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Abstract

The Internet Engineering Task Force (1ETF) is considering the adoption of the controlled-load ser-
vice, areal-time servicewith very relaxed service guarantees [Wro95]. M easurement-based admission
control algorithms (MBAC’s), as opposed to the more conservative wor st-case parameter-based meth-
ods, were expressly designed to achieve high levels of network utilization for such relaxed real-time
services. Most researchers studying MBAC's, including ourselves [JDSZ97], have focused primarily
on the design of the admission control equations using a variety of principled and ad hoc motivations.
In this paper we show that, much to our own surprise, the admission control equations developed so far
inthe MBAC literature give essentially the same performance. Furthermore, we observe that the equa-
tions, even though they are derived and motivated in quite different ways, have the same structural
form.

1 Introduction

The Internet Engineering Task Force (IETF) is considering the adoption of the controlled-load service, a
real-time service with very relaxed service guarantees [Wro95]. M easurement-based admission control
algorithms (MBAC's), as opposed to the more conservative wor st-case parameter-based methods, were ex-
pressly designedto achieve highlevel s of network utilization for such relaxed real-time services. ANMBAC
consists of a measurement mechanism, and a set of admission control equations that take these measure-
mentsasinputs. Most researchersstudying MBAC's, including ourselves[JDSZ97], havefocused primarily
on the design of the admission control equations. In this paper we show that, much to our own surprise,

several of the admission control equationsdeveloped sofar inthe MBAC literaturegive essentially the same
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performance. We therefore realize that our initial focus on the design of the admission control equations
was mistaken, and that research on MBAC’s should instead focus on the setting of the measurement param-
eters and on the global issuesinvolved in admission control (see Section 7.2).

Thereis arapidly growing literature on MBAC's; before proceeding, we briefly review some of the
more relevant work. The controlled-load service specification uses avery parsimonious source character-
ization; sources are described only by a peak rate and a token-bucket filter. Hence in this paper we only
consider MBAC's that do not require precise source characterization. Asidefrom our own ([JDSZ97]), sev-
eral MBAC's requiring only atoken-bucket filter description of sources have been proposed in the litera-
ture [GKK95, Fl096, GK97]. A number of studies have also been conducted to explore aternative mea-
surement processes and their implementationsin hardware [DIM97, Ct91, WCKG94]. The more recent
workson MBAC's ([JSD97, GK97]) consisted of comparative studies of several different MBAC schemes.
In [JSD97] we looked at the utilizations achieved by three MBAC's given a particular performance bound,
e.g. 1e-6 packet lossrate. Two of the MBAC's we studied derived their admission decisions by evaluating
principled equationsthat take this performance bound asinput.

In the current paper, we study these MBAC's more closely. This paper is different from our previous
work in two crucial aspects. First, we do not rely on the predicted or calculated performance of these prin-
cipled methods, but instead measure the actual performance through simulation. We find that the observed
behavior departs substantially from the calculated predictions. Thus, to achieve a particular performance
goal, one must treat the input performance target as merely an arbitrary and tunable parameter. Second,
rather than focusing on asingle point, we study the full range of achievable performance of each mBAC.*
We call the range of achievable utilizations and observed loss rates the loss-load curve.

Thestudy reported in [GK97] issimilar in spirit to ours. Through formal analysis, the authors showed
that the MBAC equationsin [Fl096] and [GKK95] belong to the same class: tangents on the exact equiv-
alent bandwidth curve computed using large-deviation analysis. The authorsfurther conducted numerical
investigations on the trade off between loss rate and network utilization when different MBAC’s, reflecting
tangents at different points of the equivalent bandwidth curve, were employed. Whereas [GK97] took an
analytical and numerical approach, we run simulationsto discover the performance characteristics of each
MBAC. Aswe shall seelater in Section 3, the predictions of these numerical calculations are far from the

actual performance.

Thisideaarosein private discussions with Frank Kelly.



The main results of this paper may be summarized as follows:

1. Intheoperating region wherelossesoccur under all MBAC's, they canall beinduced to givethe same

loss-load curve by tuning their measurement parameters.

2. Allthe mBAC'swestudy perform similarly because they are al based on admission equations of the

same form:

v < f)n—9(), 1)
wherev isthe measured load, i isthelink bandwidth, and f(-) and g(-) arefunctionsof the source's
reserved rate and the number of admitted sources. (See Section 4 for an elaboration of f(-) and ¢(-).)

3. For immediate implementation of MBAC for controlled-load service, we recommend the following
algorithm:

U< vp— Kr, 2

where v isautilization factor to be set based on historical load pattern and desired performance,
thelink bandwdith, x > 0 aconstant to bedetermined, again, from historical data, and r the reserved
rate of an incoming flow. Any of the measurement processes mentioned in the Section 2.2 may be

used in conjunction with this algorithm.

4. The performance of these algorithms, while somewhat insensitive to the form of the admission con-
trol equations, appears rather sensitive to changes in the parameters controlling the measurement

process.

2 Description of theMBAC'S

The MBAC’s we study in this paper were originaly published in [JSD97, Fl096, GK97]; we summarize
them here for the sake of compl eteness.
2.1 TheAdmission Control Algorithms

Measured Sum (MS). Our MBAC for controlled-load service first published in [JSD97] uses measure-

ment to estimate existing traffic load and admits a new flow of rate r if the following test succeeds:

Uv<op—r, ©)
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where U is the measured load of existing traffic, and v is a user-defined utilization target intended to limit
the maximum link load. We describe the measurement process in the next section. Upon admission of the

new flow the load estimateisincreased by 7/ = v + r.

Hoeffding Bounds (HB). The MBAcC described in [FI096] computes the equivalent bandwidth for a set
of flows using the Hoeffding bounds. The equivalent bandwidth of a set of flowsis defined in references
[Flo96, GAN91] asthe bandwidth C'(¢) such that the stationary bandwidth requirement of the set of flows
exceeds this value with probability at most ¢. The measured equivalent bandwidth based on Hoeffding

bounds ((7 77) of n flows, assuming peak rate (p) policing, is:

CA’H(’Z {pi}lgign, )=v+ \/ln(1/€) 22:?:1(272')27 @

The admission control check when a new flow requests admission is:
Cu+p<p ©)

Upon admission of a new flow, the load estimate isincreased by v/ = v + p. If aflow’s peak rate is

unknown, it is derived from its token-bucket filter parameters (r, ) using the following equation:
p=r+0b/U, (6)

where U is a user-defined averaging period. Similar to the algorithm in [GKK95], if aflow is denied ad-

mission, no other flow of asimilar type will be admitted until an existing one departs.

AcceptanceRegion. Let e and p betheaverage and peak rates of an ON/OFF source, the equival ent band-

width (C') of the source can be computed using the following equation [Kel96c, GK97]:
C(s) = Jlog |1+ 2(e - 1) ©
S) = B oqg P € )

where s > 0. One can then draw an equival ent bandwidth curve varying the average rate on the x-axis and

with the resulting equivalent bandwidth on the y-axis. A linear bound at different points of this curve can



be computed as tangent at that point [Kel96¢, Kel96al:

c+av < pu, 8

where ¢ determines the location and « the slope of the tangent. This linear bound can then be used as an
MBAC [Kel96a]. Four MBAC's, each based on a different tangent of the equivalent bandwidth curve were

presented in [GK97]:

1. Tangent at peak (TP):

np(1— e=) + 70 < p, ©

where n isthe number of admitted flows.

2. Tangent at arbitrary point:

pe’?
(p+a(er —1))

7(na®(e® — 1)+ pv) < p, (10)

where a is the measured average rate of a source.

9+w%ﬁn§u, (11)

3. Tangent of slope one:

where v is a constant.

4. Tangent at theorigin (TO):

ePu < p. (12

As pointed out in [GK97], Egn. 11 isthe same as Eqn. 4, and Eqgn. 12 is similar to the MBAC described in
[GKK95]. We do not consider Egn. 10in this study becauseit requires measurement of per-source average
rate, which we do not believe can be accurately and cost effectively measured. The measured load used in
Egns. 9 and 12 is not artificially adjusted upon admittance of a new flow. For flows described by atoken-
bucket filter (r, b) but not peak rate, we use Eqn. 6 to deriveits pesk rate. If aflow isrejected, theadmission

control algorithm does not admit another flow until an existing one departs.



2.2 The Measurement Processes

We now describe the measurement mechani sms used with each of the MBAC's.

Time-window. Following[JDSZ97], we use asimpletime-window measurement mechanismto measure
network load asinput to the M S algorithm. We compute an average load every S sampling period. At the
end of ameasurement window 7’, we use the highest average from the just ended 7' as the load estimate
for the next 7" window. When a new flow is admitted to the network, the estimate is increased by the rate
of the new flow, as described in the previous section. If a newly computed average is above the estimate,
the estimate is immediately raised to the new average. At the end of every T, the estimate is adjusted to

the actual load measured in the previous 7.

Point Samples. The measurement mechanism used with both of the acceptance region MBAC's takes an
average load sample every S’ period [Kel96b]. Or, equivalently, the measurement mechanism isthe time-

window mechanismwitha7’/.S ratio of 1.

Exponential Averaging. An exponential average load is used as input to the HB MBAC. An average
load (7°) is measured once every S5 sampling period. The exponential average load is computed using an

infinite impul se response (11R) function with weight w:

V=(1—w)*xD+wxp". (13)

Recall that HB MBA C requirespeak rate policing and, when the peak rateisnot explicitly specified, derives
aflow’'s peak rate from its token-bucket parameters using Eqn. 6. To be safe, the averaging period U in
Eqn. 6 should be smaller than or equal to 5, the measurement sampling period. Weset U = S to reflect the
peak rate seen by the measurement mechanism, with the caveat that too small al' could result in practically

infinite peak rate when the bucket depthislarge.

3 Loss-Load Behavior of the MBAC'S

Aswe mentioned in the Introduction, the main goal of this paper isto map out the full range of achievable

performance of the MBAC’s under study. We measure the performance of an MBAC along two axes: the



0.1 \
'MS' ——
'HB' —x— *
TO
0.01 F TP a /l:l’,'j',(D 4
[0}
©
) 0.001 i
1}
o
kel
o
bt
S 0.0001 ;
o
(@)
1le-05 b
1e-06 — ‘ ‘
0.8 0.85 0.9 0.95 1

Achieved utilization [0-1]

Figure 1: Theloss-load curvesfor POO1 source.

achievablelink utilization and the observed loss rate. For a given source model, a given set of parameter
settingsof an MBAC resultsin acertain link utilization at a certain lossrate. We run several simulationsfor
each source model under the same MBAC, varying the MBAC's parameter settings to collect several such
utilization-vs.-loss-rate data points. The curve connecting these data pointswe call theloss-load curve. In
this paper we only show portions of loss-load curves where the lossrate is non-zero with adequate statisti-
cal significance, considering that our maximum simulation run can only serve 1e8 packets. The simulation
scenarios from which we draw theloss-load curves, and the source model swe use to run these simulations,
arethe same oneswe have been using for our previouswork onMBAC's ([JDSZ97, JISD97]). For complete-
ness sake, we describe them both again in the Appendix of this paper.

Figure 1 showstheloss-load curve of the POO1 source under theM S, HB, TO, and TPMBAC’s. Where
they overlap, the curves are practically on top of each other.? (Note that the y-axisis on alog scale.) Thus
even though the three MBAC’s are derived in very ! different ways, they essentially give the same perfor-
mance. From |eft to right, the M S data points are from simulations with the v parameter of the equation
set to 0.91, 0.92, 0.94, 0.96, 0.98, and 1.0 respectively. In al cases, the sampling period, 5, is set to 5e3
packet transmission times and the window size, T', to 10S. From left to right, the HB data points are from

simulations with the ¢ parameter of the equation set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 respec-

2We have repeated some of the simulations presented in this paper with different random seeds and will show the confidence
interval of each data point in thefinal version of the paper.
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Figure 2: Theloss-load curvesfor POO2 source.

tively. The sampling period, .9, is set to 5e3 packet transmission times, and the weight of the 1R function,
w, iS set to 2e-3. From left to right, the parameter s for the TO curve is set to 3e-3, 2e-3, 1e-3, and 1le-4
respectively, and that for the TP curve is set to 2e-3, 1.5e-3, 1e-3, and 4e-4 respectively. The sampling
period S is set to 2.5e4 packet transmission times for both TO and TP cases. To summarize, we map out
the loss-load curves of the four MBAC's by tuning v, ¢, or s, respectively. Observe that the resulting loss
rates and utilization levels from these simulations is very different from the input performance bounds.
For instance, when ¢ =0.4, the actual loss rate under the HB MBAC is 3e-4. The two primary conclusions
from this example are: (1) the three MBAC’s give equivalent performance, and (2) the performance of the
principled MBAC's do not match the input parameters. Aswe shall see these conclusionsalso apply to the
other data sets to which we now turn.

Figure 2 shows the loss-load curve of the PO0O2 source under the four MBAC's as before, but with
two data sets for the MS MBAC. The measurement parameters for the HB, TO, and TP MBAC's are as
before. From left to right, the HB data points are from simulationswith the ¢ parameter set t0 0.6, 0.7, 0.8,
0.9, 0.947, 0.99, 0.999, and 0.9999 respectively. The data points for the TO MBAC are from simulations
with the parameter s set to 3e-3, 2e-3, 1e-3, and 1e-4 going from left to right. The setting of s for the TP
MBAC are 3e-4, 2.5e-4, 2e-4, 1e-4, 6e-5, 4e-5, and 3e-5. Data points for the MS MBAC with T = 105
are from simulationswith v set to 0.94, 0.96, 0.98, 1.0, 1.02, 1.04, and 1.06 going from left to right. The



distance between this and both the HB and TO curves is somewhat more pronounced than in the POO1
case. However when we adjust the timewindow sizeto 7" = 3.5, we see that the M'S curve can be brought
down to the vicinity of the curves from the other two MBAC's. Thisillustrates our claim that where losses
occur, all MBAC's under study can be induced to givethe sameloss-load curve by tuning their measurement
parameters. In effect, the measurement parameters determine the offset of the loss-load curve along the y-
axis—a point we will explore further in Section 7.1. From left to right, the data points for the MS with
T = 35 case are from simulations with the v parameter set to 0.9, 0.92, 0.94, 0.96, 0.98, 1.0, and 1.02
respectively. In both MS cases, S =5€3 packet transmission times.

Figure 3 showstheloss-load curves of the ExP1 source under the samefour MBAC's. The curvesare
somewhat more distributed than in the previoustwo scenarios. Inthe M S case, the time window measure-
ment parameter issetto 7' = 3.5, with .S =5e3 packet transmission times. The v parameter, for the data
points from left to right, is set to 0.95, 0.96, 0.97, 0.98, 0.99, 1.0, 1.01, and 1.02 respectively. Data points
for the HB MBAC are from simulationswith ¢ set to 0.7, 0.8, 0.9, 0.9417, 0.99, and 0.999 going from | eft
toright. Theweight w of the measurement processis set to 2e-4. For the TO case, going from | eft to right,
the s parameter is set to 2e-3, 1.8e-3, 1.6e-3, 1.4e-3, 1.2e-3, 1e-3, 8e-4, and 8e-5; and for the TP case, s is
set to 2e-3, 1e-3, 8e-4, 6e-4, 4e-4, 2e-4, and 1e-4 going from | eft to right. The measurement parametersfor
the TO and TP MBAC's are set to 5" =2.5e4 packet transmission times; we do not experiment with other

settings of this parameter for this source model.

4 Onthe Structural Similarity of the MBAC'S

Whilethe fact that all four MBAC's giverise to practically the sameloss-load curves may be surprising at

first, further studies of the equations used in the MBAC’s show that they can all be expressed as:

U< —g(), (14)

where v isthe measured load, 1 isthe link bandwidth, and f(-) and g(-) are functions of the source’s re-
served rate and the number of admitted sources. For the MS algorithm fars(-) is the tunable parameter v
and gars(-) isthesource' sreserved rate, r. Function fro(-) inthe TO caseise™*?, wherep isthe source's

peak rate and s > 0 is atunable parameter; gro(-) in this case is 0. Inthe TP case, frp(-) ise® and



0.1 \

MS' ——
'HB’ -
TO" oo
0oo0Lf TP @ 1
(0]
©
o 0.001 i
(%]
o°
©
(]
c
@ 0.0001 b
o]
(e}
le-05 . i
x” X
J
1e-06 . . .
0.8 0.85 0.9 0.95 1

Achieved utilization [0-1]

Figure 3: Theloss-load curvesfor ExXP1 source.

grp(-) = (e*? — 1)np, where n isthe number of admitted flows and p the peak rate of the source model.

Inthe HB MBAC, fug(-) = 1and

915(") = \/ e (15)

2

where n isthe number of admitted sources and the p and p;’s are either the sources’ declared peak rates or
peak rates derived from the sources’ token-bucket filter parameters.

Whileweinitially thought that the details of the admission control equation (i.e., theformof f(-) and
g(+)) werethe critical factors in the performance of an MBAC, the data suggests that, at least for the three
choicesof f(-) and g(-) explored here, the form of f(-) and ¢(-) have little effect on the performance of
the MBAC. It turns out that the tuning of the parameters has a much greater effect on the performance.

We identify two degrees of freedom in which to operate an MBAC: (1) by tuning the measurement
parameterssuch that 7 ismore stable or more adaptiveto actual utilization, and (2) by tuning the parameters
in f(-) and/or g(-) to control the amount of slack bandwidth set aside to accommodeate traffic fluctuations.
In Section 3 we showed that tuning the parametersin the f(-) and ¢(-) functions of an MBAC alow usto
map out the MBAC's entire loss-load curve. That is, these variations tended to take us along the loss-load

curve of an MBAC.
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Table 1: Experiments with the Hoeffding bounds based MBAC

Model HB(p) HB(r) HB(r, e=1e-1)
Name || %Util | #Actv || %Util | #Actv || %Util | #Actv
EXP2 13 13 43 42 68 67
EXP3 0.3 3 6 45 23 171
POO3 2 31 13 177 37 504

In contrast, asshown in Figure 3, tuning the measurement parameters of an MBAC shiftstheloss-load
curve of theMS MBAC along the y-axis. That is, this change in measurement parameters moved us above
the loss-load curve of the MBAC, giving us worse performance (i.e., higher loss at the same utilization).
Later wewill seethat thisisnot the only effect varying the measurement parametershas. It also effectsthe

extent of an MBAC's loss-load curve.

5 ExperimentsTuning MBAC'S

In this section we experiment with the tunabl e parametersidentified in the previous section to explore their
contributions to the admission decisions an MBAC makes. Table 1 shows results from simulations of HB
MBAC. The “%ULtil” columns show the average link utilization achieved for various settings of the HB
MBAC's parameters. The “#Actv” columns show the average number of concurrently active connections.
The columns under “HB(p)” contain results from simulations of the HB MBAC with ¢ =1e-6 and sources
characterized by peak rates derived from their token-bucket filter parameters using Egn. 6. To lead off our
experiments with the parameters of the HB MBAC, we ask the question, “Can the HB MBAC alow more
flows into the network, and achieve higher link utilization, than the numbers under HB(p)?’

Studying Eqgn. 15, we note two tunable variables: ¢ and the sources' peak rate (p;'s). In the case of
EXP2, EXP3 and POO3 sources, theflows' peak rates are derived from their token-bucket parameters using
Egn. 6. Inthecaseof PO03, for 5=5e3 packet transmission times, the derived peak rateis 363 Kbps, higher
than the actual peak rate. In [Fl096] the author suggests that token rate of a source’s token-bucket filter be
setto its peak rate and the bucket depth to asmall number that will “ accommodate small variationsin packet
delay that accumulatein the network.” To see how aless conservative peak rate effects the performance of
HB MBAC inthe ExP2, ExP3, and POO3 cases, we simulate them using the token-bucket rate of each asits

peak rate, ignoring the token-bucket depths. The two columns of Table 1 under the HB(r) heading show

11



Table 2: Further experiments with the Hoeffding bounds based MmBAC

Model %oUtil

Name €=0.9 | ¢=0.99 | ¢=0.9999
EXP2(p) 73 82 88
EXP2(r) 89 93 95
EXP3(p) 18 39 56
EXP3(r) 63 76 83
POO3(p) 63 75 85
POO3(r) 73 82 87

results from these simulations. Next we experiment with tuning ¢. Relaxing ¢ from 1e-6 to 1e-1, we see
further increase in the number of concurrent flows and link utilization (as the numbers under HB(r, ¢ =
le — 1) show). The sampling period S of the measurement process used with EXP2 source is 1€3, with
EXP3 source 5e2, and with PO0O2 source 5e3 packet transmission times. The same S isused for al of the
simulations involving each of the sources. The exponential averaging weight is 2e-3in all cases.

Table 2 shows the achieved utilization for the various source models when ¢ is further relaxed (the
measurement parameters are not modified from the above cases). Rows marked with (p) contain results
from cases when sources' peak rates are derived from their token-bucket filter parameters and the rows
marked with (r) are results from using the token-bucket rates as the sources peak rates. Except for the
EXP2(r) caseswhen ¢ =0.99 and ¢ =0.9999 and the observed lossrates are 1e-5 and 1e-4 respectively, the
other simulations do not result in packet losses, hence we cannot present their loss-load curves. Note that
Eqgn. 15 requires ¢ < 1 for real-valued solutions. When ¢ = 1, the HB MBAC reduces to the MS MBAC
with v = 1. Thereforethe HB MBAC cannot access points on the loss-load curve that MS MBAC achieves
withv > 1.

From Eqgn. 4, wenotethat asidefrom ¢ and the source’ s peak rate, theload estimate () a so determines
the equivalent bandwidth computation. A load estimate that tracks actual utilization more closely may
result in a smaller estimated equivalent bandwidth and a higher flow admittance rate. The exponential
averaging process used in the HB MBAC to measure load consists of two tunable parameters: the weight
w and the sampling period, 5. Aswe pointed out in Section 2.2, we also use S asthe averaging period, U,
in deriving a source’s peak rate from its token-bucket filter parameters using Egn. 6. Unfortunately, this

makesit hard for us to isolate the effect of tuning 5" in cases where the source's peak rate must be derived

12



from its token-bucket filter parameters: increasing 5 not only smooths out our samples, it gives asmaller
derived peak rates. Hence we will limit our experiments tuning the measurement parameters to sources
that are already described by their actual peak rates, namely the ExP1, POO1, and POO2 sources.

In scenarios with homogeneous sources such as the oneswe are investigating here, knowing the peak
(p) and average (a) rates of the sources allows one to deterministically compute the number of flows that

may be admitted under the HB MBAC by solving for » in the quadratic equation:

ln(l/G)an'

Cyg =na+ 5

(16)

with the solution being the » that also satisfies C'iy — na > 0. Achievable utilizationisthen na /. For the
EXP1 source, ¢ =1e-6, and C'z; upper bounded by the bottleneck link bandwidth, 10Mbps, Eqgn. 16 gives
n = 286, with achievable utilization upper bounded at 89%. With the exponential averaging parameters
S =5be3 and w =2e-3, our simulation results show an achieved average link utilization of 72.5%, serving
an average of 228 concurrently active flows. A smaller sampling period increases the burstiness of our
samples but also increases the sampling frequency, alowing us to track actual utilization closer. Using
S =1e3, keeping ¢ a 1e-6, we can concurrently admit 232 exP1 flows, achieving 73.8% utilization.

One could admit more flows into the network if actual aggregate utilization of » flowsislower than
na, where a isthe sources' declared averagerate. Recall that the PoO1 model has the same declared peak
and average rates as the ExP1 model but has heavy-tailed oN and OFF times distributions, which lead to
burstier aggregate traffic. And indeed, in our simulations of POO1 sources, with ¢ =1e-6, w =2e-3, and
S =5e3, weseean average of 277 concurrently activeflows, 21% moreflowsthan EXP1 caseunder similar
circumstances, including achieved average link utilization of 72.4%.

A closer investigation of Egns. 15 and 16 further reveal s that achievablelink utilization 7 can be ap-
proximated by na when n is small and g 5(-) is not alimiting factor. When » is large, however, v is
bounded by i1 — g (-). Ineffect, g () acts as a utilization threshold to ensure sufficient slack band-
width to accommodate traffic fluctuations. For the ExP1 source, when e =1e-12, the intersection of the
twolinesv = ne andv = vy — ggp(-) isatn =187 and v =59.8%, regardless of the sources' actual
burstiness or the accuracy of the measurement mechanism.

Next we turn our attention to the TP MBAC and note that if the s parameter in Egn. 9 is set to O, the

admission control check simply saysthat measured load must belessthan link bandwidth. For s sufficiently

13



large and e~*? — 0, the admission control check becomes np < 1 and achieved utilization is determined
by the sources' peak to averageratesratio. Hencefor ExpP1 and POO1 sources, for s > 0.4, link utilization
is 51%. To limit the link bandwidth share of a source below this “natural” lower bound, e.g. to limit a
CBR source to 50% of link bandwidth, would require introducing another tuning parameter to Eqn. 9 or a
separate link-sharing mechanism.

One other interesting observation we made with our simulation resultsis with regard to source EXP2
under the MSMBAC. For any value of © between 1.03 and 1.03125 the achieved link utilization is 87.5%,
with no packet loss. Then for v between 1.03126 and 1.036, the achieved link utilization is 99.9%, with a
uniform loss rate of 4.8e-1. The measurement parametersare S =1e3and 7' = 10.5. We observe no sim-
ilar behavior with the TO MBAC, which giveslink utilization of 86.5, 94.5, and 95.9%, with loss rates of
4.6e-4 and 1.2e-3in the later two cases, when the s parameter isvaried from 5e-4, 2e-4, to 1e-4. The mea-
surement parameter 5’ is set to 5e3 throughout. Close examination of the MS admission process reveals
that at v =1.03126, enough extrabandwidth isalloted that one more ExP2 sourcemay passthe gars(-) = r
constraint; whereas in the TO MBAC, anew flow’s reserved rate effects the admission process only frac-
tionally, as multiple of s. This motivates our modification of the MS MBAC to the form recommended for

use with controlled-load service in the next section.

6 An MBAC for Controlled-load Service

Given that al the MBAC's studied in this paper produce very similar loss-load curves, we advocate for

controlled-load service avery simple and flexible MBAC:

UV < vu— Kr, an

where v is a utilization factor to be set based on historical load pattern and desired performance, i the
link bandwdith, > 0 a constant to be determined from historical data, and r the reserved rate of an
incoming flow. The utilization factor + determines the MBAC’s operating region, and  determines the
degree of conservativeness when admitting new flows. Any of the measurement processes mentioned in
Section 2.2 may be used in conjunction with thisagorithm. For performance reasons, one may implement

the load sampling mechanism in hardware, allowing users to set the sampling period. Asresultsfrom the
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Table 3: Parameters settingsfor five sets of simulations with the ExP1 source model under the MS MBAC.
S'isin packet transmission time unit.
S| T/S v values
5e3 | 13 1.02, 1.03,1.04, 1.05, 1.06, 1.07, 1.08
5¢3| 10| 1.0,1.01,1.02, 1.03, 1.04, 1.05, 1.06, 1.07

5e3 71 1.0,1.01,1.02, 1.03, 1.04, 1.05
6.5e3 71 1.0,1.01,1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08
5e3 3 || 0.95, 0.96, 0.97, 0.98, 0.99, 1.0, 1,01, 1.02

DT mBAC demonstrate, when the sampling period is properly set, a simple point sample measurement
process may be sufficient. To be more conservative, one may choose to implement the time-window or
exponential averaging measurement process (in software, with 7/5 > 1 or w < 1(!)). These processes
keep history and provide users with a tuning knob that governs the length of history to keep. Intuitively,
processes that keep history give more stable estimates. However, in the presence of long-range dependent
traffic, the efficacy of measurement history in providing more stable estimatesisatopicfor further research

[Kel9h].

7 A New Research Agendafor MBAC'S

Instead of designing another set of principled MBAC equation, or a measurement process that may be ex-
pensive to implement or operate, we suggest that the research agendafor MBAC’s should be directed to-
wards the determination of their operating region and the tuning of their measurement parameters, both
based on historical data. Another direction MBAC research should take isto solve the structural problems
that arise from interactions between reservations that we first pointed out in [JDSZ95] and describe again

in Section 7.2 below.

7.1 Tuningthe Parameters

Therearetwo itemsto thisresearch agenda: First, tuning the parameters of an MBAC can either move
one along the loss-load frontier or away from it. We do not yet understand which way of tuning the pa-
rameters accomplishes which effect. Second, now that we have shown the complete lack of relationship
between the input performance bounds of an MBAC to its actual performance, we cannot tell a network

operator desiring some loss rate on its network where to set the parameters of its MBAC. In this section
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Figure 4: Five loss-load curves of the EXP1 source under the MS MBAC, varying the parameter settings

we show results from several experiments which illustrate our lack of understanding on how to set the pa-
rameters of an MBAC. We start with five sets of simulations with the ExP1 source model under the MS
MBAC. Each set of simulations uses a specific measurement parameter setting, varying the v parameter.
Figure 4 shows the loss-load curves resulting from these five sets of simulations. Table 3 summarizesthe
parameter settings of the five setsof simulations. Thefirst two columnslist the sampling period, 5, and the
time window size, T', expressed as 7'/ 5 ratio, used with each set of the simulations. The last column lists
the v values corresponding to the data pointsthat make up the loss-load curve of that set, from left to right,
in Figure 4. Aswe mentioned earlier, tuning the measurement parameters seem to change the offset of an
MBAC loss-load curve along the y-axis. Figure 4 certainly bears this out, especially in the region where
achieved utilization is low. However, we do not claim to have understood, much less be able to predict,
how any given set of parameter setting influences the outcome of arun.

Figure 5 shows two loss-load curves each from simulations of POO1 and POO2 sources. Again we
note the loss-load curve offset along the y-axis for the POO2 source when the measurement parameters are
changed, but not for the POO1 source. Since the only difference between ExP1, POO1, and POO2 sources
lies in their degree of burstiness, with POO1 source being burstier than ExP1 source, and POO2 source
being the burstiest of thethree, we cannot explain thelack of any signifant gap between the two POO1 loss-

load curves when we change the 7'/ 5 ratio of the measurement parameters from 10 to 3 when the same
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Figure 5: Two loss-load curves each from PoO1 and POO2 sources under the MS MBAC, varying the pa-

rameter settings

Table4: Parameterssettingsfor two setsof simulationseach with the Po01 and POO2 source model s under
the MSMBAC. S isin packet transmission time unit.

Model S\|\T/S v values
5e3 | 10 || 0.91, 0.92, 0.94, 0.96, 0.98, 1.0
POOL || 5e3 3 || 0.86,0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 1.0
5e3 | 10 || 0.96, 0.98, 1.0, 1.02, 1.04, 1.06, 1.08
POO2 || 53 3 || 0.9, 0.92,0.94, 0.96,0.98, 1.0, 1.02

modification of the ratio produces noticable gap in both the ExpP1 and POO2 cases. Table 4 summarizes

the parameter settings used to obtain the four loss-load curves of Figure 5.

Finally in Figure 6 we present threeloss-load curves of the ExP1 sourcesunder theHB MBAC, varying

its parameters. Table 5 gives the parameter settings used in these simulations. The first two columns list

the averaging period, .5, and exponential averaging weight, w, used in each set of simulations, while the

last row liststhe e values corresponding to each data point from left to right, on the loss-load curve of that

set of simulations. We iterate here that we do not yet understand how any given set of parameter setting

influences the outcome of arun. For the same ¢ value of 0.9999, two of the loss-load curvesin Figure 6

do not manage to reach utilization beyond 94.1%, while the other reaches 96.2%, attesting to our earlier

observation that settings of the measurement parameters also effect the extent of the loss-load curves.
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Figure 6: Threeloss-load curves of the ExP1 source under the HB MBAC, varying the parameter settings

Table5: Parameters settingsfor three setsof simulationswith the ExpP1 sourcemodel under theHB MBAC.
S'isin packet transmission time unit.

) ‘ w H e values
5e3 | 3 0.35,0.4,0.5,0.6,0.7,0.8,0.9, 0.99, 0.999, 0.9999
5e3 | 4 0.7,0.8,0.9,0.9417, 0.99, 0.999, 0.9999
6.5e3 | 4| 0.8,0.9,0.9417, 0.999, 0.9999

Extending our work in [JDSZ95], the authors of [CKT96] suggest a feedback control mechanism to
automatically tune the measurement parameters based on observed loss rate. The appropriate time scale
over which these and parametersin the f(-) and ¢(-) functions are tuned is still amatter of future research.
Too long atime scale may lead to long convergent time for these tuning parameters. On the other hand,
one must allow enough timefor traffic to stabilize after achangein parameter settingsto tell the true effect
of that change. In other words, the reaction time of the feedback control mechanism itself requires further
tuning. Note however, tuning the reaction time of the feedback control mechanism will be done at atime-
scale much larger than that of tuning the MBAC parameters. Whereas one might be tempted to tune the
MBAC parameters every few days or weeks, the feedback mechanism should require attention only when

the underlying traffic pattern changes.
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7.2 Global Structural Limitations

As we saw in Section 4, the effectiveness of the tuning parameters may be constrained by the source’s
characterigtics. In particular we saw that tuning » in the MB MBAC case must take into consideration the
source's reserved rate. Alloting an extra amount of bandwidth that is less than the source’s reserved rate
will not result in increase admittance rate. In our other simulations reported in [JDSZ97], we note the
possibility that on highly congested linkswith infinite offered load, when alarge grainflow, i.e. aflow with
a high ratio of requested rate to link bandwidth, leaves the network, before the measurement mechanism
of an MmBAC has completely deflated its load estimate following this flow’s departure, a small grain flow
can immediately gain admittance at the expense of future larger grain flows. Upon departure of a small
grain flow, if the link is congested, only another small grain flow can be admitted. Thus over timeiit is
probablethat only small grain flowsare present on thelink and large grain flowsare compl etely shut off. We
call this the under-representation problem, and consider it a structural limitation of all admission control
algorithms.

We further identify two other structural limitations: One, if the only flows that depart from the net-
work are short-lived flows, the link population will become dominated by flows with long call holding
times. Thisisastructural limitation only if it prevents a network service provider from implementing cer-
tain traffic composition policies. Two, a flow that traverses a longer path runs a higher chance of being
rejected by one of the switches along the path, and hence rejected admission to the network, than one that
traverses a shorter path. As the flow collects admissions from the switches, it makes reservations for re-
sources and holds on to them. |If the flow is denied admission to some switches, thiscan |ead to a deadl ock
situation. Whilethefirst two formsof structural limitationsare resultsof decisionslocal to aswitch, higher
rejection rates experienced by many-hop flows results from the dynamics of admission decisions across
multiple switches and affects both the flow requesting admission and the state of the network.

Our initia resultsin [JDSZ97, JSD97] show that these structural limitations are present in all admis-
sion control algorithms that base their admission decision solely on the violation prevention paradigm,
i.e. when the sole criterion of admission isthat some service commitments are no violated, and not limited

to measurement-based admission control algorithms.
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8 Summary

In this paper we have presented simulation results which show that all MBAC’sin the form of Egn. 14 can

be tuned to provide the sameloss-load curve. We consequently recommended for use with controlled-load

servicean MBAC that allowsfor the greatest degree of flexibility in operation by relying on historical data

for the tuning of its parameters. ThisMBAC iscost effective to implement and operate, relying only on the

simplest measurement process. We closed this paper by suggesting two areas of research that should form

the new MBAC research agenda, namely: the tuning of the MBAC parameters and solutions to the global

structural limitations found on all admission control algorithms.

Acknowledgment

We thank Richard Gibbens and Frank Kelly for assiting usin understanding their approach.

References

[Bol94] V.A. Bolotin. “Modeling Call Holding Time Distributionsfor CCS Network Design and Performance
Analysis’. IEEE Journal on Selected Areas in Communications, 12(3):433-438, Apr. 1994.

[Ct91] M. Conti et al. “Interconnection of Dual Bus MANS: Architecture and Algorithms for Bandwidth Al-
location”. Journal of Internetworking: Research and Experience, 2(1):1-22, March 1991.

[CKT96]  C. Casetti, J. Kurose, and D. Towsley. “An Adaptive Algorithm for Measurement-based Admission
Control in Integrated Services Packet Networks’. Proc. of the Protocols for High Speed Networks
Workshop, Oct. 1996.

[DIM97]  Z.Dziong, M. Juda, and L.G. Mason. “A Framework for Bandwidth Management in ATM Networks
— Aggregate Equiva ent Bandwidth Estimation Approach”. ACM/IEEE Transactions on Networking,
Feb. 1997.

[DMRW94] D.E. Duffy, A.A. Mclntosh, M. Rosenstein, and W. Willinger. “Statistical Analysis of CCSN/SS7
Traffic Data from Working CCS Subnetworks’. |EEE Journal on Selected Areas in Communications,
12(3):544-551, Apr. 1994.

[Flo96] S. Floyd. “ Comments on M easurement-based Admissions Control for Controlled-Load Service”. Sub-
mitted to Computer Communication Review, 1996. URL ftp://ftp.ee.lbl.gov/papers/admit.ps.Z.

[GAN91] R. Guérin, H. Ahmadi, and M. Naghshineh. “Equivalent Capacity and Its Application to Bandwidth
Allocation in High-Speed Networks’. IEEE Journal on Selected Areas in Communications, 9(7):968—
981, Sept. 1991.

[GK97] R.J. Gibbensand F.P. Kelly. “ Measurement-Based Connection Admission Control”. International Tele-
traffic Congressi5, Jun. 1997.

[GKK95] R.J. Gibbens, F.P. Kelly, and PB. Key. “A Decision-Theoretic Approach to Call Admission Control in

ATM Networks.”. |EEE Journal on Selected Areas in Communications, 13(6):1101-1114, Aug. 1995.

20



[JDSZ95]

[IDSZ97]

[JSD97]

[Kel96a]
[Kel96b]
[Kel96c]
[Mol27]

[Par92]

[PFo4]

[WCKG94]

[Wro95]

[WTSW95]

S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang. “A Measurement-based Admission Control Algo-
rithm for Integrated Services Packet Networks’. Proc. of ACM SSGCOMM ' 95, pages 2-13, 1995.
URL http://netweb.usc.edu/jamin/admctl/sigcomm95.ps.Z.

S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang. “A Measurement-based Admission Control Al-
gorithm for Integrated Services Packet Networks (Extended Version)”. ACM/IEEE Transactions on
Networking, Feb. 1997. URL http://netweb.usc.edu/jamin/admctl/ton96.ps.Z.

S. Jamin, S. J. Shenker, and P. B. Danzig. “Comparison of Measurement-based Admission Con-
trol Algorithms for Controlled-Load Service”. Proc. of IEEE INFOCOM ’97, Apr. 1997. URL
http://netweb.usc.edu/jamin/admctl/info97.ps.gz.

F. Kelly. Effective bandwiths, pricing, and admission control. Workshop on System and Control |ssues
in Communication Networks, Airlie, VA, Aug. 10, 1996.

F. Kelly. Personal communication. Workshop on System and Control Issuesin Communication Net-
works, Airlie, VA, Aug. 10, 1996.

F.P. Kelly. Notes on Effective Bandwidths. Technical Report Research Report 1996-11, University of
Cambridge, Statistical Laboratory, Feb. 1996.

E.C Molina. “Application of the Theory of Probability to Telephone Trunking Problems’. The Bell
System Technical Journal, 6:461-494, 1927.

A K. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Net-
works. PhD thesis, MIT, Lab. for Information and Decision Systems, Tech. Report LIDS-TR-2089
1992. Parts of this thesis were also published with R.G. Gallager in the ACM/IEEE Transactions on
Networking, 1(3):344-357 and 2(2):137-150.

V. Paxson and S. Floyd. “Wide-Area Traffic: The Failure of Poisson Modeling”. Proc. of ACM
S GCOMM ' 94, pages 257-268, Aug, 1994. An extended version of this paper is available as URL
ftp://ftp.ee.lbl.gov/papers/poisson.ps.Z.

R. Warfield, S. Chan, A. Konheim, and A. Guillaume. “Real-Time Traffic Esitmation in ATM Net-
works’. International Teletraffic Congress, June 1994.

J. Wroclawski. Specification of the Controlled-Load Network Element Service. Internet-Draft, Nov.
1995.

W. Willinger, M.S. Tagqu, R. Sherman, and D.V. Wilson. “ Self-Similarity Through High-Variability:

Statistical Analysisof Ethernet LAN Traffic at the Source Level”. Proc. of ACM SSGCOMM ' 95, pages
100-113, Aug. 1995.

Appendix: Simulation Scenarios

For this paper, we run our simulations on a network topology where two switches are connected by a bot-

tleneck link of 10 Mbps. Each switch is connected to a host with an infinite bandwidth link. Buffer space

of the switch connected to the bottleneck links are shared by all admitted flows and are sized differently

for each simulation, as we explain below. Traffic flowsin one direction from one host to the other.

We use two kinds of source model in our ssmulations. The first is an ON/OFF model with exponen-

tially distributed oN and OFF times. During each ON period, an exponentialy distributed random num-

ber of packets, with average N, are generated at fixed rate p packet/sec. Let I milliseconds be the av-

erage of the exponentially distributed OFF times, then the average packet generation rate « is given by
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Table 6: Six Instantiations of the Two Source Models

Model Parameters TB Filter Switch Parameters
Model ppkt/| I | N |p/a|rtkn/| b |max| D* | D
Name

sec | msec|pkts sec |tkns|glen|| msec|msec
EXPl 64| 325| 20| 2 64, 1| 0| 16| 16
EXP2 1024| 90| 10| 10|, 320| 50| 17| 160| 160
EXP3 oo| 684 9| oc| 512 80| 1| 160| 160

g

POO1 64| 325| 20| 1.2 64, 1| 0| 16| 16
POO2 64|2925| 20| 1.2 64, 1| 0| 16| 16
POO3 256| 360| 10| 1.9|| 240| 60| 220|| 256| 160

1/a = I/N + 1/p. The second model is an ON/OFF process with Pareto distributed oN and OFF times
(for ease of reference, we call this the Pareto-oN/OFF (POO) model). Pareto distributionis a heavy-tailed
distribution that can be described by two parameters: itslocation and shape. A Pareto shape parameter less
than 1 gives data with infinite mean; shape parameter less than 2 resultsin datawith infinite variance. The
Pareto |ocation parameter can be computed from the formula: mean * (shape — 1)/shape. During each
ON period of the Pareto-oN/OFF model, a Pareto distributed number of packets, with mean N and Pareto
shape parameter 3, are generated at some peak rate p packet/sec. The OFF timesare also Pareto distributed
with mean I milliseconds and shape parameter . Each Pareto-ON/OFF source by itself does not generate
LRD series; the aggregation of them does.

We use six instantiations of the above source models as summarized in Table 6. The shape parameter
of the Pareto distributed ON time (5) of the Pareto-oN/OFF sources are selected following the observations
in [WTSW95]. According to the same reference, the shape parameter of the Pareto distributed oFrF time
() stays mostly below 1.5; in this paper weusey = 1.1 for al Pareto-oN/OFF sources. For the POO1 and
POO2 models, we use atoken-bucket rate equal to the source’'s peak rate so that the token-bucket filter does
not reshapethetraffic. For the P003 model, someof the generated packetswere queued; thismeansduring
some of the source’salleged “ OFF” times, it may actually still be draining its data queue onto the network.
Inthetable, p = co meansthat after each oFF time, packets for the next ON period are transmitted back
to back. (Onreal networks, packetsare sent back to back when the applications generate traffic faster than

the network can transmit it.)
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In the same table, we also list the settings of the token-bucket parameters assigned to each source. In
this study, we assign each flow a data queue with infinite length (i.e. packetsthat arrive at an empty token-
bucket are queued, and the queue never overflows). Column 7 of the table, labeled max glen, shows the
maximum data queue length a flow can expect to see. Our packets are of fixed size (1 Kbits) and each of
our token isworth 1 packet of data.

When a flow with token-bucket parameters (r, b) is served with wrQ, the maximal queueing delay
(ignoring terms proportional to asingle packet time) isgiven by b/r [Par92]. Thisisalso the “burst time’
gueueing delay acceptable under the definition of controlled-load service. Column 8 of the table, labeled
D*, lists the maximal delay for each source given its assigned token-bucket filter. Column 9, labeled D,
lists the delay bound we assigned to each source. We have chosen the token-bucket parameters such that,
in most cases, the delay bounds given to aflow will bethe sameasits*”burst time” queueing delay. Thisfa-
cilitatesanalyzing the performance of the algorithmsunder controlled-load service. Inthefew caseswhere
the delays are not the same, such asin the PO0O3 casg, the analysisis|ess applicable. For each simulation
with measurement-based admission control algorithm, we sizethe buffer at the switcheswith enough space
to accommodate the delay bound (D). For example, simulationswith ExXP1 sources, given alink speed of
10 Mbps, use a buffer size of 160 packets.

In addition to each source’s burstiness, network traffic dynamics is also effected by the arrival pat-
tern and duration of flows. We use exponentially distributed lifetimes with the Markov-ON/OFF sources,
following [Mol27]. The duration of Pareto-ON/OFF sources, however, are taken from a lognormal dis-
tribution, following [Bol94, DMRW94]. The interarrival times of all flows are exponentialy distributed
[PF94]. We choose an average flow interarrival time of 400 milliseconds. The average holding time of
all Markov-oN/OFF sourcesis 300 seconds. The Pareto-OoN/OFF sources have lognormal distributed hold-
ing times with median of 300 seconds and shape parameter 2.5. We run simulations with Markov-ON/OFF
sourcesfor 3e3 secondssimulated time, serving 1e7 packets. Thedatapresented are obtained from the later
half of each simulation. By visual inspection, we determined that 1500 simul ated secondsis sufficient time
for the simulationsinvolving Markov-ON/OFF sources to warm up. Simulations involving Pareto-ON/OFF
sources, however, require alonger warmup period and a longer simulation time for the LRD effect to be
seen, thuswe run them for 5.5 hours simulation time, serving closeto 1e8 packets, with reported data taken

from the later 1e4 seconds.
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