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ABSTRACT

We propose a lightweight fault-tolerant multicast and membership service for real-time process
groups which may exchange periodic and aperiodic messages. The service supports bounded-time
message transport, atomicity, and order for multicasts within a group of communicating processes
in the presence of processor crashes and communication failures. It guarantees agreement on
membership among the communicating processors, and ensures that membership changes (e.g.,
resulting from processor joins or departures) are atomic and ordered with respect to multicast
messages.

We separate the mechanisms for maintaining consistency in a distributed system from those
of maintaining real-time guarantees. The multicast and membership service may be used alone to
support service that is not time-critical. An additional, separate real-time admission control layer
provides on-line schedulability analysis of application traffic to guarantee hard real-time deadlines in
a system with dynamically-changing loads. Moreover, we separate the concerns of processor fault-
tolerance and link fault-tolerance by providing a protocol for supporting the former, regardless of
the actual network topology and technology used to implement the latter. We provide the flexibility
of an event-triggered approach with the fast message delivery time of time-triggered protocols, such
as TTP [1], where messages are delivered to the application immediately upon reception. This is
achieved without compromising agreement, order and atomicity properties. In addition to the
design and details of the algorithm, we describe our implementation of the protocol using the
z-Kernel protocol architecture running under RT Mach 3.0.
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1 Introduction

Process groups are a widely-studied paradigm for designing dependable distributed systems in both
asynchronous [2-5] and synchronous [1,6, 7] environments. In this approach, a distributed system is
structured as a group of cooperating processes which provide service to the application. A process
group may be used, for example, to provide active replication of system state so that it is available
even when a process fails. Process groups may also be used to rapidly disseminate information from
an application to a collection of processes that subscribe to that service. Two key primitives for
supporting process groups in a distributed environment are fault-tolerant multicast communication
and group membership.

Coordination of a process group must address several subtle issues including delivering mes-
sages to cooperating processes in a reliable (and perhaps ordered) fashion, maintaining consistent
views of group membership, and detecting and handling process or communication failures. In a
fault-tolerant system it is critical that members of the group maintain a consistent view of the
system state as well as the group membership. Otherwise, members’ actions in response to exter-
nal or application-triggered events may be inconsistent, possibly resulting in serious consequences.
Achieving consistency is therefore a paramount concern. Most process or processor group com-
munication services achieve agreement by disseminating application and membership information
via multicast messages within the group. If multicast messages are atomic and globally ordered,
replicas can be kept consistent if we assume that process state is determined by initial state and
the sequence of received messages.

The problem is further complicated in distributed real-time applications which operate under
strict timing and dependability constraints. In particular, we are concerned here with fault-tolerant
real-time systems which must perform multicast communication and group management activities
in a timely fashion, even in the presence of faults. In these systems, multicast messages must be
received and handled at each replica by their stated deadlines. In addition, membership agreement
must be achieved in bounded time when processes in a group fail or rejoin, or when the network
suffers an omission or a communication failure.

In this paper, we propose an integrated multicast and membership protocol that is suitable for
the needs of hard real-time systems, and is also usable in a soft real-time system with synchronized
clocks. It is termed lightweight because, in contrast to other group membership protocols, it does
not use acknowledgments for every message and message delivery is immediate without the need for
more than one “round” of message transmissions. We envision the multicast and group membership
proposed here as part of a larger suite of middleware group communication services that form a
composable architecture for the development of embedded real-time applications. Figure 1 shows
a general framework within which the proposed protocol might be used. Shaded blocks indicate
those services whose design and implementation we present in this paper. These services consist
of two major components, a timed atomic multicast, and a group membership service. They are
tightly coupled and thus considered a single service, referred to as RTCast in the remainder of the
paper. Clock synchronization is assumed in the protocol and enforced by the clock synchronization
service. To support portability, RTCast might lie atop a layer exporting an abstraction termed
a virtual network interface. Ideally, this interface would provide a mechanism to transparently
handle different network topologies each having different connectivity and timing characteristics.
In particular it quantifies the underlying network in terms of available bandwidth and maximum
path delay between source/destination pairs, hiding its topology and technology. The network is
assumed to support unreliable unicast. Finally, the top layer provides functional (API) support for
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Figure 1: The general service framework.

the real-time process group service and interfaces to the lower RTCast protocol.

In its most basic form, RTCast proceeds as senders in a logical ring take turns in multicasting
messages over the network. A processor’s turn comes when the logical token arrives, or when it
times out waiting for it. After its last message, each sender multicasts a heartbeat that is used for
crash detection. The heartbeat received from an immediate predecessor also serves as the logical
token. Destinations detect missed messages using sequence numbers and when a receive omission
is detected on some processor, it crashes. Each processor, when its turn comes, checks for missing
heartbeats, and eliminates the crashed members, if any, from group membership by multicasting a
membership change message.

A key attribute of the way group membership is handled by RTCast is that processes which
detect receive omissions take themselves out of the group. This paper argues that in a real-time
system bounded message transmission time must be achieved. If a message (or its retransmission)
doesn’t make it to some destination within a specified time bound, the destination fails to meet its
deadline(s) and should be eliminated from the group.

In the next section we discuss the related work on fault-tolerant multicast and group membership
protocols. Sections 3 and 4 present our system model and the design of the RTCast protocol,
respectively. The mechanisms used for real-time schedulability and admission control are described
in Section 5. Section 6 discusses the current implementation of the protocol in the z-Kernel protocol
development environment and our PC-based development testbed. Section 7 concludes the paper
by discussing the limitations of this work and future research directions. In addition, we provide
proofs of several protocol properties such as order, agreement, and atomicity in the Appendix.



2 Related work

Several fault-tolerant, atomic ordered multicast and membership protocols have been proposed for
use in asynchronous distributed systems. One of the earliest of these was the work done by Chang
and Maxemchuk [8]. They proposed a token based algorithm for a group of communicating pro-
cesses where each sender sends its messages to a token site which orders the received messages
and broadcasts acknowledgments. Destinations receive the acknowledgments and deliver the corre-
sponding messages in the order specified by the current token site. The token site is also responsible
for handling retransmission requests originating from those destination nodes that detected receive
omissions. To maintain proper order, a process does not send a message until it has received an
acknowledgment of its previous one from the current token site. Though the algorithm provides
good performance at low loads, the need for acknowledging each message before sending the next
increases latency at higher loads. Moreover, introducing a third node (the token site) in the path
of every message makes the service less available. The failure of the current token site will delay
a destination’s message reception even if both the source and destination are operational. By con-
trast, RTCast does not acknowledge each message, and need not involve an intermediate node on
the path of each message.

ISIS [2,9] introduced the concept of virtual synchrony, and integrated a membership protocol
into the multicast communication subsystem, whereby membership changes take place in response
to communication failure. ISIS implements a causal multicast service, CBCAST using vector clocks
[10]. On top of CBCAST, an ordered atomic multicast, ABCAST, is implemented using an idea
similar to that of Chang and Maxemchuk. A token holder orders received ABCAST messages
and has the other members of the group deliver them in the same order. While we use the idea of
integrating membership and multicast services, we implement the ordered atomic multicast directly
without constructing a partial order first. The ordering task, however, is significantly simplified by
assuming a token ring network. In addition to ISIS, several other systems have adopted the notion of
fault-tolerant process groups, using similar abstractions to support distributed applications. Some
of these include Consul [5], Transis [3], and Horus [4].

A number of systems choose to separate the group membership service from the fault-tolerant
multicast service. As a result, the group membership service is concerned only with support for
maintaining consistency regarding the membership view. These protocols may assume the avail-
ability of a separate reliable atomic multicast to support their operations. OQur approach, along
with several others described later, however, closely integrates the fault-tolerant ordered multicast
and the group membership protocols. Achieving consistent membership when the group changes,
is therefore no different than achieving consistent state in each of the processes.

The Strong Group Membership protocol [11], for example, performs atomic ordered group
membership changes using a two phase commit protocol whereby a leader first multicasts a prepare
to commit message, and then multicasts a commit message to install the change after receiving an
acknowledgment from each group member. The MGS protocol [12] for processor group membership
performs atomic ordered membership updates on three phases. The first phase requests/acquires a
lock (by the group leader) on the membership state table of each member, the next sends the new
data and collects acknowledgments, and the third phase retransmits changes to processors from
which acknowledgments are missing. Additional work on group membership protocols appears in
[13], [14], and [15].

Common to the above mentioned protocols, whether strictly group membership or combining
multicast and group membership, is that they do not explicitly consider the needs of hard real-



time applications. Thus these techniques are not suitable for the applications in which we are
interested, namely those which require delay guarantees on group communication and membership
management.

There are, however, several protocols that integrate reliable multicast and group membership
and also target real-time applications. Some of these protocols are briefly described below. Totem
[6] bears closer resemblance to the proposed protocol. It is based on a token ring, and guarantees
safe delivery of messages within two token rounds (in the absence of message loss). Safe delivery
means that a process does not deliver a message until it knows that every other process in the group
has received it and will deliver the message unless it crashes. This ensures atomicity. The need for
the second round is to convey acknowledgments that all processes have received the message sent
during the first round. Totem addresses timing constraints by providing probabilistic bounds on
message delay through analysis based on message loss probability. When message loss probability
is very low, safe delivery within a predictable time is probable [16].

RTCast, on the other hand, achieves atomicity and order within a single phase. Messages
are delivered to the application as soon as they are received in order. They may also convey
membership changes for use by the protocol. No acknowledgments are needed. Furthermore, if one
of the processors fails to receive a message and a retransmission request is issued, message delivery
will be delayed only on that processor. The remaining ones can deliver immediately upon reception.
This is in contrast with protocols like Totem where no processor can deliver a message until all
have received it. The intuitive reason why immediate delivery does not interfere with atomicity in
RTCast is that processors which have failed to receive a message (within the maximum amount
of allowable retransmissions) will take themselves out of the group (i.e., crash) thus satisfying the
definition of atomicity by default. A more formal argument is given in the Appendix.

Rajkumar et. al. [17] present an elegant publisher/subscriber model for distributed real-time
systems. [t provides a simple user interface for publishing messages on some logical “channel”
(identified by a corresponding logical handle), as well as for subscription to selected channels as
needed by each application. In the absence of faults each message sent by a publisher on a channel
should be received by all subscribers. The abstraction hides a portable, analyzable, scalable and
efficient mechanism for group communication. However, it does not attempt to guarantee atomicity
and order in the presence of failures, which may compromise consistency.

TTP [1] is similar to the protocol presented in this paper in many respects. It uses a time-
triggered scheme to provide predictable immediate message delivery, membership service, and re-
dundancy management in fault-tolerant real-time systems. Unlike TTP, however, we follow an event
triggered approach, where the complete event schedule need not be known a priori, and individual
events may or may not be triggered by the progression of time. This, for example, makes it easier
to accommodate prospective system growth beyond the initial design, without consuming off-line
time for reinstallation. Moreover, while the design of TTP is simplified by assuming that messages
sent are either received by all correct destinations or no destination at all (which is reasonable for
the redundant bus LAN used in TTP), we also consider the case where a sent message is received
by a proper subset of correct destinations. This might occur in the case of receiver buffer overflow,
or message corruption on one of many links in an arbitrary topology network.

Finally, a research effort complementary to our efforts is reported in [18]. While we consider
fault tolerance with respect to processor failure, we do not suggest any particular mechanism for
implementing fault-tolerant message communication. For example, we do not specify whether or not
some form of redundancy is used to tolerate link failures. On the other hand, Chen et. al. describe



a combination of off-line and on-line analysis where spatial redundancy, temporal redundancy, or a
combination of both, may be used to guarantee message deadlines of periodic message streams on
a ring-based network in the presence of a number of link faults as specified for each stream. Unless
the fault hypothesis is violated, the mechanism guarantees that at least one non-failed link will
always be available for each message from its source to all destinations. Receive omissions might
still occur because of data corruption and receiver buffer overflow, but these are handled by the
multicast and membership algorithm proposed in this paper.

3 System model and assumptions

We consider a distributed system in which an ordered set of processing nodes N = {Ny, N, ..., N}
are organized into a logical ring. Each processing node N; € N runs a set of processes which are
members of a single multicast group. These processes communicate by multicasting messages to
the entire group. The messages may or may not be periodic and may or may not have associated
delivery deadlines. The order of processors on the ring determines the sequence in which they
access the communication medium to send messages. The ring is assumed to have the following
properties.

P1: Each processor N; on the ring has a unique processor-id.

P2: For any two processors, N;, N;, there exists a (logical) FIFO channel C;; from N; to N; along
which N; can send messages to N; (i.e., the network is not partitioned).

P3: Message delays along a channel are bounded by some known constant d,,,, unless a failure
occurs. That is, any message sent along channel C}; is either received within d,,,, or not
received at all.

P4: Processor clocks are synchronized.

An illustration of the ring is shown in Figure 2. Note that total order of messages is trivially
achieved because channels are FIF'O, processors (senders) are ordered, and communication delay is
bounded. All messages, unless they are lost, are received by each processor in the order they were
sent. Thus, in the remainder of this paper we shall assume that if message m; was received before
message m; then m; was sent before m;.

The assumed failure semantics are as follows.

A1: Processors fail by crashing, in which case the processor halts and its failure is detectable. A
send omission is considered a special case of a Byzantine failure. It is converted to a crash
failure by halting a processor if it does not receive its own message. Arbitrary or general
Byzantine failures are not considered.

A2: Messages may be lost due to transient link failure, message corruption (in which case the
corrupted message is discarded by the receiver), or receiver’s buffer overflow, for example.
In asynchronous systems we may also want to discard messages which are known to have
violated property P3. Failures in which messages are discarded manifest themselves in the
form of receive omissions. Permanent link failures (resulting in network partitions) are not
considered. We believe that the proper way to handle permanent link failures in fault-tolerant
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Figure 2: The logical ring.

real-time systems is to employ hardware redundancy, for example, as in TTP [1] or suggested
in [18]. In this scenario at least one operational link will remain and prevent a partition in
the case of link failure. Thus, we do not consider partitions beyond the special case where
one processor gets isolated from the network because of internal failure.

4 Multicast and membership service

Our primary purpose is to provide a multicast service for distributed real-time systems that achieves
atomicity and total ordering on messages. Since order is trivially achieved under assumptions A1l
— A3, our main concern is to ensure multicast atomicity, so that “correct” members can reach
consensus on replicated state. However, since we allow both message loss and processor crashes,
solving the consensus problem is impossible even in the presence of synchronized clocks [19,20].
Instead, we formulate the problem as one of group membership. We employ a (deterministic)
processor crash detection algorithm which occasionally eliminates a correct processor from the
group so that agreement is reached in finite time among those remaining. This algorithm does not
conflict with the consensus impossibility result, nor solve the consensus problem since the group
is no longer the set of all correct processors. A processor that detects a receive omission takes
itself out of the group. In a real-time system one may argue that processes waiting for the missing
message on that processor will miss their deadlines anyway, so it is acceptable to eliminate that
processor.

We may, however, provide at a lower communication layer support for a bounded number of
retransmissions. In this case a message is declared as missing to the multicast protocol (i.e., a receive
omission is detected) only after the maximum number of retransmission attempts is expired.



Fxclusion of a processor on a receive omission is an easy way to guarantee atomicity. Each
processor in the group either receives each multicast, or crashes. It is no longer required for a
processor to know that every other processor has received the message before it can deliver it to the
application (for example, as done in Totem’s safe delivery [6]). Instead, each receiver may deliver
the message immediately upon receipt, and be guaranteed that processors which do not receive
that message will leave the group, thus preserving atomicty among (remaining) group members.
Membership changes are communicated exclusively by membership change messages using our
multicast mechanism. Since message multicast is atomic and ordered, so are the membership
changes. This guarantees agreement on membership view. Order, atomicity and agreement are
proved more formally in the Appendix.

Section 4.1 presents the steady state operation of the algorithm (with no receive omissions,
processor crashes or membership changes). Section 4.2 then describes how receive omissions are
detected and handled. Section 4.3 describes processor crashes and member elimination. Sections 4.4
and 4.5 discuss other membership changes (joins and leaves), and the relevant issue of recomputing
token rotation time. Finally, Section 4.6 extends the design to manage message retransmissions.

Before continuing with the functional description of the proposed protocol, it is helpful to
present its high-level structure. The protocol is triggered by two different event types, namely
message reception, and token reception (or timeout). It is structured as two event handlers, one
for each event type. The functions of these two handlers are presented below :

The message reception handler is invoked in the event of message reception. It’s job is to
detect receive omissions as described in Section 4.2, deliver messages to the application, and
service messages directed to the protocol itself, e.g., join requests and resource reclaiming
as described in Sections 4.4 and 4.5, respectively. Figure 3 gives the pseudo code for this
handler.

The token handler is invoked when the token is received (i.e., a heartbeat is received from the
predecessor in the ring), or when the token timeout expires. It is responsible for detecting
processor crashes as described in Section 4.3 and for sending messages out as described in
Section 4.1. Figure 4 shows the pseudo code for this handler.

Figure 3 and Figure 4 illustrate only detection of processor crashes and receive omissions, leaving
out the details of other functionality of the handlers.

4.1 Steady state operation

We employ a token ring algorithm to control access to the communication medium. As shown in
Figure 4, upon receipt of the token, a processor multicasts its messages starting with a membership
change message if any membership changes were detected during the last round. As messages are
sent they are assigned successive sequence numbers by the sender.! The last message sent during

a particular token visit is marked last by setting a corresponding bit. When the last message

!Rollover is not a problem. Message number 0 follows in order the message with the maximum assignable number.
Since message communication time is bounded, “old” messages do not survive to be confused with newer ones having

the same number.



msg reception_handler()  /* invoked on any msg reception */

1 if (state = RUNNING)

2 if (sender = last_sender) /* more msgs from the last sender? */

3 if (sequence correct) /* any missed msgs? */

4 deliver msg

5 else state = CRASHED  /* missed a msg */

6 else if (sender#last_sender AND mem[sender] = ON) /* new sender? */
7 if (sequence correct) /* any missed msgs? */

8 missing-msg = FALSE

9 for each processor p between sender and last_sender /* didn’t hear from p */
10 if NOT (msg-type = membership AND msg says p is OFF

11 AND p’s last msg was received)

12 missing.msg = TRUE

13 if (missing-msg = FALSE)

14 if (msg_type = membership) update membership view

15 else deliver msg

16 if (T was eliminated) state = CRASHED

17 else state = CRASHED /* missed a msg from some sender p */
18 else state = CRASHED  /* missed a msg from new sender */

19 else if (msg_type = joining)  /* somebody wants to join */

20 handle join request

21 if (state = JOINING AND msg_type = join_ack AND join_ack valid)

22 if (need more join_acks)

23 wait for additional join_ack msgs

24 else state = RUNNING

end

Figure 3: The message reception handler.

has been transmitted the processor multicasts a heartbeat (which has no sequence number). The
heartbeat from processor N; serves as an indication that N; was alive during the given token visit
(and therefore all its sent messages should be received). When received by its successor N;yq, the

heartbeat also serves as the logical token, informing the successor that its turn has come.

Fach processor N; has a maximum token hold time 7; after which it must release the token
(that is, multicast the heartbeat). This guarantees a bounded token rotation time, Piyken, which

is important for message admission control and schedulability analysis. Pjore,? is given by :

n
Piken = > Ti + (n—1)dnaa, (4.1)

=1
where n is the number of processors in the current group membership, and d,, 4, is as defined in P3
in Section 3. If a processor fails or the token is lost, the bound on token rotation time can also be
used as a timeout. If the token holder has no more messages to send before its hold time expires,

it can release the token early. This prevents network bandwidth from being needlessly wasted by

2Expression 4.1 will be refined in Section 4.4 as new factors are considered



token_handler() /* invoked at token reception */
1 for each processor p in current membership view

2 if (no heartbeat seen from all my predecessors up to and including p)
3 remove p from group view

4 membership_change = TRUE

5 if (membership_change = TRUE) send out new group view

6 if (state = RUNNING)

7 send out all queued messages and mark the last

8 send out heartbeat msg

9 if (state = JOINING)

10 send out join msg

end

Figure 4: The token handler.

processors holding the token while no messages are being transmitted. Each processor must send
at least one message during each token visit. If it has no messages to send, a dummy message is
transmitted. This simplifies the detection of receive omissions, since each processor knows it must

receive from every other processor within a token round, unless a message was lost.

4.2 Message reception and receive omissions

Each processor maintains a message sequence vector, M, which holds the sequence number of the
last message teceived from every group member (including itself)®. Let M; be the number of the
last message received from processor N;. The multicast protocol layer expects to receive multicast
messages in total order. Thus, after receiving message number M;, the receiver expects message
number M; + 1 from N; or, if M; was marked last, the receiver expects message number M;1q + 1
from processor N;y1. N;4q is the successor of N; in the current group membership view. If the
next message received, say my, is not the expected message, a receive omission is detected, and the

receiver should crash.

As an optimization, we prevent receivers crashing upon detectably “false” receive omissions.
Instead of having it crash, we first check whether or not the presently received message my is
a membership change message which eliminates the sender, say N;, of the missed message from
membership?. If so, my, also contains the number of N;’s last message sent before it was eliminated.
This number is attached by the sender of the membership change message according to its own
message vector information. If this number matches M; in the current receiver’s message sequence

vector then the receiver is assured that all messages sent by N; before it was eliminated have been

#This is different from using vector clocks [10] where a vector is communicated in each message. In our scheme,
the message carries only its sequence number and sender id.

*We know who the sender is because we know from whom a message is missing
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received, and hence the receiver remains in the group. Otherwise, the receiver concludes that it
did suffer a receive omission and it crashes. Lines 1 — 18 of Figure 3 show how detection of receive

omissions was implemented.

4.3 Membership change due to processor crashes

Each processor N; keeps track of all other group members from which it has received a heartbeat
during the current token round. That is, it records the processors from which it received a heartbeat
since the time it sent its own and until it either receives that of its predecessor or times out,

whichever comes first. Either case indicates that N;’s turn to send messages has come.

When N;’s turn comes, it first determines the processors from which it has not received a
heartbeat within the last token round. A possible decision then is to assume that all of them have
crashed and eliminate them from group membership (by multicasting a corresponding membership
change message). It turns out, a better decision is to eliminate only the transitive closure of
immediate predecessors from which a heartbeat has not been received, if any. The rationale for this
is best illustrated by an example. Consider Figure 5 where processor H has just timed out. Assume
that H determines that it has not received a heartbeat from processors D, F’, and G. In this case
H should eliminate only F" and G. D is not eliminated since it would have been eliminated by F
had it indeed been down. If £ has not eliminated D, then it must have received a heartbeat from
it, and D must be alive, even though its heartbeat did not reach H. This idea is implemented as

shown in lines 1 — 3 of Figure 4.

As mentioned earlier, the detected membership change is effected by sending a membership
change message. Crashes should be announced as early as possible. Therefore membership change
messages precede all other messages sent by the processor during the token visit. Note that heart-
beat loss might still lead on occasion to the exclusion of a correct processor from group membership
since we generally cannot distinguish between that and a processor crash. Similarly, since successive
heartbeats also serve as the rotating token, token loss and processor failure are treated in the same
manner. As shown on line 16 of Figure 3, if a correct processor receives a membership message

telling it that it has been excluded from the group, it crashes.

4.4 Membership change due to processor join or departure

In the previous section we described how processors suspected of crashing are eliminated from the
group. The remaining membership changes are voluntary member joins and member departures. A
member can leave the group simply by multicasting a membership change message eliminating itself
from membership. When a new processor, N,.,,, wants to join a group it starts out in a joining
state where it sends a join request message to some processor N, in the group, which may later
multicast a membership change message on behalf of the joining processor, adding it to the group.

The message is received atomically by members of the group who then send acknowledgments to the

11
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Figure 5: Excluding failed members.

joining processor, containing their current membership view (with the new member added). The
joining processor, now considered a member, checks that all received acknowledgments (membership
views) are identical, and that acknowledgments have been received from every member in that view.

If the check fails the new member crashes and attempts to rejoin later.

Note that, before joining, the new processor does not have an assigned slot on the ring. To
address this problem the group contains a join slot, T,, large enough for sending a join message.

Expression 4.1, which gives the maximum token rotation time is thus refined to include T, as follows

Ptoken = E Tz + (’TL— 1)dmar. + TU7 (42)

i=1
Our protocol is currently implemented on a broadcast LAN, so when the member following 7, on
the ring receives the token from the member before T, it waits for a duration 7T, before sending
its own messages. The slot T, is used by a joining processor to send out its join request. If two
processors send join requests at the same time, their requests will collide and will not be received
by the destination. The joining processors will then wait for a random number of token rounds
and retransmit their join. A joining processor need not know the position of T}, with respect to the
current group members. Instead, it waits for a token with the join slot bit set on. The join request
message, sent to processor N, contains the identity of the joining processor, and the requested

maximum token hold time T},.,,.

Processor N, who receives a join request computes the new Pi,p., from 4.2, then initiates a
query round in which it multicasts a query message asking whether or not the new P t., can be
accommodated by each group member, and then waits for acknowledgments. If all acknowledgments

are positive, N, broadcasts the membership change adding the new member to the group.
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4.5 Token rotation time

Each processor keeps a copy of variable P, which ideally contains the value of the maximum token
rotation time Piopen given by 4.2. P is used in admission control and schedulability analysis. When
a processor fails and leaves the group, Pyke, decreases, since the number of processors on the ring
is reduced. The failed processor will often try to rejoin very soon. Thus, to avoid updating P twice

in a short time we may choose to keep the old value for a while after a processor crash.

P is thought of as a resource representing how much “space” we have available on the ring
for processors to take. Fach processor N; is thought to take T; out of P. Thus, Pjype, represents
the present utilization of resource P. A joining processor may be added to the ring without the
query round described in the previous section, if Pj ke, (with the joining processor added) is still
no greater than P. Otherwise, the query round is necessary to give all members a chance to check
whether or not they can still guarantee their connections’ deadlines under the new P. Schedulability

analysis is described in Section 5.

P is updated by multicasting a corresponding message. In the case of a join, the membership
message implicitly serves that purpose. In case of a member leaving or crashing, a separate message
is used to update P. The point in time that the message is sent is a matter of policy. In the current
implementation, a resource reclaimer module runs on the processor with the smallest id among
those in the current membership. Note that since processors agree on current membership, they
also agree on who runs the reclaimer. The module detects if any balance P — Pi,pe, remained
unutilized for more than a certain amount of time, after which it multicasts a request to reduce P

by the corresponding balance.

4.6 Handling retransmissions

We mentioned earlier that a communication layer below the multicast and membership protocol,
RTCast is responsible for message retransmission. Let us call it the Retransmission layer. A
maximum number of allowable retransmissions r is specified for the system (to bound message
delivery time). The retransmission layer checks for receive omissions the same way it was described
in Section 4.2. If no receive omissions are detected, the Retransmaission layer simply forwards the
received messages up to the RTCast layer. Otherwise, it queues all messages subsequent to the
detected gap in an incoming queue ()5 and queues a retransmission request in the outgoing queue.
Also the receiver initializes a counter to the maximum number of allowable retransmissions, r. At
each subsequent token visit the counter is decremented. If at any time a retransmitted message is
received and the gap at the head of @7 can be filled by the received message, the handler forwards
all messages in Q7 up to the RT'Cast layer until the next gap, if any. If the counter is decremented
to zero and no retransmission have been received to fill the gap at the head of (), the next message
is forwarded. The RTCast layer detects a receive omission, and the node crashes as was described

in Section 5. As shown in Section 5, increasing the maximum number of allowable retransmissions
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means less messages can be guaranteed to meet their deadlines, since the worst case scenario must
be accounted for in schedulability analysis. On the other hand the probability of a receive omission
is significantly decreased. This is important in our algorithm, since receive omissions are translated

into processor crashes.

5 Admission Control

In this section we discuss the admission control and schedulability analysis of real-time messages
in the context of the multicast algorithm presented in the preceding section. In a real-time system
this module implements a protocol layer above the RTCast layer to regulate traffic flow, although
an application may choose to send messages directly to RTCast if hard real-time guarantees are

not required.

Real-time messages may be either periodic or aperiodic. A periodic real-time message m; is
described by its maximum transmission time C;, period P; and deadline d;, where d; < F;. An
aperiodic message may be viewed as a periodic one whose period tends to infinity. Before a real-
time message is considered for transmission its deadline must be guaranteed. Guaranteeing the
deadline of a periodic message means ensuring that the deadline of each of its instances will be
met, provided the sender and receiver(s) do not fail, and the network is not partitioned. The same
applies to guaranteeing the deadline of an aperiodic message except that, by definition, the message
has only one instance. Each message instance has an arrival time, which is the time at which the
message is presented by the application. When an application needs to send a real-time message
it presents the message to the admission control layer for schedulability analysis and deadline
guarantee evaluation. The layer checks whether or not the message can be scheduled alongside the
currently guaranteed messages, denoted by the set GG, without causing itself or another message to
miss its deadline. If so, the message is accepted for transmission and its deadline is guaranteed.
Otherwise the message is rejected. Bandwidth is reserved for a guaranteed periodic message by
adding it to set (&, thereby affecting future guarantee decisions. The message is not removed from
GG until so instructed by the application. A guaranteed aperiodic message remains in set G only

until it is sent. Non real-time messages are sent only after real-time messages, if time permits.

In order to perform schedulability analysis, we must make assumptions about the available

network bandwidth. These are the following:

Assumption 1: Each sender node N; can transmit messages for up to 7} units of time within any

interval of time P.

Assumption 2: The interval elapsed between the time a message has been transmitted by the
sender and the time it has been delivered at the destination(s) is bounded by some known

constant A.
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The multicast algorithm presented in this paper satisfies both of Assumption 1 and Assump-

tion 2, with A = (r + 1)P, where r is the maximum number of allowable retransmissions.

Note that Assumption 1 does not state when and how network bandwidth becomes available
for the node to send messages, nor does it assume any relation between message arrival times at
the node and the time network bandwidth becomes available. Hence the analyses based on the
above assumptions are general in nature and may be applied to a wide variety of multiple access

network protocols.

Lemma 1: Under Assumption 1 above, and FIFO scheduling of arrived messages, if the sum
of transmission times, Cyuq1, of messages arriving at node N; within any period P is such that

Ciotat < Tj, then each message will be sent within P units of time from its arrival.

Proof : We shall prove the complement form of the Lemma, that is, show that if a message is late,
i.e., not sent within P units of time from its arrival at node NV;, then there exists some interval P
during which Cytq1 > T}. Let message m;, arriving at time ¢; at node N;, be the first late message.
Let t3 be the time when the message has been transmitted. Thus, the interval Ly = [t1, 2] has
length larger than P. By Assumption 1, the sum of transmission times of messages sent during
Ly is greater than 7T;. Since these messages are sent FIFO, and m; is sent last, all of them must
have arrived prior to ¢;. Furthermore, all of them must have arrived within an interval Lg of length
no more than P (prior to t1), otherwise at least one of them would have been late too, which is
impossible since m; is the first late message. Thus there exists an interval of length P for which

Ctotat > T; (namely the interval containing Lg).O

Lemma 1 derives a bound on message delay in the case where the sum of transmission times,
Cotal, of messages arriving at the sender node N; within any period P is such that Cipe <
T;. Next consider the case when the above condition is not satisfied. Let us call the sequence of
messages presented by the application, the input message flow. The input message flow is passed
through a buffer which produces a flow that satisfies the condition of Lemma 1, i.e., at most T}
worth of messages are produced within any period P. Let us call it the regulated message flow.
Figure 6 is a conceptual view of the flow control mechanism. The following lemma determines a

sufficient condition for a message to be schedulable given the described flow control scheme.

Lemma 2: Under Assumptions 1 and 2, a message m;, which arrives at time %y, can meet its

deadline if :
o Cl: C; < n; Tj, where n; = [(d;—A)/P],
e (C2: The average input message flow F’is no greater than T); every P,i.e., ) ;.4 % < % and

e (C3: at any time t > g, the sum of transmission times of all arrived messages in the interval
[to, t) is no less than (¢ — o)} This merely ensures that the condition in Lemma 1 is always

satisfied with no messages accumulating in the flow control buffer (provided that C2 is true).
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Figure 6: Message admission control.

Proof : Let t be the time message m; arrived at node N;. The quantity n; represents the number of
times the node received a transmission budget 7; between the arrival time of m; and its deadline.
Let the message m; be divided into packets of length C;/n;. From condition C1 above, packet
length is no more than 7;. Let these packets be made available for transmission at times ¢, ¢ + P,
ey t 4+ (n;—1)P. From C2 and C3, the condition of Lemma 1 is met. Thus, by Lemma 1, each
packet is transmitted within P units of time. Specifically, the last packet of m; will be transmitted
by (n;—1)P + P = n;P. Since n; was chosen such that n; P < d;—/A\, the message will meet its
deadline.O

Next we present a sufficient condition for a collection of messages to meet their deadlines. This
condition is used to check the schedulability of messages presented by the application and guarantee

their deadlines. It is an extension of Lemma 2.

. 7.3 ; Ci .
Theorem 1: A set of messages G presented by node Nj is schedulable if } ;e = < T;
Proof : To prove the theorem it is enough to show that the conditions of Lemma 2 are satisfied
for each message m; € M. Cl1 is trivially satisfied. To note that C2 is satisfied divide both
sides of the inequality in the statement of the theorem by P, then note that the denominator of
the left hand side n;P < d; < P;. Thus, } ;4 %f < %, which satisfies C2. Finally note that
in the worst case, all messages arrive together at some time t3. Hence, it is easy to see that for
any time ¢ > {g, the accumulated sum of transmission times of messages arrived within [tg, ?) is
Yiea[F2Ci > (t—to) EieG(%) = (t — to)F. Thus condition C3 is also satisfied.O

To guarantee a new message or a periodic message stream, then, n; is first computed for
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the message (stream). Then the sum indicated in Theorem 1 is calculated. If the inequality
is satisfied the message (stream) is guaranteed. Otherwise, it is not guaranteed. Guaranteed
messages or arriving messages belonging to guaranteed streams are forwarded to the RTCast layer
for transmission over the network. Messages that cannot be guaranteed are rejected. Note that
the set G' always includes a periodic stream for sending membership messages with period P, and

n; = 1.

6 Implementation

The protocol presented in Section 4 is implemented on a network of Intel Pentium®-based PCs
connected over a private Ethernet. Ethernet is not suitable for real-time applications due to packet
collisions and subsequent packet retransmissions that may postpone successful packet transmission,
and make it impossible to impose deterministic bounds on communication delay. However, since we
use a private Ethernet (no one else has access to the communication medium), and since our token
based protocol ensures that only one machine can send messages at any given time (namely, the
token holder), no collisions are possible. The Ethernet driver will always succeed in transmitting
each packet on the first trial. This makes message communication delays deterministic®>. Note
that some messages might be dropped at some destinations, for example, because of receiver buffer
overflow, or data corruption. This, of course, is not detected by the Ethernet driver. Instead,
at a higher level, our protocol detects a message omission and may try a bounded number of
retransmissions, r, as described in Section 4.6. These are accounted for as described in Section 5.
In the present implementation, retransmissions are not supported. Each machine on the private
LAN, runs the CMU Real-Time Mach 3.0 operating system. All machines are members of a single
logical ring. Figure 7 illustrates the testbed.

51t is true however, that a collision may occur if two joining processes attempt to use the join slot simultaneously.
For the sake of building a working prototype on the available hardware we presently circumvent this problem by

preventing simultaneous joins.
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Figure 8: The x-kernel protocol stack

6.1 Protocol stack layers

We implement the communication service as a protocol developed with z-Kernel 3.2 protocol im-
plementation environment [21]. The protocol stack is shown in Figure 8. Each box represents a
separate protocol layer. The primary advantage of using z-Kernel is the ability to easily reconfigure

the protocol stack according to application needs by adding or removing corresponding protocols.

The maximum functionality is attained by configuring the protocol stack as shown in Fig-
ure 8—(a). The ACSA layer performs admission control and schedulability analysis (as described
in Section 5) to guarantee hard real-time deadlines of dynamically arriving messages and peri-
odic connection requests. The RTCast layer implements the multicast and membership service as
described in Section 4. The Retransmission layer is responsible for handling retransmissions as
described in Section 4.6. ClockSync implements a clock synchronization service. In our present
system, ClockSync uses the probabilistic clock synchronization algorithm developed by Cristian

[22] with the underlying unreliable messaging service provided in the z-Kernel environment.

In soft real-time systems, non real-time systems, or systems where hard real-time communication
has been prescheduled and guaranteed a priori, we may wish to omit the ACSA layer, in which
case the application interfaces directly to RTCast. The RTCast layer provides a subset of ACSAs

API including message send and receive calls, but does not compute deadline guarantees.

If the underlying network is sufficiently reliable, we may choose to disallow message retransmis-

sions deeming message omission very unlikely. This will enable supporting tighter deadlines, since
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we need not account for retransmissions when computing worst case deadline guarantees. This can

be done by removing the Retransmission layer from the protocol stack®.

Finally, note that ClockSync is needed only to implement assumptions P2 and P3 (Section 3).
In the special case of a broadcast LAN, network hardware satisfies these assumptions obviating the

need for ClockSync.

Thus, the minimal configuration of the protocol stack consists of the RTCast layer alone, as
shown in Figure 8—(b). This configuration, when used on a broadcast LAN, supports bounded
message transport delays, provides atomic ordered multicast, and implements a group membership
service that guarantees atomic ordered membership changes, and agreement on group membership

view.

6.2 RTCast message types

As mentioned in Section 1, RT'Cast is the essential layer of our group communication service. It is

implemented by the two event handlers, message reception handler and token handler.

Figure 9 shows the different types of messages, and their formats, as well as the header format.
Only the atomic ordered message types and the heartbeat/token type are illustrated. Atomic
ordered types refer to messages guaranteed to be multicast atomically and in total order. When
implementing the protocol we found it useful to support unreliable messages too, whose atomicity
and order need not be guaranteed. These messages simply do not have sequence numbers. Thus,
their omission is undetectable, and their order is not specified. For example, they are useful to
implement voting. A given sender suggests a “proposition”, then waits to receive “votes” from
other group members before deciding whether or not some change should be (atomically) enacted.
An instance of voting in our algorithm is to decide on a new member join when the current token

rotation time P needs to be increased.

6.3 Protocol testing

Preliminary testing was performed to verify experimentally the behavior of the implemented pro-
tocol layers. The RTCast layer was tested first to verify its support for system consistency, then

the ACSA layer was added, and the system was tested for deadline guarantees.

The RTCast protocol was tested employing the z-Kernel trace library to log the occurrence of
certain major events at run-time. Major events include: sending and receiving of messages and
heartbeats, token receipt (or timeout), “rotation” of current sender, detection of receive omissions
and processor crashes, membership changes resulting from processor crashes, joins and leaves, and

processor state transitions (between the running, crashed and joining states).

6Presently, the Retransmission layer is not implemented
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Figure 9: Message types

The system was run with event logging on the current testbed. Logs were then verified for
conformity to intended semantics. Processor crash and receive omission failures where instrumented
by introducing a uniformly distributed random variable for each type of instrumented failure.
The current value of each variable was used to determine if the corresponding failure should be
introduced next. These values were computed periodically. The probability of each failure was
controlled by specifying the subrange of the corresponding random variable for which the failure is
introduced. Crash failures were introduced by letting the failed processor go to the crashed state,
from which it later recovers into the joining state to rejoin the group. Receive omission failures
were introduced simply by dropping the next incoming message. Logs were then manually checked
for order and atomicity of multicasts and membership changes, as well as agreement on membership
view. In a subsequent set of experiments, the instrumented failures themselves were logged too,

and logs were checked for correct failure detection as well.

To test the real-time behavior of the system, the protocol stack was configured with both ACSA
and R7TCast (with instrumented failures) present. Trace statements where used in the ACSA layer
to record message arrival times and deadlines. The RTCast was used to log the receipt time of each
message. It was verified that all messages guaranteed by ACSA made it to all destinations by their
respective deadlines, unless the destination crashed. The messages themselves, in all experiments,

were generated synthetically.
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7 Conclusions

In this paper we presented RTCast, a new multicast and membership protocol to support fault-
tolerant real-time applications. Qur approach follows the process group paradigm in which a
group of cooperating processes perform application tasks. We combine the flexibility of an event-
triggered approach with bounded message transport and immediate message delivery upon receipt,
without sacrificing order, atomicity, and agreement. In addition, RTCast supports on-line admission
and schedulability analysis of periodic and dynamically arriving aperiodic messages. Finally, our
implementation separates support for group management and fault-tolerant multicast from that of
system timeliness by dividing functionality into two distinct layers, RTCast and ACSA respectively.
The design is such that RTCast may be used alone if support for hard real-time guarantees is not

required.

As with other group membership protocols we do not solve the distributed consensus problem;
instead we occasionally conclude that an operational process has crashed. In this case the “crashed”
process is forced to explicitly rejoin the group. Since our target domain is those applications which
require hard real-time support, it is imperative that we provide failure detection and consistency
in bounded time. As a result when messages are not received, or received late, we eliminate the
receiver from membership. Similarly, when a token is not received by the specified time, we assume
that the sending process has crashed. This allows remaining group members to reach agreement on
membership and message order in bounded time. We argue that this is a valid tradeoff in a hard
real-time system. Processes waiting for the omitted message would otherwise miss their deadlines,

thus eliminating the processor is a natural thing to do.

As discussed in Section 1, RTCast represents part of a larger middleware service architecture
providing group communication support for embedded real-time applications. As such, our current
implementation realizes a subset of the suite of services outlined in Figure 1. We intend to improve
the current preliminary implementation and continue toward the goal of developing a composable
toolkit for provision of group communication support. Further areas of research on RTCast in par-
ticular include additional experiments to better characterize the performance and failure detection
capability of the algorithm, investigation into techniques to exploit broadcast networks such as
FDDI by fine-tuning the algorithms, and an extension of the protocol to support multiple process

groups running on overlapping processors.
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8 Appendix

In this appendix the properties of the multicast algorithm, namely order, agreement and atomic-
ity are proven. In the following receiving a message will signify the event of receiving it by the
RTCast protocol layer. Delivering a message will refer to delivering it to the application. Let the
membership view of some processor A be denoted Vy.

Lemma 3: The multicast algorithm guarantees order. That is, for any two messages m; and m;,
if some processor A delivers m; before it delivers m;, then no other processor B, with Vg = Vj
delivers m; until it has delivered m;.

Proof : The property is proved by noting that messages are received in the order they were sent.
More precisely, if processor A delivers m; before m;, m; must have been sent before m;. Thus m; is
either received before m; by processor B, oris lost. In the former case m; is delivered before m;. In
the latter case processor B detects message loss and identifies the sender(s) of the lost message(s)
upon the receipt of the next message following the lost one(s) as described in Section 4.2. Processor
B detecting a missing message m; will crash, unless the sender of the lost message is not in Vp.
But since Vg = V4 and processor A delivered m;, it must be that m,; is in V4 and thus is in Vp
too. Hence, processor B crashes, i.e., it does not deliver m; unless it delivered m,;. O

Next we prove agreement. That is to say, we shall prove that processors in a group always agree
on group membership. First, consider the following lemma.

Lemma 4: For any two processors, A and B, if V4 = Vg after both processors receive some
message m;, then V4 = Vg after both processors receive any message m;, such that m; is sent
after m,.

Proof: We shall prove this lemma by induction on the number of messages sent within the multicast
group. By induction hypothesis, let V4 = Vg after both processors receive some message m;_,.
Let m; be the next message received by both processors.

e If n = 1, no messages have been missed by either processor. Thus V4 = Vpg after receiving
m;.
o If n > 1, then messages m;_p41, ..., mj_1 have not been received by both processors. We

have to cases:

— All of these messages have not been received by any of the two processors. In this case
we still have V4 = Vg (unless one or both of these processors crash).

— There exists some message received by one processor but not by the other. Let m;_; be
the most recent such message. Without loss of generality, assume A received it but B did
not. In this case when B receives m;, a receive omission is detected. Let C' be the sender
of m;_j. Since A received m;_, C' must have existed in V4 = Vp after mj_n7. Thus,
B will crash upon the receive omission from C' (trivially satisfying the lemma) unless the
sender of m;_j, say C, was eliminated from Vg by the next message it received, namely

If C joined the group after mj_n, and since a new member does not join the group unless it has verified agreement
on membership, then B knows of C' too
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message m;. But if m; eliminates C' from membership then either A or B must crash
upon receiving m;. This is because a message, e.g. m;, eliminating a processor from
membership, e.g. C', also indicates the last message sent by the eliminated processor.
A processor receiving the membership message m; will crash unless it has received all
messages from the eliminated processor, C', up to the one indicated in m;. Since A and
B have received a different number of messages from C' (A received m;_j, but B didn’t)
at least one of them will crash upon receiving m;, satisfying the lemma.

The above cases prove the lemma O

Next we prove the following stronger result.

Lemma 5: For any two processors A and B, if B € V4 and neither processor has crashed, then
V4 = Vg after the current round of the token.

Proof: When first started, processor A makes a singleton group containing only itself. If B € Vy,
then one of following must have happened since A was started :

e Processor A joined a group containing B. Note that in order to join the group, processor A
sends a join request and waits for join_acks, which also contain group membership. Processor
A joins the group, with the indicated membership, only if it has received, within a single
round of the token, join_acks with the same membership view from every processor indicated
in that view, and if that view is precisely the set of processors from which the join_acks
have been received in addition to itself. This guarantees that all processors agree on group
membership when a new one is admitted to the group. Thus, for any processor B € V4, we
have Vg = V4 which satisfies the lemma.

e Processor A receives B’s join message: In this case, if B eventually joins the group, it must
have received A’s join_ack thus satisfying V4 = Vp, otherwise B does not become a member,
and behaves as if it crashed. Thus, if B € V4, and neither processor crashed, then V4 = Vpg.

The above two cases show that when B is added to A’s membership view, both processors have the
same view, V4 = Vg. By the Lemma 4, if V4 = Vg is initially true, then V4 = Vg remains true
after the receipt of any message m; by both processors unless one or both of the processors crash.
Thus, to prove Lemma 5, it remains to note that if no messages are received by both processors for
one round of the token, processor A will not have received a message from B during that round (B
is assumed to receive its own messages). Therefore, either A crashes on a receive omission from B
or it must be that B ¢ V4. In other words, if A hasn’t crashed, and B € V4 then there exists a
message received by both A and B in the last round in which case the lemma is satisfied. O

Corollary 1: For any two processors A and B, if B ¢ Vj4 and neither processor has crashed
then A ¢ Vg after the current round of the token.

Proof : By contradiction, if A € Vg then, by previous lemma, after the current round of the token

B € V4, but that is a contradiction since B ¢ V4. Thus A ¢ Vp. O

The agreement property is a direct consequence of the above.
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Lemma 6: The membership algorithm satisfies the agreement property. That is, every running
processor belongs to some set G, such that for every running processor B € G, Vp = G.

Proof : Consider some processor A with membership view V4. Let G be the set V4. By the previous
lemma, for every processor B in Vy, since B € V4, then Vg = V4. Substituting G for V4, we
prove the statement of the lemma. O

Next we prove atomicity.

Lemma 7: Every message m; sent by some processor A to the processors in Vy4, is delivered by
every processor in V4, unless it crashes.

Proof : Every processor B in V4 either receives the message, in which case it is delivered, or detects
a message loss from A. In the latter case :

o If A € Vg, then B will crash.

o If A ¢ Vg, then by the corollary, B ¢ V4 after the current round of the token, i.e., from
A’s standpoint, B has crashed. This case happens when the network partitions. Processors
on either side of the partition will think the ones on the other side have crashed.

This proves the lemma. O

Theorem 2: The proposed multicast and membership service guarantees order, atomicity, and
agreement under the given assumptions and failure semantics.

The proof follows directly from Lemma 3, 7 and 6.
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