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Abstract
We report on our preliminary studies of a new controller for a two-link brachiating robot.
Motivated by the pendulum-like motion of an ape’s brachiation, we encode this task as the
output of a “target dynamical system.” Numerical simulations indicate that the resulting con-
troller solves a number of brachiation problems that we term the “ladder”, “swing up” and
“rope” problems. Preliminary analysis provides some explanation for this success. We discuss
a number of formal questions whose answers will be required to gain a full understanding of the

strengths and weaknesses of this approach.

1 Introduction

This paper presents our preliminary efforts to develop a new controller for a two degree of freedom
brachiating robot. A brachiating robot dynamically moves from handhold to handhold like a long
armed ape swinging its arms as depicted in Figure 1. This study considers a simplified two-link point
mass lossless model with one actuator at the elbow connecting two arms, each of which has a gripper
(see Figure 2). Clearly, this is an underactuated machine, having fewer actuators than its degrees
of freedom. Thus, despite its relatively simple structure, designing a brachiating controller for such
a system is challenging since the theory of underactuated mechanisms is not well established. In
this paper we propose a new control scheme for the robot of Figure 2 and present some preliminary
numerical studies of its properties.

A growing number of robotics researchers have taken an interest in building dynamically dex-
terous robots—machines that are required to interact dynamically with an otherwise unactuated
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environment [5] in order to achieve a designated task. Brachiating robots take an interesting place
within this larger category of machines that juggle, bat, catch, hop and walk in the effort to achieve
dynamically dexterous behavior analogous to that of humans and animals, for a brachiating and
a legged locomotion system share the requirement of an oscillatory exchange of kinetic energy and
potential energy in the gravitational field. At the same time, the problem of dexterous grasps is
particularly acute for such machines since fumbles not only fail the task but incur a potentially
disastrous fall as well. In this paper we confine our attention to a very simplified version of the for-
mer problem. In the long run, we suspect that the brachiation task may lend significant insight into
general locomotion systems as well as still wider problems requiring dynamically dexterous hand-eye
coordination.

Figure 1: Brachiation of a gibbon: a picture taken from [13]

1.1 Problem Statement

Brachiation—arboreal locomotion via arms swinging hand over hand through the trees—is a form
of locomotion unique to apes. Most commonly, the animals engage in “slow brachiation,” travelling
at about the speed of the average human walk (slow brachiation). But when excited or frightened,
apes can plunge through the forest canopy at astonishing speeds, sometimes covering 30 feet or
more in a single jump without a break in “stride” (fast brachiation, ricocheting)[4]. In our reading
of the biomechanics literature we distinguish three variants of brachiation that we will refer to in
this paper as the

e Ladder and swing up problem
e Rope problem

e Leap problem

The first arises when an ape transfers from one branch to another and controlling the arm
position at next capture represents the central task requirement. A robotics version of this problem
has been previously introduced to the literature by the second author and colleagues [16, 17]. They
presented the machine we model here with a set of discrete evenly spaced bars and the requirement
to swing up from rest, catch the next bar, and then swing from bar to bar by pumping up energy in
a suitable fashion. In our view, this problem seems as much akin to that of throwing and catching
as to locomotion. In order to address the second problem that forms the chief interest of this paper,
we find 1t useful to revisit this swing up and ladder problem along the way.

The third problem arises in the context of fast brachiation where the next branch is far out
of reach and the task cannot be accomplished without a large initial velocity and a significant
component of free flight. Solving this problem involves not merely a swing phase but a nonholonomic
flight as well. Roughly analogous to running quickly through a field of boulders, apes can apparently



achieve this movement with great regularity and ease. We consider this a fascinating and challenging
problem to be addressed when the previous two simpler problems are better understood.

In this paper we are centrally concerned with the second problem: brachiation along a continuum
of handholds—a branch or a rope—that seems most closely analogous to human walking. Since
grasps are afforded at will, the resulting freedom of placement can be exploited to achieve a specified
forward rate of progress. This is not possible for a two degree of freedom machine on a ladder whose
forward velocity is essentially determined by the distance between the bars and its own kinematics.
We propose a control algorithm which is effective for the first two “slow brachiation” problems—i.e.
the ladder and swing up and rope problems—inspired by our reading of the biomechanics literature.
Specifically, Preuschoft et al. [8] studied the mechanics of ape brachiation and identified a close
correspondence between slow brachiation and the motion of a simplified pendulum. Accordingly, we
have chosen formally to encode the problem of slow brachiation in terms of the output of a target
dynamical system—the harmonic oscillator —and this task specification lends a slightly new twist
to the traditional view of underactuated mechanisms, as we now discuss.

1.2 Related work

As we have pointed out, this problem domain overlaps with three areas of robotics: dexterous
manipulation, legged locomotion and underactuated mechanisms. We now review the relationship
of our ideas and contributions to this previous literature.

Problems of dexterous manipulation have given rise to a growing literature concerned with explicit
manipulation of an environment’s kinetic as well as potential energy. Arguably, the first great
success in this domain must be attributed to Andersson [1] whose ping pong playing robot developed
a decade ago was capable of beating many humans. Some of the earliest work in the area has
also been undertaken by the third author and his students [2, 3, 10] who have developed a family
of juggling robots that exhibit increasingly sophisticated strategic as well as mechanical skills in
various “games against nature.” More recently, Mason and Lynch [7] have studied the problem of
dynamic underactuated nonprehensile manipulation from the control theoretic point of view and
have successfully implemented a family of formally designed control laws on a one degree of freedom
robot which performs dynamic tasks such as snatching, rolling, throwing and catching. Of these
antecedents, the present study is most reminiscent of the juggling work since our approach to control
entails feedback regulation rather than the open loop pre-planned trajectories developed by Mason
and Lynch or the AT system developed by Andersson.

Raibert’s landmark success in legged locomotion [9] represents another important influence on
the present work. The third author and students have pursued a number of analytical studies
of simple hopping machines that are directly inspired by his work addressing such questions as
regulation of hopping height [6], forward velocity [11] and duty factor [12]. The formulation of
this brachiation problem in terms of a target dynamics owes much to Raibert’s original notion that
dynamical dexterity may be encoded in terms of desired energy and achieved with the help of the
environment’s intrinsic dynamics. Moreover, we have adapted his use of a reverse time symmetry to
our problem setting.

Amidst the large and growing controls literature on underactuated mechanisms, this work is
closest in method to Spong and his students’ studies of the “Acrobot” [15]. They considered the swing
up problem of an underactuated system similar to the two-link brachiating robot we treat in this
paper. Their control algorithm pumps energy to the system in an instance of Spong’s more general
notion of partial feedback linearization [14] directed toward achieving a kind of target dynamics
whose motions solve the swing up problem. The controller we introduce here bears many similarities
to this although the more extended problems of slow brachiation require a rather differently conceived
notion of target dynamics.



Finally, we must mention the initial success in robot brachiation achieved by the second author
and his student Saito [16]. They first studied the control problem of a two-link brachiating robot
using a heuristic learning algorithm to formulate a control law. They also built a physical two-link
brachiating robot and experimentally demonstrated the validity of the control law. The advantage
of this method is that no model of a robot is needed. However, it requires a large number of trials
and errors to generate a motion. Then they considered the control of a brachiating robot with higher
degrees of freedom, and built the brachiating robot with 12 degrees of freedom modelled on a real
long-armed ape. They succeeded as well in the basic experiment generating brachiation behavior of
this robot using a manually tuned control strategy [17].

Target bar

Elbow actuator

Figure 2: The model of a two-link brachiating robot

2 Task Encoding via Target Dynamics

This section presents our control strategy for a two-link brachiating robot. We view the robot’s
task to be one of solving an “environmental control problem” [2]. For example, in robot juggling a
fully actuated robot controls the motion of a ball (which is the unactuated environment) through
intermittent interaction. In this case, interaction between the robot and environment only occurs
at the ball-robot impact. In contrast, in robot brachiation, the robot and environment (respectively
the actuated and unactuated joints) have continuous interaction during the motion. The difficulty
in controlling a brachiating robot arises due to this continuous coupling. Hopping robots might be
considered as lying in between since they have continuous interaction with the ground only in the
stance phase.

Appropriate task encoding plays an important role in achieving robot dynamical dexterity in
dynamical environment. Before proceeding, we mention some previous instances of task encoding
based on a good understanding of the intrinsic dynamics of a system and an environment.

The first example of task encoding is in the control of legged locomotion by Raibert[9]. He
decomposes the control of legged locomotion into three parts and encodes as:

e Regulation of hopping height: control of the mechanical energy of the system through leg’s
thrust.

e Control of forward velocity: choice of foot placement at touchdown.
e Control of body posture: servoing the hip during stance.

He implements a simple feedback control law to achieve the desired locomotion according to this
task encoding and successfully demonstrated the validity of his control strategy.



The second example is in the robot juggling achieved by the third author et al.[2]. Their idea is
analogous to that of Raibert’s. In order to achieve juggling with the specific apex height of a ball
they introduce a “mirror algorithm” by means of which the robot is forced to track the nonlinear
reflected mirror trajectory of a ball servoing its mechanical energy around a desired steady state
energy level. In these examples, appropriate task encoding achieves such dynamically dexterous
behavior as hopping and juggling.

First we review the biomechanics of brachiation. Average horizontal velocity of brachiation is
characterized in terms of the motion of a simplified pendulum, to which slow brachiation is analo-
gous. We next introduce the notion of “target dynamics” as a particular instance of input/output
plant inversion. Specifically, brachiation is encoded as the output of a target dynamical system—a
harmonic oscillator, that we must force the robot to mimic.

2.1 Review of Biomechanics of Brachiation: A Target Dynanmics

According to the biomechanics literature [8] slow brachiation of apes resembles the motion of a
pendulum. Although the ape’s moment of inertia varies during the swing according its change of
posture, the motion of a simplified pendulum gives a fairly good approximation. We briefly review
the characterization of the forward velocity of brachiation using Figure 3 as suggested in [§].
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Figure 3: A suspended body of an ape represented by a simplified pendulum. An ape’s body is
approximated by a simple pendulum.

Consider the dynamics of a simple pendulum with a point mass and a massless link:
E=— g sin & ()
lo

where [ is pendulum length and ¢ is the gravitational constant.
The average horizontal velocity is the net progress per swing divided by half the period of
oscillation. For a given initial angle ag, the period of oscillation is

T = 4[((1@@ (2)

where K (k fo ﬁ is a complete elliptic integral of the first kind and k& = sin (%) The

net progress covered by one swing is
d(ag) = 2lgsin ag (3)

Thus, the average forward velocity of brachiation for a pendulum starting at £(0) = ag is

P \/TJ \/gTsmao = Vi (o) (4)
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Figure 4: Brachiation represented by the motion of a simple pendulum. The average forward velocity
is characterized by the ratio of the net progress per swing divided by the time needed.

We will approximate (1) by # = —w?z to resulting in an approximation for (2) as
.27
T=— 5
w 6
and (4) as
¢ d(agw  2gwsina .
h = ( 7:) = 0 T 0 = Vl(ao) (6)

2.2 Approaches to Controlling Underactuated Systems

The notion of target dynamics represents a variant on standard techniques of plant inversion. A
system is inverted then forced to have the characteristic of some target dynamics. The application
of this idea to the two-link brachiating robot is presented.

2.2.1 Partial Linearization of Underactuated Lagrangian Systems

Let us generalize slightly Spong’s notion of partial feedback linearization in [14] as follows.
Suppose a plant

o = F(w) (7)
y = H(w) (8)
is input/output linearizable. That is, given
LpH(w,v) = DH - F(w,v) 9)
if there can be found an implicit function such that for every u € & and w € W, then
v=LpH Yw,u) (10)
implies
LrH (w,v) =u (11)

then (10) is an input/output linearizing inverse controller in the sense that y = u.

For the case of the Lagrangian systems that concern us here, consider an n degree of freedom
underactuated system with m < n degrees of freedom directly driven by each actuator and k = n—m
unactuated degrees of freedom. Let ¢ € Q be the generalized coordinates and Tq = [¢q, ¢]7 € TQ
be the associated tangent vector. The dynamics of such a system can be written as

Tq=L(Tq,7) (12)



where '
L(Tq,7)= M(q)~? (—f-?(q,q'[;—k@)Jr [ : D

T

Here, M € IR"*" is a positive definite inertia matrix, B € IR" is a coriolis and centrifugal vector,
k € IR™ represents the force of gravity, and 7 € IR™ denotes a generalized input force vector
to the system. For the particular case of the two degree of freedom system of Figure 2, where
q=1[01, 62]7 € Q, the detailed dynamics are presented in Appendix A. Now identify w = Tq =
[¢, 1T €TQ, r=vand L= F in (7).

Given a submersion (i.e. a locally surjective map)

z = h(q), where h: @ — IR™ (13)

Identify its tangent map, Te = Th(Tq) = [ ha)

q . . . .
. |, with H in (8) and the image, Tz, with y.
Dyh(q)q ] ®) &

The linearizing inverse function (10) is

-1

Nis ]) [u—(D;h)q'-l-thM_l(V""k) (14)

LH—lT,u:<Dh
F (q) q N22

where

Ni1 Nio

M-t =
[ Na1 N

:| , N1 € leXk,le S lexm,Nzl € lRmxk’Nm € [R™*™,

Thus for Lagrangian systems, the invertibility assumption on Lp H reduces to the requirement that

<th NE ]) be full rank on TYq.
Noo

2.3 Target Trajectory and Target Dynamics

It is traditional in the underactuated robot control literature to use the linearizing feedback (10)
to force y to track some reference trajectory r4(t). In the present article, we find it more useful to
mimic a reference dynamical system.

Suppose we desire the output y to have the characteristics of a target dynamical system

v=17) (15)
Then substituting f for u in (10) we have
v=LeH™ (w, f(5) = LeH ™ (w, f o H(w)) (16)
For example, in the sequel, we will be interested in the harmonic oscillator

y:Tr:[z],fw(Tx):[_?d2 é]Tm (17)

Now we consider the dynamics of the two-link brachiating robot shown in Appendix A. Motivated
by the pendulum-like motion of brachiation, we choose to encode the task in terms of the target
dynamical system (17). Thus, we will find it useful to introduce a submersion arising from the
change of coordinates from joint space to polar coordinates on IR,

(o ]=i=aw=]" A as)



RR Coordinates RP Coordinates

\
Torque T \02 S

Figure 5: Change of coordinates from RR to RP. We control # to follow the dynamics § = —w2f
using target dynamics controller.

as depicted in Figure 5. Specifically, we will take the second component of (18).

1
r=h(q) =0=e"G(q) =0, + 592 , where e3 = [ 0, 1] (19)

so that the application of (16) in the example of interest takes the form

r=7, = LrH ' (Tq fuoTh(Tq))
-1
- <th[”12]> |20 = (Dyh)i+ Dyh M= (B + k)|
n22
| , | 1
= —— |[—wi(f1 + =05)+ (n11+ =n B-I—k]-l—B-l—k 20
T [0 g (g (Br k)| + etk (20
where
M-l [ nin o nis ]
n21 Nag
Notice that ,
nig 1 mql
D,h = Sngy = L 21
7 [ngz] miet g2 = g 70 (21)

i.e., the invertability condition of LpH is satisfied in the particular setting of concern.

3 Ladder and Swing up Problem

We now move on to the specific problems of robot brachiation. First, we apply the target dynamics
method to the ladder problem. Then, we consider the swing up problem. The target dynamics
is modified to introduce a limit cycle to achieve the task. Numerical simulations are provided to

suggest the effectiveness of the proposed algorithms.

3.1 Ladder problem

As we have pointed out, the ladder problem arises when an ape transfers from one branch to another
and the control of arm position at the next capture represents the control task requirement. Here,
we restrict our attention to brachiation on a set of evenly spaced bars at the same height. The
target dynamics method is applied to the ladder problem. We show how a symmetry property of an
appropriately chosen target system— (17) in the present case—can solve this problem.



3.1.1 Neutral Orbits, N

This section follows closely the ideas originally developed in [11, 12]. We discuss a reverse time
symmetry inherent in the brachiating robot’s dynamics. First, we show that the natural dynamics
of the two-link brachiating robot admit a reverse time symmetry, S. Then, we give a condition
under which feedback laws result in closed loops that still admit S. Lastly, following Raibert [9],
we introduce the notion of the neutral orbits of the symmetry, and show how they may be used to
solve the ladder problem. In the sequel, we will denote the integral curve of a vector field f by the
notation f*.

Definition 3.1 f : X — TX admits a reverse time symmeiry S : X — X if and only if So f' =
ftoS.

Note that when S is linear, this definition might be equivalently stated as So f = —f 0 .S. Note
that when S is linear, this definition might by equivalently stated as So f = —f o S. In this paper,
we are concerned specifically with the symmetry operator

S:[_OI2 192] (22)

(where I3 denotes the 2 x 2 identity matrix).
Now, supposing we have chosen a feedback law, 7(q, ¢), denote the closed loop dynamics of the
robot as

Tq =L (Tq) = L (Tq,7(Tq)) (23)
Say that 7 “respects S” if and only if £, admits S.

Proposition 3.2 The closed loop dynamics L, admits S, i.e., So L;(Tq) = —L; 0o S(Tq) if and
only if 7(q,q) has the property T(—q,q) = —7(q, q).

Proof:
[ q
Lro8(Tg) = i M(—q)~" <—B(—q,q') — k(—q) + [ T(_(;’q.) D
[ q
N | M)~ <B(q,q')+k(q) + [ T(_Oq’q.) D (24)
since M(—q) = M(q), B(—q,q) = —B(q,4), k(—¢q) = —k(q). On the other hand,
—q
Soki(Ta)= M(q)™! <—B(q,q') — k(q) + [ T(i 0 D (25)

From (24) and (25) we see that if 7(—q,¢) = —7(q, ), then SoL;(Tq) = =L, 05(Tq). On the other
hand, if So £,;(Tq) = —L; 0 S(Tq), 7(q, ¢) has to satisfy the property 7(—q,¢) = —7(q, g).
|
Define the fixed points of the symmetry S to be

FixS:={Tq e TQ |S(Tq) = Tq} (26)
In the present case, i.e., for S in (22) note that

FixS = {(¢,4) € TQlq = 0}



Define the set of “neutral orbits” to be the integral curves which go through the fixed point set,
N = ] £'(FixS) (27)
telR

Note that a neutral orbit has a symmetry property about its fixed point—namely, if T'qy € Fix5,
then
SoLTqo) =L"0S(Tq) =L (Tqo)

3.1.2 The Ceiling, C, and its Neutral Orbits

Define the “ceiling” to be those configurations where the hand of the robot reaches the height y = 0
as depicted in Figure 6.

y
l< d VTd d L .
> Ceilingy=0

c_(d) c.(d)

S -7

Figure 6: A ceiling configuration. The ceiling is parametrized by the distance between the grippers

d. A left branch ¢_(d) and right branch ¢4 (d) are defined in this manner.

C={q€Q|cost + cos(y +02) =0}. (28)
Note that C can be parameterized by two branches,
C=Imec_Ulmcy (29)
of the maps, ex : [0,2{] — C,

4+ arcsin (%)

+ [71' — 2arcsin (%)]

cx(d) = (30)

In the sequel, we will be particularly interested in initial conditions of (23) originating in the zero
velocity sections of the ceiling that we denote TCy. Now note that S(7TCq) C TCq since

()] [ e
S 0 = 0 . (31)
0 0
e_(d)
Proposition 3.3 If a feedback law, T, respects S and if 0 e NNTCy, then there can be
0
found a time ty € IR such that if v = tTN then
c-(d) 4 (d)
£ 0 = 0 (32)
0 0

t.e., a time at which the left branch at zero velocity in the ceiling reaches the right branch in the
ceiling also at zero velocity.

10



Proof: By the definition of A/, there can be found a time v € IR at which

c_(d)
LY 0 =Tq" € FixS (33)
0
Therefore,
c_(d)
crrey=| o0 | (34)
0
Applying the symmetry S, we have
4 (d) - (d)
0 =S 0 (from (31)). (35)
0 0
But
e_(d)
S 0 =So L "(Tq") (from (34)), (36)
0
hence,
cy(d)
0 = Sol;"(Tq")=LYoS(Tq")
0
c_(d) c_(d)
= LYTq")=LYoLY 0 =L¥ 0 (37)
0 0

|

Thus, we conclude that any feedback law, 7, which respects S, solves the ladder problem, as-

suming we can find a d such that [c_(d), 0]7 € V. Note that finding such a ceiling point requires
solving the equation

e-(d) 0 ¢
®(d,ty)=[ I, 0]LY 0 = , where v= % (38)
o |)-10] i

for d and ¢y simultaneously. Of course solving this equation is very difficult: it requires a “root
finding” procedure that entails integrating the dynamics (12).

3.1.3 Application of Target Dynamics

Now we apply the notion of target dynamics described in (17). The feedback law to achieve this is
given by (20):

w(Tq) = LpH ' (Tq,fuoTh(Tq))
- <th[ e D [0 — (Dyh)j + Dyh M~ (B + k)|

N33
1

1 1
= — [—&(91 + =0) + (n11 + sna )(Br + kl)] + By + ks
n12 + 5022 2 2

11



Notice that 7, respects S since 7,(—q,¢) = —7,(q,¢). Notice, as well, that (17) has a very nice
property relative to the difficult root finding problem (38). Namely, using this control algorithm, ¢y

is given by
27
tn(tw) = — 39
M= (39)
because 6 follows the target dynamics 6 = —w?d. In this light, then, we need merely solve (38) for

d. More fomally, we seek an implicit function d* = A~!(w) such that ® ()\_l(w), zw—”) = 0. Of course,
we are more likely in practice to take an interest in tuning w as a function of a desired d*. Thus,
we are most interested in determining

w = A(d"). (40)

In general, we can expect no closed form expression for A or A™!, and we resort instead to a numerical
procedure for determining an estimate, ;\, as follows.

Given, d*, take an initial guess, @, using the rough approximation, wg is around the range from
\/%_ to \/g from the simple pendulum. Then, tune w according to the rule:

27
Wpp1 —wp + K ([ 1, 0 ] d(d*, (.7)> , (41)
k
where K is a suitably chosen (small) gain. Tterate this procedure until

< tolerance.

[ oje )

In practice, we have always found (41) to converge under this procedure, although we have not yet
investigated the matter fomally. We plot in Figure 7 a particular instance of ) for the case where
the robot parameters are | = 1, m; = 3, my = 1. We will use these parameter values throughout the
sequel for the sake of comparison between this and subsequent figures.

onmega

2 /’_—_‘

0 0.5 1 15 5 dstar

Figure 7: Numerical approximation w = :\(d*) Target dynamics controller, 7,, is tuned according
to this mapping, A, that is designed to locate neutral orbits originating in the ceiling.

3.1.4 Simulation

Consider the case d* = 1.4 for this parameter set above. The initial condition of the robot is
Tqo = [e_(d*), 0]7. From the numerical solution depicted in Figure 7, w = A\(1.4) = 2.2512. Figure
8 shows the resulting movement of the robot. The joint trajectories of #1, 65 and the trajectory of 4
are shown in Figure 9. The closed loop dynamics have a neutral orbit which achieves the task.

3.2 Swing up Problem

The swing up problem entails swinging up from the suspended posture at rest and catching the next
bar. In order to achieve this task it is necessary not only to pump up the energy in a suitable fashion

12



Figure 8: Movement of the robot. The symmetry properties of the neutral orbit from the ceiling
solves the ladder problem.
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Figure 9: Joint trajectories (f;: solid, f5: dashed) and trajectory of 6. Note that # follows the target
dynamics § = —w?4.

but also to control the arm position at the capture of the next target bar. This suggests that we
need to introduce a stable limit cycle to the system with suitable magnitude and relative phase in
state. The idea we present here is a simple modification of the foregoing target dynamics. We define
the “pseudo energy” with respect to the target variable and add a compensation term to the target
dynamics in order to introduce the desired limit cycle.

3.2.1 Modified Target Dynamics

As we have mentioned, swing up requires energy pumping in a suitable fashion. To achieve this we
modify the target dynamics (17) as

0 1

Tr = -
T —e? KB - B

Tz = fg.(Tx) (42)
where, z=0=10, + %62 as defined in (19)

K,: a positive constant

E .= %6’2 + %wT%ﬂ: “pseudo energy”

E*: the desired pseudo energy level

To achieve this target dynamics, the control law is formulated as

Tge = LpH ™' (Tq, fg. o Th(Tq))
-1
- (th [ e D [0 = Ko(B = B*) = (Dyh)g + DehM™N(V + k)]
22
1 ) 1 A 1 .
= ——— |~w (0 + 502) — K(E— E")(01 + 502) + (n11 + gnaa)(B1 + k1) | (43)
n12 + 5022 2 2 2

+ Ba+ ks

13



Now consider the time derivative of £ along the motion
E = —K.(E — E*)? (44)

If E > E* then the pseudo energy E decreases, and if E < E* then E increases. Therefore, E will
converge to the desired level E* eventually. This implies that the target dynamics with respect to 8
coordinates has a stable limit cycle whose trajectory is characterized by %02 + %wQH‘) = E* on the
phase plane of (6, 6).

Although we have experienced very favorable results in numerical simulations introducing the
desired limit cycle to the “target variable” using the ideas set out above, the procedure remains
somewhat ad hoc. Most importantly, we need to bring the effective actuated portion of the state
space, 6, to the right pseudo energy level, while simultaneously ensuring that the unactuated degree
of freedom, r, coincide with the regulated length, d*, when the trajectory enters the ceiling, TC.

As the simulation suggests, some experience is helpful in determining the proper choice of the
parameters K., w to give the desired motion of the robot to achieve the task. For example, large K,
seems to yield chaotic motion and small choice of K, is preferred. Again, an elucidation of these
relationships awaits a proper mathematical analysis.

3.2.2 Simulation

Suppose the next target bar is located at the distance d* = 1.4. The initial condition i1s ¢y =
[0.01, 0]7 and go = 0. We choose the parameters in the target dynamics as w = A\(1.4) = 2.2512,
K. =075, B* = 12 (2)°.

2
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Figure 10: The initial condition at ¢ = 0 (left) and movement at the capture of a bar ¢t = 33 ~ 33.625
sec (right). The swing up task is achieved under the modified target dynamics.

thi, th2 (deg) th (deg)
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L — 5 Ot (sec)
-25 -25
-50 -50
-75 -75

Figure 11: Joint trajectories (f1: solid, f2: dashed) and trajectory of #. The desired limit cycle is
achieved.

Figure 10 depicts the initial condition and the movement of the robot at the capture of a bar.
Figure 11 shows the joint trajectories of 61,6, and the trajectory of #. These simulation results
suggest that the robot can achieve the swing up and catching task via the modified target dynamics.
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4 Rope problem

In this section, we consider the rope problem: brachiation along a continuum of handholds such as
afforded by a branch or a rope. First, the average horizontal velocity is characterized as a result
of the application of the target dynamics controller, 7,, introduced above. Then, we consider the
regulation of horizontal velocity using this controller. An associated numerical “swing map” suggests
that we indeed can achieve good local regulation of the foward velocity through the target dynamics
method.

4.1 The Iterated Ladder Trajectory Induces a Horizontal Velocity

Supposing that the robot starts in the ceiling with zero velocity, then it must end in the ceiling
under the target dynamics controller since é follows the dynamics 0 = —w?. However, if d and
w are not “matched” as w = A(d), then the trajectory ends in the ceiling, T'q¢ € TC4, with =0
but r # d and 7 # 0. Shortly, we will present numerical evidence suggesting that when d = d* + 6
for small 8, then r at Tq € TC4 is also small. Assuming that any such small nonzero velocity is
“killed” in the ceiling, brachiation may be iterated by opening and closing the grippers at left and
right ends in the appropriately coordinated manner. Namely, imagine that the robot concludes the
swing by grasping firmly with its gripper the next handhold in the ceiling and thereby damps out
the remaining kinetic energy. Imagine at the same instant that it releases the gripper clutching the
previous handhold and thereby begins the next swing. We will call such a maneuver the Iterated
Ladder Trajectory (“ILT”).

'\
\
4
\

\d

Figure 12: Progress of the robot per swing. The robot’s body proceeds d* per swing while a gripper
moves 2d*.

It is natural to inquire as to how quickly horizontal progress can be made along the ladder in
so doing. Notice in Figure 12 that when a gripper moves a distance 2d* in the course of the ladder
trajectory, and if the trajectory is immediately repeated, as described above, then the body, my,
will also move a distance of d* each swing, hence, its average horizontal velocity will be

d'w  d*A\(d")

™ ™

h= = V(d") (45)

according to the discussion in Section 3.1. In Figure 13, we now plot the ceiling-to-velocity map

h = f/z(d*) for the robot parameters | = 1,m; = 3,ms = 1, where ‘72 is computed using the
numerical approximation, A discussed in Section 3.1.3.
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Figure 13: The ceiling-to-velocity map, Va. This mapping is inverted to obtain the desired forward
Tk
velocity h .

4.2 Inverting the Ceiling-to-Velocity Map

Consider now the task of obtaining the desired forward velocity ];* of brachiation. If V4 is invertible,

then d* = f/z_l(h ) and we can tune w in the target dynamics as

w=XoVl(h) (46)

to achieve a desired h* where ) is again the mapping (40). We have found in our numerical work
that V5 does, indeed, seem to be nicely invertible as suggested by the particular case of Figure 13.
Further numerical exploration reveals that rewriting (45) using the kinematic relationship (3) yields
a new function,

Va(avo) := Va(2lsin ap) (47)
that is surprisingly close to the single pendulum case, Vi(ag) as illustrated in Figure 14. This
suggests that more careful analytical work might well suggest a simple approximation for Vy as in
some recent work [12] on hopping robots.

V_1, Vhat 2

1.75

1.5
1.25
1
0.75

0.5
0.25

| ph
0 20 40 60 go & Pha 0 (deg)

Figure 14: Velocity mapping Vi(ag) (dashed) for the simple pendulum where {; = 1 and f/g(ao)
(solid) for the brachiating robot with the target dynamics controller where robot parameters are
= 1,m1 = 3,m2 =1.

4.3 Horizontal Velocity Regulation

Consider the ceiling condition with zero velocity

cx(d)
TCoys = 0 eTC|delo,2] (48)
0
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Define the maps, C'y, and their inverses, C;l, as

cx(d)
Cy (0,2 = TCoys : d — 0 (49)
0
cx(d)
CI':TCor — [0,20]: 0 —d (50)
0
A target dynamics controller (17) gives
L% oC_(d) € TC; , where v = 21 (51)
w

since f follows the dynamics 0 = —w20. Now, ifw= A(d), then

cy(d) .
LY oC_(d)=Cy(d) = 0 € TCoy , where v = % (52)
w
0

because of the symmetry properties of the neutral orbits, demonstrated in Proposition 3.3.
Define a projection II, from the ceiling’s tangents into the zero velocity section,

M:7TCys — TCost. (53)

In other words, II is a map that “kills” any velocity in the ceiling. We introduce this projection to
model the ILT maneuver in cases when 7 # 0 for Tq € TC. We plot, r, the approaching velocity in
the right branch of the ceiling for d € [0, 2[] where d* = 1.26815,w = 2.2270 in Figure 15.

To gain an intuitive feeling for the magnitude of “leftover energy” that must be “killed” before
the next swing begins, we will compare it to the energy of the steady state swing. In the worst
case, the kinetic energy in the ceiling TC; resulting from the initial condition T'qg = C_(0.1) is
K(TC4) = 2.09 J. The maximum kinetic energy during a swing when d = d* is K4« max = 24.5 J.

The ratio % = 0.085 seems to be acceptably small. Consider instead, more favorable range,
where d = d* 4+ é and & = —0.3. Now the kinetic energy killed in the ceiling is K(7TC4) = 0.19 J,
K(TCy)

and the ratio = 7.81 x 1072 in this case is very small despite fairly large error (24 %) in

Ka« max
the initial condition. This suggests that the idea of killing any approaching horizontal velocity in
the ceiling may be physically reasonable. !

We now have from (51)

Hol2? oC_(d) €TCoy , where v = % (54)
hence we may define a “swing map”, o, as a transformation of [0, 2/] into itself,
ou(d) == C[ 0Tl o L2 o C_(d): [0,2]] — [0,21] (55)
Note that if w = w* = A(d*), then
ou(d*) =d* (56)

that is, d* is a fixed point of the appropriately tuned swing map.

It is now clear that the dynamics of the ILT maneuver can be modeled by the iterates of this
swing map, o,. Physically, suppose we iterate by setting the next initial condition in the ceiling to
be

Tqolk + 1] = C_ o o, (d[k]). (57)

1In Figure 15, the worst case of approaching velocity, 7 & 1.5m/s, looks fairly large, however, we are using a large
model in simulation (arm length is 1m). In reality, a smaller model yields the smaller approaching velocity.
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This yields a discrete dynamical system governed by the iterates of o,
dlk + 1] = ou(d]K).

Numerical evidence suggests that the iterated dynamics converges, limy,_. o 0%.(d) = d*, when d is
in the neighborhood of d* as depicted in Figure 16 (local asymptotic stability of the fixed point d*).
We plot the swing map calculated numerically for the case where h=009,d* =1.26815,w= 22270
and the robot parameters are [ = 1,m; = 3, mgy = 1 (see Figure 16).

r_dot in the ceiling
1.5

d

0.5 1 1.5
-0.5

Figure 15: Approaching horizontal velocity of the robot gripper for the case d* = 1.26815,w* =
2.2270 where w* = A(d*), and the robot parameters are | = 1,m; = 3,mz = 1. When the error in
the initial condition from d* is small, the resulting approaching velocity in the ceiling is also small.

d[ k+1]

drk]

0.5 1 1.5 2

Figure 16: Swing map, o, (solid) and identity (dashed) for the case h = 0.9,d* = 1.26815,w =
2.2270 where w* = A(d*), and the robot parameters are [ = 1,m; = 3, my = 1. This swing map has
an attracting fixed point at d*.

4.4 Simulation

Suppose we want to achieve the desired horizontal velocity, h* = 0.9(m/s). The parameters of the
robot are | = 1,m; = 3, my = 1. The procedure to obtain the numerical approximation of (46) as
follows:

First, the ceiling-to-velocity map Vs (45) is approximated by the third order polynominal.

h = —0.04467978d"3 + 0.127815d"% + 0.705171d" — 0.103999 (58)
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Then, to obtain an approximation to V5~'(0.9), (58) is solved for d* numerically by setting h= 0.9,
and we get d* = 1.26815. Lastly, using the numerical solution depicted in Figure 7, w = 5\(1.2682) =
2.2270.

First, consider ILT with the proper initial condition
. c_(d*
riy=| | (59)

which is proper in the sense ;L* = f/z(d*). The simulation result in this case is shown in Figure 17—a
faithfully executed ILT at d*.

Figure 17: Brachiation along the bar with the initial condition (59). TLT locomotion at the fixed

point d* yields the desired average horizontal velocity, A

Suppose, instead, that we select w = A(d*) but the initial dy is wrong. We present simulation

results with the initial condition

ce_(d*+6)

0 ] ,where § = —0.3 (60)

Tqo = [
in Figure 18. As the numerical swing map of (16) suggets, we nevertheless achieve asymptotically
the desired locomotion, i.e., d — d*.

With the assumption that any velocity in the ceiling is killed, the size of the domain of attraction
to d* under o+ is fairly large according to the numerical evidence shown in Figure 16.

Figure 18: Brachiation along the bar with the initial condition (60). Convergence of d — d* is
illustrated as the numerical swing map (Figure 16) indicates, and this yields convergence to the

- %
desired average velocity, h .

5 Conclusion

We have presented some preliminary studies of a new brachiating controller for a simplified two-
link robot. The algorithm uses a target dynamics method to solve the ladder, swing up and rope
problems. These tasks are encoded as the output of a target dynamical system inspired by the
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pendulum-like motion of an ape’s (slow) brachiation. We provide numerical simulations suggesting
the effectiveness of the proposed algorithm. However, these numerical results also show that the
sensitivity to parameters, !, m; and ms may be significant. From our observation, it seems that
roughly w % and my should be larger than my. Under these circumstances, we suggest in
Appendix B that the proposed algorithm is practically feasible. However a formal mathematical
analysis remains to be addressed. In section 5.1 we review some of the open questions this raises

and in section 5.2 we address future work.

5.1 Open Problems

These numerical simulations suggest that the proposed algorithm is effective for solving robot brachi-
ation problems. They are far from conclusive: formal mathematical analysis will be necessary to
truly understand how these ideas work. First, we need to consider the internal boundedness of the
states of the closed loop system. The unactuated dynamics of our closed loop take the form of a
one degree of freedom mechanical system forced by a periodic input. Such problems of parametric
resonance are known to be complex. A second open problem concerns the swing map. Numerical
studies suggest the local stability of the fixed point d* but this must be verified, and the extent of
the domain of attraction must be characterized.

5.2 Future Work

The controller developed in this paper requires exact model knowledge of the robot. As we have
begun to contemplate experimental implementation, we would naturally prefer a robust or adap-
tive version. Unfortunately, there has not yet been much work on robust or adaptive control of
underactuated systems.

Studies of robot brachiation using more complicated models with higher degrees of freedom will
be addressed in our future work. We hope that we may find generalizable principles of brachiation
through the study of this simplified two degree of freedom model.

Finally, the study of the fast brachiation—the leap problem—seems compelling. For reasons
discussed in the introduction, this problem lies in the more distant future.

In the longer run, we believe that the ideas presented in this paper may have wider application to
such areas of robotics as dexterous manipulation, legged locomotion and underactuated mechanisms.

Appendix

A Simplified Model of a Two-link Brachiating Robot

This section describes the two-link brachiating robot we use in this paper, shown in Figure 2. We
assume each link is massless, and an actuator at the elbow and a gripper are a point mass.
Let p1, py be the position of the masses my, ms respectively. p1,ps are given by

_ 1 _ ll sin 01 _ 9 _ 11 sin 91 + 12 sin(91 + 92)
p1= yi | | —licosty |’ p2= y2 | | —l1icosfy — Iz cos(fy + 03)

The kinetic energy of the system is given by

: 1 o 1 Lo
K = §m1p1Tp1 + §m2p2sz

The potential energy of the system is given by

U =migys +magys
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where ¢ is the gravity constant. Defining the Lagrangian function, . = K — U and applying the
Lagrangian operator yields the following equation of the motion of the system:

Tq=L(Tq,T) (61)
where
0
1=y ]eam=|1]ero
B2 q
q
L(Tq,7)= 3 ] 0
D=1 ot (s -k + | U]
M( ) (m1 + m2)112 =+ m2122 + 2[1127’)12 COS 92 m2122 + lllzmQ COS 92
1 m2122+1112m2 COSQQ m2122
N + 2
. . 201602 4 6
B(q,q) = —mglllg SIHGQ [ 1 29,+2 2
—V1

kg) = [ (my 4+ ma)gly sin 6y + lamagsin(fy + 02) ]
m212g sin(61 =+ 92)

In this paper we assume that the arm length is the same, {; = l; = [. Note that we have a torque

input only to the second joint.

B Practical Feasibility

We consider the practical feasibility of the proposed algorithm for a typical robot configuration.
Here we consider the two-link brachiating robot built by Saito [16]. The arm length is 0.5m and
the total weight is 4.8kg (unfortunately the precise parameters are not known since their algorithm
does not need a model of the robot). The maximum torque of the actuator is 14Nm and its rated
power is 20.3W. We provide simulation results for the case where robot parameters are [ = 0.5, m; =
3,my = 1.5 (which seem to be reasonable for their robot configuration), and d* = 0.7,w = 3.07196.
Figure 19 shows the movement of the robot. The required actuator torque and power are shown
in Figure 20. The requied torque and power look reasonable. It must be cautioned, however, that
if w is very far out of tune, then the inverse LrH ™! calls for unrealistically high torque, and the
resulting motion is useless.

Figure 19: Movement of the robot
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Figure 20: Required actuator torque (left) and power (right) for the case where d* = 0.7,w = 3.07196

and the robot paramers are { = 0.5, my = 3, my = 1.5.
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