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Abstract

We propose a method for compressing programs in embedded processors where instruction
memory size dominates cost. A post-compilation analyzemees a program and replaces com-
mon sequences of instructions with a single instructionveode A microprocessorxecutes the
compressed instruction sequences by fetchingveoidis from the instruction memomxpanding
them back to the original sequence of instructions in the decode stage, and issuing them to the
execution stages. @apply our technique to thewerPC instruction set and ache30% to 50%
reduction in size for SPEC CINT95 programs.
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1 Introduction

According to a recent prediction by In-Stat Inc., the merchant processatrisaskt to
exceed $60 billion by 1999, and nearly half of that will be for embedded processwevdfdy
unit count, embedded processors witeed the number of general purpose microprocessors by a
factor of 20. Compared to general purpose microprocessors, processors for embedded applica-
tions hae been much less studied. The figurevalsuggest that tigadesere more attention.
Embedded processors are more highly constrained by cosr, @od size than general purpose
microprocessors.d¥ control oriented embedded applications, the most common type, a signifi-
cant portion of the final circuitry is used for instruction mem8igce the cost of an irgeated
circuit is strongly related to die size, and memory size is proportional to die sieEm's vant
their program to fit in the smallest memory possible. An additional pressure on program memory
is the relatrely recent adoption of highael languages for embedded systems because of the
need to control deelopment costs. As typical code sizeséhgravn, these costs kia ballooned
at rates comparable to those seen in the deskidp Wl hus, the ability to compress instruction
code is important,ven at the cost ofxecution speed.

High performance systems are also impacted by program size due to the delays incurred by
instruction cache misses. A study at Digital [Perl96xgtbthat an SQL seev on a DEC 21064
Alpha, is bandwidth limited by a€tor of two on instruction cache misses alone. This problem
will only increase as theag between processor performance and memory performaneg gro
Reducing program size is onayto reduce instruction cache misses and eetgher perfor-
mance [Chen97b].

This paper focuses on compression for embedded applications, weendéi@n speed can be
traded for compression.&\borrav concepts from the field oftecompression and apply them to
the compression of instruction sequences pidpose modifications at the microarchitecturelle
to support compressed programs. A post-compilation analyaeriees a program and replaces
common sequences of instructions with a single instructiomamyde A microprocessomxecutes
the compressed instruction sequences by fetchingvads from the instruction memaqry
expanding them back to the original sequence of instructions in the decode stage, and issuing
them to the xecution stages. ®/demonstrate our technique by applying it to thed?BC
instruction set.
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1.1 Code generation

Compilers generate code usingyntax Diected Tanslation Sheme(SDTS) [Aho86]. Syn-
tactic source code patterns are mapped onto templates of instructions which implement the appro-
priate semantics. Considersimple schema to translate a subset oféntarithmetic:

expr-> expr ‘+ expr

emit( add, $1, $1, $3);
$$ = 81,
}

expr->  expr “*expr

{
emit( mult, $1, $1, $3);
$$ = 81,

}

These patterns shosyntactic fragments on the right hand side of tregvoductions which
are replaced (or reduced) by a simpler syntactic structwe edpressions which are added (or
multiplied) together result in a single wmexpression. The gaster numbers holding the operand
expressions ($1 and $3) are encoded into the add (multiplication) operation and emitted into the
generated object code. The resutfister ($1) is passed up the parse tree for use in the parent
operation. These twvpatterns are reused for all arithmetic operations throughout program compi-
lation.

More comple& actions (such as translation of control structures) generate more instructions,
albeit still driven by the template structure of the SDTS.

In general, the only dérence in instruction sequences foregi source code fragments at dif-
ferent points in the object module are thgister numbers in arithmetic instructions and operand
offsets foload andstore instructions. As a consequence, object modules are generated wyth man
common sub-sequences of instructions. There is a higyleelef redundarydn the encoding of
the instructions in a program. In the programs wanened, only a small number of instructions
had bit pattern encodings that were not repeated/leése in the same program. Indeed, we found
that a small number of instruction encodings are highly reused in most programs.

To illustrate the redundaypof instruction encodings, we profiled the SPEC CINT95 bench-
marks [SPEC95]. The benchmarks were compiled fardPBC with GCC 2.7.2 using -O2 opti-
mization. Figurel shavs that compiled programs consist of mamstructions that hee identical
encodings. Onwerage, less than 20% of the instructions in the benchmarkditgpattern
encodings which are useglaetly once in the program. In tige benchmark, forxample, 1% of
the most frequent instructiononds account for 30% of the program size, and 10% of the most
frequent instruction wrds account for 66% of the program size. It is clear that the redynofanc
instruction encodings pvades a great opportunity for reducing program size through compres-
sion techniques.



Improving Code Density Using Compressioachiniques 3

40%

|:| Distinct instruction encodings used multiple times in program

@
<]
X

- Distinct instruction encodings used only once in program

20%

10%

Static Program Instructions

0%

2 8 & 8 T E T 3

[} )] a g o €

o = Ies) g

£ 9]

S £
Benchmarks

Figure 1: Distinct instruction encodings as a percentage of entire program

Uncompressed Code Compressed Code Dictionary
bz r9,0(r28) CODEWORD #1
clrlwi r11,r9,24 / ‘ ble ¢r1,000401c8 " lcbéwi :2105;22
addi ro,r11,1 cmplwi crl,ril,7 addi r0,r11,1
cmplwi crl,r0,8 bgt ¢r1,00041d34 cmplwi  ¢rl,r0,8
ble cr1,000401c8 CODEWORD #2
cmplwi  cr1,r11,7 b 00041d38 #2 lwz r9,4(r28)
bgt cr1,00041d34 [ CODEWORD #1 stb ris8,0(r28)
lwz r9,4(r28) bgt ¢r1,00041c98
stb r18,0(r28)
b 00041d38
bz r9,0(r28)
clrlwi r11,r9,24
addi ro,r11,1
cmplwi crl,r0,8
bgt ¢r1,00041c98

Figure 2: Example of compression

1.2 Owerview of compression method

Our compression method finds sequences of instruction bytes that are frequently repeated
throughout a single program and replaces the entire sequence with a singlerdo8d rewrit-
ten (or encoded) sequences of instructions @pg ik a dictionary which, in turn, is used at pro-
gram e&ecution time to x¥pand the singleton coderds in the instruction stream back into the
original sequence of instructions. All coderds assigned by the compression algorithm are
merely indices into the instruction dictionary

The final compressed program consists of waids interspersed with uncompressed instruc-
tions. Figure? illustrates the relationship between the uncompressed code, the compressed code,
and the dictionaryA complete description of our compression method is presented in Section 3.
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2 Background and Related Wrk

In this section we will discuss strgtes for t&t compression, and methods currently
employed by microprocessor mamagturers to reduce the impact of RISC instruction sets on pro-
gram size.

2.1 Text compression
Text compression methodalfinto two general catgories:statisticalanddictionary,

Statistical compression uses the freqyenfcsingleton characters to choose the size of the
codevords that will replace them. Frequent characters are encoded using shomardsed®
that the oerall length of the compressedtés minimized. Huiman encoding of td is a well-
known example.

Dictionary compression selects entire phrases of common characters and replaces them with a
single codword. The codeord is used as an inklento the dictionary entry which contains the
original characters. Compression is aghébecause the coderds use feer bits than the char-
acters the replace.

There are seeral criteria used to select between using dictionary and statistical compression
techniques. Wo very important &ctors are thdecode diciencyand the gerall compession
ratio. The decode &tiengy is a measure of theork required to rexgand a compressedkte
The compression ratio is defined by the formula:

compressed Si:
original size

compression ratio= (Eq. 1)

Dictionary decompression uses a cgdal as an indeinto the dictionary table, then inserts
the dictionary entry into the decompressed stream. If codeords are aligned with machine
words, the dictionary lookup is a constant time operation. Statistical compression, on the other
hand, uses coderds that hee different bit sizes, so tyedo not align to machineard bound-
aries. Since codeords are not aligned, the statistical decompression stage must first establish the
range of bits comprising a caslerd before tet expansion can proceed.

It can be shan that for @ery dictionary method there is an edlent statistical method
which achiges equal compression and can be im@daupon to gie better compression [Bell90].
Thus statistical methods camalys achiee better compression than dictionary methods albeit at
the expense of additional computation requirements for decompression. It should be nated, ho
ever, that dictionary compression yields good results in systems with memory and time con-
straints because one entipands to seeral characters. In general, dictionary compression
provides for fister (and simpler) decoding, while statistical compression yields a better compres-
sion ratio.

2.2 Compression br RISC instruction sets

Although a RISC instruction set is easy to decode, islflength instruction formats are
wasteful of program memarfhumb [ARM95][MPR95] and MIPS16 [Kissell97] aredw
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recently proposed instruction set modifications which define reduced instructidrsizes in an
effort to reduce thewerall size of compiled programs.

Thumb is a subset of the ARM architecture consisting of 36 ARM 32-bit wide instructions
which have been re-encoded to require only 16 bits. The instructions included in Thumb either do
not require a full 32-bits, are frequently used, or are important to the compiler for generating
small object code. Programs compiled for Thumb aeh#®% smaller code in comparison to the
standard ARM instruction set [ARM95].

MIPS16 defines a 16-bit f&-length instruction set architecture (ISA) that is a subset of
MIPS-III. The instructions used in MIPS16 were chosen by statistically analyzing a wide range of
application programs for the instructions most frequently generated by compilers. Code written
for 32-bit MIPS-IIl is typically reduced 40% in size when compiled for MIPS16 [Kissell97].

Both Thumb and MIPS16 act as preprocessors for their underlying architectures. In each case,
a 16-bit instruction is fetched from the instruction memexganded into a 32-bit wide instruc-
tion, and passed to the base processor corexdéougon.

Both the Thumb and MIPS16 shrink their instruction widths atxperese of reducing the
number of bits used to represergister designators and immediatdue fields. This confines
Thumb and MIPS16 programs to &isters of the base architecture and significantly reduces the
range of immediatealues.

As subsets of their base architectures, Thumb and MIPS16 are neither capable of generating
complete programs, nor operating the underlying machine. Thumb relies on 32-bit instructions
memory management anglception handling while MIPS16 relies on 32-bit instructions for
floating-point operations. Morger, Thumb cannotxloit the conditional xecution and zero-
lateng shifts and rotates of the underlying ARM architecture. Both Thumb and MIPS16 require
special branch instructions to toggle between 32-bit and 16-bit modes.

The fixed set of instructions which comprise Thumb and MIPS16 were chosen after an assess-
ment of the instructions used by a range of applications. Neither architecture can acagiss all re
ters, instructions, or modes of the underlying 32-bit core architecture.

In contrast, we dere our code/ords and dictionary from the specific characteristics of the
program undenecution. Because of this, a compressed program can access all the resources
available on the machine, yet can stitpéoit the compressibility of each inddual program.

2.3 CCRP

The Compressed Code RISC Processor (CCRP) describedlieP2j[Wolfe94] has an
instruction cache that is modified to run compressed programs. At compile-time the cache line
bytes are Hdfman encoded. At run-time cache lines are fetched from main meommym-
pressed, and put in the instruction cache. Instructions fetched from the caehleechsame
addresses as in the uncompressed program. Therefore, the core of the processor does not need
modification to support compression.Wiaver, cache misses are problematic because missed
instructions in the cache do not reside at the same address in main m@@B/uses a Line
Address able (LAT) to map missed instruction cache addresses to main memory addresses where
the compressed code is located. Thd lifkits compressed programs to onkeeute on proces-
sors that hee the same line size for which yheere compiled.
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One short-coming of CCRP is that it compresses on the granularity of bytes rather than full
instructions. This means that CCRP requires meeehead to encode an instruction than our
scheme which encodes groups of instructions. M@eour scheme requires les$oef to
decode a program since a single eoale can encode an entire group of instructions. In addition,
our compression method does not need & in&chanism since we patch all branches to use the
new instruction addresses in the compressed program.

2.4 Liao et al.

A purely softvare method of supporting compressed code is proposed in [Liao96]. The
author findsmini-suboutineswhich are common sequences of instructions in the program. Each
instance of a mini-subroutine is rewea from the program and replaced with a call instruction.
The mini-subroutine is placed once in thet t@&f the program and ends with a return instruction.
Mini-subroutines are not constrained to basic blocks and may contain branch instructions under
restricted conditions. The prime ahtage of this compression method is that it requires no hard-
ware support. Hoever, the subroutine caliverhead will slav program gecution.

[Lia096] suggests a harcre modification to support code compression consisting primarily
of acall-dictionaryinstruction. This instruction tals two agumentsiocationandlength Com-
mon instruction sequences in the program aredsan a dictionaryand the sequence is replaced
in the program with theall-dictionaryinstruction. During ¥ecution, the processor jumps to the
point in the dictionary indicated Bgcationand &ecutedengthinstructions before implicitly
returning. [Liao96] limits the dictionary to use sequences of instructions within basic blocks only

[Lia096] does notxplore the trade-dfof the field widths for théocation andlengthargu-
ments in the call-dictionary instruction. Only ceaeds that are 1 or 2 instructiorovds in size
are considered. This requires the dictionary to contain sequences with at least 2 or 3 instructions,
respectrely, since shorter sequenceswd be no bigger than the call-dictionary instruction and
no compression auld result.

Since single instructions are the most frequently occurring patterns, it is important to use a
scheme that can compress them. In this papemawetiie parameters dictionary sizgthe num-
ber of entries in the dictionary) and tilietionary entry lengttithe number of instructions at each
dictionary entry) thus alleing us to @amine the dicacy of compressing instruction sequences of
ary length.

3 Compression Method

3.1 Algorithm

Our compression method is based on the technique introduced in [Bird96][Chen97a]. A dic-
tionary compression algorithm is applied after the compiler has generated the progreate W
advantage of SDTS and find common sequences of instructions to place in the dic@amary
algorithm is dvided into 3 steps:

1. Build the dictionary
2. Replace instruction sequences with cookels
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3. Encode the codeords

3.1.1 Dictionary content

For an arbitrary tet, choosing those entries of a dictionary that achrmaximum compres-
sion is NP-complete in the size of thettgStorer77]. As with most dictionary methods, we use a
greedy algorithm to quickly determine the dictionary entri®s eery iteration of the algorithm,
we examine each potential dictionary entry and find the one that results inghstlammediate
savings. The algorithm continues to pick dictionary entries until some termination criteria has
been reached; this is usually thénaustion of the codeord space. The maximum number of dic-
tionary entries is determined by the choice of the encoding scheme for themsleOlviously,
codevords with more bits can ingea lager range of dictionary entries.e/imit the dictionary
entries to sequences of instructions within a basic bloekaNsiv branch instructions to branch
to codevords, lut they may not branch within encoded sequencesal§o do not compress
branches with déet fields. These restrictions simplify code generation.

3.1.2 Replacement of instructions by codeawds

Our greedy algorithm combines the step wfding the dictionary with the step of replacing
instruction sequences. As each dictionary entry is defined, all of its instances in the program are
replaced with a taén. This token is replaced with anfefient encoding in the encoding step.

3.1.3 Encoding

Encoding refers to the representation of the wodéds in the compressed program. As dis-
cussed in Section 2.1arable-length codeords, (such as those used in thefhhain encoding in
[Wolfe92]) are gpensve to decode. A fied-length codsord, on the other hand, can be used
directly as an indeinto the dictionary making decoding a simple table lookup operation.

Our baseline compression method usesatflength codeord to enabledst decoding. &/
also irvesticate a ariable-length scheme. KHever, we restrict the ariable-length codeords to
be a multiple of some basic unibriFexample, we present a compression scheme withwmdes
that are 4 bits, 8 bits, 12 bits, and 16 bits. All instructions (compressed and uncompressed) are
aligned to the size of the smallest c@ded. The shortest coderds encode the most frequent
dictionary entries to maximize thev@ags. This achiees better compression than aetidength
encoding, bt complicates decoding.

3.2 Related Issues

3.2.1 Branch instructions

One side déct of ary compression scheme is that it alters the locations of instructions in the
program. This presents a special problem for branch instructions, since brgethdhange as a
result of program compression.

1. Greedy algorithms are often neggtimal in practice.
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For this studywe do not compress rehai branch instructions (i.e. those containing dsebf
field used to compute a branchgt). This maks it easy for us to patch thdseft fields of the
branch instruction after compression. If we ala compression of relag branches, we might
need to rerrite codevords representing relaé branches after a compression passttbs would
affect relatve branch tagets thus requiring aweite of codevords, etc. The result is a NP-com-
plete problem [Szymanski78].

Indirect branches are compressed in our st8thce these branches ¢atkeir taget from a
register the branch instruction itself does not need to be patched after compression, so it cannot
create the codeord rewriting problem outlined ab@. Hovever, jump tables (containing program
addresses) need to be patched to reflgcaddress changes due to compression. GCC puts jump
table data in theext  section immediately follwing the branch instruction. $\assume that
this table could be relocated to thata  section and patched with the post-compression branch
target addresses.

3.2.2 Branch tagets in fixed-length instruction sets

Fixed-length instruction sets typically restrict branches to ugettathat are aligned to
instruction vword boundaries. Since our primary concern is code size, we triile qlerfor-
mance adantages of aligned f&x-length instructions irxehange for more compact codee W
use codeords that are smaller than instructioard boundaries and align them to the size of the
smallest codeord (4 bits in this study). Therefore, we need to specify a method to address branch
targets that do no#ldl at instruction werd boundaries.

One solution is to pad the compressed program so that all bragets tare aligned as defined
by the original ISA. The ohous disadantage of this solution is that it will decrease the compres-
sion ratio.

A more complg solution (the one we kia adopted for oung@eriments) is to modify the con-
trol unit of the processor to treat the brandsett as aligned to the size of the smallestwodz
For example, if the size of a coderd is 8 bits, then a 32-bit aligned instruction setild have its
branch ofiset range reduced by actor of 4. &blel shavs that most branches in the benchmarks
do not use the entire range of theiisef fields. The post-compilation compressor modifies all
branch ofsets to use the alignment of the oededs. Branches requiring tgar ranges are modi-
fied to load their tayets through jump tables. Of course, this will result in a slight increase in the
code size for these branch sequences.
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Table 1: Usage of bits in branch offset field

Static Branch offsets not wide Branch offsets not wide Branch offsets not wide
number of enough to povide 2-byte enough to povide 1-byte enough to provide 4-bit
PC- resolution to branch tamgets | resolution to branch tamgets | resolution to branch tamgets

Bench I;riggxgs Number Percent Number Percent Number Percent
compress 2,047 0 0.00% 0 0.00% 5 0.24%
gcc 56,750 15 0.03% 146 0.26% 378 0.67%
go 9,719 0 0.00% 0 0.00% 5 0.05%
ijpeg 6,147 0 0.00% 0 0.00% 5 0.08%
li 4,806 0 0.00% 0 0.00% 40 0.83%
m88ksim 6,346 0 0.00% 0 0.00% 3 0.05%
perl 14,578 15 0.10% 74 0.51% 191 1.31%
vortex 22,658 0 0.00% 2 0.01% 54 0.24%

3.3 Compressed pogram processor

The general design for a compressed program processeelsigiFigure3. We assume that
all levels of the memory hierargtwill contain compressed instructions to consememory
Since the compressed program may contain both compressed and uncompressed instructions,
there are tw paths from the program memory to the processor core. Uncompressed instructions
proceed directly to the normal instruction deco@ampressed instructions must first be trans-
lated using the dictionary before being decoded aadwted in the usual mann&he dictionary
could be loaded in aaviety of ways. If the dictionary is small, one possibility is to place itin a
permanent on-chip memorilternatvely, if the dictionary is lager, it might be lept as a data
segment of the compressed program and each dictionary entry could be loaded as needed.

uncompressed
instruction
stream

Compressed
program memory

Dictionary |-a— (usually FOM)

Figure 3: Overview of compressed program processor

4 Experiments

In this section we intgrate our compression technique into thev®®C instruction set. &/
compiled the SPEC CINT95 benchmarks with GCC 2.7.2 using -O2 optimization. The optimiza-
tions include common subggression elimination. Tlyedo not include function in-lining and
loop unrolling since these optimizations tend to increase code size. Linkgndome statically so
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Figure 4: Effect of dictionary entry size on compression ratio

that the libraries are included in the results. All compressed program sizes includertiead of
the dictionary

Recall that we are interested in tifietionary sizgnumber of codeords) andlictionary
entry length(number of instructions at each dictionary entry).

4.1 Baseline compession method

In our baseline compression method, we usewour¥s of 2-bytes. The first byte is an escape
byte that has an iligl PaverPC opcodealue. This allavs us to distinguish between normal
instructions and compressed instructions. The second byte selects one of 256 dictionary entries.
Dictionary entries are limited to a length of 16 bytes (Wé&t®C instructions). ReerPC has 8
illegal 6-bit opcodes. By using all 8 ijal opcodes and all possible patterns of the remaining 2
bits in the byte, we can aup to 32 dierent escape bytes. Combining this with the second byte
of the codwvord, we can specify up to 8192fdifent codevords. Since compressed instructions
use only illgal opcodes, gnprocessor designed tgexute programs compressed with the base-
line method will be able toxecute the original programs as well.

Our first xperiments ary the parameters of the baseline method. Figstews the
effect of varying the dictionary entry length. Interestinghshen dictionary entries are alled to
contain 8 instructions, theserall compression lggns to decline. This can be attitled to our
greedy selection algorithm for generating the diction&glecting lage dictionary entries
removes some opportunities for the formation of smaller entries. Tge &ntries are chosen
because theresult in an immediate reduction in the program sizeveser, this does not guaran-
tee that the are the best entries to use for aeing good compression. When agarsequence is
replaced, it destys the small sequences that partialgdapped with it. It may be that thevsa
ings of using the multiple smaller sequencesiM be greater than theviiggs of the single lge
sequence. Heever, our greedy algorithm does not detect this case and some potentigssa
lost. In general, dictionary entry sizes abd instructions do not impve compression notice-
ably. Figure5 illustrates what happens when the number ofwodss (entries in the dictionary)
increases. The compression ratio for each program continues tov@nord a maximum amount
of codavords is reached, after which only unique, single use encodings remain uncompressed.
Table2 lists the maximum number of cadards for each program under the baseline compres-
sion method, representing an upper bound on the size of the dictionary
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Figure 5: Effect of number of codewords on compression ratio

Table 2: Maximum number of codeverds used in baseline compssion (max. dictionary entry size = 4)

Maximum Number of
Bench Codewords Used
compress 647
gcc 7927
go 3123
ijpeg 2107
li 1104
m88Kksim 1729
perl 2970
vortex 3545

The benchmarks contain numerous instructions that occur only tanfes. As the dictio-
nary becomes lge, there are more coslerds &ailable to replace the numerous instruction
encodings that occur infrequentljhe saings of compressing an inddlual instruction is tig,
but when it is multiplied wer the length of the program, the compression is noticeabbchiee
good compression, it is more important to increase the number af@at$ein the dictionary
rather than increase the length of the dictionary entrieswAhfeusand codeords is enough for
most SPEC CINT95 programs.

4.1.1 Usage of the dictionary

Since the usage of the dictionary is similar across all the benchmarks,weeshitis
using ijpg as a representadi benchmark. Wextend the baseline compression method to use
dictionary entries with up to 8 instructions. Figérehavs the composition of the dictionary by
the number of instructions the dictionary entries contain. The number of dictionary entries with
only a single instruction ranges between 48% and 80%. Not surprigimglager the dictionary
the higher the proportion of short dictionary entries. Figusavs which dictionary entries con-
tribute the most to compression. Dictionary entries with 1 instructionvechetween 48% and
60% of the compression\sags. The short entries contuite to a lager portion of the sangs as
the size of the dictionary increases. The compression method in [Lia096] camnateikage



Improving Code Density Using Compressioachiniques 12

100%

Length of dictionary entry
_q_u3 (number of instructions)
=]
5 eow CE
>
7
0,
g o [Je
s s
k) 9
g [
S
£ B s
8 20% )
g ]
1
0% [

16 32 64 128 256 512 1024 2048
Size of dictionary (number of entries)
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Figure 7: Bytes saved in compression of ijpeg according to instruction length of dictionary entry

of this since the codeords are the size of single instructions, so single instructions are not com-
pressed.

4.1.2 Compession using small dictionaries

Some implementations of a compressed code processor may be constrained to use small dic-
tionaries. ¥ investicgated compression with dictionaries ranging from 128 bytes to 512 bytes in
size. & present one compression scheme to demonstrate that compression can be beseficial e
for small dictionaries. Our compression scheme for small dictionaries uses 1-bytemsdand
dictionary entries of up to 4 instructions in size. Figdishavs results for dictionaries with 8, 16,
and 32 entries. Orvarage, a dictionary size of 512 bytes idisigint to get a code reduction of
15%.

4.1.3 \ariable-length codewords

In the baseline method, we used 2-byte vaatds. W& can imprge our compression ratio by
using smaller encodings for the caaeds. Figure shavs that when the baseline compression
uses 8192 codaerds, 40% of the compressed program bytes arenayds. Since the baseline
compression uses 2-byte caaeds, this means 20% of the final compressed program size is due
to escape bytes. &\investicated seeral compression schemes usiagiable-length codeords
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Figure 9: Composition of Compressed Program (8192 2-byte codewords, 4 instructions/entry)

aligned to 4-bits (nibbles). Although there is a higher decode penalty for asiagle-length
codevords, we are able to aclhieebetter compression. By restricting the coolels to intger
multiples of 4-bits, we ha given the decoding procesgtdarity that the 1-bit aligned Himhan
encoding in [Vélfe94] lacks.

Our choice of encoding is based on SPEC CINT95 benchmaekpréfent only the best
encoding choice we ka discaoered. V¢ use codeords that are 4-bits, 8-bits, 12-bits, and 16-bits
in length. Other programs may benefit fronfefiént encodings.df example, if magy codevords
are not necessary for good compression, then more 4-bit and 8-bit catfeosuld be used to
further reduce the coderd overhead.

A diagram of the nibble aligned encoding iswhaon Figurel0. This scheme is predicated on
the obseration that when an unlimited number of cadeds are used, the final compressed pro-
gram size is dominated by codard bytes. Therefore, we use the escape code to indicate (less
frequent) uncompressed instructions rather thanveoidis. The first 4-bits of the coaerd
determine the length of the codard. With this scheme, we can pide 128 8-bit codeords, and
a feaw thousand 12-bit and 16-bit caderds. This diers the fl&ibility of having mary short code-
words (thus minimizing the impact of the frequently used instructions), whilgiagidor a lage
overall number of codeords. One nibble is resead as an escape code for uncompressed instruc-
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Figure 11: Comparison of nibble aligned compression with Unix Compress

tions. e reduce the coderd overhead by encoding the most frequent sequences of instructions
with the shortest coaerds.

Using this encoding techniqudettively redefines the entire instruction set encoding, so this
method of compression can be usedxisteng instruction sets that Y& no @ailable escape
bytes. Unfortunatelythis also means that the original programs will no longece unmodified
on processors thakecute compressed programs without mode switching.

Our results for the 4-bit aligned compression are presented in Hijuvé obtain a code
reduction of between 30% and 50% depending on the benchnearkoiRparison, wex¢racted
the instruction bytes from the benchmarks and compressed them with Unix Compress. Compress
uses an adape dictionary technique (based owvZiempel coding) which can modify the dictio-
nary in response to changes in the characteristics ofxhéntaddition, it also uses Hufian
encoding on its coaeords, and thus should be able to aghibetter compression than our
method. Figurd.1 shavs that Compress does indeed do bgeltgrour compression ratio is still
within 5% for all benchmarks.
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5 Conclusions and Futue Work

We hare proposed a method of compressing programs for embedded microprocessors where
program size is limited. Our approach combines elementsogbitavious proposals. First we use
a dictionary compression method (as in [Lia096]) thatnalloodevords to &pand to seeral
instructions. Second, we allcthe codevords to be smaller than a single instruction (as in
[Wolfe94]). We find that the size of the dictionary is the single most important parameter in attain-
ing a better compression ratio. The second most impo#geturfis reducing the coderd size
below the size of a single instruction.e/find that much of our gags comes from compressing
patterns of single instructions. Our most aggwessompression for SPEC CINT95 ackis a
30% to 50% code reduction.

Our compression ratio is similar to that askei@ by Thumb and MIPS16. While Thumb and
MIPS16 designed a completelywénstruction set, compileand instruction decodewre
achieved our results only by processing compiled object code and slightly modifying the instruc-
tion fetch mechanism.

There are seeral ways that our compression method can be ingdoFirst, the compiler
could attempt to produce instructions with similar byte sequencesysodhlel be more easily
compressed. Oneay to accomplish this is by allocatingyigters so that common sequences of
instructions use the samayigters. Another ay is to generate more generalized STDS code
sequences. Theseould be less étient, lut would be semantically correct in ader \ariety of
circumstances.d¥ example, in most optimizing compilers, the function prologue sequence might
save only those mgisters which are modified within the body of the function. If the prologue
sequence were standardized twagls sae all rayisters, then all instructions of the sequence
could be compressed to a single awole. This space sang optimization veuld decrease code
size at the xpense of xecution time. @ble3 shavs that the prologue and epilogue combined typ-
ically account for 12% of the program size, so this type of compressiold wrovide significant
size reduction.

Table 3: Prologue and epilogue code in benchmarks

Static prologue instructions Static epilogue instructions
Bench (percentage of entie program) (percentage of entie program)
compress 5.3% 6.2%
gcc 4.2% 4.9%
go 6.2% 6.8%
ijpeg 6.9% 9.4%
li 8.1% 9.9%
m88ksim 5.5% 6.4%
perl 3.7% 4.3%
vortex 6.3% 7.1%

We also plan toxplore the performance aspects of our compressionxardiee the trade-
offs in partitioning the on-chip memory for the dictionary and program.
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