For example, the critical path metric is
not guaranteed to identify the step whose time reduction leads to the greatest reduction in
response time. However, this metric does identify problems where there is a high potential
for improvement. In our methodology, we use such metrics to help narrow down the search
for modification options that are likely to have the most impact in meeting the goals.

Knowledge-based analysis systems [25, 37, 39] assist reengineers in identifying semantic
problems in the business, but do not support performance analysis. For example, one
system supports the definition of a goal hierarchy for a process [25]. This system then
statically evaluates this goal hierarchy to verify that all the goals are being satisfied by

the process. Semantic verification is important because reengineers need to verify that the

process design they select satisfies the semantic goals of the business. However, without
performance analysis it is difficult to determine whether the process design meets the
needs of the business. Also, the models used in these systems, though expressive, can be
quite complex for reengineers to build. In our methodology, process goals are specified
using performance constraints to motivate process redesign and dependency constraints to
prevent semantically invalid changes.

Besides our system, we are aware of only one other system that attempts to support
reengineers in the generation of modification options, the BPMS system [23]. Documenta-
tion on this system is limited, but our understanding is that the two systems differ in their
use of simulation results. BPMS only uses the simulation results to guide the generation
of modification options. In contrast, PRS uses simulation results to generate modification
options, estimate their effects, and motivate the development of domain-specific knowledge.
Estimation techniques are used to determine the likely effects of modification options which
enables the better and worse modification options to be identified without the need for ad-
ditional simulations. Our techniques also motivate the development of domain-specific
knowledge during redesign. By integrating knowledge development with the redesign, the
reengineers can be better motivated to develop knowledge to solve the current business
problems.

In addition, the BPMS system differs from ours in the way it evaluates modification
options. The BPMS system uses intelligent agents to guide the search for a process design.
Each agent is responsible for improving a single performance parameter, but coordination
is controlled by a global optimization over all parameters. Global optimization requires a
normalization function that combines the individual parameter values into a single, global
optimization value. We have used this technique in the past [21], but found it to be non-
intuitive and difficult to control. Therefore, we propose the use of a search mechanism that
performs a sequence of single parameter optimizations so that a complex normalization

function is not required.

6 System Architecture

The PRS supports a model of process redesign in which the reengineers’ main goal is
to develop performance improvement knowledge, particularly domain-specific modification
options. The PRS can then use this knowledge to automatically find a business information
system whose predicted performance satisfies the reengineers’ performance goal. The PRS
assists the reengineers in the development of this performance improvement knowledge
base by: (1) computing simulation results to identify the important performance problems
for the reengineers to solve; (2) providing an extensible knowledge base of operator types
to assist the reengineers in generating operator instances; and (3) defining interfaces for
acquiring domain-specific knowledge from the reengineers.

Simulation measures the performance of business processes in two ways: (1) by user-

level performance parameters and (2) by performance metrics. User-level performance

10

1. Define an initial business system that defines the initial vertex in the search space.
2. Set the performance goal for the business system.

3. Measure the performance of the current business system.

4. Unless the performance goal is met, gather knowledge about how the initial business
information system can be improved.

5. Generate operators to continue the search. The generation step includes operator
evaluation.

6. Select the next operator in the search space using a best-first, simulated-annealing
search algorithm.

7. Repeat starting at step 3.

Figure 2: Process redesign mechanism

parameters describe the current performance of the process to the reengineers. For example,
the average response time of a process is a user-level performance parameter because it is
important to a reengineer. Performance metrics indicate business system objects that limit
the values of the user-level performance parameters. For example, the critical path metric
specifies the step that has contributed the most time to the critical path. Reduction of
the response time of this step should reduce the average response time of the business flow
because the critical path determines the response time.

The PRS provides a knowledge base of operator types and operator meta-knowledge.
Operator types define the ways that a business system can be modified. Also, operator
types store knowledge about using the simulation information to generate individual oper-
ators and to estimate their effects. In addition, business information system objects have
attributes for the reengineers to specify domain-specific operator options or to specify the
semantic requirements of processes. Operator meta-knowledge is used to aggregate related
operators or trigger the generation of additional operators.

The PRS uses a solution mechanism that both guides the search and acquires performance
improvement knowledge from the reengineers. The process redesign mechanism (shown in
Figure 2) uses a simulated-annealing variation of best-first search [31] to find a business
system that satisfies a performance goal. The performance goal can contain multiple user-
level performance parameters, so a sequence of single parameter optimizations is used to
satisfy the goal. The parameters are ordered based on the importance of a parameter’s
value to meeting the performance goal. Once a parameter is optimized its value may
not become worse than its goal value. Thus, the flexibility for achieving the goal for an
important parameter is greater than the flexibility for a less important parameter.

The process redesign mechanism encourages the reengineers to develop domain-specific
knowledge for the PRS. The PRS identifies business problems in the performance mea-
surement step (#3) and lists the proposed solutions in the operator generation step (#5).

11

The business problems are used to motivate the reengineers to provide domain-specific
knowledge for resolving these problems in the gather knowledge step (#4). The operator
generation information shows the current direction of the search to motivate the user to

provide guidance and additional domain-specific knowledge in the select operators step
(#6).
7 System Details

In this section, we detail the way that the reengineers use the PRS to solve the process
redesign problem for the JiffyBurger example. A prototype PRS has been developed us-
ing the Common Lisp Object System (CLOS) [36]. An interface to the system has been
constructed using Tecl/Tk [28].

7.1 Knowledge Model
We begin by defining the PRS’s knowledge model. Note that the definitions of simple

and compound operators below supersede Definition 9.

e Definition 10: An operator type, ty, is a triple, ty = (Py, F'ne, F'n.), where: (1)
P, is the set of performance parameters whose values can be improved by using an
operator of ty; (2) Fn. is a set of constructor methods for creating instances of the
operator type ty to improve a parameters in P;,; and (3) Fn. is a set of operator

effects functions for the parameters changed by operators of that type.

e Definition 11: A simple operalor, op, is a quadruple, op = (S;,ty,0,m), where:
(1) S; is the " version of a business information system; (2) ty is the name of the
operator type of op; (3) o (oneof v e V,r e Ryt €T, we W,bf € BF,or S;) is
an object in S; that is modified by op; and (4) m contains additional arguments for
implementing op. When op is applied to 5;, a new business information system, 5;,

results.

e Definition 12: A compound operator, op., is a double, op, = (S;, OP), where: (1)
S; is the 7' version of a business information system and (2) OP is a sequence
of operators (simple and/or compound operators) that are used to implement the

compound operator.

e Definition 13: A constructor method of an operator type, ty, is a function, fn.(p;,bf, S:),
that returns a set of operators of {y that improve p; for bf in S;. It is expected that

p; and bf indicate the current goal parameter ge; being optimized.

e Definition 14: An operator effects function of an operator type, ty, is a function,
fne(pj,gej, op), that returns a rational number that is an estimate of the effect that
operator op has on the value of the performance parameter p; in goal element ge;.

For a compound operator, fn. combines the effects of its constituent operators.

12

e Definition 15: A modification attribute, a,,, of a business system object o (one of
bfe BF,weW,de D,r € R,veV, andt € T)isadouble, a, = (N,, V) where:
(1) N, is the name of the attribute and (2) V,, is the set of modification values for
the attribute.

e Definition 16: A dependency, pd, of a process object o (one of bf € BF, w € W,
and v € V) is a double, pd = (o, PG) where PG is a process goal statement that must
be satisfied before o can begin or complete (depending on the dependency type).

e Definition 17: An operator generation method, m,,, is a function, m,,(OP) that

generates compound operators O P, from the current set of generated operators OP.

The operator types specify the types of operators that the PRS can generate. The sim-
ple operators are the operators applied to a single step, resource, or trigger. Compound
operators represent an aggregation of operators, using simple operators and/or compound
operators. Thus, an operator of arbitrary complexity can be generated by the system.

An operator type’s constructor methods generate instances of that type. A construc-
tor method is selected based on the current goal parameter being optimized. Constructor
methods use the performance metrics to select which operator instances are likely to lead
to improvement in that goal parameter. The expected effect of an operator on a perfor-
mance parameter is estimated using the operator effects functions of the operator’s type.
These estimates are used in computing the overall evaluation for the operator. Constructor
methods and operator effects functions are fairly complex and domain-independent, so we
expect that operator types will be defined a priori by the system.

The modification attributes of a business system object store domain-specific options for
modifying that object. The values of modification attributes help the constructor methods
to find operator choices that are feasible. The dependencies represent the process semantics
and are used to check if an operator will generate an illegal business system. If an operator
generates an illegal business system, it is removed.

Operator generation methods enable further combination of operators via aggregation and
implication. An aggregation generation method creates a compound operator that is the
grouping of two or more operators. For example, if an operator increases the usage of one
skill such that this skill is now the bottleneck, then an operator that reduces the demand
on this skill can be aggregated with it. An implication generation method generates a set
of operators to support the implementation of an operator. For example, if an operator
creates a new skill, then resources need to be added or trained to perform that skill. The

newly generated operators are aggregated with the original operator.

7.2 Define Business System
The five business flow options in the JiffyBurger example are implemented in the PRS

using three types of workflows: 1) store entry; 2) line entry; and 3) order processing. A

13

enter choose
store *line

Figure 3: Buy-a-burger workflow

when <3 _Lh_select get in
jiJ COTIOT line
.)_ELSE _h_leave
store

Figure 4: Common-line workflow

customer enters the store and chooses a line according to the store and line entry work-
flows, respectively. The JiffyBurger employees execute the order processing workflow. The
buy-a-burger workflow (Figure 3) represents the entry of a customer into the store. The
TAF, SCL, and ACL options all use a single line, so they share the common-line workflow
(Figure 4) for line entry. The ASL and ARL options each uses a variation of the choose-1ine
workflow (Figure 5) to choose the appropriate line. Order processing is represented by sev-
eral variations of the make-burger workflow (Figure 6).

Differences between the JifftyBurger options are represented by changes in average service
time and skill requirements in the workflow steps of the make-burger workflows. The two
steps for which these parameters are varied, take order and fill order, are shown in
Table 5. The service time for the TAF workflow steps is half of the time of the other options
as specified in the problem statement (see Section 2).

The two JiffyBurger employees are the resources in the example. Resources are defined
by the skills that they can perform. Each employee has cash and cook skills as well as
skills that determine the line to be serviced by that employee. jiffy-1 services line 1 (i.e.,
has the cash-1 and cook-1 skills) and jiffy-2 services line 2 (i.e., has the cash-2 and
cook-2 skills).

Legal process designs are specified by order and completion dependencies. An order
dependency specifies the set of conditions that must be met before a process object can be
initiated. These conditions are specified in terms of step goals. In this example, the £111
order step goal depends on the take order step goal being completed first. A completion
dependency relation specifies the conditions that must be met before a process object can
complete. The business flow depends on the £i11 order step goal being completed. These
steps cannot be removed by the PRS unless other steps are added to fulfill their goals.

7.3 Initial Knowledge Base

When the reengineer initiates a process redesign, the PRS already contains a set of

operator types and operator generation methods that describe the types of modifications

14

choose get in
b " |Line 1

™|line 1
when <3 _Lrselect G_.;{get in

cust shortest line 2

ELSE leawve
store

Figure 5: Choose-line workflow

1 person _’_l person _}_cust
get cash make meal leaves

Figure 6: Make-burger workflow

that are possible. Modification attributes are also provided so the reengineers can provide
knowledge to guide the generation of domain-specific operator instances.

Operator types and the associated objects they modify are shown in Table 6. Definitions
of the actions of most of these operators are provided in [20, 21]. Below, we define a

representative subset of these operators (grouped by the objects that they modify).

e Steps: Remove step: Remove an optional step; Modify step: Replace a step that

achieves a specific process goal with an alternative step.

e Resources: Add resource: Clone an existing resource; Train resource: Train a

new skill to an existing resource.

e Workflows/Business Flows: Collaborate: Increase the number of resources par-
ticipating in each step of the workflow. The modify step operator can be used to

revise the specifications of skills and effort for each step.

e Departments: Reduce (utilization): Add resources for each type until the uti-
lization of each skill is below a threshold value (0.8 is our current threshold); Maximize
(utilization): Remove resources of each type until no more resources can be re-

moved without the required utilization reaching 1.

Operator types include the definitions of their constructor methods and operator effects
functions (defined in Section 7.8).
As an example, we define constructor method for the collaborate operator to reduce

the average response time of a business flow (shown in Figure 7). This constructor

15

Option/Step H Avg Service Time ‘ Skills H

Line 1/TO 1 min. Cash 1
Line 1/FO 1 min. Cook 1
Line 2/TO 1 min. Cash 2
Line 2/FO 1 min. Cook 2
Common/TO 1 min. Cash
Common/FO 1 min. Cook
TAF/TO 0.5 min. Cash 1/Cash 2
TAF/FO 0.5 min. Cook 1/Cook 2
Sequential/TO 1 min. Cash 1
Sequential /FFO 1 min. Cook 2

Table 5: Step definitions for take order(T0) and £ill order(FO)

H Steps ‘ Resources ‘ Triggers ‘ Flows ‘ Departments H
Add Add/Remove Add Pipeline Reduce
Remove | Train Remove Guide Maximize
Delegate | Focus Constrain | Collaborate | Train-All
Fscalate | Add Automation Expand Simplify Focus-All
Modify Remove Automation Parallelize

Table 6: Operators by business object type (flows are business flows and workflows)

method generates a compound operator. This compound operator is an aggregation of a
set of simple operators which maximize the resource allotment to the critical path steps
that have the highest durations (i.e., sum of waiting time and working time). The attribute
modify-skills contains the skill options for each step and their estimated durations. For
each step, the step skill set with the minimum duration is found. If this is not the current
skill set, then an operator is created to modify the step’s skill set. The collaborate
operator is composed of these modify step operators.

In addition, the initial knowledge base defines the modification attributes for the business
objects. A list of modification attributes is provided in Table 7. Definitions of most of
these modification attributes are presented in [20]. Below, we define a few representative

attributes:

e Steps: Modify-Skills: Replace the skills required to execute a step with a new set

of skills. A change in a step’s skills may also affect the duration to execute the step.
e Workflows: Modify-Steps: Replace one or more steps with these steps.

e Resources: Add-Skills: Skills that can be added (e.g., through training) to a

resource.

16

Collaborate constructor for response time (business_flow)

sub_ops Attribute of collaborate that stores its constituent, simple operatoy
step_skills The set of skills that resources must provide to complete a step
modi fy_skills Attribute of step containing its step_skills options

man_time_skills The step’s skill set option with the minimum average work time

Set sub_ops to NULL
Set steps to the business_flow steps with the highest time contributions to the critical path
For each step in steps:
Find the min_time_skills from the modi fy_skills attribute of step
If the min_time_skills is not the same as the current step_skills of step:
Create a new operator op to change the step_skills of step to min_time_skills
Add op to sub_ops
If no sub_ops have been generated, delete collaborate

Figure 7: Constructor function for collaborate to improve average response time

H Steps ‘ Resources ‘ Triggers ‘ Flows ‘ Departments H
Modify-ServiceTime | Add-Skills Modify-Domain | Add-Steps Add-Resource
Modify-Skills Remove-Skills | Step-sizes Modify-Steps | Modify-Resources
Modify-Design Modify-Skills | Limits Remove-Steps | Remove-Resource
Dispensable-P Modify-Cost Modify-WF Add-Workflow

Remove-WF Remove-Workflow

Table 7: Modification attributes by business object type (flows are business flows and
workflows)

e Departments: Add-Resources: Definitions of resources that can be added.

Operator generation methods specify ways that operators can be aggregated or imply the
need for other operators. For example, the operator generation method shown in Figure 8
would aggregate an operator that increases the effort of a highly utilized resource with one

that decreases the effort of that resource.

7.4 Set Performance Goal

Once the business system is defined, the reengineer can set the performance goal for the
business flow. The performance goal is defined in terms of user-level performance param-
eters. Since user-level performance parameters are used by the reengineers, parameters
selected to be user-level parameters should be well-understood by the reengineers.

The current user-level performance parameters are defined (all parameters are specific to

a single business flow type):

17

¢2]

Resource demand reduction (OP bf)
For each op in OP
For each res which has its demand increased by op
If res has a utilization within n% of the highest utilized resource in bf
Select other_op in O P that reduces the utilization of res
by increasing the utilization of only lower-utilized resources
Create a new operator that is the aggregation of op and other_op

Figure 8: Operator generation method that aggregates an operator that increases the
demand of an highly utilized resource with an operator that reduces the demand on this
resource by increasing the demand on only lower-utilized resources

e Average response time: The sum response times of each business flow run divided

by the number of runs

e Average waiting time: The sum of the waiting time over all steps on the critical

path of the business flow divided by the number of runs

e Average cost: The sum of the costs of each business flow run divided by the number

of Tuns

e Value added: The sum of the value added by the steps executed divided by the
number of business flow runs

e Resource costs: Sum of the hourly costs of the resources used in any instance of

the business flow

e Automation percentage: The percentage of a business flow’s average cost that is

derived from automated activities

To set a goal, the reengineer specifies goal values for user-level parameters. For example,
a goal for the TAF option is: (1) average response time = 1.6 minutes and (2) average
waiting time = 0.6 minutes. The other user-level attributes are not important for this
problem, so we need not set goals for them. The goal is satisfied if the predicted value of
each user-level parameter for the business flow is better than (i.e., > or < depending on
the parameter) the goal value for that parameter.

Since a sequence of single parameter optimizations are used to find the goal, it may be
necessary to set limits on the values that another parameter may take. For example, if
average response time is being optimized, then the value of resource costs may need to
be limited to prevent a high cost solution from being found. Otherwise, it may not be

possible to achieve the resource cost goal once the response time goal has been met.

18

7.5 Measure Performance

The PRS measures the performance of the current business information system and
presents the major performance issues to the reengineer. The overall performance of the
business information system is shown in terms of the user-level performance parameters de-
fined above. Performance metrics identify the major performance problems in the business.

The performance metrics measured by the PRS include the following:

e The step in each business flow that accounts for the most time on the critical path [26]

e The step in each business flow that accounts for the most slack on the critical path [18]

The skill in the business flow with the highest average queue waiting time [29]

The resources with the highest and lowest utilizations

The step that accounts for the highest cost in the business flow

This information is presented to motivate the reengineer to develop performance improve-
ment knowledge that could possibly solve these problems. For example, if a reengineer
knows that a step spends the most time on the critical path, then the reengineer knows
that it is worthwhile to develop new designs for this step and/or to reduce the utilization

of the resources that execute that step.

7.6 Gather Knowledge

Once the reengineer reviews the measurement results, the reengineer may be able to
provide additional performance improvement knowledge to the PRS. This knowledge is
provided in the form of modification attribute values (see the Define Business System
Section, 7.3 above). Because the specification of these values can be complex in some
instances, we provide interface support for some of their specification.

Observing that the process redesign mechanism does not try the sequence of operators
that would generate the TAF option from any of the other four options, we would like to
define a compound operator that implements this change directly. The modify-workflows
modification attribute of business flows stores modification options for changing multiple
workflows in a business flow. However, we do not want to burden the reengineer with too
much knowledge about the modification attributes. What we would like to do is to present
the reengineer with an interface where the reengineer can demonstrate a modification to
a business flow. This modification is then stored in the modify-workflows modification
attribute.

The new modification option, called create TAF by the reengineer, is added using the
workflow specification window (see Figure 9). The reengineer first specifes that a new
operator to modify a business flow is to be added (not shown). Next, the reengineer selects
the workflow to modify. The reengineer then edits that workflow’s steps in the workflow

specification window to specify the changes in the operator. The commands under the

19

[¢] COMMON-LINE
File Edit View Size Debug

1 person 1 person cust
get cash make meal leaves

]
STEP-NAME : CREATE B-ORDER

EFFORT : 1.000 MIN e
YVALUE-ADDED : 2.000

STATE : GET-CAEH

RESOURCES 1 CABH-1

SHORT-NAME : "1 person get cash"

SKEILLS: : CASH-1

Figure 9: Adding an operator using the workflow specification window: choose the desired
step operators under Edit menu entry to specify changes to steps.

edit menu entry specify the step operators that can be used to edit the individual steps
(e.g., remove step, modify step, etc.). The reengineer can then edit the business flow’s
other workflows until the resultant specification is generated. The operator option is the
sequence of operators used by the reengineer to create the resultant specification. To specify

the create TAF option, the following step operators are defined:

e Modify the choose linestep in the buy-a-burger workflow to choose the common-1ine

workflow.

e Modify the get cash step in the make-burger workflow to use two skills (cash-1

and cash-2) and reduce the duration to 0.5 minutes.

e Modify the complete meal step in the make-burger workflow to use two skills

(cook-1 and cook-2) and reduce the duration to 0.5 minutes.

7.7 Generate Operators

The PRS generates operators using the following mechanism:

1. The process redesign mechanism improves one goal parameter at a time, so operator
types that can improve the performance of that parameter are identified. In this
example, average response timeis the current user-level parameter to be improved.
Many operator types, including the workflow operator collaborate and the step

operator modify step, can improve the average response time of a business flow.

2. For each of these operator types, its constructor method designed to improve the
current goal parameter is executed to generate operators of that type. For example,
the constructor function in Figure 7 would be executed to create instances of the
collaborate operator. Also, the modify business flow operator type’s constructor
method would use the values set in the modify-workflows modification attribute in
Section 7.6.

20

3. For each operator that changes a goal of a process object (either by re-ordering,
removal, or goal modification of steps), the dependencies on the process object are
checked. If a dependency is violated, then the operator is removed. For instance, if an
operator reordered the take order and fill order steps then it would be deleted,
since semantically 111 order is specified to follow take order.

4. The operator generation methods (such as the one shown in Figure 8) are now exe-
cuted to aggregate complimentary operators or to identify the need for new operators,

which are then aggregated with the operators that need them.

Operator generation focuses on the creation of operators to address current performance
problems. An operator type is selected if it can improve the value of the current performance
parameter being optimized. Constructor methods use the information from performance
metrics for those sub-standard performance parameters to determine which operators to

generate. Other operators may be generated by operator generation methods.

7.8 Evaluate Operators

Operator evaluation estimates the effectiveness of an operator in meeting the perfor-
mance goal. Evaluation occurs in two stages: (1) the effect of the operator on each goal
element in the performance goal is computed and (2) the individual effects are normal-
ized into a global evaluation. The effect of an operator, op;, on the value of a user-level
performance parameter p; in the goal element, ge;, is computed using an operator effect
function, frn.(p;,ge;,op;). The global evaluation value is computed by a function that takes
into account the estimated values for the current parameter being optimized, previously
optimized parameters, and any other parameter that has a limit.

The operator effects functions estimate the change in the value of a user-level performance
parameter caused by the application of an operator. Operator effects functions are defined
for each combination of operator type and user-level performance parameter. Operator
effects functions for costs are straightforward because these values are simply sums over all
steps. Operator effects functions for average response time and average waiting time
are quite complex, however, because process interactions affect these values. We detail one

average response time operator effects function below.

Average response time change caused by adding a resource

fne(R,goal(bf;, R, Ryj, fn),add_resource;) is estimated by: (1) projecting the average
execution times for each step after adding the resource 7 and (2) deriving a projected
critical path, given the projected step execution times. Step execution times can change
because the average waiting time on resource ¢’s skills will be reduced. The new average
waiting time, W/, is estimated to be the maximum of the average waiting times for any skill
k required by the step. The average waiting time for a skill &, W, , is estimated by using a
multi-server, Markov queue model that assumes exponentially distributed interarrival and

service times (from Hillier and Lieberman [16]):

21

1= (P (/1) 5 p) /(551 (1 = ph)* M)

where: (1) Py is the projected probability that no customers are waiting for skill &; (2) Ay
is the arrival rate of steps requiring skill k£ (assumed to be unchanged by add resource);
(3) w} is the projected service rate of skill k; (4) s}, is the projected number of resources
with the skill &; and (5) pf, = Ax/ 1}, %.

The value for the projected probability that no customers are waiting for skill &k, Fj is
computed by:

s —1 .
Py, = 1130 ()"l + O/ k)% 53l 30 (A spe)" =]
n=0 n:S;

The value of u). is estimated using the updated utilization and number of resources for

skill k.
e = Ak 53Uy

where U] is the updated resource utilization for skill £ given the addition of a new resource.

Once all the step response times have been estimated, the modified critical path can be
derived. Average step execution times are computed per business flow execution rather
than step execution, so loops and conditional blocks can be removed. Using these values,
a standard critical path algorithm can be used [9].

The overall evaluation of an operator is based on the evaluation of the operator on
the current goal parameter, the effect that the operator has on previously optimized goal
parameters, and other goal parameter limits. The value E,, of the current goal parameter n
is computing using an operator effects function as described above. The overall evaluation

value is computed using the following algorithm.

E, if E; better than F; ;.. for ¢ from 0 to n — 1 and
E= if E; better than F; ;¢ for ¢ from n 4+ 1 to m
—oo otherwise

where: (1) K, is the evaluation value for goal parameter n; (2) FE; 500 is the goal value
for goal parameter i; (3) F;jimit is the limit value for the goal parameter i; and (4) m
is the number of goal parameters. This evaluation algorithm prevents: (1) the values of
previously optimized parameters from becoming worse than their goal and (2) the values

of other goal parameters from becoming worse than their limits.

22

7.9 Select Operators

The PRS uses a best-first search algorithm augmented with a simulated annealing ca-
pability [31]. The best-first search algorithm is used because it is the most flexible search
algorithm that can utilize the operator evaluations computed in the previous section. In
the past [21], we also examined using the A* [15] algorithm, but it is difficult to design a
satisfactory mechanism to estimate the distance to the goal because the difference between
estimated operator effects is not large enough to differentiate the operators by goal dis-
tance. We add a simulated annealing capability to the best-first search algorithm to help
avoid local optima. Simulated annealing permits the mechanism to choose a worse state
with a probability that decreases as the search progresses.

The simulated annealing, best-first search mechanism consists of the following compo-
nents:

e The search problem that maintains the set of untried operators and their evaluation

values and the best state found so far.

o A probability function that computes the likelihood that it is appropriate to select a

particular operator.

o An annealing schedule that evolves the probability that a worse state will be chosen.

The algorithm works as follows. At each iteration in the search, the untried operators
from each search vertex are collected. These operators include the operator with the best
evaluation value so far. The best evaluation value is set to the variable B. For each
operator, we compute a probability that the operator is applicable at the present time
using the formula
p = e (B-B)/KT
where: (1) E is that operator’s evaluation; (2) k is the number of changes necessary
to implement the operator; and, (3) 7' is the current annealing temperature based on
the annealing schedule. £ is the operator complexity measured by the number of simple
operators needed to implement the operator. £ is used to bias the system toward choosing
complex operators. The next operator is randomly chosen from the set of operators whose
value for p is greater than a random number generated between [0,1]. The value for 7' is
computed by 7' = 1/3n where n is the number of states examined so far. This simple linear
function has performed satisfactorily thus far.

The search algorithm also controls which parameter is being optimized. The optimization
of a parameter is complete when the parameter’s value satisfies its goal and some fixed
number of further improvements have been tried. At present, five further improvements

are permitted.

23

7.10 Results

The TAF option is found within two search nodes by the modify business flow operator
that uses the reengineer’s create TAF option. Any one of three operators could have been
used to find the solution: modify business flow, collaborate, or the aggregated opera-
tor generated by the resource demand reduction operator generation method. Another
operator with a lower evaluation was chosen in the first search node because the simulated
annealing property allows the search algorithm to choose worse options early in the search.

The performance of the PRS shows that: (1) the PRS can acquire and represent the
operators necessary to improve this example’s performance and (2) the search mechanism
can use these operators to find a business flow design whose predicted performance satisfies
the performance goal. The first point is justified by the fact that three different operators
can generate the TAF option. The aggregation methods and the workflow-level collaborate
operator provide domain-independent ways to create the necessary operator. Also, domain-
specific options can be specified by the reengineers which enable the PRS to make changes
that it otherwise could not.

The second point is demonstrated by the fact that the system identifies that these op-
erator options are the best options to examine. The operator’s constructor methods and
operator generation methods generated these operators over other possibilities. In this
example, the operator effects functions identified these operator options as having the best

average response time.

8 Sales Distributorship Process Redesign
Next, we demonstrate the PRS’s ability to reengineer the sales distributorship process,
make quotation. Recall that the make quotation business flow represents one of the

eleven processes in a sample sales distributorship (see Section 3 for a review of this example).

8.1 Define Business System

The make quotation business flow writes a quotation to price a list of items for a cus-

tomer. Five workflows can be executed in the make quotation business flow:

e Create quotation: Collects a list of the items to be quoted (Figure 10).

e Complex config quote, low effort config quote, high value config quote:
These three workflows are different techniques for configuring and pricing a quote.
One of these three workflows is run based on the cost and complexity of the quote
(Figure 11). These workflows have the same step graphs but have different service
times.

e Check inventory: Estimates the delivery dates of the items in the quotation (Fig-
ure 12).

24

Make HNew Get Cust Get Quote Initial Select
Quote ™Info MInfa T™Price Oua | T|Quote Pra

Figure 10: Create quotation workflow

Approve
J_'Drder
Configqure STHCH Price Bpprove Store
Quote iuote Price TMiuote
Lﬁet Inw _}Receive J_»
Info Inv Info

Figure 11: Complex config quote, low effort config quote, and high value config
quote workflows

X

When Oty Item in
<= Order *stack

_’_Retrieve ELSE)J_'Item out
Ttems Item

0f Stock

o

Fetrieve
Trvwr.

Figure 12: Check inventory workflow

25

[Step [S(min) | V(3)] A | A% | Step Skills |

Make New Quote 1 0 N/A - Pricing

Get Cust Info 2 0 N/A - Pricing

Get Quote Info 10 0 N/A - Pricing
Initial Price Quo 1 0 N/A - Pricing
Configure Quote 10/10/60 | 200 | Config Support | 25% | Pricing, Prob. Solv.
Approve Order 5/10/20 20 Mgmt Support | 20% Manager
Price Quote 5/30/30 30 | DB 67% Pricing
Approve Price 5/20/20 20 Mgmt Support | 20% Manager
Store Quote 2/2/2 10 | DB 50% Pricing
Retrieve Inv. 4 0 DB 5% Stock
Retrieve Ttem 4 0 DB 5% Stock

Item In Stock? 3 10 | N/A - Stock

Item Out Of Stock? 3 10 | N/A - Stock

Table 8: Step performance attributes for the create quotation, low effort config
quote/high value config quote/complex config quote, and check inventory work-
flows: S is service time in minutes; V' is value added in $; A is the name of the automated
system that can be used to assist the resources in completing the step; A% is the percent
reduction in service time if the automated system is used; and step skills are the skills
required to complete the step

The performance attribute values for each step with a non-zero service time in the five
make quotation workflows are listed in Table 8. Table 9 shows the resources available to
execute steps in the business for all 11 business flows.

The simulator chooses among the low effort config quote,high value config quote,
and complex config quote workflows using triggers. An example of the trigger that acti-
vates the high value config quote workflow is shown in Figure 13. The step sizes of
the trigger are used by the process redesign mechanism to modify the domain in which the
trigger applies. For example, a step size of 50 means that a trigger operator can change
the quotation—>total-cost antecedent value by £50. The 1imits restrict the extent of the

modifications to a trigger.

8.2 Results

Table 10 shows the PRS results for reengineering the make quotation business flow. The
inttial results show the performance of the business flow prior to reengineering. The goal
describes the process’s predicted performance desired by the reengineers ®. The final results
list the values of the user-level performance parameters for the business flow design that
satisfied the goal.

5The performance goal may also specify the desired performance of other processes.

26

Name (count) Cost/Hr | Skills

Inside Mgr (1) $100 Mgr, Problem-solving, Pricing
Sales Mgr (1) $120 Mgr, Problem-solving, Sales
Operations Mgr (1) || $90 Mgr, Stock, Deliver

Sales Engr (1) $80 Problem-solving, Pricing, Phone
Sales Assoc (3) $40 Pricing, Phone

Sales Person (5) $70 Sales, Phone

Stock Person (2) $30 Stock, Deliver

DB (1) $250 Specific Steps

Config Support (1) || $100 Specific Steps

Mgmt Support (1) | $200 Specific Steps

Table 9: Resource definitions for the sales distributorship example (includes automation)

(define-trigger HIGH-VALUFE-TRIGGER
:antecedents (> quotation—>total-cost 100) (<= quotation—>no-of-items 5)
:workflows high-value
:step-sizes (quotation—>total-cost 50) (quotation—>no-of-items 1))
:limits (quotation—>total-cost 200) (quotation—>no-of-items 10))

Figure 13: High value config quote trigger

The resource utilization metric shows that the sales engr and inside mgr are heavily
loaded (with initial utilizations of 0.914 and 0.958, respectively). This leads to high critical
path waiting times for the steps executed by these resources (particularly, approve price
and approve order which account for more waiting time than the other steps combined).

After reviewing the performance metrics on the initial run, the reengineer provides the
following modification options to the PRS: (1) the approve order steps can be removed
by setting its dispensable-p value to true; (2) the problem-solving skill is added as
an option in the modify-skills attribute of the configure order and approval steps to
increase the number of resources that can perform these steps; (3) the sales assocs are
allowed to be trained in the problem-solving skill by adding that skill to the add-skills
attribute of these resources; and (4) a pricing resource, such as a sales assoc, can col-
laborate with the inside mgr to perform the approve price steps by adding the skill
options to the modify-skills attribute of these steps. All four modification options di-
rectly reduce the demand on the inside mgr and two also reduce the demand on the sales
engr.

The performance of the make quotation business flow after the PRS has reengineered
it is shown in Table 10 (see the final results line). The search path taken by the PRS is

27

H Scenario H R ‘ Res. § ‘ w ‘ V ‘ BF $ ‘ A H

Initial 693.6 min. | $450 628.1 min. | $290 | $243.8 | 0%
Goal (Limits) 150 625 (800) 75 250 200 20
Final Results 132.4 620 70.2 270 191.4 6.0

Table 10: Performance data for the initial, goal, and final make quotation process design:
R is the average response time in minutes; Res$ is the resource cost in §; W is the
average waiting timein minutes; V is the average value added $; BF§ is the average
cost of the business flow in §; and A is the automation percentage reduction in business
flow costs due to automation

shown in Table 11. The PRS first improves average response time by: (1) adding the
mgmt support system to aid the inside mgr in finding the necessary orders and customer
statuses in the approval steps (node 2); (2) removing the optional approve order steps
performed by the inside mgr (node 3); (3) adding the config support system to aid the
sales engr in the configuration task (node 4); (4) performing the approve order and
store quote steps in parallel (node 5); and (5) increasing the domain in which the low
value config workflow applies rather than the other two, more complex workflows (node
7). Nodes 7 through 10 try to further reduce the response time of make quotation by: (1)
increasing the likelihood that the low value config workflow is run (nodes 7 and 10) and
(2) delegating the manager approval task in the approve price step to problem solving
resources (node 8). The collaborate operator is tried multiple times, but with little
success. As shown in Table 11, its expected response time is significantly underestimated.
At present, the average response time estimate for collaborate is based on the slack
of the effected steps only, so it doesn’t take into account the increased waiting time of the
pricing resources in other steps. The equations given in Section 7.8 for estimating the
average response time given the addition of a resource would be more appropriate, so
we’ll fix this in the future.

After node 11, resource cost becomes the optimization parameter in the search. It
is improved by: (1) removing the mgmt support automation and adding an inside mgr
resource (node 12) and (2) removing a stock person resource (node 13). An operator gen-
eration method combines a remove automation operator with an add resource operator
for the resource whose demand is increased to create the operator in node 12. At node 13,

the goal is satisfied.

9 Conclusions

We have defined a process redesign system (PRS) that uses simulation and performance
improvement knowledge to automatically modify business processes until their predicted
performance satisfies a goal. Business processes are represented using a formal, executable

specification model which enables reengineers to simulate these processes to measure the

28

H # (prev) H Operator ‘ Objects ‘ R (Fst.) ‘ Res. $ ‘
1(0) Collaborate approve price steps 721 (306) min. | $450
2 (0) Add Automation mgmt support system 339 (419) 650
3(2) Agg. Remove Steps approve order steps 284 (294) 650
4 (3) Add Automation config support system 182 (153) 750
5(4) Parallelize (Steps) app. price/store quote | 133 (110) 750
6 (5) Collaborate approve price steps 176 (104) 750
7(5) Contract Domain high value config trigger | 116 (120) 750
8 (7) Delegate Step approve price step 113 (111) 750
9 (8) Expand Domain high value config trigger | 124 (111) 750
10 (8) Expand Domain low value config trigger | 116 (113) 750
11 (10) Collaborate approve price steps 115 (110) 750
12 (11) Rem. Auto. & Add Res. | mgmt config/inside mgr | 108 (93) 650
13 (12) Remove Resource stock person 132 (149) 620

Table 11: Search trace of the PRS on make quotation process: Operator is the operator
type; Objects list the objects modified; R gives the resultant average response time (Est.
is the estimated average response time); and Res$ gives the resultant resource cost
(estimates for Res$ are the equal to the simulated value)

current performance of the business processes and identify the likely causes of performance
problems. The PRS provides a set of performance improvement operators for modifying
the specifications until the stated performance goals are met.

For typical systems, the number of improvement options is usually very large, so exhaus-
tive search to find the right operator sequence is impractical. We suggest the use of Al
techniques to limit the scope of the search. Heuristics based on a set of performance metrics
guide the generation and selection of operators. Also, the PRS motivates the reengineers
to provide domain-specific knowledge about possible modifications by identifying specific
performance problems. From the reengineers’ perspective, process redesign is the task of
developing performance improvement knowledge. The PRS uses this knowledge to auto-
matically modify business process specifications to meet their performance goal.

The PRS was demonstrated on two examples. In the JiffyBurger example, it was shown
that the PRS can represent a variety of knowledge that is useful in reengineering a process
such that the process redesign mechanism can avoid locally optimal designs. In the sales
distributorship example, we found that the PRS can be used to modify a complex pro-
cess such that the predicted performance of the resultant design satisfies the reengineers’
performance goals.

The PRS’s performance depends on the quality of its knowledge base and the accuracy
of its metrics. A high quality knowledge base generates only operators that can lead to

improvement in the business system. If too few of these operators are generated or too few

29

bad operators are pruned then the knowledge base needs further development. Knowledge

base analysis tools that indicate the quality of the knowledge base may be useful to signal

where knowledge development is needed. Also, once an operator is generated, metrics are

used to estimate its effect. Further development of performance metrics is necessary to

increase the probability that good operators are selected.

References

1]

2]

[10]

[11]

T. Barothy, M. Peterhans, and K. Bauknecht. Business process reengineering: Emer-

gence of a new research field. SIGOIS Bulletin, 16(1):3-10, August 1995.

R. Bhaskar, H. S. Lee, A. Levas, R. Petrakian, F. Tsai, and B. Tulskie. Analyzing and
re-engineering business processes using simulation. In Proceedings of the 1994 Winter
Sitmulation Conference, pages 1206-1213, 1994.

F. Bodart and Y. Pigneur. A model and a language for functional specifications and
evaluation of information system dynamics. In Trends in Information Systems, pages

195-217. Elsevier Science Publishers, 1986.

D. Bridgeland and S. Becker. Simulation Satyagraha, a successful strategy for business
process reengineering. In Proceedings of the 1994 Winter Simulation Conference, pages

1214-1220, 1994.

J. R. Caron, S. L. Jarvenpaa, and D. B. Stoddard. Business reengineering at CIGNA
corporation: Experiences and lessons learned in the first five years. MIS Quarterly,

18:233-250, September 1994.

D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32(3):333-377,
1987.

T. Davenport. Process Innovation: Reengineering Work through Information Technol-

ogy. Harvard Business School Press, 1993.

A. R. Dennis, R. M. Daniels Jr., G. Hayes, and J. F. Nunamaker. Automated support
for business process reengineering: a case study at IBM. In Proceedings of the 26th

Hawaii Int’l Conference on System Sciences, volume 3, pages 169-178, 1993.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269-271, 1959.
L. Dowdy and C. Lowery. P.S. to Operating Systems. Prentice-Hall, 1993.

S. Guha, W. J. Kettinger, and J. T. C. Teng. Business process reengineering: Building
a comprehensive methodology. Information Systems Management, 10(3):13-22, 1993.

30

[12] G. Hall, J. Rosenthal, and J. Wade. How to make reengineering really work. Harvard
Business Review, 71(6):191-131, 1993.

[13] M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto for Business
Revolution. Harper Business, 1993.

[14] H. J. Harrington. Business Process Improvement: The Breakthrough Strategy for Total
Quality, Productivity, and Comptetiveness. McGraw-Hill, 1991.

[15] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEFEE transactions on SSC, 4:100-107, 1968.

[16] F. S. Hillier and G. J. Lieberman. [Introduction to Stochastic Models in Operations
Research. McGraw-Hill, 1990.

[17] J. K. Hollingsworth and B. P. Miller. Parallel program performance metrics: A com-
parison and validation. In 92 SUPERCOMPUTER, pages 4-13, 1992.

[18] J. K. Hollingsworth and B. P. Miller. Slack: A performance metric for parallel pro-
grams. Technical report, Computer Sciences Technical Report, March 1992.

[19] T. Jaeger and A. Prakash. BIZSPEC: A Business-Oriented Model for Specification
and Analysis of Office Information Systems. In Proceedings of the 5th Conference on
Software Engineering and Knowledge Engineering, pages 191-198, 1993.

[20] T. Jaeger and A. Prakash. Management and utilization of knowledge for the automatic
improvement of workflow performance. In Proceedings of the 1995 Conference on

Organizational Computing Systems, pages 32-43, 1995.

[21] T. Jaeger, A. Prakash, and M. Ishikawa. A framework for the automatic improvement

of workflows to meet performance goals. In Proceedings of the 6th Conference on Tools

with Artificial Intelligence, pages 640-646, 1994.

[22] S. M. Kaplan, W. J. Tolone, D. P. Bogia, and C. Bignoli. Flexible, active support for
collaborative work with conversationbuilder. In Proceedings of the 1992 Conference
on Computer-Supported Cooperative Work, pages 378-385, 1992.

[23] D. Karagiannis. BPMS: Business process management systems. SIGOIS Bulletin,
16(1):10-13, August 1995.

[24] R. K. Keller, R. Lajoie, M. Ozkan, F. Saba, X. Shen, T. Tao, and G. V. Bochmann.
The Macrotec toolset for CASE-based business modelling. In IEEE Sizth International
Workshop on Computer-Aided Software Engineering, pages 114-118, 1993.

31

[25]

[26]

[27]

28]
[29]

[31]
32]

33]

[34]

[39]

J. Lee. Goal-based process analysis: a method for systematic process redesign. In
Proceedings of the 1993 Conference on Organizational Computing Systems, pages 196—
201, 1993.

K. P. Lockyer and J. H. Gordon. An Introduction to Critical Path Analysis. Pitman,
1991.

R. Medina-Mora, T. Winograd, R. Flores, and F. Flores. The Action Workflow Ap-
proach to workflow management technology. In CSCW 92 Proceedings, pages 281-288,
November 1992.

J. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, 1994.

A. Ravindran, D. T. Phillips, and J. J. Solberg. Operations Research. John Wiley and
Sons, 1987.

G. Rein. Collaboration technology for organizational design. In Proceedings of the
26th Hawaii Int’l Conference on System Sciences, volume 3, pages 137-148, 1993.

E. Rich and K. Knight. Artificial Intelligence. McGraw-Hill, 1991.

J. F. Rockart and J. D. Hofman. Systems delivery: Evolving new strategies. Sloan
Management Review, 33(4):21-31, 1992.

R. M. Shapiro. Integrating BPR with image-based work flow. In Proceedings of the
1994 Winter Simulation Conference, pages 12211228, 1994.

J. E. Short and N. Venkatraman. Beyond business process re-design: Redefining
Baxter’s business network. Sloan Management Review, 34(1):7-21, 1992.

H. A. Smith and J. D. McKeen. Reengineering the corporation: where does 1. S. fit
in? In Proceedings of the 26th Hawaii Int’l Conference on System Sciences, volume 3,

pages 120-126, 1993.
G. Steele Jr. Common LISP: The Language. Digital Press, 1990.

A. Tsalgatidou and S. Junginger. Modeling in the re-engineering process. SIGOIS
Bulletin, 16(1):17-24, August 1995.

D. Vogel, R. Orwig, D. Dean, J. Lee, and C. Arthur. Reengineering with Enterprise
Analyzer. In Proceedings of the 26th Hawaii Int’l Conference on System Sciences,
volume 3, pages 127-136, 1993.

E. S. K. Yu and J. Mylopoulos. An actor dependency model of organizational work
— with application to business process reengineering. In Proceedings of the 1993 Con-

ference on Organizational Computing Systems, pages 258-268, 1993.

32

