Specification of the PUMA memory management design

Bruce Jacob and T revor Mudg e
Advanced Computer Architecture Lab
EECS Department, University of Michigan
{blj,tnm}@eecs.umich.edu

Tech Report CSE-TR-314-96
August, 1996

In this report we specify the memory management design of a
1GHz PowerPC implementation in which a simple design is a
prerequisite for a high clock rate and short design cycle. The
scheme involves no translation hardware such as a transla-
tion lookaside buffer or a page-table-walking state machine.
However, it is just as efficient as hardware-managed address
translation and is much more flexible. Modern operating sys-
tems such as Mach charge between 0.16 and 0.28 CPI for
address translation on systems with TLBs. PUMA’s soft-
ware-managed address translation exacts an overhead of 0.03
CPI. Mechanisms to support such features as shared memory,
superpages, sub-page protection, and sparse address spaces
can be defined completely in software, allowing much more
flexibility than in hardware-defined mechanisms.

Our software design combines the virtual caches with a
PowerPC-like segmentation mechanism; it maps user 32-bit
addresses onto a 44-bit segmented virtual space. We use a glo-
bal page table to map this entire global virtual space. There
are no individual per-process page tables; all process page
tables map directly onto the global table and when processes
share memory they also share a portion of the global page
table. The following benefits are derived from the organiza-
tion: (a) virtual cache consistency management can be elimi-
nated, (b) the page table space requirements can be cut in half
by eliminating the need to replicate page table entries for
shared pages, and (c) the virtual memory system can be made
less complex because it does not have to deal with the virtual-
cache synonym problem.

1 Intr oduction

In this report we describe the hardware and software
components of the PUMA virtual memory system, a
memory management design that stays within an
acceptable performance overhead and that does not
require complex hardware. It places few constraints on
the operating system but still provides all the features of
systems with more hardware support. The hardware
design is an implementation of software-managed address
translation, or softvm for short [32]. It dispenses with
hardware such as the translation lookaside buffers
(TLBs) found in every modern microarchitecture and

the page-table-walking state machines found in x86 and
PowerPC architectures. It uses a virtual cache hierarchy
(8KB/8KB split L1 cache and 512KB/512KB split L2
cache—these specs current as of fall 1996) and takes an
interrupt when a reference misses in the L2 cache. There
is no table-walking hardware or TLB. The software-han-
dled cache miss is similar to that of the VMP multipro-
cessor [11, 12, 13], except that VMP used the mechanism
to explore cache coherence in a multiprocessor, while
we use it to simplify memory management hardware in
a uniprocessor. The design also resembles the in-cache
address translation mechanism of SPUR [26, 44, 57] in
its lack of TLBs, but takes the design one step further by
eliminating table-walking hardware.

A softvm design performs several times better than a
hardware-oriented design involving a TLB. It also sup-
ports common operating systems features such as
address space protection, fine-grained protection,
sparse address spaces, and superpages. Compared to
more orthodox designs, it reduces hardware complexity
without requiring unduly complex software. It has two
primary components: a virtually indexed, virtually
tagged cache hierarchy with a writeback cache at the
lowest level (L2, for example), and a software-managed
cache miss at the lowest level. Virtual caches do not
require address translation when requested data is
found in the cache, and so obviate the need for a TLB. A
miss in the L2 cache invokes the operating system’s
memory manager, allowing the operating system to
implement any type of page table, protection scheme, or
replacement policy, as well as a software-defined page
size. The migration of address-translation support from
hardware to software increases flexibility significantly.

Virtual caches are an important part of the PUMA
organization. They allow faster processing in the com-
mon case because they do not require address transla-
tion when requested data is found in the caches.
However, they have not been used in many architec-
tures despite their apparent simplicity because they
have several potential pitfalls that need careful manage-
ment [22, 30, 55]. We chose a virtual cache organization
to meet the speed requirements of a high clock-rate pro-

cessor. We discovered that the segmented memory-
management architecture of the PowerPC works
extremely well with a virtual cache organization and an
appropriate virtual memory organization, eliminating
the need for virtual-cache management and allowing
the operating system to minimize the space require-
ments for the page table. Management of the virtual
cache can be avoided entirely if sharing is implemented
through the global segmented space. This gives the
same benefits as single address-space operating systems
(SASOS): if virtual-address aliasing (allowing processes
to use different virtual addresses for the same physical
data) is eliminated, then so is the virtual-cache synonym
problem [22]. Thus, consistency management of the vir-
tual cache can be eliminated by a simple operating-sys-
tem organization. The advantage of a segmented
approach (as opposed to a SASOS approach) is that by
mapping virtual addresses to physical addresses in two
steps, a segmented architecture divides virtual aliasing
and the synonym problem into two orthogonal issues.
Whereas they are linked in traditional architectures,
they are unrelated in a segmented architecture; thus
applications can map physical memory at multiple loca-
tions within their address spaces—they can use virtual
address aliasing—without creating a synonym problem
in the virtual cache.

The PUMA software organization takes advantage
of the PowerPC segmentation mechanism to eliminate
virtual-cache synonyms and thus virtual-cache manage-
ment. It shares memory through global addresses but
the segmentation mechanism separates the structure of
the global space from the process address space, so a
process can attach a shared segment at any segment-
aligned location in its address space, or even at multiple
locations if desired. A global page table maps the global
address space, and process page tables map directly
onto the global table. There is therefore no per-process
allocation of page tables; if two processes share memory
they also share portions of the global page table. Thus, a
process page table appears to be a contiguous, linear
array of page table entries (PTEs), but it is in fact a dis-
junct set of pages in the global space, and therefore the
organization is called a disjunct page table.

This disjunct page table is specific to a segmented
architecture. With a typical degree of sharing in a sys-
tem, the organization requires half the space of a normal
page table. It eliminates the virtual-cache synonym
problem by using global addresses for shared data;
therefore the same virtual address is used for the same
data and no synonym problem can occur. Without syn-
onym problems, there is no need for management of the
virtual cache, speeding up the system and simplifying
its design immensely. The segmentation mechanism
still supports virtual-address aliasing—the ability for a

process to use different virtual addresses (or even multi-
ple virtual addresses) for the same physical data.

In this report, we present the details of our memory
management system and describe it in the context of
today’s requirements for a virtual memory system.

2 Memory system requirements

There is a core set of functional mechanisms associated

with memory management that computer users have

come to expect, and that we wish to support in the

PUMA design. They are found in nearly every modern

microarchitecture and operating system (e.g., UNIX [3],

Windows NT [15], OS/2 [16], 4.3 BSD [36], DEC Alpha

[17, 47], MIPS [23, 33], PA-RISC [25], PowerPC [29, 40],

Pentium [31], and SPARC [53]), and include the follow-

ing:

Address space pr otection. User-level applications
should not have unrestricted access to the data of
other applications or the operating system. A
common hardware assist uses address space
identifiers (ASIDs), which extend virtual addresses
and distinguish them from addresses generated by
different processes. Alternatively, protection can be
provided by software means [5, 19, 51].

Shared memor y. Shared memory allows multiple
processes to reference the same physical data
through (potentially) different virtual addresses.
Space requirements can be reduced by sharing code
between processes. Using shared memory for
communication avoids the data-copying of
traditional message-passing schemes. Since a
system call is typically an order of magnitude faster
than copying a page of data, many researchers have
investigated zero-copy schemes, in which the
operating system unmaps pages from the sender’s
address space and re-maps them into the receiver’s
address space [18, 20, 37].

Large address spaces. Applications require
increasingly large virtual spaces; industry has
responded with 64-bit machines. However, a large
address space does not imply a large address: large
addresses are simply one way to implement large
address spaces. Another is to provide each process a
4GB window into a larger global virtual address
space, the approach used by the PA-RISC 1.X and
32-bit PowerPC architectures [25, 40].

Fine-grained pr otection. Fine-grained protection
marks objects as read-only, read-write, execute-only,
etc. The granularity is usually a page, though a
larger or smaller granularity is sometimes desirable.
Many systems have used protection to implement

various memory-system support functions, from
copy-on-write to garbage collection to distributed
shared virtual memory [2].

Sparse address spaces. Dynamically loaded
shared libraries and multithreaded processes are
becoming commonplace, but these designs require
support for sparse address spaces. In contrast,
4.3BSD Unix [36] had an address space composed of
two continuous regions. This design allowed the
user page tables to occupy as little space as possible.
Saving space was important, given that the original
implementation did not allow page tables to be
paged. A sparse address space has numerous holes
in it, which would leave multiple holes within a
page table; thus the wired-down, linearly-indexed
page table of 4.3BSD would not be practical, as it
would require 4MB of physical memory to map a
32-bit address space, regardless of how much or
little of the virtual space is actually used.

Superpages. Some structures must be mapped for
virtual access, yet are very large. The numerous
page table entries (PTEs) required to map them
flood the TLB and crowd out other entries. Systems
have addressed this problem with “blocks” or
“superpages”—multiples of the page size mapped
by a single TLB entry. For example, the Pentium and
MIPS R4000 allow mappings for superpages to
reside in the TLB alongside normal mappings, and
the PowerPC defines a Block TLB to be accessed in
parallel with the normal TLB. Several studies have
shown significant performance gains for reducing
the number of TLB entries to cover the current
working set [35, 48, 50].

Direct memor y access. Direct memory access
(DMA) allows asynchronous copying of data from
I/0 devices directly to main memory. It is difficult
to implement with virtual caches, as the I/O space
is usually physically mapped. The I/O controller
has no access to the virtual-physical mappings, and
so cannot tell when a transaction should first
invalidate data in the processor cache. A simple
solution performs DMA transfers only to uncached
physical memory, but this could reduce
performance by requiring the processor to go to
main memory too often.

We will discuss our memory management design in the
context of these features.

3 Background and pre vious w ork

Address translation is the mechanism by which the
operating system provides virtual address spaces to

user-level applications. The operating system maintains
a set of mappings from per-process virtual spaces to the
system’s physical memory. Addresses are usually
mapped at a page granularity—typically several kilo-
bytes. The mappings are organized in a page table, and
for performance reasons most hardware systems pro-
vide a translation lookaside buffer (TLB) that caches parts
of the page table. When a process performs a load or
store to a virtual address, the hardware translates this to
a physical address using the mapping information in
the TLB. If the mapping is not found in the TLB, it must
be retrieved from the page table and loaded into the
TLB before processing can continue.

3.1 Problems with vir tual cac hes

Virtual caches complicate support for virtual-address
aliasing and protection-bit modification. Aliasing can
give rise to the synonym problem when memory is shared
at different virtual addresses [22], and this has been
shown to cause significant overhead [55]; protection-bit
modification is used to implement such features as
copy-on-write [1, 43], and can also cause significant
overhead when used frequently.

The synonym problem has been solved in hardware
using schemes such as dual tag sets [22] or back-point-
ers [52], but these require complex control logic that can
impede high clock rates. Synonyms can be avoided by
setting policy in the operating system—for example,
OS/2 requires all shared segments to be located at iden-
tical virtual addresses in all processes so that processes
use the same address for the same data [16]. SunOS
requires shared pages to be aligned in virtual space on
extremely large boundaries (at least the size of the larg-
est cache) so that aliases will map to the same cache line
[10, 241" Single address space operating systems such
as Opal [7, 8] or Psyche [46] solve the problem by elimi-
nating the need for virtual-address aliasing entirely. In a
single address space all shared data is referenced
through global addresses; as in OS/2, this allows point-
ers to be shared freely across process boundaries.

Protection-bit modification in virtual caches can also
be problematic. A virtual cache allows one to “lazily”
access the TLB only on a cache miss; if so, protection bits
must be stored with each cache line or in an associated
page-protection structure accessed every cycle, or else
protection is ignored. When one replicates protection
bits for a page across several cache lines, changing the
page’s protection can be costly. Obvious but expensive

1. Note that the SunOS scheme only solves the problem for
direct-mapped virtual caches or set-associative virtual
caches with physical tags; shared data can still exist in two
different blocks of the same set in an associative, virtually-
indexed, virtually-tagged cache.

solutions include flushing the entire cache or sweeping
through the entire cache and modifying the affected
lines.

3.2 Fragmentation of the vir tual space

Most of the solutions to the synonym problem
described above address the consistency problem by
limiting the choices where a process can map a physical
page in its virtual space. In some cases, the number of
choices is reduced to one; the page is mapped at one
globally unique location or it is not mapped at all. While
this would seem to be a simple and elegant way to solve
the virtual cache consistency problem, it creates another
headache for operating systems, namely that of frag-
mentation.

When a global shared region is garbage-collected,
the region cannot help but become fragmented. The
problem is that whereas de-fragmentation of physical
memory or disk space is as simple as copying pages or
blocks, virtual pages cannot be relocated by simple
copying because they are location-dependent; all point-
ers referencing the locations to be moved must also be
changed. Clearly, this is not a trivial task and it is not
clear that it can be done at all.

The result is that an operating system that restricts
the placement of objects in a virtual address space will
have a fragmented shared region that cannot be de-frag-
mented without enormous effort. Depending upon the
degree of sharing this could mean a monotonically
increasing shared region, which would be inimical to a
24x7 environment, i.e. one that is intended to be opera-
tive 24 hours a day, seven days a week.

3.3 PowerPC: Segmented translation

The IBM 801 introduced a segmented design that per-
sisted through the POWER and PowerPC architectures
[6,29, 40, 54]; it is illustrated in Fig 1. Applications gen-
erate 32-bit “effective” addresses that are mapped onto
a larger “virtual” address space at the granularity of seg-
ments, 256MB virtual regions. Sixteen segments com-
prise an application’s address space. The top four bits of
the effective address select a segment identifier from a
set of 16 registers. This segment ID is concatenated with
the bottom 28 bits of the effective address to form an
extended virtual address. This extended address is used
in the TLB and page table. The operating system per-
forms data movement and relocation at the granularity
of pages, not segments.

The architecture does not use explicit address space
identifiers; the segment registers ensure address space
protection. If two processes duplicate an identifier in
their segment registers they share that virtual segment
by definition; similarly, protection is guaranteed if iden-
tifiers are not duplicated. If memory is shared through

32-bit Effective Address

‘Segno‘ Segment Offset Page Offset
| I
Segment Registers
52-bit
Virtual
Address
Segment ID ‘ Segment Offset Page Offset

Virtual Page Number ‘

|

TLB and Cache
Page Table

TAG COMPARE

\ DATA

Figure 1: P owerPC segmented ad dress translation. Processes gen-
erate 32-bit effective addresses that are mapped onto a 52-bit address
space via sixteen segment registers, using the top four bits of the effective
address as an index. It is this extended virtual address that is mapped by
the TLB and page table. The segments provide address space protection
and can be used for shared memory.

global addresses, no aliasing (and therefore no virtual-
cache synonyms) can occur and the TLB and cache need
not be flushed on context switch?. This solution to the
virtual cache synonym problem is similar to that of sin-
gle address space operating systems—global addresses
cause no synonym problems.

The relationship between the per-process effective
address space and the global virtual address space is
illustrated in Fig 2. This figure depicts how memory is
shared in a segmented architecture using global
addresses. This allows processes to map shared seg-
ments at arbitrary segment-aligned addresses, and to
map shared segments at multiple locations if desired.
However, since there is a one-to-one correspondence
between physical addresses and global virtual
addresses (the addresses used to reference the cache
and TLB), there can be no synonym problems in a vir-
tual cache; a physical datum can exist in one and only
block of a virtual cache in any given instant, even if the
cache is set associative.

2. Flushing is avoided until the system runs out of identifiers
and must reuse them. For example, the address space iden-
tifiers on the MIPS R3000 and Alpha 21064 are six bits wide,
with a maximum of 64 active processes [17, 33]. If more
processes are desired, identifiers must be constantly reas-
signed, requiring TLB & virtual-cache flushes.

Process A Process B Process C
T I T 71 CE T T 1 T T 1T

Global Virtual Space
[[T JTITT

Paged /
Segment
NULL

Physical Memory [11 11 o1

Figure 2: Vir tual ad dress aliasing in a segmented ar chitecture . The
figure shows three processes sharing two segments. None of the pro-
cesses use the same virtual address for the same physical data, and two
of the processes go so far as to map a segment at multiple locations within
their address spaces. Nonetheless, these aliases will not result in any syn-
onym problems in a virtual cache, since there is a one-to-one correspon-
dence between pages in the global virtual space and pages in physical
memory.

User root page table: 2KB

A 4-byte PTE,
W11

B which maps 4KB

Unmapped Physical Memory

Maps Mapped Virtual Memory

User page table: 2MB
A 4KB PTE Page: 1024

5 I N O

PTEs, maps 4MB

4 KB
Maps

A 4MB virtual User address space: 2GB
T ——— —

region
4 MB

Figure 3: The MIPS 32-bit hierar chical pa ge table. MIPS hardware
provides support for a 2MB linear virtual page table that maps the 2GB
user address space by constructing a virtual address from a faulting virtual
address that indexes the mapping PTE in the user page table. This 2MB
page table can easily be mapped by a 2KB user root page table.

3.4 MIPS: A simple 32-bit pa ge table design

MIPS [23, 33] eliminated the page-table-walking hard-
ware found in traditional memory management units,
and in doing so demonstrated that software can table-
walk with reasonable efficiency. It also presented a sim-
ple hierarchical page table design, shown in Fig 3. On a
TLB miss, the hardware creates a virtual address for the
mapping PTE in the user page table. The virtual page
number (VPN) of the address that missed the TLB is
used as an index into the user page table, which must be
aligned on a 2MB virtual boundary. The base pointer,
called PTEBase, is stored in a hardware register and is
usually changed on context switch. This is illustrated as
part of Fig 4. The advantage of this page table organiza-
tion is that a small amount of wired-down memory

(2KB) can map an entire user address space efficiently;
in the worst case, a user reference will require two addi-
tional memory lookups: one for the root-level PTE, one
for the user-level PTE. The TLB miss handler is very
efficient in the number of instructions it requires: the
handler is less than ten instructions long, including the
PTE load. We base our page table and cache miss design
on this scheme for its simplicity and good performance.

3.5 SPUR: In-cac he address translation

SPUR [26, 44, 56, 57] demonstrated that the storage slots
of the TLB are not a necessary component in address
translation. The architecture uses a virtually indexed,
virtually tagged cache to delay the need for address
translation until a cache miss occurs. On a miss, a hard-
ware state machine generates the virtual address for the
mapping PTE and searches the cache for that address. If
this lookup misses, the state machine continues until
the topmost level of the page table is reached, at which
point the hardware requests the root PTE (at a known
address) from physical memory.

The SPUR design eliminated specialized, dedicated
hardware to store mapping information. However, it
replaced the TLB with another specialized hardware
translation mechanism—a finite state machine that
searched for PTEs in general-purpose storage (the
cache) instead of special-purpose storage (TLB slots).

3.6 VMP: Software-contr olled cac hes

The VMP multiprocessor [11, 12, 13] places virtual
caches under software control. Each processor node
contains several hardware structures, including a cen-
tral processing unit, a software-controlled virtual cache,
a cache controller, and special memory. Objects the sys-
tem cannot afford to have causing faults, such as root
page tables and fault-handling code, are kept in a sepa-
rate area called local memory, distinguished by the high-
order bits of the virtual address. Code in local memory
controls the caches; a cache miss invokes a fault handler
that locates the requested data, possibly causes other
caches on the bus to invalidate their copies, and loads
the cache.

The scheme reduces the amount of specialized hard-
ware in the system, including memory management
unit and cache miss handler, and it simplifies the cache
controller hardware. However, the design relies upon
special memory that lies in a completely separate
namespace from the rest of main memory.

4 Software-mana ged address
translation

The softvm design requires a virtual cache hierarchy.
There is no TLB, no translation hardware. When a refer-

ence fails to hit in the bottommost virtual cache a
CACHEMISS exception is raised. We will refer to the
address that fails to hit in the lowest-level cache as the
failing address, and to the data it references as the failing
data.

The general design is based on two observations.
The first is that most high performance systems have
reasonably large L2 caches, from 256KB found in many
PCs to several megabytes found in workstations. Large
caches have low miss rates; were these caches virtual,
the systems could sustain long periods requiring no
address translation at all. The second observation is that
the minimum hardware necessary for efficient virtual
memory is a software-managed cache miss at the lowest
level of a virtual cache hierarchy. If software resolves
cache misses, the operating system is free to implement
whatever virtual-to-physical mapping it chooses. Wood
demonstrated that with a reasonably large cache
(128KB+) the elimination of a TLB is practical [56]. For
the cache sizes we are considering, we reach the same
conclusion (see the Performance section for details).

4.1 Handling the CACHEMISS exception

On a CACHEMISS exception, the miss handler loads the
data at the failing address on behalf of another thread.
The operating system must therefore be able to load a
datum using one address and place it in the cache
tagged with a different address. It must also be able to
reference memory virtually or physically, cached or
uncached; to avoid causing a cache-miss exception, the
cache-miss handler must execute using physical
addresses. These may be cacheable, provided that a
cacheable-physical address that misses the cache causes
no exception, and that a portion of the virtual space can
be directly mapped onto physical memory.

When a virtual address misses the cache, the failing
data, once loaded, must be placed in the cache at an
index derived from the failing address and tagged with
the failing address’s virtual tag, otherwise the original
thread will not be able to reference its own data. We
define a two-part load, in which the operating system
first specifies a virtual tag and set of protection bits to
apply to the incoming data, then loads the data with a
physical address. The incoming data is inserted into the
caches with the specified tag and protection informa-
tion. This scheme requires two privileged instructions
to be added to the instruction set architecture (ISA)3:
SPECIFYVTAG and LOAD&MAP, depicted in Fig 4.

3. Manﬁ ISAs leave room for such management instructions,
e.g. the PowerPC ISA mtspr and mfspr instructions (move
to/from special purpose register) would allow implemen-
tations of Eoth functions.

Failing Virtual Address ‘ Virtual Tag ‘ Line Off. ‘
SPECIFYVTAG operand ‘ Virtual Tag ‘Prot. Bits‘
Failing Virtual Address ‘ Virtual Page Number ‘ Page Offset‘
Virtual address for PTE l
‘ 1's ‘ Virtual Page Number ‘0‘
LOAD
Page Table Entry
‘Prot. Bits‘ ‘ Page Frame Number ‘
LoAD&MAP operand ‘ Page Frame Number ‘ Page Offset

Figure 4: SPECIFYVTAG and LoAD&MAP. The top figure illustrates
SPECIFYVTAG, the bottom figure illustrates LOAD&MAP. The LOAD&MAP
example resembles a MIPS-style page table lookup; the PUMA global
page table is very similar to the MIPS organization. However, while the
user-level page table in MIPS is located at PTEBase, a variable stored
in a hardware register, the PUMA global page table is located at a
known offset at the top of the global address space, thus the 1's in the
most significant bits of the virtual address for the PTE.

SPECIFYVTAG instructs the cache to insert future
incoming data at a specific offset in the cache, tagged
with a specific label. Its operand has two parts: the vir-
tual tag (VTAG) comes from the failing virtual address;
the protection bits come from the mapping PTE. The
bottom half of the VTAG identifies a block within the
cache, the top half is the tag. Note that the VTAG is
larger than the virtual page number; the hardware
should not assume any overlap between virtual and
physical addresses beyond the cache line offset. This is
essential to allow a software-defined page size.

The operand of a LOAD&MAP is a physical or virtual
address. The datum identified by the operand is loaded
from the cache or memory and then (re-) inserted into
the cache at the cache block determined by the previ-
ously executed SPECIFYVTAG, and tagged with the
specified virtual tag. Thus an operating system can
translate data that misses the cache, load it from mem-
ory (or even another location in the cache), and place it
in any cache block, tagged with any value. When the
original thread is restarted, its data is in the cache at the
correct line, with the correct tag. Note the operations
can be performed out of order for performance reasons,
as long as the tag arrives at the cache/s before the data
arrives. Note also that without hardware support, the
two-part load must not be interrupted by another two-
part load.

32-bit Effective Address
‘ Segno ‘ Segment Offset
Segment Cache
44-bit Virtual
Address
Segment ID ‘ Segment Offset
Cache 8KB Direct-Mapped
) |- or D-Cache
Miss
Split 1MB Virtual
MMU Off-Chip L2 Cache
To physical
memory

Figure 5: The PUMA ad dress translation mec hanism. The processor
uses PowerPC-style segmentation to translate a user 32-bit effective
address into an extended 44-bit virtual address, used to reference both
caches in the virtual hierarchy. However, unlike the 801 and PowerPC,
more than 4 bits are used to index the segment cache; the top 10 bits indi-
cate a segment identifier, dividing the 4GB user address space into 1024
4MB virtual segments.

5 The PUMA memor y management
architecture

5.1 Hardware
The PUMA is a high clock-rate 32-bit PowerPC. Its
memory management architecture is based on Pow-
erPC segmentation and provides a software-managed
address translation mechanism [32]. Processes generate
32-bit addresses which are extended through the seg-
mentation mechanism to 44-bit addresses. The entire
cache hierarchy is virtual, and when a reference misses
in the L2 cache, the miss is handled in software, not
hardware. A TLB is not necessary, as protection infor-
mation is kept in the caches. As we have shown [32], the
minimum hardware necessary for efficient virtual mem-
ory is a virtual cache hierarchy with a software-man-
aged L2 cache miss, and many other studies have
already shown that a TLB is not necessary for good per-
formance [14, 44, 56, 57]. The benefit of a software-man-
aged cache miss is that the operating system is free to
implement whatever mapping organization it chooses.
The PUMA address translation mechanism is shown
in Fig 5. Both caches in the two-level virtual cache hier-
archy are split and virtual. The L1 cache is 8KB/8KB,
the L2 cache is 512KB/512KB. When references miss in
the L2 caches the MMU generates a CACHEMISS excep-

tion; the operating system is responsible for handling
address translation and loading the data at the faulting
address. The operating system can reference memory
virtually or physically, depending on the segment iden-
tifier used. As in MIPS [33], virtual memory is divided
into regions of different behavior; two of the regions
map directly onto physical memory, the rest are virtual.
The MMU checks the top twelve bits of the 44-bit vir-
tual address; the patterns 0x000 and 0x001 represent
cached and uncached £hysical memory, respectively.
This places a limit of 272 bytes on the physical memory
size—exactly the amount of space that the operating
system can address at once. All other segment identifi-
ers represent virtual segments and can fault. When the
MMU receives virtual addresses prefixed with either of
the reserved patterns, it treats them specially. If the pat-
tern is 0x001, the MMU first checks the L2 cache. If the
data is not found in the cache, or if the pattern is 0x000,
the MMU passes the rest of the address on to physical
memory. When the data returns from main memory it is
sent to the FXU; if the pattern is 0x001, the MMU also
inserts the data into the cache.

To handle a CACHEMISS exception, the operating sys-
tem must load the data at the faulting address on behalf
of the user process. This is complicated by the fact that
the data must be accessed using its physical name but
stored in the caches by its virtual name. The architecture
defines a two-part load, in which the operating system
first sends a virtual page number to the MMU, then
loads the data with the physical address, instructing the
MMU to store it in the cache tagged with the previously
indicated VPN. Thus when the faulting thread is
restarted, its data is in the cache at the correct line, with
the correct tag. These functions are provided by two
new privileged instructions: SPECIFYVTAG and
LOAD&MAP.

Note that the hardware does not manage the
0x000/0x001 overlap problem. For instance, if one
writes one datum to location 0x001000BABAO and then
a different datum to location 0x000000BABAO (the same
location, just not cached), the original datum will still be
left in the cache. This will cause problems when a subse-
quent cacheable read or the inevitable writeback occurs.
It is up to the operating system to avoid this behavior,
which can be done by careful organization of
cached /uncached regions.

Segment protection information is kept in the seg-
ment registers, and page protection information is kept
in the global page table. An entire object is mapped into
an address space with one protection, but it can have
different segment-level protections every time it is
mapped (either in another address space or at another
offset in the same address space). The global page table
keeps page-protection information, which is maintained

4KB Page

2KB of Segment Identifiers
512 22-bit word-aligned IDs ‘

‘ Process State ‘
Two pages:

8KB Process

A 4-byte PTE,
2KB: 512 PTEs

which maps 4KB

" e staeres L

Reserved ‘ Control Block

4B

Unmapped Physical Memory

Maps

Mapped Virtual Memory

A 4KB segment page table: a contiguous group
of 1024 PTEs that collectively map 4MB

User Page Table
2MB: 512 4KB Pages, 512K PTEs

4 KB 4 KB

Maps

Per-Process User Address Space
2GB: 512 4MB segments, 512K 4KB pages

l:l A 4MB virtual segment, ‘ ‘ ‘ ‘ ‘

1/512 of an address space
4 MB 4 MB
44-bit Global Virtual Address Space: 222 4MB virtual segments

4 MB
Virtual Segment

Segment Page Tables
4KB each

Figure 6: The disjunct pa ge table or ganization.

There is a single linear page table at the top of the 44-bit address space that maps the entire address space.

The 4KB PTE pages (segment page tables) of the user page table are taken directly from this global page table. Therefore, though it may seem that there is a
separate user page table for every process, each page table is simply mapped onto the global space; the only per-process allocation is for the user root page
table. Though it is drawn as an array of contiguous pages, the user page table is really a disjunct set of 4KB pages in the global space.

in hardware on a per-cacheline basis. Keeping the page-
protection bits consistent across multiple cachelines is
not trivial; this is discussed in more detail in the Perfor-
mance section.

5.2 Software

It is not yet clear how finely-segmented the PUMA
architecture will be; the granularity depends upon
resource constraints, both in the process and the design
team. For the purposes of this report, we assume the
best case and describe the design for a PUMA processor
that divides the user address space into 1024 4MB seg-
ments,

We use a global page table to guarantee one-to-one
mappings between virtual space and physical space. We
use the PUMA segment cache to allow processes to map
segments at arbitrary locations. The per-process address
space is 2GB; like MIPS [33], the top half of the address
space is owned by the kernel—although here it is a soft-
ware convention, not a hardware stipulation.

The §lobal page table is a linear structure at the top
of the 2**-byte global address space. The page table is
2% bytes long (pages are software-defined at 4KB, PTEs
are 4B). The table, shown in Fig 6, has a two-tiered hier-
archical organization, accessed bottom-up. The top tier
is a 2KB structure wired down in physical memory
while the process is running. This per-process root page
table occupies one half of a page—part of the process
control block. The lower tier of the page table is a 2MB

structure in virtual space. It is divided into 512 4KB
regions, each of which (collectively) maps one of the
4MB segments of the user’s address space. These PTE
pages are called segment page tables since each maps a
virtual segment. They are located in the topmost por-
tion of the global virtual space.

The page fault algorithm is shown in Fig 7. Processes
generate 32-bit effective addresses that are extended to
44 bits by segmentation, replacing the top four bits of
the effective address. In step 1 of the figure, the operat-
ing system uses the faulting virtual address to construct
the virtual address of the page table entry that maps the
faulting address. The VPN of a 44-bit failing global vir-
tual address is used as an index into the global page
table to reference the PTE mapping the failing data (the
UPTE). The bottom two bits of the address are 0’s, since
the PTE size is four bytes. The top ten bits of the address
are 1’s since the table is at the very top of the global
space. This virtual address is sent to the L1 cache, and
the L2 cache if there is an L1 miss.

If this misses in the L2 cache, the operating system
takes a recursive CACHEMISS exception. At this point,
we must locate the mapping PTE in the user root page
table. This table is an array of PTEs that cannot be
indexed by a global VPN. It mirrors the structure of the
user’s perceived address space, not the structure of the
global address space. Therefore it is indexed by a por-
tion of the original 32-bit effective address. The top 10
bits of the effective address index 1024 PTEs that would

32-bit EffectiveAddress‘ Segment No. ‘ Seg. Offset ‘

10 bits 10 bits 12 bits
Page Offset ‘

22 bits 10 bits 12 bits

44-bit Faulting Virtual Address

Virtual Address for UPTE ‘ 1111111111 ‘

Segment ID ‘ Seg. Offset ‘ Page Offset ‘
10 bits 22 bits 10 bits 2 1
Segment ID ‘ Seg. Offset ‘OO‘

Per-Process Context

‘ PEN for Process Control Blod ‘

12 bits

20 bits 1 9 bits 2

Physical Address for URPTE | 0000 0000 0001 ‘

Page Frame Number

‘X‘ Segment No. ‘OO‘

Figure 7: The PUMA pa ge fault algorithm.

Step 1 is the result of a user-level L2 cache miss; the operating system builds a virtual address for a PTE in the

global page table. If this PTE is not found in the L1 or L2 cache a root PTE is loaded, shown in step 2. One special requirement is a register holding the initial
faulting address. Another required hardware structure, the per-process context register, points to the process control block of the active process.

map a 4MB user page table, which would in turn map a
4GB address space. Since the top bit of the effective
address is guaranteed to be zero (the address is a user
reference), only the bottom nine bits of the top ten are
meaningful; these bits index the array of 512 PTEs in the
user root page table. In step 2, the operating system
builds a physical address for the appropriate PTE in the
user root page table (the URPTE), a 44-bit virtual
address whose top 12 bits are 0x001, indicating that it is
physical and cacheable. Note that this 44-bit address
can be used to index the virtual caches, even though it is
equivalently mapped to a physical address. The operat-
ing system then loads the URPTE, which maps the
UPTE that missed the cache at the end of step 1. When
control is returned to the miss handler in step 1, the
UPTE load retry will complete successfully.

Once an appropriate mapping structure has been
loaded, the operating system needs to load the data at
the faulting user address and place it in the virtual
cache. It uses the two-part load procedure described
earlier. First an appropriate VPN is constructed from the
44-bit faulting virtual address and handed to the MMU
as an operand of a SPECIFYVTAG instruction. The oper-
ating system then performs a LOAD&MAP using the
physical address for the failing data, built from the PFN
in the UPTE and the page offset from the failing
address. The MMU places the data in the cache at an
offset determined by the specified VTAG. This loads the
failing data and inserts it into the cache using the user’s
virtual tag. When the faulting instruction is restarted,
the data is in the cache hierarchy at the correct offset,
tagged with the correct VPN.

Note that the ‘X’ bit between the page frame number
and the segment number in the physical address is
reserved. To conserve space, we double up on user root

4GB

- Library data (private)

1 segment [C

= Library code (shared)

0

Figure 8: The location of shared libraries in pr ~ ocess ad dress

spaces. The code and data of a library are separated into two halves,
each occupying its own virtual segment. The code segment can be shared
by multiple processes, but the data segment must be private for every pro-
cess. The code and data segments are located at the same virtual
address in all processes, so the code can use absolute addresses to refer-
ence locations in the data segment.

page tables, and put two URPTs into a single page. This
bit may be zero or one.

5.3 Dynamicall y linked shared libraries

To give a feeling for how we use the segmented space to
implement shared memory, we present a brief overview
of our implementation of dynamically linked shared
libraries. We do not require position independent code,
as we amortize one-time library linking across multiple
program uses. We do not statically fix library addresses,
but like OS/2 we require that libraries be loaded into
every address space at the same virtual location. There-
fore, if a process does not use a particular library the
space is unusable.

Each library has code and data segments; code seg-
ments are shared, data segments are private. We do not
allow shared data segments, otherwise libraries would
have to be reentrant. The simple shared library organi-
zation is shown in Fig 8. Libraries occupy two or more
(possibly adjacent) segments in the user’s address

Process A Process B

Figure 9: T wo processes sharing a librar y. The code segment is
shared between the two processes but the data segments are private. The
data segments are located at the same virtual address in both processes,
so the code can use the same virtual address to reference the appropriate
data. The segmentation mechanism provides the ability to use different
aliases for different physical data.

space. The code segment is shared by all processes that
use the library. The data segment is mapped into every
process at the same location, but every process uses a
different segment identifier to keep from accessing each
other’s data. Library code can therefore use absolute
pointers to reference internal data and code.

An example of two applications sharing a library is
shown in Fig 9. The figure illustrates an example of a
library with large data requirements; the data region
cannot fit into a single hardware segment, so it stretches
across two segments. As the figure shows, segments
that are next to each other in the per-process address
spaces may end up nowhere near each other in the glo-
bal space. Despite this, libraries and shared regions in
general can store and share pointers in the global space.

The advantage of this organization is that library
code can use absolute values for both jump offsets and
data loads and stores. The code will be shared and the
data private, and both will be at the same offsets in all
processes. This is a simple implementation of position
independent code.

The disadvantage is that the library code will need to
be linked at the time of execution, but only for the first
process to use the library. Load/store addresses and
jump offsets will need to reflect what segment numbers
the library code and data have been loaded into. All
libraries are created by the compiler based at address
zero, and the code or data segment offset can simply be
added to all absolute addresses. To speed up system
response time, linking can be performed on a page-by-
page basis when the page is first demand-faulted in.

Alternatively, the operating system can reserve seg-
ment slots for certain libraries, as seen in several com-

10

mercial operating systems, including Solaris, SVR3, and
VMS.

5.4 Memory system requirements, re visited

We now revisit the memory management requirements
listed earlier, and discuss how the PUMA design sup-
ports them.

Address space pr otection and lar ge address
spaces. These are satisfied in our example
through the use of PowerPC segments in
conjunction with a virtual cache. As described
earlier, segments provide address space protection,
and by their definition provide a global virtual
space onto which all effective addresses are
mapped. A process could use its 4GB space as a
window onto the larger space, moving virtual
segments in and out of its working set as necessary.
This type of windowing mechanism is used on the
PA-RISC [27].

Shared memor y. The sharing mechanism is defined
by the page table. Sharing memory via global
addresses can simplify virtual cache management;
this is the scheme used in many systems [7, 8, 16, 18,
20, 21, 46], and has been shown to have good
performance.

Fine-grained pr otection. One can maintain
protection bits in the cache, or in an associated
structure like a TLB. If one could live with
protection on a per-segment basis, one could
maintain protection bits in the segment registers.
We maintain protection bits in the cache line.
Protection granularity therefore becomes a software
issue; the page size can be anything from the entire
address space down to a single cache line. Note the
choice of this granularity does not preclude us from
implementing segment-level protection as well. The
disadvantage is that if one chooses a page size
larger than a single cache line, protection
information must be replicated across multiple
cache lines and the operating system must manage
its consistency. We analyze this later.

Sparse address spaces. Sparse address space
support is largely a page table issue. Hardware can
either get out of the way of the operating system
and allow any type of page table organization, or it
can inhibit support for sparse address spaces by
defining a page table organization that is not
necessarily suitable. By eliminating translation
hardware, one frees the operating system to choose
the most appropriate structure.

Table 1: Qualitative comparison of cac

he-access/ad dress-translation mec hanisms

Frequenc y of

Actions P erformed b y Hardware and Operating System

Occurrence per Occurrence of Event
Event
. . TLB + Software-Mgd Ad dr
I-side D-side Virtual cac he Translation
L1 hit, 96.7% 95.8% L1 access L1 access
TLB hit (w/ TLB access in parallel)
L1 hit, 0.01% 0.06% L1 access L1 access
TLB miss + page table access
+ TLB reload
L1 miss, L2 hit, 3.2% 3.9% L1 access L1 access
TLB hit + L2 access + L2 access
L1 miss, L2 hit, 0.03% 0.09% L1 access L1 access
TLB miss + page table access + L2 access
+ TLB reload
+ L2 access
L1 miss, L2 miss, 0.008% 0.12% L1 access L1 access
TLB hit + L2 access + L2 access
+ memory access + page table access
+ memory access
L1 miss, L2 miss, 0.0001% 0.0009% L1 access L1 access
TLB miss + page table access + L2 access
+ TLB reload + page table access
+ L2 access + memory access

+ memory access

Superpages. By removing the TLB one removes
hardware support for superpages, but as with
sparse address spaces one also frees the operating
system to provide support through the page table.
For instance, a top-down hierarchical page table (as
in the x86 [31]) would provide easy support for
superpages. A guarded page table [38, 39] would
also provide support, and would map a large
address space more efficiently, as would the
inverted page table variant described by Talluri, et
al. [49].

Direct memor y access. While our design provides
no explicit support for DMA, and actually makes
DMA more difficult by requiring a virtual cache,
direct memory access is still possible. We perform
DMA by flushing affected pages from the cache
before beginning a transfer, and restricting access to
the pages during transfer.

6 Performance of the design

Many studies have shown that significant overhead is
spent servicing TLB misses [1, 4, 9, 28, 42, 45, 48]. In par-
ticular, Anderson, et al. [1] show TLB miss handlers to
be among the most commonly executed primitives,
Huck and Hays [28] show that TLB miss handling can
account for more than 40% of total run time, and Rosen-
blum, et al. [45] show that TLB miss handling can
account for more than 80% of the kernel’s computation
time. Typical measurements put TLB handling at 5-10%
of a normal system’s run time.

11

The question that we have asked is does the TLB buy
us anything? Do its benefits outweigh its overhead? We
discovered that with the large caches available today
(most of which are larger than the entire memory sys-
tems of computers twenty to thirty years ago when vir-
tual memory was invented and when TLBs came into
fashion), address translation can be performed much
more efficiently without a TLB. It does not, in fact, buy
us anything.

6.1 A qualitative o verview
The SPUR and VMP projects demonstrated that with
large virtual caches the TLB can be eliminated with no
performance loss, and in most cases a performance
gain. For a qualitative, first-order performance compari-
son, we enumerate the scenarios that a memory man-
agement system would encounter. These are shown in
Table 1, with frequencies obtained from SPECint95
traces on a PowerPC-based AIX machine (frequencies
do not sum to 1 due to rounding). The model simulated
has 8K/8K direct-mapped virtual L1 caches (in the mid-
dle of the L1 cache sizes simulated), 512K /512K direct-
mapped virtual L2 caches (the smaller of the two L2
cache sizes simulated), and a 16-byte linesize in all
caches. As later graphs will show, the small linesize
gives the worst-case performance for the software-man-
aged scheme. The model includes a simulated MIPS-
style TLB [33] with 64 entries, a random replacement
policy, and 8 slots reserved for root PTEs.

The table shows what steps the operating system
and hardware take when cache and TLB misses occur.
Note that there is a small but non-zero chance a refer-

ence will hit in a virtual cache but miss in the TLB. If so,
the system must take an exception and execute the TLB
miss handler before continuing with the cache lookup,
despite the fact that the data is in the cache. On TLB
misses, a software-managed scheme should perform
much better than a TLB scheme. When the TLB hits, the
two schemes should perform similarly, except when the
reference misses the L2 cache. Here the TLB already has
the translation, but the software-managed scheme must
access the page table for the mapping (note that the
page table entry may in fact be cached). Software-man-
aged translation is not penalized by placing PTEs in the
cache hierarchy; many operating systems locate their
page tables in cached memory for performance reasons.

6.2 Baseline o verhead

Table 2 shows the overheads of TLB handling in several
operating systems as percent of run-time and CPI. Per-
cent of run-time is the total amount of time spent in TLB
handlers divided by the total run-time of the bench-
marks. CPI overhead is the total number of cycles spent
in TLB handling routines divided by the total number
of cycles in the benchmarks. The data is taken from pre-
vious TLB studies [4, 41, 42] performed on MIPS-based
DECstations, which use a software-managed TLB. CPI
is not directly proportional to run-time overhead for
two reasons: (1) the run-time overhead contains page
protection modifications and the CPI overhead does
not, and (2) memory stalls make it difficult to predict
total cycles from instruction counts.

Table 2: TLB o verhead of se veral operating systems

System Overhegd Overhead
(% run-time) (CPI)
Ultrix 2.03% 0.042
OSF/1 5.81% 0.101
Mach3 8.21% 0.162
Mach3+AFSin 7.77% 0.220
Mach3+AFSout 8.88% 0.281

Table 3 gives the overheads of the software-managed
design, divided by benchmark to show a distribution.
The values come from trace-driven simulation of the
SPEC95 integer suite. The simulations use the same
middle-of-the-line cache organization as before (8K/8K
L1, 512K/512K L2, 16-byte linesize throughout), but
replace the TLB with software address translation. Our
memory penalties are 1 cycle to access the L1 cache, 20
cycles to access the L2 cache, and 90 cycles to access
main memory.

Table 4 gives a more detailed breakdown of costs for
one of the benchmarks: gcc. Our example miss handler
from the previous section requires 10 instructions
including two loads. It is very similar to the MIPS TLB

12

Table 3: Overhead of software-mana ged address translation

Workload (OCVPeIr)head
m88ksim 0.003
l 0.003
9 0.004
compress95 0.009
perl 0.019
iipeg 0.052
vortex 0.060
gce 0.097
Weighted

Average: 0.033

refill handler that requires less than 10 instructions
including one load, taking 10 cycles when the load hits
in the cache, or 40+ when the load misses in the cache,
thereby forcing the reference to main memory [4]. In our
model, the L2 cache miss handler always takes 10
cycles, and runs whenever we take an L2 cache miss
(labeled L2 I-Cache miss or L2 D-Cache miss in the table).
When the PTE load in the handler misses the L1 cache
(Miss handler L1 D-miss) we take an additional 20 cycles
to go to the L2 cache to look for the PTE. If that load
misses we either take a recursive cache miss (if handling
a user-miss, therefore the PTE address is virtual,
accounted for in L2 D-Cache miss), or the address is
physical and goes straight through to main memory
(Miss handler L2 D-miss, 90 cycles). When the miss han-
dler is handling a miss from the handler itself, we need
also load the failing UPTE on behalf of the handler
(Miss handler Load UPTE, 90 cycles).

Table 4: Breakdo wn of GCC o verhead

Event Frequency Penalty per Overhead
(per instr .) Occurrence (CPI)

L2 D-Cache 0.000697 10 cycles 0.006970
Ld/St miss
L2 I-Cache 0.004756 10 cycles 0.047560
I-fetch miss
Miss handler 0.000596 20 cycles 0.011920
L1 D-miss
Miss handler 0.000032 90 cycles 0.002880
L2 D-miss
Miss handler 0.000053 90 cycles 0.004770
Load UPTE
Miss handler 0.000985 20 cycles 0.019700
L1 I-miss
Miss handler 0.000035 90 cycles 0.003150
L2 I-miss

Total CPI: 0.096950

Additionally, the miss-handler code can miss in the
L1 or L2 I-caches; since it is mapped directly onto phys-
ical memory it does not cause a cache miss itself. How-

ever, for every instruction fetch that misses in the L1
cache we take a 20-cycle penalty to reference the L2
cache; for every L2 miss we take a 90-cycle penalty to
reference physical memory.

The average overhead of the scheme is 0.033 CPL.
This is about the overhead measured of Ultrix on MIPS,
considered to be an example of an efficient match
between OS and architecture. This CPI is several times
better than that of Mach, which should result in a run-
time savings of at least 5% over Mach.

6.3 Writebac ks

We keep the translation of a virtual address in the cache
line with the data. The translation is only needed in the
L2 cache, since we maintain inclusion between the two
caches. This simplifies writeback, as it allows the L2
cache to perform writebacks without the aid of the
CPU, without interrupting the processor. However, the
operating system must ensure that the translations kept
in the cache never become stale; whenever a virtual
page is re-mapped, the operating system must modify
or flush any entries belonging to the affected page.

6.4 Fine-grained pr otection

As mentioned earlier, managing protection information
can be inefficient if we store protection bits with each
cache line. If the protection granularity is larger than a
cache line, the bits must be replicated across multiple
lines. Keeping the protection bits consistent across the
cache lines can cause significant overhead if page pro-
tection is modified frequently. The advantage of this
scheme is that the choice of protection granularity is
completely up to the operating system. In this section,
we determine the overhead.

Table 5: Page protection modification frequencies in Mac h3

Page Protection Modifications

Workload Modifications per Million
Instructions
compress 3635 2.8
jpeg_play 12083 3.4
10zone 3904 5.1
mab 27314 15.7
mpeg_play 26129 19.0
gce 35063 22.3
ousterhout 15361 23.8
Weighted
Average: 11.3

We performed a study on the frequency of page pro-
tection modifications in the Mach operating system. The
benchmarks are the same as in [42], and the operating
system is Mach3. We chose Mach as it uses copy-on-
write liberally, producing 1000 times the page-protec-

13

tion modifications seen in Ultrix [42]. We use these
numbers to determine the protection overhead of our
system; this should give a conservative estimate for the
upper bound. The results are shown in Table 5.

Page-protection modifications occur on the average
of 11.3 for every million instructions. At the very worst,
for each modification we must sweep through a page-
sized portion of the L1 and L2 caches to see if lines from
the affected page are present. Overhead therefore
increases with larger page sizes (a software-defined
parameter) and with smaller linesizes (a hardware-
defined parameter). On a system with 4KB pages and a
16-byte linesize, we must check 256 cache lines per
modification. Assuming an average of 10 L1 cache lines
and 50 L2 caches lines affected per modiﬁcation4, if L1
cache lines can be checked in 3 cycles and updated in 5
cycles (an update is a check-and-modify), and L2 cache
lines can be checked in 20 cycles and updated in 40
cycles, we calculate the overhead as follows. Of 256 L1
cache lines, 10 must be updated (5 cycles), the remain-
ing 246 need only be checked (3 cycles); of 256 L2 cache
lines 50 must be updated (40 cycles), the remaining 206
need only be checked (20 cycles); the overhead is there-
fore 6908 cycles per page-protection modification (10 * 5
+ 246 * 3 + 50 * 40 + 206 * 20). This yields between 0.019
and 0.164 CPT (6908 * 2.8 * 10 and 6908 * 23.8 * 10°©).
This is in the range of Ultrix and OSF/1 overheads and
at the lower end of Mach’s overhead. This translates to a
worst case of 2-7% total execution time. If the operating
system uses page-protection modification as infre-
quently as in Ultrix, this overhead decreases by three
orders of magnitude to 0.0001 CPL, or about 0.01% exe-
cution time.

We can improve this by noting that most of these
modifications happen during copy-on-write. Often the
protections are being increased and not decreased,
allowing one to update protection bits in each affected
cache line lazily—to delay an update until a read-only
cache line is actually written, at which point it would be
updated anyway.

6.5 Sensitivity to cac he organization

The graphs in Fig 10 show the sensitivity of software-
managed address translation to cache size and cache
linesize. The benchmarks are from SPEC95 as before; we
only show graphs for the two worst-performing bench-
marks—gcc and vortex. The numbers differ slightly

4. We chose these numbers after inspecting individual
SPEC95 benchmark traces, which should give conservative
estimates: (1) SPEC working sets tend to be smaller than
normal programs, resulting in less page overlap in the
caches, and (2) individual traces would have much less
overlap in the caches than multiprogramming traces.

F—Qu Linesize 16, L2 Linesize 16
[—L1 Linesize 16, L2 Linesize 32

0.200 Ti@—#L1 Linesize 16, L2 Linesize 64
|A—AL1 Linesize 16, L2 Linesize 128
0.180 I(O—OL1 Linesize 32, L2 Linesize 32
: L1 Linesize 32, L2 Linesize 64
IK>—OL1 Linesize 32, L2 Linesize 128
0.160 |- (G - ©L1 Linesize 64, L2 Linesize 64
[3 - EJL1 Linesize 64, L2 Linesize 128
0.140 | Pk——L1 Linesize 128, L2 Linesize 128
o L]
o 0.120
o
& 0.100 q
=
£ 0.080 - 1
o
0.060 - q
0.040 - q
0.020 - q
0.000 I I I I I I I I

16 32
L1 Cache Size - per side (KB)

(a) GCC, 1MB split L2 cac he

[@—@L1 Linesize 16, L2 Linesize 16
L1 Linesize 16, L2 Linesize 32

0.080 T4—4L1 Linesize 16, L2 Linesize 64
|A—AL1 Linesize 16, L2 Linesize 128
IO—COL1 Linesize 32, L2 Linesize 32
0.070 - [C—{L1 Linesize 32, L2 Linesize 64
K>—OL1 Linesize 32, L2 Linesize 128
I3 - ©L1 Linesize 64, L2 Linesize 64
0.060 3 - EJL1 Linesize 64, L2 Linesize 128
: bk——KL1 Linesize 128, L2 Linesize 128
E 0.050 - q
S
=
°
] L 4
3 0.040
£
g
6 0.030 - q
0.020 - 4
0.010 1
0.000

L1 Cache Size - per side (KB)
(c) GCC, 2MB split L2 cac he

’i—.Ll Linesize 16, L2 Linesize 16
—HL1 Linesize 16, L2 Linesize 32
0.120 Ti@—4L1 Linesize 16, L2 Linesize 64
|A—AL1 Linesize 16, L2 Linesize 128
IO—QL1 Linesize 32, L2 Linesize 32
[C—LJL1 Linesize 32, L2 Linesize 64
0.100 | IO>—L1 Linesize 32, L2 Linesize 128
I - ©L1 Linesize 64, L2 Linesize 64
3 - FIL1 Linesize 64, L2 Linesize 128
PK—¥L1 Linesize 128, L2 Linesize 128
0080 | :
o
(<A
o
S 0060 - 1
£
[
>
o
0.040 - q
0.020 1
0.000 I I I I I I I I
1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)
(b) VORTEX, 1MB split L2 cac he
|{@—@L1 Linesize 16, L2 Linesize 16
L1 Linesize 16, L2 Linesize 32
0.060 T4—4@L1 Linesize 16, L2 Linesize 64
|A—AL1 Linesize 16, L2 Linesize 128
>—QOL1 Linesize 32, L2 Linesize 32
L1 Linesize 32, L2 Linesize 64
0.050 + IK>—L1 Linesize 32, L2 Linesize 128
(@ - ©L1 Linesize 64, L2 Linesize 64
[3 - £1L1 Linesize 64, L2 Linesize 128
Pk—kL1 Linesize 128, L2 Linesize 128
0040 | —
a
g
o
S 0030 f 1
<
[
P3
(e]
0.020 - 1
0.010 - b
0.000 I I I I I I I I
1 2 4 8 16 32 64 128
L1 Cache Size - per side (KB)
(d) VORTEX, 2MB split L2 cac he

Figure 10: The eff ect of cac he size and linesiz e on software-mana ged address translation.

The figure shows two benchmarks—gcc and vortex. All

caches are split. L1 cache size is varied from 1K to 128KB per side (2KB to 256KB total), and L2 cache size is varied from 512KB to 1024KB per side (1MB to
2MB total). Linesizes are varied from 16 bytes to 128 bytes; the L2 linesize is never less than the L1 linesize. In each simulation, the I-caches and D-caches have
identical configurations. We apologize for using different y-axis scales; however, they better show the effects of linesize for a given cache size.

from those presented in Table 3; the benchmarks were
not run to completion for this study, but were stopped
after 1 billion references for each.

Besides the familiar signature of diminishing returns
from increasing linesize (e.g., the two largest overheads
in Fig 10a are from the smallest and largest linesizes),
the graphs show that cache size has a significant impact
on the overhead of the system. For gcc, overhead
decreases by an order of magnitude when the L2 cache
is doubled, and decreases by a factor of three as the L1
cache increases from 1KB to 128KB (2KB to 256KB total
L1 cache size); for vortex, overhead decreases by a fac-
tor of two as the L2 cache doubles, and decreases by a
factor of three as L1 increases from 1KB to 128KB.
Within a given cache size, linesize choice can affect per-
formance by a factor of two or more (up to ten for some
configurations).

14

The best organization should result in an overhead
an order of magnitude lower than that calculated ear-
lier—to less than 0.01 CPI, or a run-time overhead far
less than 1%. This suggests that software-managed
address translation is viable today as a strategy for
faster, nimbler systems.

7 Page table efficienc y

The theoretical minimum page table size is 0.1% of
working set size, assuming 4KB pages, 4B page table
entries, and fully-populated page table pages. However,
most virtual memory organizations do not share PTEs
when pages are shared; in many operating systems, for
every shared page there is more than one PTE in the
page tables. Khalidi & Talluri show that these extra

PTEs can increase the page table size by an order of
magnitude or more [34].

We compare the size of the global page table to the
theoretical minimum size of a traditional page table.
Khalidi & Talluri report that the average number of
mappings per page on an idle system is 2.3, and the
average number of mappings to shared pages is 27. This
implies that the ratio of private to shared pages in an
average system is 19:1 or that 5% of a typical system'’s
pages are shared pages.’ These figures are used in our
calculations. The overhead of a traditional page table
(one in which there must be multiple PTEs for multiple
mappings to the same page) can be calculated as:

(number of PTEs)(sizeof PTE) _ (p+27s)4 _ (p+27s)
(number of pages)(sizeof page) (p+s)4096 (p+s)1024

where p is the number of private (non-shared) pages in
the system, and s is the number of shared pages in the
system. We assume a ratio of 1024:1 between page size
and PTE size. This represents the theoretical minimum
overhead since it does not take into account partially-
filled PTE pages. For every shared page there is on aver-
age 27 processes mapping it, therefore the page table
requires 27 PTEs for every shared page. The overhead is
in terms of the physical-page working set size; the frac-
tion of physical memory required to map a certain num-
ber of physical pages. As the percentage of sharing
increases, the number of physical pages does not
increase, but the number of PTEs in the page table does
increase.

The global page table overhead is calculated the
same way, except that PTEs are not duplicated when
pages are shared. Thus, the overhead of the table
becomes a constant:

(p+s)4 1

(p +5)4096 ~ 1024

Clearly, the global page table is smaller than a tradi-
tional page table, and approaches the minimum size
necessary to map a given amount of physical memory.
Fig 11 shows the overhead of each page table organiza-
tion as the level of sharing in a system changes. In an
average system, where 5% of the pages are shared, we
should expect to use less than half the space required by
a traditional page table organization.

5. The averafge number of mappings per page is the total
number of mappings in the system divided by the total

number of pages, or % = 2.3, yielding a p:s ratio of 19:1.

15

0.008 T T
|@—@ Traditional page table
W Global page table

0.006 -

0.004 -

Overhead of page table

0.002 -

0.000 . . .
o] 10% 15% 20%

Percentage of pages shared

L
% 5%

Figure 11: Comparison of pa ge table space requirements. The X-
axis represents the degree of sharing in a system, as the number of pages
that are shared (s/(p + s)). The y-axis represents the overhead of the page
table, as the size of the page table divided by the total size of the data
pages. Khalidi and Talluri’s research shows that in an average system, 5%
of the pages are shared. Therefore, we would expect a disjunct page table
to require slightly less than half the space needed by a more traditional
page table.

8

We are building a high clock-rate 32-bit PowerPC. In
order to meet the memory requirements of a high-speed
processor and avoid the potential slowdown of address
translation, we employ a two-level virtual cache hierar-
chy. Virtual caches help achieve fast clock speeds but
have traditionally been left out of microprocessor archi-
tectures because they have the potential for data incon-
sistencies, requiring significant management overhead.
A segmented architecture adds a second level of indi-
rection and allows a system to use a virtual cache orga-
nization without explicit consistency management, as
long as the operating system ensures that there is a one-
to-one mapping of pages between the segmented
address space and physical memory. We use a disjunct
page table organization to maintain a one-to-one map-
ping while allowing processes to map virtual segments
at different locations in their address spaces, or even at
multiple locations in their address spaces. The disjunct
page table organization requires less than half the space
of a more traditional page table organization.

For the design of the memory management system,
we have returned to first principles and discovered a
small set of hardware structures that provide support
for address space protection, shared memory, large
sparse address spaces, and fine-grained protection at
the cache-line level. This set does not include address-
translation hardware; we show that address translation
can be managed in software efficiently. Current virtual
memory systems such as Mach exact an overhead of
0.16 to 0.28 cycles per instruction to provide address

Summary

translation; our software scheme requires 0.03 CPI (2%
run-time, with a 16KB L1 cache, and 1MB 1.2), about the
same as the overhead of Ultrix on MIPS. If copy-on-
write and other page-protection modifications are used
as frequently as in Mach, protection-bit management
can increase this overhead to that of OSF/1 or Mach.
However, the number of page-protection modifications
in Ultrix represent a negligible overhead. With slightly
larger caches (2MB L2, common in today’s systems), the
overhead of software-managed address translation
should reduce to far less than 1% of run-time. Therefore
software-managed address translation is a viable strat-
egy for high-end computing today, achieving better per-
formance with less hardware.

Beyond the performance gains suggested by our
simulations, the benefits of a minimal hardware design
are three-fold. First, moving address translation into
software creates a simpler and more flexible interface;
as such it supports much more innovation in the operat-
ing system than would a fixed design. Second, a reduc-
tion in hardware will leave room for more cache
structures, increasing performance. Last, simpler hard-
ware should be easier to design and debug, cutting
down on development time.

References

[1] T.E.Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska.
“The interaction of architecture and operating system design.”
In Proc. Fourth Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-4), April 1991, pp.

108-120.
(2]

A.W. Appel and K. Li. “Virtual memory primitives for user
programs.” In Proc. Fourth Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-4), April

1991, pp. 96-107.

M. J. Bach. The Design of the UNIX Operating System. Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1986.

K. Bala, M. F. Kaashoek, and W. E. Weihl. “Software prefetching
and caching for translation lookaside buffers.” In Proc. First
USENIX Symposium on Operating Systems Design and
Implementation, November 1994.

B. N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee,
P. Pardyak, S. Savage, and E. G. Sirer. “SPIN — an extensible
microkernel for application-specific operating system services.”
Tech. Rep. 94-03-03, University of Washington, February 1994.

(3]

(4]

(5]

[6] A.Changand M. F. Mergen. “801 storage: Architecture and
programming.” ACM Transactions on Computer Systems, vol. 6,

no. 1, February 1988.

J. S. Chase, H. M. Levy, M. Baker-Harvey, and E. D. Lazowska.
“How to use a 64-bit virtual address space.” Tech. Rep. 92-03-02,
University of Washington, March 1992.

J. S. Chase, H. M. Levy, E. D. Lazowska, and M. Baker-Harvey.
“Lightweight shared objects in a 64-bit operating system.” Tech.
Rep. 92-03-09, University of Washington, March 1992.

(71

(8]

16

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. B.Chen, A. Borg, and N. P. Jouppi. “A simulation based study
of TLB performance.” In Proc. 19th Annual International
Symposium on Computer Architecture (ISCA-19), May 1992.

R. Cheng. “Virtual address cache in UNIX.” In Proceedings of the
Summer 1987 USENIX Technical Conference, June 1987.

D. R. Cheriton, H. A. Goosen, and P. D. Boyle. “Multi-level
shared caching techniques for scalability in VMP-MC.” In Proc.
16th Annual International Symposium on Computer Architecture
(ISCA-16), June 1989.

D. R. Cheriton, A. Gupta, P. D. Boyle, and H. A. Goosen. “The
VMP multiprocessor: Initial experience, refinements and
performance evaluation.” In Proc. 15th Annual International
Symposium on Computer Architecture (ISCA-15), May 1988.

D. R. Cheriton, G. A. Slavenburg, and P. D. Boyle. “Software-
controlled caches in the VMP multiprocessor.” In Proc. 13th
Annual International Symposium on Computer Architecture (ISCA-
13), January 1986.

D. R. Cheriton, G. A. Slavenburg, and P. D. Boyle. “Software-
controlled caches in the VMP multiprocessor.” In Proceedings of
the 1986 International Symposium on Computer Architecture, June
1986.

H. Custer. “Inside Windows/NT.” Tech. Rep., Microsoft Press,
1993.

H. Deitel. Inside OS/2. Addison-Wesley, Reading MA, 1990.

Digital. DECchip 21064 and DECchip 21064A Alpha AXP
Microprocessors Hardware Reference Manual. Digital Equipment
Corporation, Maynard MA, 1994.

P. Druschel and L. L. Peterson. “Fbufs: A high-bandwidth cross-
domain transfer facility.” In Proc. Fourteenth ACM Symposium on
Operating Systems Principles (SOSP-14), December 1993, pp. 189-
202.

D. Engler, R. Dean, A. Forin, and R. Rashid. “The operating
system as a secure programmable machine.” In Proc. 1994
European SIGOPS Workshop, September 1994.

W. E. Garrett, M. L. Scott, R. Bianchini, L. I. Kontothanassis,
R. A. McCallumm, J. A. Thomas, R. Wisniewski, and S. Luk.
“Linking shared segments.” In USENIX Technical Conference
Proceedings, January 1993.

W. E. Garrett, R. Bianchini, L. Kontothanassis, . R. A.McCallum,
J. Thomas, R. Wisniewski, and M. L. Scott. “Dynamic sharing
and backward compatibility on 64-bit machines.” Tech. Rep. TR
418, University of Rochester, April 1992.

J. R. Goodman. “Coherency for multiprocessor virtual address
caches.” In Proc. Second Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-2),
October 1987, pp. 72-81.

J. Heinrich, Ed. MIPS R10000 Microprocessor User’s Manual,
version 1.0. MIPS Technologies, Inc., Mountain View CA, June
1995.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, Inc., 1990.

Hewlett-Packard. PA-RISC 1.1 Architecture and Instruction Set
Reference Manual. Hewlett-Packard Company, 1990.

M. D. Hill, S.J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K.
Bose, G. A. Gibson, P. M. Hansen, J. Keller, S. I. Kong, C. G. Lee,
D. Lee, J. M. Pendleton, S. A. Ritchie, D. A. Wood, B. G. Zorn,

[27]
(28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

P. N. Hilfinger, D. Hodges, R. H. Katz, J. K. Ousterhout, and
D. A. Patterson. “Design Decisions in SPUR.” IEEE Computer,
vol. 19, no. 11, November 1986.

J. Huck. Personal communication. 1996.

J. Huck and J. Hays. “Architectural support for translation table
management in large address space machines.” In Proc. 20th
Annual International Symposium on Computer Architecture (ISCA-
20), May 1993.

IBM and Motorola. PowerPC 601 RISC Microprocessor User’s
Manual. IBM Microelectronics and Motorola, 1993.

J. Inouye, R. Konuru, J. Walpole, and B. Sears. “The effects of
virtually addressed caches on virtual memory design and
performance.” Tech. Rep. CS/E 92-010, Oregon Graduate
Institute, 1992.

Intel. Pentium Processor User’s Manual. Intel Corporation, Mt.
Prospect IL, 1993.

B. L. Jacob and T. N. Mudge. “Software-managed address
translation.” In Proc. Third International Symposium on High
Performance Computer Architecture (HPCA-3), San Antonio TX,
February 1997.

G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall,
Englewood Cliffs NJ, 1992.

Y. A.Khalidi and M. Talluri. “Improving the address translation
performance of widely shared pages.” Tech. Rep. SMLI TR-95-
38, Sun Microsystems, February 1995.

Y. A. Khalidi, M. Talluri, M. N. Nelson, and D. Williams.
“Virtual memory support for multiple page sizes.” In Proc.

Fourth Workshop on Workstation Operating Systems, October 1993.

S.J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman.
The Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley Publishing Company, 1989.

J. Liedtke. “Improving IPC by kernel design.” In Proc. Fourteenth
ACM Symposium on Operating Systems Principles (SOSP-14),
December 1993, pp. 175-187.

J. Liedtke. “Address space sparsity and fine granularity.” ACM

Operating Systems Review, vol. 29, no. 1, pp. 87-90, January 1995.

J. Liedtke and K. Elphinstone. “Guarded page tables on MIPS
R4600.” ACM Operating Systems Review, vol. 30, no. 1, pp. 4-15,
January 1996.

C. May, E. Silha, R. Simpson, and H. Warren, Eds. The PowerPC
Architecture: A Specification for a New Family of RISC Processors.
Morgan Kaufmann Publishers, San Francisco CA, 1994.

D. Nagle. Personal communication. 1995.

D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, and

R. Brown. “Design tradeoffs for software-managed TLBs.” In
Proc. 20th Annual International Symposium on Computer
Architecture (ISCA-20), May 1993.

R. Rashid, A. Tevanian, M. Young, D. Young, R. Baron,
D. Black, W. Bolosky, and J. Chew. “Machine-independent

17

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

virtual memory management for paged uniprocessor and
multiprocessor architectures.” IEEE Transactions on Computers,
vol. 37, no. 8, pp. 896-908, August 1988.

S. A. Ritchie. “TLB for free: In-cache address translation for a
multiprocessor workstation.” Tech. Rep. UCB/CSD 85/233,
University of California, May 1985.

M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and
A. Gupta. “The impact of architectural trends on operating
system performance.” In Proc. Fifteenth ACM Symposium on
Operating Systems Principles (SOSP-15), December 1995.

M. L. Scott, T. J. LeBlanc, and B. D. Marsh. “Design rationale for
Psyche, a general-purpose multiprocessor operating system.” In
Proc. 1988 International Conference on Parallel Processing, August
1988.

R. L. Sites, Ed. Alpha Architecture Reference Manual. Digital
Equipment Corporation, Maynard MA, 1992.

M. Talluri and M. D. Hill. “Surpassing the TLB performance of
superpages with less operating system support.” In Proc. Sixth
Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-6), San Jose CA, October 1994.

M. Talluri, M. D. Hill, and Y. A. Khalidi. “A new page table for
64-bit address spaces.” In Proc. Fifteenth ACM Symposium on
Operating Systems Principles (SOSP-15), December 1995.

M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson. “Tradeoffs
in supporting two page sizes.” In Proc. 19th Annual International
Symposium on Computer Architecture (ISCA-19), May 1992.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. “Efficient
software-based fault isolation.” In Proc. Fourteenth ACM
Symposium on Operating Systems Principles (SOSP-14), December
1993, pp. 203-216.

W.-H. Wang, J.-L. Baer, and H. M. Levy. “Organization and
performance of a two-level virtual-real cache hierarchy.” In Proc.
16th Annual International Symposium on Computer Architecture
(ISCA-16), June 1989, pp. 140-148.

D. L. Weaver and T. Germand, Eds. The SPARC Architecture
Manual version 9. PTR Prentice Hall, Englewood Cliffs NJ, 1994.

S. Weiss and J. E. Smith. POWER and PowerPC. Morgan
Kaufmann Publishers, San Francisco CA, 1994.

B. Wheeler and B. N. Bershad. “Consistency management for
virtually indexed caches.” In Proc. Fifth Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-5), October 1992.

D. A. Wood. The Design and Evaluation of In-Cache Address
Translation. PhD thesis, University of California at Berkeley,
March 1990.

D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, . M. Pendleton,
S. A Ritchie, G. S. Taylor, R. H. Katz, and D. A. Patterson. “An
in-cache address translation mechanism.” In Proc. 13th Annual
International Symposium on Computer Architecture (ISCA-13),
January 1986.

