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Abstract

This paper describes an experimental assessment of the Upper Atmospheric Research Collaboratory
(UARC), an object-based distributed system. For the past three years, the UARC software system
has enabled space scientists to collaborate on atmospheric experiments in real-time over the Internet.
The UARC system provides a means for its users to view data from remote atmospheric instruments,
share annotations of that data, discuss experimental results in a chat window, and simultaneously edit
text manuscripts. However, UARC’s distribution of atmospheric data to this geographically dispersed
group of scientists is its primary mechanism for effecting their collaboration. This paper investigates the
impact of UARC’s implementation as a large distributed object-based software system as a means for
supporting wide-area collaboratories. Specifically, it focuses on the communication performance and scal-
ability of its object-based data distribution mechanism. First, Internet microbenchmarks are presented
which characterize the UARC topology; then the results of application-level experiments are described
that investigate UARC’s use of NeXTSTEP’s Distributed Object method invocations as a communica-
tion primitive. Finally, an analysis and discussion of the UARC system’s object-based implementation
concludes the paper.
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1 Introduction

The Upper Atmospheric Research Collaboratory (UARC) project is a multi-institution research effort, whose
focus is the creation of an experimental testbed for wide-area scientific collaboratory work [4]. This testbed
is implemented as a large object-based distributed system on the Internet. The UARC system provides a
collaboratory environment in which a geographically dispersed community of space scientists perform real-
time experiments at a remote facility in Greenland. Essentially, the UARC project enables this group to
conduct team science without ever leaving their home institutions. This community of space scientists has
extensively used the UARC system for over three years, and has expressed a high degree of satisfaction with
its mechanisms for remote collaboration. During the winter months, a UARC campaign takes place almost
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every day; the scientists use the term campaign to denote one of their experiments. This community has
grown to include regular users from such geographically diverse sites as SRI International in Menlo Park,
California; the Danish Meteorological Institute; the Universities of Alaska, Maryland, and Michigan; and
the Lockheed Palo Alto Research Laboratory.

The UARC system provides a variety of services to its users including shared window data displays,
multiparty text chat windows, a shared annotation database, and a distributed text editor. However, the
primary mechanism for collaboration is the distribution of atmospheric data to the experiment’s participants.
This data is collected at a remote site in Kangerlussuaq, Greenland, and is distributed over the Internet
to the scientific collaboratory. The types of data distributed include radar, Fabry-Perot interferometers,
Allsky-imagers, and magnetometers. This data is then displayed to the scientists in real-time during which
additional collaboration can take place, such as annotation of the data, discussion of the results, or the
remote direction of the instrument operators in Greenland. All of this occurs over the Internet.

Over the last several years, during the exponential growth of the Internet, the UARC scientists have
noticed a marked decrease in the system’s performance. This paper investigates the impact of UARC’s
implementation as a large distributed object-based software system on its communication performance.
Specifically, it focuses on the performance and scalability of its object-based data distribution mechanism;
for additional information on the UARC system’s tools and architecture, refer to [9, 12, 18, 19, 21, 24, 26, 27].
First the results of a series of Internet UDP experiments are presented that describe the UARC topology’s
end-to-end loss and latency characteristics. After which, the results from a series of UARC application-level
experiments are presented. These experiments identify the system’s application-level characteristics; and
quantify the effects of implementing its data distribution mechanism with NeXTSTEP’s Distributed Object
subsystem. Specifically, the paper shows that by failing to control its communication policy and by relying
on the relatively inflexible policy set by the underlying Distributed Object subsystem, UARC’s performance
and scalability suffers. The remainder of the paper is organized as follows: Section 2 describes the overall
UARC architecture; Section 3 outlines the experimental apparatus; Section 4 details the Internet UDP
experiments; Section 5 contains the results of the application-level UARC experiments; and finally Section
6 provides a discussion and conclusion.

2 TUARC Architecture

The UARC 5.0 software system uses three separate components to distribute atmospheric data: UARC Data
Suppliers, the UARC Server, and UARC Clients. Figure 1 shows how these components work together. The
Data Suppliers are located near the atmospheric instruments in Greenland. They package the raw data and
send it over the Internet to a UARC server at the University of Michigan. This server then distributes the
data to all the connected clients. Generally, each atmospheric instrument is associated with its own Data
Supplier during a UARC campaign. The total number of UARC Clients connected to the Server varies,
depending on the level of interest in the experiment. To support the availability of data, a backup server
takes over the data distribution service if the primary UARC Server fails.

NeXTSTEP and Objective C [22], were chosen as the UARC system’s platform and implementation
language because they provided a rich software development environment. This environment facilitated the
creation, maintenance, and extension of the wide variety of collaboratory tools the UARC system provides.
Their support of objects at the system level made the development of familiar user interface idioms such
as the ability to drag-and-drop data objects between UARC’s collaboratory tools simple. It was natural
to combine the three UARC components using NeXTSTEP’s Distributed Object subsystem [23] to form a
single distributed system. Thus, in UARC 5.0, Distributed Object method invocations are used to trans-
parently send atmospheric data between the components over the Internet. These method invocations are
implemented as reliable TCP streams. As such, the UARC system effectively provides a multicast data
distribution service using multiple point-to-point network connections. This is similar to the graph-based
NNTP protocol [10]; data distribution over the World Wide Web using HTTP [1]; and the Unidata weather
distribution system [8].

The topology covered by the UARC system represents a broad cross section of the Internet’s current
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Figure 1: UARC 5.0 Architecture

physical network layer. The Data Suppliers in Greenland communicate with the rest of the Internet over
a slow serial line interface (56 Kbaud) to a high bandwidth, high latency satellite connection to Goddard
Air Force Base. The UARC Server, several space scientists, the UARC software development team, and
administrative support are all located at the University of Michigan, a large network composed of multiple
10Mbps ethernet LANs connected by a 100Mbps FDDI ring. The remainder of the UARC community is
distributed throughout North America and Europe, with high concentrations of space scientists in Denmark,
California, and Florida. They are all connected by varying degree to the high speed, low latency Internet
backbone.

3 Experimental Setup

A broad range of experiments were conducted to determine the UARC system’s performance characteristics.
These experiments fell into two distinct categories: those constructed to determine the characteristics of the
underlying UARC network topology, and experiments designed to evaluate the application-level performance
of UARC under various network conditions. The first group of experiments consisted of tests that measured
the packet loss and latency over the UARC Internet toplogy, as well an experiment that determined this
topology’s routing stability. The second group of experiments measured the UARC system’s overall message
latencies and loss statistics. These experiments characterized the overhead of NeXTSTEP’s Distributed
Object subsystem and TCP in the UARC system’s Data Suppliers, Server, and Clients.

The machines used in our experiments also fall into two distinct categories: machines local to the Uni-
versity of Michigan, and those distributed over the internet. We make this distinction because the UARC
server 1s located at the University of Michigan. These machines and their locations are listed in Table 1.

4 Underlying Network Characterization

Before we began our application-level UARC experiments, we wanted to quantify the Internet’s congestion
by measuring the end-to-end loss and latency characteristics of UARC’s distributed system topology. We
knew that the UARC system performed significantly worse during the day (Eastern Daylight Time) than at
night. However, we felt that quantifying these statistics were important to a full understanding of UARC’s
Distributed Object and TCP behavior. Three long-term experiments were conducted to measure these
characteristics: an experiment that measured the packet loss between the UARC Server and Client hosts;
an experiment that measured the packet latency between these hosts; and finally, an experiment which
determined the stability of UARC’s Internet routing topology.



| Name | Location | Processor | Memory |
ariadne | U Michigan (EECS) Intel Pentium 16M
jupiter U Michigan (EECS) HPPA (7100LC) 32M
oosik U Michigan (SPRL) MC68040 16M
pluto U Michigan (EECS) MC68040 16M
pollux U Michigan (CREW) MC68040 32M
saturn U Michigan (EECS) MC68040 16M
uranus U Michigan (EECS) MC68040 16M
viera U Michigan (SILS) Intel 486 24M
allsky Lockheed MC68040 16M
dmistp Denmark MC68040 16M
oberon SRI (California) MC68040 32M
saarullik | Greenland MC68040 16M
uiris U Maryland MC68040 16M
ugeo NSF (Washington DC) | Intel 486 24M
uisr U Alaska Intel 486 24M
udemo Florida MC68040 16M

Table 1: Machine characteristics used in experiments.
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Figure 2: Setup for Udping test

4.1 Characterization of Packet Loss in the Topology

A characterization of the raw IP packet loss in a time-dependent fashion was the focus of this experiment.
It was necessary to understand the raw packet loss in the UARC’s Internet topology to adequately explain
the behavior of the system’s Distributed Object implementation. At first we used ping to measure this loss,
however there was some concern that congested routers would deal differently with ICMP packets than TP
data packets and thereby inflate the loss statistics. We then built and deployed a UDP-based ping program,
udping which is similar to previous measurement programs [2, 28]. The general udping experimental setup
is shown in Figure 2.

The experiment consisted of sending a udping packet from the UARC server to several UARC Clients
and Data Suppliers every ten seconds. This interval was chosen so that the probability that a packet was
lost would be relatively independent of the other packets in the experiment. The experiment was conducted
over a period of approximately one month. Table 2 lists the machines that participated in the experiment.



Name | Location |
allsky Lockheed

ariadne | U Michigan (EECS)
dmistp Denmark

oberon SRI (California)
pollux U Michigan (CREW)

saarullik | Greenland

umd U Maryland

ugeo NSF (Washington DC)
uisr U Alaska

udemo Florida

Table 2: Participants in udping packet loss and latency experiments

The graphs in Figure 3 summarize the round trip packet losses to a representative subset of the participants.
Each point in the figure represents the packet loss experienced over a ten minute interval. The gaps in the
graphs indicate periods during which the test was stopped, either for UARC campaigns, or a due to a crash
of the server machine. It 1s clear, from an examination of the graphs, that packet loss is dependent on the
time of day, and the day of the week. About 11:00am to 10:00pm EDT seems to be the most congested
period of the day, corresponding to the general office hours of the continental United States. This would
seem to confirm one space scientist’s opinion that, “Night time is a good time for science!” Weekends appear
much less congested than the weekdays. Keep in mind that a lost packet in Figure 3 represents a UDP
datagram packet that did not make it both directions, and does not represent a unidirectional loss statistic.

An interesting feature of Figure 3 are the vertical bars which indicate a failure along the route. During
these intervals, neither the udping server or client machines have crashed, yet for ten minutes at least
60 consecutive udping packets are lost between the hosts. By comparing the times of these occurrences
between the four graphs, one can tell which parts of the internet are reachable from Michigan, and which
are disconnected. A detailed analysis of these results are beyond the scope of this paper, but are nonetheless
interesting. Finally, the data suggest that sustained round-trip packet losses of approximately 5% to 20%
occur each weekday during the United States’ afternoon and early evening, a troubling measurement of
the Internet’s load. For our purposes, it is clear that there are two main times to run application-level
experiments: during the busy daytime hours, and during the relative calm of the late night and early
morning.

4.2 Characterization of Packet Latency in the Topology

This experiment characterized the raw IP packet latency over the UARC Internet topology in a time-
dependent fashion just as the previous test characterized the packet loss. Again, this raw packet latency
is helpful in understanding the higher-level behavior of distributed objects. In this experiment, ten udping
packets were sent 300ms apart every five minutes from the UARC server to the Clients and Data Suppliers
listed in Table 2. The interval of 300ms was chosen so that it would be short enough to keep the remote
udping server in memory, and long enough to not overflow intermediate router buffers. The round-trip time
was computed by sending a timestamp in the udping packet, and then comparing it to a second timestamp
taken upon receipt of the echo. A sample of the results from one such experiment is shown in Figure 4.
This figure summarizes the round trip UDP datagram latency for a representative subset of the experiment’s
participants. As in the previous figure of packet loss, the gaps in these graphs are due to a stoppage of
the experiment. Note that the latency scale for dmistp, the host in Denmark, is an order of magnitude
greater than those in North America. This reflects the observations of the space scientists in Denmark, who
consistently experience high latencies in their collaboratory actions. Again, there seems to be a correlation
between latency and the time and day of the week. However, there are some anomalies, such as the behavior
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Figure 3: Measured round-trip UDP datagram packet loss as a percentage of ten minute aggregation units
between a UARC Server host at the University of Michigan (ariadne) and several UARC Client hosts during
May and June 1996.

of oberon on Thursday June 6, that we cannot explain. These provide anecdotal evidence for some of the
seemingly random behavior observed in our distributed system by the space scientists.
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Figure 4: Measured UDP datagram round trip latency, in seconds, between the University of Michigan
(ariadne) and several UARC Client hosts during June 1996. using udping.

4.3 Topological stability

Although the results of the previous two experiments showed fairly consistent loss and latency characteristics,
we felt that our intuition about UARC’s underlying Internet topology would be strengthened by some
knowledge of its routing stability. To this end, we conducted an experiment using the traceroute facility.
At periodic intervals during the experiment (typically 2-4 hours), simultaneous bidirectional traceroutes were
started between the UARC Server and a Client. The results of this experiment showed that for almost all
of the Server to Client routes in the topology, a stable, symmetric, route exists with symmetric latencies.
That is, there is a single dominant route between the two points that did not change for the duration of
our experiment, and that packets sent from the Server to a UARC Client, would return over roughly the
same route. The only exception to this was the route from the University of Michigan to the Client host
in Denmark (dmistp), which for a period of about a day took a longer symmetric route than at any other
time. This experiment confirmed that most of the variation in packet loss and latency from the previous two
experiments were primarily due to congestion, and not to unstable routes. The goals for this experiment
were to look only at the stability of UARC’s portion of the Internet, and were not meant to provide a general
characterization of Internet routing stability as described by Paxson [25].



5 UARC 5.0 Experiments

With a solid understanding of the UARC topology’s Internet characteristics, application-level UARC exper-
iments focused on investigating its Distributed Object implementation were undertaken. The goals of these
experiments were: to determine the consequences of using a high-level language construct, namely object
method invocations, as a mechanism for supporting asynchronous message passing; to quantify the effects
that slow, poorly connected clients have on fast, well-connected ones; to measure the system’s performance
under the current space science campaign parameters; and finally to determine the scalability of UARC’s
data dissemination service through a series of stress tests. As was discussed in Section 2, the UARC system
consists of Data Suppliers, a Server which acts as a distribution point, and any number of Clients. With
these components, the significant parameters in the UARC data distribution experiments were:

o The Number of UARC clients connected to the server.
e The Placement of UARC clients at either hosts local or remote to the UARC Server.

e The Placement of UARC Server at various hosts. For all of our experiments, the UARC Server was
local to Michigan due to administrative constraints.

o The Number of Suppliers which supply test data.

e The Bandwidth of a Supplier, varied by setting the amount of data to supply, and the period over
which it sends.

e The Placement of Suppliers at either local or remote hosts.

e The Underlying network conditions for a given experiment.
The primary statistics collected during our UARC experiments were:

o The Message Latency between points in the distribution tree: Suppliers, Server, and Clients.

e and Message Loss between these points.

The use of the term message in these statistics comes from the fact that the Distributed Object method
invocations are only used to send messages between the UARC components. The term message is easier to
use, and will represent the action of invoking one of these methods in the remainder of the paper.

Figure 5 shows the general setup for the application-level experiments. The Data Suppliers are either in
Greenland (saarullik), or local with respect to the UARC Server in Michigan (pollux or saturn). The
UARC Server feeds the data messages to a varied number of Clients which are scattered both locally and
globally. A timestamp is written into the data message’s contents as it flows down the distribution tree. Each
message’s timestamps are written to a log file upon receipt at the UARC Server and Clients. By analyzing
these log files offline, the experiment’s message loss and latency statistics can be extracted.

Since the analysis of data in these experiments relies on timestamp information, a method for synchroniz-
ing the clocks on the system’s hosts must be applied. All of the machines in these experiments were running
xntpd which could not be disabled due to administrative constraints. In order to compensate for skewed
clocks, at periodic intervals during the testing, a snapshot of the clock skew was taken. These snapshots were
taken using a probabilistic clock synchronization technique, similar to the protocols developed by Cristian
[3]. Specifically, the udping client and servers were used to exchange timestamp information between two
hosts at one second intervals for two minutes. From this information the mean round trip time between
the hosts along with its standard deviation was computed. Assuming the routes were symmetric, which
the traceroute data indicated, the clock skew can be determined by taking the difference in timestamps
between the two hosts and subtracting half of the average roundtrip time. This time skew between hosts
was then used to normalize the timestamp logs to a single clock. Multiple snapshots were taken during the
experiments to verify that the clocks didn’t change significantly.
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Figure 5: UARC 5.0 experimental setup

5.1 Effects of Distributed Objects

This first set of experiments is used to show the immediate consequences of using Distributed Object method
invocations as the UARC system’s message passing primitive. Again, the reason for this choice of mechanism
grew out of the broader system implementation as an object-based distributed system. This choice made
the development of high-level collaboratory tools, such as the shared window support, data augmentation,
and user interface idioms such as drag-and-drop, much easier. Not coincidentally, it made the development
of the UARC data distribution mechanism simpler as well. This experiment, along with the following sets
of experiments, quantifies the costs of that design choice.

A more detailed understanding of UARC’s Distributed Object implementation is helpful in interpreting
the results of our experiments. In the UARC system, instrument data is represented by an Objective C
object. To send this data to a remote machine, a Distributed Object method invocation is used with the
instrument data object as a parameter. Both the Supplier and Server use this method invocation mechanism
to send UARC data down the distribution tree. To increase performance, these methods are defined as
asynchronous invocations with no responses, or oneway void methods in Distributed Object parlance. That
means that the method invocation returns immediately upon delivery to the Distributed Objects subsystem,
and does not wait for a return value. This is equivalent to sending an asynchronous message. This oneway
void construct is one of the few ways the UARC application code is able to control its communication policy.
In this case 1t was able to chose between synchronous and asynchronous message passing mechanisms.

In general, the UARC system has no control over the communication policies that Distributed Objects
uses for message transport. The Distributed Objects transport mechanism is derived from the Mach Netmsg
server [17, 29], which in turn uses TCP for interhost communication. When a local object invokes a remote
method, the Distributed Object subsystem creates a persistent TCP connection between the two hosts. This
connection is used for all communication between the two objects, including subsequent method invocations.
This avoids unnecessary TCP setup and teardown costs for repeated method invocations. When a remote
method’s activation record is delivered to the Distributed Objects subsystem, it is eventually placed on a
queue that is bound to the persistent TCP port. These method invocations are delivered in a FIFO order
to the remote application’s respective object. It is in this way that the UARC data is disseminated: first a
Distributed Object method invocation copies the atmospheric data object from the Supplier to the Server;
then the server makes another method invocation that copies the data object to the Client. Since the
Distributed Object layer uses TCP for its transport, the natural question arises: how and where are data
messages lost? To answer this, several experiments were conducted.

The first experiment overloads the bandwidth on the link between the Supplier and Server to determine
its loss characteristics. Specifically, a UARC Data Supplier was started on UISR in Alaska that supplied a
Server and Client on saturn at the University of Michigan. The TCP throughput between UISR and saturn



was informally measured to be about 25.36 KB per second at the time of the experiment using FTP. The
Supplier fed 40000 bytes of data once per second, which was roughly twice the link’s capacity. Figures 6 and
7 show the results from the first four minutes of this experiment.
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Figure 6: The effects on communication latency of overloading the network bandwidth between a UARC
Supplier and the Server as seen from the application layer.

The points in Figure 6 represent messages that are successfully transferred from the Supplier to the
Server; or in object parlance, the Supplier’s remote method invocations that are executed on the Server.
The horizontal axis represents the timestamp given to the message by the Supplier. The vertical axis
represents the message’s latency between the Supplier and Server (the difference in their timestamps). If
every message got through, the graph would show successful messages at one second intervals; it does not.
Along the horizontal axis are crosses which indicate points at which a one second interval occurred for which
the server saw no corresponding message (a data message was lost). The sawtooth pattern indicates that
a buffer is being filled either in the Distributed Object subsystem or the NeXT Mach kernel. What is
surprising, is that once the buffer fills, no other messages are queued until the buffer drains. It turns out
that the type of method invocation the UARC Supplier makes, uses a flag that blocks the invocation when
the buffer space is full. It is therefore only an asynchronous method invocation when the message can be
stored in the buffer. We surmise that the Distributed Object subsystem is only reactivated by the NeXT
Mach kernel after some low watermark is reached, at which point the application regains control. In effect,
the missing messages are never sent, since the single threaded Supplier is suspended from execution.

The graph in Figure 7 demonstrates that even though the Supplier periodically pauses during its execution
as shown in Figure 6, the Server is continually receiving packets in an uninterrupted manner from the
Supplier’s transport layer. The points in the graph represent successfully delivered messages. The horizontal
axis represents the messages’ Supplier timestamp values. Notice the periodic gaps in the horizontal direction.
These gaps correspond to those from figure 6. The vertical axis represents the timestamp at the Server when
the message is received from the Supplier. Notice that, no significant gaps are present here, and in fact the
inter-reception spacing is uniform, implying a uniform network bandwidth used by the Supplier. This shows
that Distributed Object’s transport mechanism manages the available network bandwidth evenly.

The second experiment focused on the link between the Server and the Client. In this experiment, the
Supplier and Server ran locally on saturn, while the single Client ran remotely on UISR in Alaska. Again,
the link to Alaska was overloaded with a data feed of one 40000 byte message per second. Figures 8 and 9
show the results from the first four minutes of the experiment.

Figure 8 represents information similar to that shown in Figure 6, where the points indicate successful
messages. However, the the horizontal axis in Figure 8 represents the timestamp value given to the message
by the Server, and the vertical axis represents the latency from the Server to the Client. The crosses that
lie along the horizontal axis represent unsuccessful method invocations (messages) that are dropped at the

10
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Figure 7: Arrival times versus send times for messages on an overloaded UARC Supplier to Server link.

=
o
|

=
o
|

—— Received Message
+  Dropped Message

Communication latency from Server to Client (sec)
(5]
|

J T T 1 T T T
0 30 60 90 120 150 180 210 240

Message's Server reception timestamp value (sec).

Figure 8: The effects on communication latency of overloading the network bandwidth between a UARC
Server and a single Client as seen from the application layer.

Server. This figure displays a more intuitive result than the previous experiment. In this experiment,
Distributed Object invocations initially fill a buffer; after which, as messages are delivered and buffer space
is reclaimed, subsequent packets are added to the buffer. The difference between these results and those
of the previous experiment are due to the multithreaded implementation of the UARC Server in which
separate threads handle the incoming data messages. Instead of blocking when the buffer is full, the Server’s
method invocations are flagged to return immediately with an exception. This exception is ignored, and the
message 1is discarded, which gives the appearance of a truly asynchronous message facility. This produces an
interleaving of successful and failed messages, unlike the previous experiment where a clumping of successful
messages is followed by a block of presumed failures. Figure 9 supports this result by displaying an absence
of significant gaps in either the Server or Client timestamps.

These results show another attempt by the UARC server to control its communication policies; which
meets with only limited success. The Distributed Object subsystem extends very little power to the UARC
application for the management of its buffers. In this case the only options are whether to block and hold

it until there is space, or discard the latest message. No provisions for urgent messages or alternative drop
mechanisms are present.

11
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Figure 9: Arrival times versus send times for messages on an overloaded UARC Server to Client link.

5.2 The Adverse Effects of Slow Clients

During the scientific campaigns, it was observed that certain UARC Clients couldn’t keep up with the Sup-
plier’s data rate; thereby losing a significant amount of atmospheric data. Furthermore it was speculated
that these slow clients were somehow affecting the performance of the rest of the system due to interdepen-
dencies in the Distributed Object subsystem. This experiment attempts to quantify the effects, if any, that
a slow UARC Client has on a fast one. Two Clients are connected to the UARC Server in this experiment:
the first by an underutilized link, the other by a link loaded beyond its capacity. Specifically, the Supplier
and Server for the experiment are located on saturn; the fast Client, uranus, is only three routing hops
away on our local campus network; and the slow Client is located on UISR in Alaska. A Supplier feed rate
of one 40000 byte message every second was used. The experiment took place on Monday, June 10, 1996
starting at approximately 11:26am EDT. Figures 10 and 11 show the results from the first two minutes of
the experiment. These results are consistently obtained during other experiments using different Clients.
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Figure 10: Slow UARC Clients adversely affect Fast UARC Clients

The information represented in Figure 10 is similar to that given in Figure 6, where points in the graph
represent successful messages, and the horizontal axis represents the initial timestamp given to the message
by the Supplier. It differs, in that the vertical axis represents the overall message latency from the Supplier
to the Client. At the beginning of the test, only the fast Client, uranus, is connected to the Server. It is
clear that the latency for messages during this time is very small, only a fraction of a second. However,
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about a minute into the experiment, the second Client at Alaska, UISR, is added. It is apparent that the
latency to the local Client increases dramatically at this point, being adversely affected by the addition of
the second client. The explanation lies with the interaction of the UARC code and the Distributed Object
subsystem. When the second Client is added, the Server’s single Distributed Object buffer begins to fill with
the overloaded link’s messages. The Server’s code is written so that it makes a separate method invocation
to each Client for every message. This is equivalent to sending separate point-to-point messages to each
Client. When the Distributed Object buffer is full, there is contention between the fast and slow Clients for
space. It is this contention for resources which increase the latency. To further explain this interaction, a
machine on the same ethernet as the Server ran tcpdump [15] to catch all of the packets exchanged between
the UARC Server and the two Clients. Figure 11 shows these results.
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4000000 . TCP Data packet to UISR (Alaska) s ¥
) x Distributed Objects ACK from UISR ¥
5 #
£ #*
S 3000000 ] £
z +F
3 e ¢
A7 Pl ol
§ #*’ M”(x
-+
§ 2000000 wﬁ* x
s
o
o d,ﬁ*’#
= o
1000000 ¢
e
A
"o
4
o
0 T T T
0 30 60 90 120

Timeduring experiment (seconds)

Figure 11: TCP packets between the UARC Server and both the well-connected and slow UARC Clients.

The two lines in Figure 11 represent the TCP traffic between the UARC Server saturn and the two hosts,
uranus and UISR. The horizontal axis represents the same time as Figure 10. The vertical axis represents the
TCP sequence number for a given point. A dot represents a point where tcpdump saw the Server send a 512
byte data packet to a Client. The cross and rotated cross represent points at which the Clients sent the Server
twenty bytes of data piggybacked onto a TCP acknowledgment packet. These twenty byte acknowledgements
occur every 40000 bytes into the data stream. We surmise that these are object-level acknowledgments sent
by the Client’s Distributed Object layer to the Server. Note that during the first minute while only the fast
Client was connected, there are no gaps in its TCP service. However, once the slow client is added, the fast
client’s TCP packets are clumped together in bursts, thereby increasing the latency of their distribution.
In contract, during this same time period, the Server almost continually transmits data to the slow Client.
It is also interesting to note that during this portion of the experiment the Server only dropped about 3%
of the messages it tried to send to the fast client, while it dropped 79% of the messages it tried to send to
Alaska. It is hard to determine the cause for these phenomena without a more detailed knowledge of the
NeXT Operating System and Distributed Object subsystem. Some possibilities include the scheduling of the
NeXT Netmsg service; the presence of some feedback mechanism in the Distributed Object subsystem that
somehow gives priority to slower clients; or just an artifact of the NeXT Operating System’s implementation
of TCP/IP. Regardless of the causes, it is clear that the addition of slow UARC Clients adversely affect the
entire UARC system, confirming our initial observations.

5.3 UARC Campaign Experiments

The third set of UARC experiments measured its performance under campaign conditions. Of particular
interest, was the performance of the Internet route between Greenland and Michigan, which includes the
low-bandwidth, high-latency NASA satellite link. During a typical campaign, the following four types of
atmospheric data are supplied from a host, saarullik, in Greenland:
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o A Fabry-Perot interferometer, that generates a 250 byte data message every three minutes.
e An IRIS magnetometer, that generates 1500 bytes of data every minute.

e The Sondrestrom Radar, that produces 5300 bytes of data every five seconds.

e and the Allsky Camera, that generates 20000 bytes every minute.

The network conditions were varied by running the experiments twice on Thursday, May 30: once at
4:00pm EDT on a busy network; and again starting at 10:51pm EDT. The host in Greenland supplied data
to the server pollux at Michigan. The number of Clients connected to the Server was increased from one
to six over the length of the experiment to show the effects of loading the Server. These clients were all
remote and included: UISR (Alaska), UGEO (NSF Washington DC), UIRIS (University of Maryland), A11sky
(Lockheed, California), and Dmistp (Denmark).

The results shown in Figure 12 detail the amount of data lost between the four Suppliers in Greenland
and the UARC Server at Michigan. The horizontal axis represents the number of Clients connected to the
Server during the experiment; while the vertical axis represents the percentage of data lost between the
Suppliers and the Server. The graphs show that during busy time, roughly a third of the messages are lost,
while during the night, almost all of the Supplier’s data safely arrive at the Server. Since the only traffic
on the Greenland satellite link during both experiments is generated by the UARC Suppliers, this marked
change in loss must be due to the congestion on the rest of the Internet. The random losses injected into
the Greenland Supplier’s TCP streams by background Internet congestion severely degrades the utilization
of the satellite link’s bandwidth by forcing TCP retransmissions to occur. Not shown in the graph are the
number of messages that are subsequently lost between the Server and Clients. During the night these
numbers are negligable, while during the day message loss ranges from 30% to 40% in the Six-Client test.
It’s fortunate that the scientists don’t often run experiments during the daylight hours, when the chance of
receiving data from Greenland is about one in two.
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Figure 12: Message Loss from UARC data supplier in Greenland (saarullik) to Server at U Michigan
(pollux)

Another interesting result shown in Figure 12, is that during both experiments the amount of data lost
between the Supplier and Server is fairly constant, regardless of the number of Clients connected. That the
losses do not seem to vary with the number of clients, is a little surprising since at 1ts peak of six Clients, the
experiment is pushing around 5600 bytes per second (since roughly a third of the supplied 1420 bytes were
lost between the Supplier to the Server). At this point during the Six-Client busy-network experiment, even
the fastest Client, UGEQ, lost about 40% of the messages sent to it by the Server. In contrast, in the Two-
Client busy-network test (UGEQ and UISR), both hosts experienced no message loss from the Server. These
results when added to those of the previous section imply that the outbound buffer is overflowing during the
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Six-Client busy-network experiment. The fact that the Server has no additional loss between these two tests
indicates that the incoming Distributed Object buffer is somewhat isolated from the overflowing outgoing

buffer.

—— UGEO (NSF Wash DC), Busy Network
~~~~~~ UISR (Alaksa), Busy Network

- - — UGEO, Non-busy Network

—--—- UISR (Alaska), Non-busy Network

3]
o
|

8
1

n
o
|

Elapsed time from Supplier to Client (sec)
1S 8
1 1

T T T T T T
0 60 120 180 240 300 360 420 480 540
M essage Departuretime at Supplier (sec)

Figure 13: Comparison of message latency between busy and non-busy networks

Figure 13 shows a comparison between day and night latencies. Specifically, this figure displays the
latencies for the first ten minutes of both a day and night experiment. In these experiments two Clients
are connected to the Server: UISR (Alaska), and UGED (NSF Washington DC). Although the latencies differ
between experiments, there is almost no message loss between the Server and these Clients. All of the
messages from Greenland arrive at both Clients at night. During the day, only two thirds of the messages
arrive, since a third of the messages are lost between Greenland and the Server. Thus, a UARC system with
even a lightly loaded Server and a congested feed experiences a significant degradation in both application-
level message loss and latency during the day.

5.4 UARC Stress Tests

The purpose of this final set of experiments was to determine the scalability of UARC’s data dissemination
service. Specifically, the tests were designed to determine whether the system’s bottleneck is its inherent
point-to-point distribution mechanism, or its implementation as a distributed object application. To find
the bottleneck, the amount of data fed by the Supplier was varied; whereas the number of clients were fixed
at six, two local and four remote. The Supplier and Server were on different machines at Michigan, pluto
and pollux. This was to obviate their contention for outbound buffer space, which would have occurred had
they been placed on the same machine. The Client machines were: saturn (Michigan), jupiter (Michigan),
allsky (Lockheed, CA), UIRIS (U Maryland), UISR (Alaska), and UGED (NSF Wash DC). The experiments
were run twice, once on a busy network and once late at night. To vary the load on the Server, the data
feed’s message size was increased from 5000 to 40000 bytes during the experiments. These data messages
were sent from the Supplier at one second intervals, which corresponded to a total server throughput that
ranged from 30 to 240 Kbytes per second.

Figure 14 represents results from experiments run on Tuesday, June 4 starting at 1:31pm EDT; and
Saturday, June 1 starting at 12:47am EDT. They show two of the six clients’ loss statistics under varying
throughput loads for both busy and non-busy network conditions. The graphs for the two Clients shown,
saturn and UISR, are representative of the results seen by the other UARC Clients. Similarly, the graphs
displayed in Figure 15 show the mean latency and standard deviation for these two hosts during the same
experiments. These results provide strong evidence that UARC’s data distribution service does not scale well.
It is intuitive that a point-to-point implementation of multicast would not scale; however these measurements
bring to light a more interesting point. Notice that during the 180 Kbps non-busy experiment, the UARC
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Figure 14: Time of Day effect on Message Loss. Each point represents the fraction of messages lost by a
specific client during a UARC stress experiment. During these tests the UARC Server was connected to a
total of six UARC clients (two local, four remote). The two clients shown in this graph are representatives
of their respective categories (saturn is local to the server, and UISR is remote).
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Figure 15: Time of Day effect on Message Latency. Each point represents the mean latency, accompanied by
its standard deviation, for a specific client during a UARC stress experiment. During these tests six Clients
were connected to the Server.

Server delivers barely half of the data messages to the local Client. We see this performance during the
middle of the night on a lightly loaded campus network! The load on the Server’s local ethernet is roughly
210 Kbytes per second, well below the point where half of the data should be lost. The same experiment
during the day loses almost 75% of the data between pollux and saturn. This is well below the daytime FTP
throughput between these hosts, which is consistently measured at approximately 230 Kbytes per second.
The data displayed in Figure 16 represent the message latency during the first six minutes of the 60 Kbps
busy-network experiment exhibited in Figures 14 and 15. It shows the latencies for all six of the connected
UARC clients during this interval. Note the spike at time 240. This feature, where all of the connected
UARC Clients simultaneously experience a dramatic rise in their message latencies, is observed in most
of the UARC experiments. It often is observed when the link bandwidth between the Server and one or
more of the Clients is overloaded. These spikes are a graphic representation of the limited scalability of the
UARC data distribution mechanism; they only rose in frequency and magnitude as the message size increased
during the experiment. Again, the explanation lies in our implementation of UARC using the Distributed
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Figure 16: All six UARC Client’s end-to-end latencies from Supplier to Client during the 60 Kbps busy-
network experiment. The data from saturn and UISR in this figure are expressed as two points in Figure 15.

Objects subsystem. Both the loss and latency characteristics in these experiments are determined by the
interaction among the various method invocation’s TCP streams in the Distributed Object subsystem. It is
our conjecture that slow Clients periodically monopolize most of the Server’s outbound buffer space, thereby
forcing the rest of the Clients to wait until some slow Client receives an object-level acknowledgement. At
this point the Distributed Object subsystem frees the contentious resource and allows the faster Clients to
continue.

From the data in these experiments, one can conclude that the network is not the UARC data distribution
mechanism’s bottleneck; but instead, that its implementation as a Distributed Object application is the
limiting factor in its scalability.

6 Discussion and Conclusions

The UARC object-based collaboratory has been heavily used over the past three years by a distributed
collection of space scientists who perform and evaluate atmospheric experiments in real-time over the Inter-
net. This paper described a broad set of experiments which measured the UARC system’s communication
performance. The results of both Internet microbenchmarks, and application-level experiments were pre-
sented; thereby generating a holistic picture of the system’s behavior. The results of the Internet udping
experiments in Section 4 showed that both packet loss and latency are dependent on the time and day of
the week; and that sustained round-trip packet losses as high as 5% to 20% are experienced everyday on
UARC’s portion of the Internet. The traceroute experiment determined that this part of the Internet’s
topology 1s stable and symmetric. The application-level experiments in Section 5.1 described how UARC’s
distribution mechanism loses data messages; and how a minor variation in the object invocation semantics
produce profoundly different message loss characteristics. The experiments in Section 5.2 demonstrated how
a slow Client can adversely affect the performance of a fast well-connected Client due to outbound buffer
contention. The results of Section 5.3 showed that congestion between Michigan and the satellite uplink
to Greenland, overwhelmed the otherwise unused satellite bandwidth with retransmissions, thereby causing
30% message loss from the Supplier to the Server. It also demonstrated that Distributed Object’s inbound
and outbound buffers are isolated from each other. Finally the experiments in Section 5.4 exposed the Dis-
tributed Object subsystem as the bottleneck in UARC’s scalability, and showed how the interactions among
the various Client data streams periodically cause dramatic increases in message latency. From these exper-
iments one can conclude that UARC’s data distribution mechanism does not scale well and is insufficient for
numbers of clients as small as six when distributing a moderate rate of data.

The UARC data distribution mechanism is a relatively small component in the overall UARC software
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system; a system that is the composition of many interrelated collaboratory tools [12, 26] developed on the
NeXTSTEP platform. NeXTSTEP’s Distributed Object package is a mature language-level tool for creating
a seamless distributed system from separate software components. The choice for using Distributed Object
method invocations as UARC’s communication primitive was made as a natural extension of the overall
object-oriented system design. The consequences of this choice are made apparent by our experimental
results. These results echo one of Lampson’s hints: Don’t Hide Power [13]. By relying on a fairly rigid
language-level primitive, the UARC system gave up the ability to control its network management policies.
Specifically, it allows slow clients to adversely affect fast ones, to the point where contention for shared
resources brings the system to its knees. The Distributed Object subsystem allowed the UARC application
very little control over its communication policies, and unwittingly allocated its resources in a manner that
caused severe performance penalties. We feel that the an important avenue for further work lies in providing
this policy control throughout the various protocol layers.

Clearly, any data distribution service implemented as multiple point-to-point data streams does not scale
well. Scalability could be improved by an order of magnitude by utilizing an Internet multicast mechanism
[5, 6]. The current integration between reliable multicast mechanisms [7, 11, 14] and language-level primitives,
such as object method invocations, is nonexistent; providing an excellent opportunity for further study. In
fact several organizations have just begun projects where Internet multicast is used to support communication
between groups of objects.

A solution for distributing data to a mixture of both fast and slow hosts will always be needed. As the
Internet evolves, slow hosts will not disappear, but will only increase; Fiber-To-The-Curb (FTTC) [30] alone
assures a long-term split between well connected business or educational hosts, and an entire class of slower
residential hosts. Although people have started looking at this problem (see McCanne [20]), it is far from
solved.

The computer industry’s collective shift towards object-oriented software development, is in many respects
a good thing. It allows the development of extensible, maintainable software systems; however particular
attention should be paid to the costs that accrue due to the use of language-level abstractions. Careful
attention should be paid during the implementation of these abstractions to allow for the use of the underlying
system’s full power and flexibility. Otherwise these abstractions give up most of the policy control that is
essential to the construction of scalable distributed systems.
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