
Impr oving Code Density Using
Compression Techniques

CSE-TR-342-97

Charles Lefurgy, Peter Bird, I-Cheng Chen, and Trevor Mudge

EECS Department, University of Michigan
1301 Beal Ave., Ann Arbor, MI 48109-2122
{lefurgy,icheng,pbird,tnm}@eecs.umich.edu

Abstract

We propose a method for compressing programs in embedded processors where instruction
memory size dominates cost. A post-compilation analyzer examines a program and replaces com-
mon sequences of instructions with a single instruction codeword. A microprocessor executes the
compressed instruction sequences by fetching codewords from the instruction memory, expanding
them back to the original sequence of instructions in the decode stage, and issuing them to the
execution stages. We apply our technique to the PowerPC instruction set and achieve 30% to 50%
reduction in size for SPEC CINT95 programs.

Keywords: Compression, Code Density, Code Space Optimization, Embedded Systems

Improving Code Density Using Compression Techniques 1

1 Intr oduction

According to a recent prediction by In-Stat Inc., the merchant processor market is set to
exceed $60 billion by 1999, and nearly half of that will be for embedded processors. However, by
unit count, embedded processors will exceed the number of general purpose microprocessors by a
factor of 20. Compared to general purpose microprocessors, processors for embedded applica-
tions have been much less studied. The figures above suggest that they deserve more attention.
Embedded processors are more highly constrained by cost, power, and size than general purpose
microprocessors. For control oriented embedded applications, the most common type, a signifi-
cant portion of the final circuitry is used for instruction memory. Since the cost of an integrated
circuit is strongly related to die size, and memory size is proportional to die size, developers want
their program to fit in the smallest memory possible. An additional pressure on program memory
is the relatively recent adoption of high-level languages for embedded systems because of the
need to control development costs. As typical code sizes have grown, these costs have ballooned
at rates comparable to those seen in the desktop world. Thus, the ability to compress instruction
code is important, even at the cost of execution speed.

High performance systems are also impacted by program size due to the delays incurred by
instruction cache misses. A study at Digital [Perl96] showed that an SQL server on a DEC 21064
Alpha, is bandwidth limited by a factor of two on instruction cache misses alone. This problem
will only increase as the gap between processor performance and memory performance grows.
Reducing program size is one way to reduce instruction cache misses and achieve higher perfor-
mance [Chen97b].

This paper focuses on compression for embedded applications, where execution speed can be
traded for compression. We borrow concepts from the field of text compression and apply them to
the compression of instruction sequences. We propose modifications at the microarchitecture level
to support compressed programs. A post-compilation analyzer examines a program and replaces
common sequences of instructions with a single instruction codeword. A microprocessor executes
the compressed instruction sequences by fetching codewords from the instruction memory,
expanding them back to the original sequence of instructions in the decode stage, and issuing
them to the execution stages. We demonstrate our technique by applying it to the PowerPC
instruction set.

Improving Code Density Using Compression Techniques 2

1.1 Code generation

Compilers generate code using aSyntax Directed Translation Scheme(SDTS) [Aho86]. Syn-
tactic source code patterns are mapped onto templates of instructions which implement the appro-
priate semantics. Consider, a simple schema to translate a subset of integer arithmetic:

expr -> expr ‘+’ expr
{

emit(add, $1, $1, $3);
$$ = $1;

}

expr -> expr ‘*’ expr
{

emit(mult, $1, $1, $3);
$$ = $1;

}

These patterns show syntactic fragments on the right hand side of the two productions which
are replaced (or reduced) by a simpler syntactic structure. Two expressions which are added (or
multiplied) together result in a single, new expression. The register numbers holding the operand
expressions ($1 and $3) are encoded into the add (multiplication) operation and emitted into the
generated object code. The result register ($1) is passed up the parse tree for use in the parent
operation. These two patterns are reused for all arithmetic operations throughout program compi-
lation.

More complex actions (such as translation of control structures) generate more instructions,
albeit still driven by the template structure of the SDTS.

In general, the only difference in instruction sequences for given source code fragments at dif-
ferent points in the object module are the register numbers in arithmetic instructions and operand
offsets forload andstore instructions. As a consequence, object modules are generated with many
common sub-sequences of instructions. There is a high degree of redundancy in the encoding of
the instructions in a program. In the programs we examined, only a small number of instructions
had bit pattern encodings that were not repeated elsewhere in the same program. Indeed, we found
that a small number of instruction encodings are highly reused in most programs.

To illustrate the redundancy of instruction encodings, we profiled the SPEC CINT95 bench-
marks [SPEC95]. The benchmarks were compiled for PowerPC with GCC 2.7.2 using -O2 opti-
mization. Figure1 shows that compiled programs consist of many instructions that have identical
encodings. On average, less than 20% of the instructions in the benchmarks have bit pattern
encodings which are used exactly once in the program. In thego benchmark, for example, 1% of
the most frequent instruction words account for 30% of the program size, and 10% of the most
frequent instruction words account for 66% of the program size. It is clear that the redundancy of
instruction encodings provides a great opportunity for reducing program size through compres-
sion techniques.

Improving Code Density Using Compression Techniques 3

1.2 Overview of compression method

Our compression method finds sequences of instruction bytes that are frequently repeated
throughout a single program and replaces the entire sequence with a single codeword. All rewrit-
ten (or encoded) sequences of instructions are kept in a dictionary which, in turn, is used at pro-
gram execution time to expand the singleton codewords in the instruction stream back into the
original sequence of instructions. All codewords assigned by the compression algorithm are
merely indices into the instruction dictionary.

The final compressed program consists of codewords interspersed with uncompressed instruc-
tions. Figure2 illustrates the relationship between the uncompressed code, the compressed code,
and the dictionary. A complete description of our compression method is presented in Section 3.

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex
Benchmarks

0%

10%

20%

30%

40%
S

ta
tic

 P
ro

gr
am

 In
st

ru
ct

io
ns

Distinct instruction encodings used only once in program

Distinct instruction encodings used multiple times in program

Figure 1: Distinct instruction encodings as a percentage of entire program

Uncompressed Code
lbz r9,0(r28)
clrlwi r11,r9,24
addi r0,r11,1
cmplwi cr1,r0,8
ble cr1,000401c8
cmplwi cr1,r11,7
bgt cr1,00041d34
lwz r9,4(r28)
stb r18,0(r28)
b 00041d38
lbz r9,0(r28)
clrlwi r11,r9,24
addi r0,r11,1
cmplwi cr1,r0,8
bgt cr1,00041c98

Compressed Code
CODEWORD #1
ble cr1,000401c8
cmplwi cr1,r11,7
bgt cr1,00041d34
CODEWORD #2
b 00041d38
CODEWORD #1
bgt cr1,00041c98

Dictionary

 #1 lbz r9,0(r28)
clrlwi r11,r9,24
addi r0,r11,1
cmplwi cr1,r0,8

#2 lwz r9,4(r28)
stb r18,0(r28)

... ...

Figure 2: Example of compression

Improving Code Density Using Compression Techniques 4

2 Background and Related Work

In this section we will discuss strategies for text compression, and methods currently
employed by microprocessor manufacturers to reduce the impact of RISC instruction sets on pro-
gram size.

2.1 Text compression

Text compression methods fall into two general categories:statistical anddictionary.

Statistical compression uses the frequency of singleton characters to choose the size of the
codewords that will replace them. Frequent characters are encoded using shorter codewords so
that the overall length of the compressed text is minimized. Huffman encoding of text is a well-
known example.

Dictionary compression selects entire phrases of common characters and replaces them with a
single codeword. The codeword is used as an index into the dictionary entry which contains the
original characters. Compression is achieved because the codewords use fewer bits than the char-
acters they replace.

There are several criteria used to select between using dictionary and statistical compression
techniques. Two very important factors are thedecode efficiency and the overallcompression
ratio. The decode efficiency is a measure of the work required to re-expand a compressed text.
The compression ratio is defined by the formula:

(Eq. 1)

Dictionary decompression uses a codeword as an index into the dictionary table, then inserts
the dictionary entry into the decompressed text stream. If codewords are aligned with machine
words, the dictionary lookup is a constant time operation. Statistical compression, on the other
hand, uses codewords that have different bit sizes, so they do not align to machine word bound-
aries. Since codewords are not aligned, the statistical decompression stage must first establish the
range of bits comprising a codeword before text expansion can proceed.

It can be shown that for every dictionary method there is an equivalent statistical method
which achieves equal compression and can be improved upon to give better compression [Bell90].
Thus statistical methods can always achieve better compression than dictionary methods albeit at
the expense of additional computation requirements for decompression. It should be noted, how-
ever, that dictionary compression yields good results in systems with memory and time con-
straints because one entry expands to several characters. In general, dictionary compression
provides for faster (and simpler) decoding, while statistical compression yields a better compres-
sion ratio.

2.2 Compression for RISC instruction sets

Although a RISC instruction set is easy to decode, its fixed-length instruction formats are
wasteful of program memory. Thumb [ARM95][MPR95] and MIPS16 [Kissell97] are two

compression ratio
compressed size

original size
--------------------------------------=

Improving Code Density Using Compression Techniques 5

recently proposed instruction set modifications which define reduced instruction word sizes in an
effort to reduce the overall size of compiled programs.

Thumb is a subset of the ARM architecture consisting of 36 ARM 32-bit wide instructions
which have been re-encoded to require only 16 bits. The instructions included in Thumb either do
not require a full 32-bits, are frequently used, or are important to the compiler for generating
small object code. Programs compiled for Thumb achieve 30% smaller code in comparison to the
standard ARM instruction set [ARM95].

MIPS16 defines a 16-bit fixed-length instruction set architecture (ISA) that is a subset of
MIPS-III. The instructions used in MIPS16 were chosen by statistically analyzing a wide range of
application programs for the instructions most frequently generated by compilers. Code written
for 32-bit MIPS-III is typically reduced 40% in size when compiled for MIPS16 [Kissell97].

Both Thumb and MIPS16 act as preprocessors for their underlying architectures. In each case,
a 16-bit instruction is fetched from the instruction memory, expanded into a 32-bit wide instruc-
tion, and passed to the base processor core for execution.

Both the Thumb and MIPS16 shrink their instruction widths at the expense of reducing the
number of bits used to represent register designators and immediate value fields. This confines
Thumb and MIPS16 programs to 8 registers of the base architecture and significantly reduces the
range of immediate values.

As subsets of their base architectures, Thumb and MIPS16 are neither capable of generating
complete programs, nor operating the underlying machine. Thumb relies on 32-bit instructions
memory management and exception handling while MIPS16 relies on 32-bit instructions for
floating-point operations. Moreover, Thumb cannot exploit the conditional execution and zero-
latency shifts and rotates of the underlying ARM architecture. Both Thumb and MIPS16 require
special branch instructions to toggle between 32-bit and 16-bit modes.

The fixed set of instructions which comprise Thumb and MIPS16 were chosen after an assess-
ment of the instructions used by a range of applications. Neither architecture can access all regis-
ters, instructions, or modes of the underlying 32-bit core architecture.

In contrast, we derive our codewords and dictionary from the specific characteristics of the
program under execution. Because of this, a compressed program can access all the resources
available on the machine, yet can still exploit the compressibility of each individual program.

2.3 CCRP

The Compressed Code RISC Processor (CCRP) described in [Wolfe92][Wolfe94] has an
instruction cache that is modified to run compressed programs. At compile-time the cache line
bytes are Huffman encoded. At run-time cache lines are fetched from main memory, uncom-
pressed, and put in the instruction cache. Instructions fetched from the cache have the same
addresses as in the uncompressed program. Therefore, the core of the processor does not need
modification to support compression. However, cache misses are problematic because missed
instructions in the cache do not reside at the same address in main memory. CCRP uses a Line
Address Table (LAT) to map missed instruction cache addresses to main memory addresses where
the compressed code is located. The LAT limits compressed programs to only execute on proces-
sors that have the same line size for which they were compiled.

Improving Code Density Using Compression Techniques 6

One short-coming of CCRP is that it compresses on the granularity of bytes rather than full
instructions. This means that CCRP requires more overhead to encode an instruction than our
scheme which encodes groups of instructions. Moreover, our scheme requires less effort to
decode a program since a single codeword can encode an entire group of instructions. In addition,
our compression method does not need a LAT mechanism since we patch all branches to use the
new instruction addresses in the compressed program.

2.4 Liao et al.

 A purely software method of supporting compressed code is proposed in [Liao96]. The
author findsmini-subroutines which are common sequences of instructions in the program. Each
instance of a mini-subroutine is removed from the program and replaced with a call instruction.
The mini-subroutine is placed once in the text of the program and ends with a return instruction.
Mini-subroutines are not constrained to basic blocks and may contain branch instructions under
restricted conditions. The prime advantage of this compression method is that it requires no hard-
ware support. However, the subroutine call overhead will slow program execution.

[Liao96] suggests a hardware modification to support code compression consisting primarily
of acall-dictionary instruction. This instruction takes two arguments:location andlength. Com-
mon instruction sequences in the program are saved in a dictionary, and the sequence is replaced
in the program with thecall-dictionary instruction. During execution, the processor jumps to the
point in the dictionary indicated bylocation and executeslength instructions before implicitly
returning. [Liao96] limits the dictionary to use sequences of instructions within basic blocks only.

[Liao96] does not explore the trade-off of the field widths for thelocation andlength argu-
ments in the call-dictionary instruction. Only codewords that are 1 or 2 instruction words in size
are considered. This requires the dictionary to contain sequences with at least 2 or 3 instructions,
respectively, since shorter sequences would be no bigger than the call-dictionary instruction and
no compression would result.

Since single instructions are the most frequently occurring patterns, it is important to use a
scheme that can compress them. In this paper we vary the parameters ofdictionary size (the num-
ber of entries in the dictionary) and thedictionary entry length (the number of instructions at each
dictionary entry) thus allowing us to examine the efficacy of compressing instruction sequences of
any length.

3 Compression Method

3.1 Algorithm

Our compression method is based on the technique introduced in [Bird96][Chen97a]. A dic-
tionary compression algorithm is applied after the compiler has generated the program. We take
advantage of SDTS and find common sequences of instructions to place in the dictionary. Our
algorithm is divided into 3 steps:

1. Build the dictionary

2. Replace instruction sequences with codewords

Improving Code Density Using Compression Techniques 7

3. Encode the codewords

3.1.1 Dictionary content

For an arbitrary text, choosing those entries of a dictionary that achieve maximum compres-
sion is NP-complete in the size of the text [Storer77]. As with most dictionary methods, we use a
greedy algorithm to quickly determine the dictionary entries1. On every iteration of the algorithm,
we examine each potential dictionary entry and find the one that results in the largest immediate
savings. The algorithm continues to pick dictionary entries until some termination criteria has
been reached; this is usually the exhaustion of the codeword space. The maximum number of dic-
tionary entries is determined by the choice of the encoding scheme for the codewords. Obviously,
codewords with more bits can index a larger range of dictionary entries. We limit the dictionary
entries to sequences of instructions within a basic block. We allow branch instructions to branch
to codewords, but they may not branch within encoded sequences. We also do not compress
branches with offset fields. These restrictions simplify code generation.

3.1.2 Replacement of instructions by codewords

Our greedy algorithm combines the step of building the dictionary with the step of replacing
instruction sequences. As each dictionary entry is defined, all of its instances in the program are
replaced with a token. This token is replaced with an efficient encoding in the encoding step.

3.1.3 Encoding

Encoding refers to the representation of the codewords in the compressed program. As dis-
cussed in Section 2.1, variable-length codewords, (such as those used in the Huffman encoding in
[Wolfe92]) are expensive to decode. A fixed-length codeword, on the other hand, can be used
directly as an index into the dictionary making decoding a simple table lookup operation.

Our baseline compression method uses a fixed-length codeword to enable fast decoding. We
also investigate a variable-length scheme. However, we restrict the variable-length codewords to
be a multiple of some basic unit. For example, we present a compression scheme with codewords
that are 4 bits, 8 bits, 12 bits, and 16 bits. All instructions (compressed and uncompressed) are
aligned to the size of the smallest codeword. The shortest codewords encode the most frequent
dictionary entries to maximize the savings. This achieves better compression than a fixed-length
encoding, but complicates decoding.

3.2 Related Issues

3.2.1 Branch instructions

One side effect of any compression scheme is that it alters the locations of instructions in the
program. This presents a special problem for branch instructions, since branch targets change as a
result of program compression.

1. Greedy algorithms are often near-optimal in practice.

Improving Code Density Using Compression Techniques 8

For this study, we do not compress relative branch instructions (i.e. those containing an offset
field used to compute a branch target). This makes it easy for us to patch the offset fields of the
branch instruction after compression. If we allowed compression of relative branches, we might
need to rewrite codewords representing relative branches after a compression pass; but this would
affect relative branch targets thus requiring a rewrite of codewords, etc. The result is a NP-com-
plete problem [Szymanski78].

Indirect branches are compressed in our study. Since these branches take their target from a
register, the branch instruction itself does not need to be patched after compression, so it cannot
create the codeword rewriting problem outlined above. However, jump tables (containing program
addresses) need to be patched to reflect any address changes due to compression. GCC puts jump
table data in the.text section immediately following the branch instruction. We assume that
this table could be relocated to the.data section and patched with the post-compression branch
target addresses.

3.2.2 Branch targets in fixed-length instruction sets

 Fixed-length instruction sets typically restrict branches to use targets that are aligned to
instruction word boundaries. Since our primary concern is code size, we trade-off the perfor-
mance advantages of aligned fixed-length instructions in exchange for more compact code. We
use codewords that are smaller than instruction word boundaries and align them to the size of the
smallest codeword (4 bits in this study). Therefore, we need to specify a method to address branch
targets that do not fall at instruction word boundaries.

One solution is to pad the compressed program so that all branch targets are aligned as defined
by the original ISA. The obvious disadvantage of this solution is that it will decrease the compres-
sion ratio.

A more complex solution (the one we have adopted for our experiments) is to modify the con-
trol unit of the processor to treat the branch offsets as aligned to the size of the smallest codeword.
For example, if the size of a codeword is 8 bits, then a 32-bit aligned instruction set would have its
branch offset range reduced by a factor of 4. Table1 shows that most branches in the benchmarks
do not use the entire range of their offset fields. The post-compilation compressor modifies all
branch offsets to use the alignment of the codewords. Branches requiring larger ranges are modi-
fied to load their targets through jump tables. Of course, this will result in a slight increase in the
code size for these branch sequences.

Improving Code Density Using Compression Techniques 9

3.3 Compressed program processor

The general design for a compressed program processor is given in Figure3. We assume that
all levels of the memory hierarchy will contain compressed instructions to conserve memory.
Since the compressed program may contain both compressed and uncompressed instructions,
there are two paths from the program memory to the processor core. Uncompressed instructions
proceed directly to the normal instruction decoder. Compressed instructions must first be trans-
lated using the dictionary before being decoded and executed in the usual manner. The dictionary
could be loaded in a variety of ways. If the dictionary is small, one possibility is to place it in a
permanent on-chip memory. Alternatively, if the dictionary is larger, it might be kept as a data
segment of the compressed program and each dictionary entry could be loaded as needed.

4 Experiments

In this section we integrate our compression technique into the PowerPC instruction set. We
compiled the SPEC CINT95 benchmarks with GCC 2.7.2 using -O2 optimization. The optimiza-
tions include common sub-expression elimination. They do not include function in-lining and
loop unrolling since these optimizations tend to increase code size. Linking was done statically so

Table 1: Usage of bits in branch offset field

Bench

Static
number of

PC-
relative

Branches

Branch offsets not wide
enough to provide 2-byte

resolution to branch targets

Branch offsets not wide
enough to provide 1-byte

resolution to branch targets

Branch offsets not wide
enough to provide 4-bit

resolution to branch targets

Number Percent Number Percent Number Percent

compress 2,047 0 0.00% 0 0.00% 5 0.24%

gcc 56,750 15 0.03% 146 0.26% 378 0.67%

go 9,719 0 0.00% 0 0.00% 5 0.05%

ijpeg 6,147 0 0.00% 0 0.00% 5 0.08%

li 4,806 0 0.00% 0 0.00% 40 0.83%

m88ksim 6,346 0 0.00% 0 0.00% 3 0.05%

perl 14,578 15 0.10% 74 0.51% 191 1.31%

vortex 22,658 0 0.00% 2 0.01% 54 0.24%

CPU core

Figure 3: Overview of compressed program processor

uncompressed
instruction
stream

Dictionary

Compressed
program memory
(usually ROM)

Improving Code Density Using Compression Techniques 10

that the libraries are included in the results. All compressed program sizes include the overhead of
the dictionary.

Recall that we are interested in thedictionary size(number of codewords) anddictionary
entry length(number of instructions at each dictionary entry).

4.1 Baseline compression method

In our baseline compression method, we use codewords of 2-bytes. The first byte is an escape
byte that has an illegal PowerPC opcode value. This allows us to distinguish between normal
instructions and compressed instructions. The second byte selects one of 256 dictionary entries.
Dictionary entries are limited to a length of 16 bytes (4 PowerPC instructions). PowerPC has 8
illegal 6-bit opcodes. By using all 8 illegal opcodes and all possible patterns of the remaining 2
bits in the byte, we can have up to 32 different escape bytes. Combining this with the second byte
of the codeword, we can specify up to 8192 different codewords. Since compressed instructions
use only illegal opcodes, any processor designed to execute programs compressed with the base-
line method will be able to execute the original programs as well.

Our first experiments vary the parameters of the baseline method. Figure4 shows the
effect of varying the dictionary entry length. Interestingly, when dictionary entries are allowed to
contain 8 instructions, the overall compression begins to decline. This can be attributed to our
greedy selection algorithm for generating the dictionary. Selecting large dictionary entries
removes some opportunities for the formation of smaller entries. The large entries are chosen
because they result in an immediate reduction in the program size. However, this does not guaran-
tee that they are the best entries to use for achieving good compression. When a large sequence is
replaced, it destroys the small sequences that partially overlapped with it. It may be that the sav-
ings of using the multiple smaller sequences would be greater than the savings of the single large
sequence. However, our greedy algorithm does not detect this case and some potential savings is
lost. In general, dictionary entry sizes above 4 instructions do not improve compression notice-
ably. Figure5 illustrates what happens when the number of codewords (entries in the dictionary)
increases. The compression ratio for each program continues to improve until a maximum amount
of codewords is reached, after which only unique, single use encodings remain uncompressed.
Table2 lists the maximum number of codewords for each program under the baseline compres-
sion method, representing an upper bound on the size of the dictionary.

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

Benchmarks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om

pr
es

si
on

 R
at

io 1

2

3

4

5

6

7

8

Maximum number
of instructions in
each dictionary entry

Figure 4: Effect of dictionary entry size on compression ratio

Improving Code Density Using Compression Techniques 11

The benchmarks contain numerous instructions that occur only a few times. As the dictio-
nary becomes large, there are more codewords available to replace the numerous instruction
encodings that occur infrequently. The savings of compressing an individual instruction is tiny,
but when it is multiplied over the length of the program, the compression is noticeable. To achieve
good compression, it is more important to increase the number of codewords in the dictionary
rather than increase the length of the dictionary entries. A few thousand codewords is enough for
most SPEC CINT95 programs.

4.1.1 Usage of the dictionary

Since the usage of the dictionary is similar across all the benchmarks, we show results
using ijpeg as a representative benchmark. We extend the baseline compression method to use
dictionary entries with up to 8 instructions. Figure6 shows the composition of the dictionary by
the number of instructions the dictionary entries contain. The number of dictionary entries with
only a single instruction ranges between 48% and 80%. Not surprisingly, the larger the dictionary,
the higher the proportion of short dictionary entries. Figure7 shows which dictionary entries con-
tribute the most to compression. Dictionary entries with 1 instruction achieve between 48% and
60% of the compression savings. The short entries contribute to a larger portion of the savings as
the size of the dictionary increases. The compression method in [Liao96] cannot take advantage

Table 2: Maximum number of codewords used in baseline compression (max. dictionary entry size = 4)

Bench
Maximum Number of

Codewords Used

compress 647

gcc 7927

go 3123

ijpeg 2107

li 1104

m88ksim 1729

perl 2970

vortex 3545

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

Benchmarks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om

pr
es

si
on

 R
at

io

16

32

64

128

256

512

1024

2048

4096

8192

Number of
codewords

Figure 5: Effect of number of codewords on compression ratio

Improving Code Density Using Compression Techniques 12

of this since the codewords are the size of single instructions, so single instructions are not com-
pressed.

4.1.2 Compression using small dictionaries

Some implementations of a compressed code processor may be constrained to use small dic-
tionaries. We investigated compression with dictionaries ranging from 128 bytes to 512 bytes in
size. We present one compression scheme to demonstrate that compression can be beneficial even
for small dictionaries. Our compression scheme for small dictionaries uses 1-byte codewords and
dictionary entries of up to 4 instructions in size. Figure8 shows results for dictionaries with 8, 16,
and 32 entries. On average, a dictionary size of 512 bytes is sufficient to get a code reduction of
15%.

4.1.3 Variable-length codewords

In the baseline method, we used 2-byte codewords. We can improve our compression ratio by
using smaller encodings for the codewords. Figure9 shows that when the baseline compression
uses 8192 codewords, 40% of the compressed program bytes are codewords. Since the baseline
compression uses 2-byte codewords, this means 20% of the final compressed program size is due
to escape bytes. We investigated several compression schemes using variable-length codewords

16 32 64 128 256 512 1024 2048

Size of dictionary (number of entries)

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

of
 d

ic
tio

na
ry

 e
nt

rie
s

1

2

3

4

5

6

7

8

Figure 6: Composition of dictionary for ijpeg (max. dictionary entry = 8 instructions)

Length of dictionary entry
(number of instructions)

16 32 64 128 256 512 1024 2048

Size of dictionary (number of entries)

0.0%

10.0%

20.0%

30.0%

40.0%

P
ro

gr
am

 b
yt

es
 r

em
ov

ed

1

2

3

4

5

6

7

8

Length of dictionary entry

du
e

to
 c

om
pr

es
si

on

Figure 7: Bytes saved in compression of ijpeg according to instruction length of dictionary entry

(number of instructions)

Improving Code Density Using Compression Techniques 13

aligned to 4-bits (nibbles). Although there is a higher decode penalty for using variable-length
codewords, we are able to achieve better compression. By restricting the codewords to integer
multiples of 4-bits, we have given the decoding process regularity that the 1-bit aligned Huffman
encoding in [Wolfe94] lacks.

Our choice of encoding is based on SPEC CINT95 benchmarks. We present only the best
encoding choice we have discovered. We use codewords that are 4-bits, 8-bits, 12-bits, and 16-bits
in length. Other programs may benefit from different encodings. For example, if many codewords
are not necessary for good compression, then more 4-bit and 8-bit code words could be used to
further reduce the codeword overhead.

A diagram of the nibble aligned encoding is shown in Figure10. This scheme is predicated on
the observation that when an unlimited number of codewords are used, the final compressed pro-
gram size is dominated by codeword bytes. Therefore, we use the escape code to indicate (less
frequent) uncompressed instructions rather than codewords. The first 4-bits of the codeword
determine the length of the codeword. With this scheme, we can provide 128 8-bit codewords, and
a few thousand 12-bit and 16-bit codewords. This offers the flexibility of having many short code-
words (thus minimizing the impact of the frequently used instructions), while allowing for a large
overall number of codewords. One nibble is reserved as an escape code for uncompressed instruc-

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

Benchmarks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om

pr
es

si
on

 R
at

io

8 (128 byte dictionary)

16 (256 byte dictionary)

32 (512 byte dictionary)

Number of
codewords
Number of
codewords

Figure 8: Compression Ratio for 1-byte codewords with up to 4 instructions/entry

Figure 9: Composition of Compressed Program (8192 2-byte codewords, 4 instructions/entry)

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

Benchmarks

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%

C
om

pr
es

se
d

P
ro

gr
am

 S
iz

e

Dictionary

Codewords: escape bytes

Codewords: index bytes

Uncompressed Instructions

Improving Code Density Using Compression Techniques 14

tions. We reduce the codeword overhead by encoding the most frequent sequences of instructions
with the shortest codewords.

Using this encoding technique effectively redefines the entire instruction set encoding, so this
method of compression can be used in existing instruction sets that have no available escape
bytes. Unfortunately, this also means that the original programs will no longer execute unmodified
on processors that execute compressed programs without mode switching.

Our results for the 4-bit aligned compression are presented in Figure11. We obtain a code
reduction of between 30% and 50% depending on the benchmark. For comparison, we extracted
the instruction bytes from the benchmarks and compressed them with Unix Compress. Compress
uses an adaptive dictionary technique (based on Ziv-Lempel coding) which can modify the dictio-
nary in response to changes in the characteristics of the text. In addition, it also uses Huffman
encoding on its codewords, and thus should be able to achieve better compression than our
method. Figure11 shows that Compress does indeed do better, but our compression ratio is still
within 5% for all benchmarks.

Figure 10: Nibble Aligned Encoding

0-7

8-13

14

15

0-15

0-255

0-4095

PowerPC Instruction

0 3 4 7

0 3

0 3

0 3

4 11

4 15

4 35

128 8-bit codewords

1536 12-bit codewords

4096 16-bit codewords

36-bit uncompressed instruction

Figure 11: Comparison of nibble aligned compression with Unix Compress

co
m

pr
es

s

gc
c

go

ijp
eg

li

m
88

ks
im

pe
rl

vo
rt

ex

Benchmarks

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

C
om

pr
es

si
on

 R
at

io

Compression with nibble aligned codewords

Unix Compress

Improving Code Density Using Compression Techniques 15

5 Conclusions and Future Work

We have proposed a method of compressing programs for embedded microprocessors where
program size is limited. Our approach combines elements of two previous proposals. First we use
a dictionary compression method (as in [Liao96]) that allows codewords to expand to several
instructions. Second, we allow the codewords to be smaller than a single instruction (as in
[Wolfe94]). We find that the size of the dictionary is the single most important parameter in attain-
ing a better compression ratio. The second most important factor is reducing the codeword size
below the size of a single instruction. We find that much of our savings comes from compressing
patterns of single instructions. Our most aggressive compression for SPEC CINT95 achieves a
30% to 50% code reduction.

Our compression ratio is similar to that achieved by Thumb and MIPS16. While Thumb and
MIPS16 designed a completely new instruction set, compiler, and instruction decoder, we
achieved our results only by processing compiled object code and slightly modifying the instruc-
tion fetch mechanism.

There are several ways that our compression method can be improved. First, the compiler
could attempt to produce instructions with similar byte sequences so they could be more easily
compressed. One way to accomplish this is by allocating registers so that common sequences of
instructions use the same registers. Another way is to generate more generalized STDS code
sequences. These would be less efficient, but would be semantically correct in a larger variety of
circumstances. For example, in most optimizing compilers, the function prologue sequence might
save only those registers which are modified within the body of the function. If the prologue
sequence were standardized to always save all registers, then all instructions of the sequence
could be compressed to a single codeword. This space saving optimization would decrease code
size at the expense of execution time. Table3 shows that the prologue and epilogue combined typ-
ically account for 12% of the program size, so this type of compression would provide significant
size reduction.

We also plan to explore the performance aspects of our compression and examine the trade-
offs in partitioning the on-chip memory for the dictionary and program.

Table 3: Prologue and epilogue code in benchmarks

Bench
Static prologue instructions

(percentage of entire program)
Static epilogue instructions

(percentage of entire program)

compress 5.3% 6.2%

gcc 4.2% 4.9%

go 6.2% 6.8%

ijpeg 6.9% 9.4%

li 8.1% 9.9%

m88ksim 5.5% 6.4%

perl 3.7% 4.3%

vortex 6.3% 7.1%

Improving Code Density Using Compression Techniques 16

6 References

[Aho86] A. Aho, R. Sethi and J. Ullman,Compiler: Principles, Techniques and
Tools, Addison-Wesley, 1986.

[ARM95] Advanced RISC Machines Ltd.,An Introduction to Thumb, March 1995.

[Bell90] T. Bell, J. Cleary, I. Witten,Text Compression, Prentice Hall, 1990.

[Bird96] P. Bird and T. Mudge, An Instruction Stream Compression Technique,
CSE-TR-319-96, EECS Department, University of Michigan, November
1996.

[Chen97a] I. Chen, P. Bird, and T. Mudge,The Impact of Instruction Compression on
I-cache Performance, CSE-TR-330-97, EECS Department, University of
Michigan, 1997.

[Chen97b] I. Chen,Enhancing Instruction Fetching Mechanism Using Data Com-
pression, Dissertation, University of Michigan, 1997.

[Kissell97] K. Kissell,MIPS16: High-density MIPS for the Embedded Market, Silicon
Graphics MIPS Group, 1997.

[Liao96] S. Liao,Code Generation and Optimization for Embedded Digital Signal
Processors, Dissertation, Massachusetts Institute of Technology, June
1996.

[MPR95] “Thumb Squeezes ARM Code Size”, Microprocessor Report 9(4), 27
March 1995.

[Perl96] S. Perl and R. Sites,Studies of Windows NT performance using dynamic
execution traces, Proceedings of the USENIX 2nd Symposium on Operat-
ing Systems Design and Implementation, October 1996.

[SPEC95] SPEC CPU’95, Technical Manual, August 1995.

[Storer77] J. Storer, “NP-completeness results concerning data compression,” Techni-
cal Report 234, Department of Electrical Engineering and Computer Sci-
ence, Princeton University, 1977.

[Szymanski78] T. G. Szymanski, “Assembling code for machines with span-dependent
instructions”,Communications of the ACM 21:4, pp. 300-308, April 1978.

Improving Code Density Using Compression Techniques 17

[Wolfe92] A. Wolfe and A. Chanin,Executing Compressed Programs on an Embed-
ded RISC Architecture, Proceedings of the 25th Annual International Sym-
posium on Microarchitecture, December 1992.

[Wolfe94] M. Kozuch and A. Wolfe, Compression of Embedded System Programs,
IEEE International Conference on Computer Design, 1994.

