A Chromaticity Space for Specularity, Illumination
Color- and Illumination Pose-Invariant 3-D Object
Recognition

Daniel Berwick and Sang Wook Lee
(dberwick@umich.edu and swlee@Qumich.edu)
Dept. of Electrical Enginnering and Computer Science
University of Michigan
Ann Arbor, MI 48104

Abstract

Most of the recent color recognition/indexing approaches concentrate on establish-
ing invariance to illumination color to improve the utility of color recognition. How-
ever, other effects caused by illumination pose and specularity on three-dimensional
object surfaces have not received notable attention. We present a chromaticity recog-
nition method that discounts the effects of illumination pose, illumination color and
specularity. It utilizes a chromaticity space based on log-ratio of sensor responses for
illumination pose and color invariance. A model-based specularity detection/rejection
algorithm can be used to improve the chromaticity recognition and illumination estima-
tion for objects including specular reflections.



1 Introduction

Reflectance-based recognition/indexing is a clear contrast to the previous recognition ap-
proaches. Traditional object recognition and viewing condition estimation uses geomet-
ric cues such as 3-D object shape models and geometric relationships between object fea-
tures, and recent appearance-based approaches describe an object by using relatively compact
eigenspaces derived only from image appearances under various viewing conditions [5] [17]
[33] [25]. Although color reflectance has been conceived as an obvious object descriptor and
color matching has been a central focus of color science and engineering, only recently have a
number of researchers begun to explore the use of color distributions as signatures for object
recognition. Their work has demonstrated that color can potentially be a strong cue [32]
[26] [29] [14] [16] [30]. For image retrieval from an image database, color is one of the most
effective cues [8] [1].

The early approaches for recognizing objects based on their color distributions were de-
veloped by Nagao et al. and by Swain and Ballard [26] [32]. Although this initial work
does not address the problems of changing viewing conditions such as illumination direction
and color change, it introduced the usefulness of color in recognition and motivated work
for illumination color-invariant recognition. In order for object color to be stable to dif-
ferent illumination environments, variations in color distributions due to shading, lighting
color, and specular reflections need to be discounted. The problem of color constancy for
discounting illumination color to obtain reflectance color has been the topic of much research
in psychology and computer vision [20] [34] [24] [13] [11]. The knowledge gained through
color constancy research is reflected in recent recognition/indexing methods that explore
illumination-invariant descriptors from color distributions.

Funt and Finlayson [14] developed color-constant color indexing (CCCI) to deal with
scenes with variations in illumination color. By histogramming ratios of RGB values of
adjacent pixels, they achieve a degree of color constancy that is relatively insensitive to
illumination changes. Independently, Nayar and Bolle also used reflectance ratios for object
recognition [29]. Healey et al. presented various methods mostly based on the affine property
of color distribution change. By assuming a finite-dimensional linear surface reflectance
model, changes in illumination color result in a linear transformation of global color pixel
distributions in RGB space [16] [30] [31]. Their work has been extended to find local color
features by restricting the spatial extent of regions in a color image.

In this paper, we present an approach for increasing the utility of color distributions
and the impact of color-based recognition. Previous work paid little attention to color
distribution changes due to illumination pose. A color histogram in RGB sensor space,
or other linearly transformed three-dimensional space, when constructed as a 3-D binary
occupancy grid is insensitive to viewing pose (barring occlusions). Geometric information
is generally collapsed in a color histogram. However, changes in illumination direction can
produce varying color distributions from a 3-D object. In previous work, most of the color
features used are located on 2-D planar surfaces, or a fixed illumination pose is used for
3-D objects. Most color constancy work assumes a Mondrian world where shading change



depending on illumination pose is uniform throughout an image plane. It may be noted that
the CCCI method is relatively insensitive to illumination change for smooth surface shapes,
and that the problem of illumination pose-invariance is recently gaining attention [10] [23].

We suggest the use of intensity-normalized color space, i.e., chromaticity space, to dis-
count changes in color distributions due to illumination pose. The space is based on the
logarithms of sensor-response ratios, and chromaticity deformation due to illumination color
change is limited to translation. We also address the problem of specularity in object color
appearances. Previous research in color recognition assumes the lack of strong specularity
and its effects in the color distribution. Detection of specularity has been a topic of active
research in the field of physics-based vision [18] [15] [21] [3] [28] [2] [35] [27] [22]. Most of
this work deals with basic modeling and algorithm development. We present a systematic
method that couples specularity detection with color-based object recognition. In summary,
we propose a color-based object recognition algorithm invariant to: (1) illumination pose,
(2) illumination color, and (3) specularity. To our knowledge, the work that fully addresses
these multiple problems simultaneously is scarce.

2 TIllumination Pose-Invariance

As mentioned previously, a color histogram in the form of a multi-dimensional binary occu-
pancy grid is invariant to mild change of viewing orientation and scale of the object within the
image, assuming rotation does not result in a significantly different color distribution due to
occlusion or disocclusion. This means that binary occupancy grid does not signify the num-
ber of pixels occupying the same color space. However, color distributions in the 3-D RGB
occupancy grid may change their shape depending on object surface shading determined by
illumination direction. If color features are distributed over surfaces with different orien-
tations, a change in illumination direction results in nonuniform intensity changes among
the color features. This illumination pose problem has been noted before, but has not been
explicitly addressed.

A common representation of color distributions is a three-dimensional histogram as shown
in Figure 1 (b). The axes measure responses to the RGB sensors of the camera in the range
of visible light, A = 400nm to 700nm, according to the equation

a0 = /A (n, - 17)e(N)s?(\)Qu(N)dA, (1)

where e()) is the illumination spectrum, s?()\) is the surface reflectance at the point p,
and Q) and ¢ for £ = 0,1,2 or R,G, B are the spectral response and camera outputs,
respectively. Surface shading is determined by the illumination direction vector n; and the
surface normal vector m?. Only the diffuse reflection is included in the above model. The
distribution of direct color sensor responses in a RGB space is affected by illumination pose.
This is a consequence of surface normal variations on a 3-D object.

The relationship between sensor responses under different illumination colors can be
modelled as a linear transform [16] [30]. For three-dimensional approximation of surface
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reflection [6] [24],
#() = Y75, (). 2

where S;’s are basis functions and o;’s are weighting coefficients (i = 0,1,2), the sensor
responses g = [qg, qa, qp]’ and reflectance coefficients o = [0, 01, 05T are related as:

¢ = [n, -n*]Ao®, where Ay = /A e(\)Si(\)Qr(N)d. (3)

A change in illumination pose (72,) and color (A) would result in a different set of sensor
responses ¢ = [ns - n?|Ao?, and the transformation between the sensor responses is given
as:

q°=r"Mgq", (4)

where _ )
pp= """ and M = AAT (5)

N, - NP

If the color measurements g® are distributed over a 2-D planar surface, i.e., n? is fixed
for the surface points, the scaling factor due to shading is uniform. Therefore, the linear
relationship, M, between the sensor response vectors g” and g® holds. On the other hand, if
the color measurements g* are obtained from surface points with different orientations, the
color values at these points will undergo different transformations because of different n®.
Hence, the linear transform relationship is not appropriate for establishing illumination-color
invariance for a general 3-D object.

A popular 2-D chromaticity space & = [11, Z»]” is constructed by normalizing the sensor

responses as:
4dr qa

=, T = ————— ; (6)
gr +9c t 4B qr t 4c t 4B
In this projective space the scaling factor r? due to shading disappears by the normalization,
hence chromaticity is independent of illumination pose. This process removes the intensity
component from the color distribution so that differences in shading are not distinguished.
Figure 1 shows a synthetic sphere under the same illumination color but with different
illumination directions, and the RGB histograms and chromaticity diagrams of the sphere
images. The RGB histograms may deform significantly when illumination pose varies for
objects with different surface orientations. However, the chromaticity distribution remains
the same.

T

3 INlumination Color-Invariant Chromaticity Space

The adoption of the chromaticity space initiates a new problem: identification of chromatic-
ity signatures influenced by illumination color change. Differences in lighting color produce a
nonlinear deformation of chromaticity descriptors due to the nonlinearity introduced by the
normalization. Deformation of chromaticity signatures is governed by the transformation
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Figure 1: Effects of illumination pose (a,d) Illumination from the left and right, respectively,
(b,e) RGB color histograms, (c,f) Chromaticity distributions

relationships in Equations 4 and 6. Formulation of invariance using the general matrix M in
Equations 4 and the normalization in 6 may not be easily achieved. For establishing an illu-
mination color-invariant chromaticity space, we simplify the chromaticity deformation based
on the diagonal matrix transform which has long been proposed as a feasible mechanism
for color constancy. Color constancy based on the diagonal matrix transformation and its
impact are analyzed in detail by Finlayson, Drew and Funt, Worthey and Brill, West and
Brill, and D’Zmura and Lennie [11] [12] [34] [7]. Finlayson, Drew and Funt showed that
illumination change can be modelled as diagonal matrix transform under low-dimensional
model constraints for illumination and reflectance [11].

Without the low-dimensional constraints on illumination and reflectance, the diagonal
matrix transform can be approximated using very narrow color filters (ideally the Dirac
delta function). If the filter function Qx(\) in Equation 1 has a narrow bandwidth AQj
around the wavelength )\, and both e()\) and s?(\) are approximately constant within the
filter bandwidth, the sensor responses can be approximated as

@ = [ - mPle(Ar)s? (k) QmAQy, (7)

where (), is the magnitude of filter response. The relationship between the sensor responses
g® and g* (where ¢ = [, - n?|e(Ag)s? (M) @mAQy) is given by a diagonal transform, i.e.,

¢ =D, ®)
and the diagonal elements are given by

Do = 2(M)/e(No),  Dii=2(\)/e(M), Do = 8(Ns)/e(Ns).
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The diagonal matrix transform has been suggested as a base for many color constancy al-
gorithms such as von Kries adaptation, retinex/lightness algorithms, and Forsyth’s CRULE
algorithm [34] [20] [13]. The narrow-band filters have been used successfully by Funt and
Finlayson and by Nayar and Bolle [14] [29]. Finlayson, Drew, and Funt suggested meth-
ods for sharpening sensor functions and reported that the sensor sharpening improves the
performance of color constancy algorithms based on diagonal transforms [12].

Under the diagonal transform condition, we suggest a chromaticity space & = [£1, &
that is invariant to illumination color up to translation:

]T

qr qB
61 - ln_a 52 - ln_a (9)
dc dc
In this space, the chromaticity distributions from an object under different illumination
colors should appear identical up to translation, i.e.,
c Dy , Doyop
E=¢+m, where n=I[n—:)\In=—"]".
| Dy, Dn]
We use this space & for object identification and illumination estimation. The relationship
between the chromaticity space & in Equation 6 and & is given as:
T 1l—z,—2
G=In—,  GH=lh——,
T2 T2

The use of reflectance ratios has been suggested previously in [14] and [29]. The CCCI
approach utilizes the distribution of ratios from spatially neighboring pixels, and thus only
the image regions where color values spatially vary contribute to the distribution effectively.
Our log-sensor-ratio chromaticity space in Equation 9 uses the ratios of sensor responses from
different bands at each surface point and the distribution of their logarithms as a signature
for object identification. Therefore, all the color pixels are used to form the distribution
regardless of their spatial variation. It may be noted that the descriptors used in homomor-
phic image processing of opponent colors are similar to the logarithm of sensor ratios, e.g.,
In(gr/qc) 9] [19]. Sensor ratios are also used for the gamut mapping method by Finlayson
[10].

Although basic cross-correlation in € can be used for similarity measure, cross-correlation
of test chromaticity distribution with all those of database objects would require high com-
putational cost and estimation of 77 may be inaccurate if the correlation curve shows a broad
peak. An alternative fast and accurate method is to use the Fourier magnitude spectrum
for similarity measure and the Fourier phase for estimating 7 [4]. Let f be a chromaticity
distribution function in the new coordinate system &£. The deformation by G results in the
translation of f, i.e.,

fa(§) = f(€+m),

and their Fourier transforms will differ only in their phases:
Flfa@l(w) = e <M F[f(&)](w) (10)
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Note that the magnitude of the Fourier spectrum |F[fg(&)](w)| is invariant to n. The phase
term @Q(w) can be extracted by the following nonlinear filtering:

—i<nW> _ F'fel(w) Ff](w)
\Flfel(w)| |F[fl(w)]

and the inverse Fourier transform ¢(¢) = F '[Q(w)] will exhibit a peak at the illumination
parameter 7 in the & domain.

Qw)=e (11)

4 Specularity Rejection

Specular reflections in an image may produce a substantial change in an object’s chromatic-
ity distribution. Strong specularities can significantly erode the similarity of chromaticity
distributions between the model and test objects. Consequently, the illumination-invariance
can be weakened. Although previous work in color-based recognition assumes lack of strong
specularities, this problem needs to be addressed for reliable recognition.

The addition of specularity modifies sensor response in Equation 1 to be:

G = AG(A)[(ns-np)SP(A) + G5 (M]Qk(A)dA, (12)

where s? and s? denote diffuse and specular reflection components, respectively. G? repre-
sents the geometric factor for specular reflection, and is a function of many illumination,
viewing and reflectance variables. In the chromaticity plane, specular reflections will appear
as a cluster of points stretching from its underlying diffuse reflection chromaticity toward the
chromaticity of the incident light ( Figure 2 (a)) [2]. To avoid deviations from an object’s
chromaticity signature of only diffuse reflections, specularities need to be detected and re-
moved from the test image. The goal of specularity detection is to find image regions where
s? is nonzero. “Specularity rejection” excludes the detected regions from the chromaticity
signature.

Since specularity detection is not in general a well-constrained problem, most physics-
based detection methods require restricting assumptions in object reflectance or need extra
sensor data to provide physical constraints. These constraints include restricted material
types and piecewise uniform object colors. Extra physical cues include structured light,
polarization sensors, and multiple-view image sensing [18] [2] [21] [28] [35] [27] [22]. These
additional requirements sensing may be difficult to achieve, especially for test images.

An additional source of information for specularity detection in lieu of extra sensing
needs to be found. Our solution to this problem lies in the model images, from which we
propose “model-based specularity detection/rejection”. Using a potential match between
the test object signature and a model object signature in the model base, a rough initial
estimation of illumination color can be made. The chromaticity distribution of the test image
can be compared with the model distribution considering the estimated illumination. From
the comparison, some of the color clusters that ensue from specularity can be eliminated,
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Figure 2: (a) Effect of specularities in chromaticity plane. (b) Chromaticity differencing
from illumination estimation

and the illumination estimation can be refined and used to emend further the chromaticity
distribution. This chromaticity histogram comparison is motivated by histogram differencing
techniques [21] [22].

Our approach to specularity rejection begins with conservative intensity-based processing
of a test image, such as intensity thresholding, to eliminate sharp and intense specularity
without any prior information [3]. From the resulting signature, a hypothesis for initial
object identification and illumination estimation is generated. This signature is iteratively
refined by chromaticity differencing.

Figure 2 (b) illustrates this differencing process. Based on the identified object and initial
illumination estimation after thresholding, the chromaticity plane associated with the object
and estimated illumination is used for coarse differencing with the test chromaticity diagram.

The difference between two signatures can be computed by subtracting the potential
model signature from the test signature. The result of this operation are the chromaticities
that may be the result of specularity. Of these chromaticities, those that lie between a
part of the model signature and the estimated illumination are considered to be caused by
specularity. A new signature for the test object is created that removes parts of the signature
considered to be specularity.

Since differencing produces a chromaticity plane that is less affected by specularities,
the peak value of |¢(£)| may increase and may yield a more accurate illumination estimate.
This result drives the process into another round of differencing. By iteratively refining
the chromaticity diagram of the test object by specularity removal, the peak value of |¢(£)|
keeps increasing if the hypothesized object is indeed correct. For an incorrect hypothesis,
the refinement process will terminate with the decreased peak value of |¢(£)|. The specular-
ity rejection algorithm is initiated when there is no dominant match to the objects in the
database. The test is differenced with each of the best matching objects. The specularity



rejection algorithm is summarized as follows.

1. Apply a conservative intensity threshold 77 for initial specularity rejection, and com-
pute ¢(£).

2. If the peak [¢(&)|maz is Within some percent threshold T, of the highest |g(&)|mas of
the database, estimate an initial illumination color 7.

3. Using m, translate the model chromaticity signature and do chromaticity differencing
using the illumination estimation and the model signature to determine the region of
specularity.

4. Create the new test signature
5. Compute |¢(&€)|mas of the new test signature and update 7.
6. While the peak |¢(&)|mas increases, repeat steps 3, 4, 5, and 6. Otherwise, stop.

The thresholds 17 and 75 are fixed and predetermined.

When the object match is correct and the illumination estimations are reasonable, it-
erative specularity removal will keep the peak [¢(&)|maz increasing. If the deformation by
the presence of specularity is too severe and initial intensity thresholding does not make a
difference, this process simply stops immediately, and a test object remains unidentified.

5 Experimental Results

The proposed & chromaticity space and specularity rejection algorithm are tested using
a database of eight objects. The objects are illuminated with two 500 Watt, 3200 K, GE
Photofloods mounted in reflected scoops. Digital Images are gathered with a Sony XC-77RR
and color images are generated from this greyscale camera using a set of relatively narrow-
band RGB filters. These are Kodak Wratten filters numbers 29, 47, and 61. The aperture
of the camera is adjusted for each object to prevent saturation, and .3 neutral density gel
is added to the red and green filters to more closely match the transmission of the blue
filter. The illumination color is altered by placing gel filters in front of the lamps. There is
some variation in the illumination of object scenes. The filters cannot not be placed close
enough to lamps to prevent all the unfiltered light from falling on the object. Although we
are unable to measure the effects of this ambient illumination, the chromaticity descriptions
are still unique enough for recognition.

The database images are taken with the illumination filtered by Lee Filter 201 (Full
CT Blue) which moves the incandescent light towards a neutral color. Specularities in the
model images are removed by intensity thresholding methods [21] or by hand before the
chromaticity descriptors are created. Figure 3 (a), (b) and (c) show the database objects,
their chromaticity diagrams in the & space, and in the & space, respectively. The range of
the & chromaticity space is from -oo to oo along the & and & axes. A square window is



H ‘ cyl ‘ gel ‘ gun ‘ gun’ ‘ horse ‘ nut ‘ pad ‘ pea ‘ tooth ‘
cyl 34 (.32 | .31 | .33 33 | 26| .27 | .29 | .31
gel 29 1.33 | .29 | .35 32 1 .28 | .31 | .34 27
gun 291.29 .38 .39 | .34 | 31| .29 | .30 27
horse | .30 | .34 | .38 | .39 | .36 |.35| .32 | .32 | .33
nut 271 .29 | 27 | .29 28 | .26 | .28 | .28 .25
pad 28 | .30 | .29 | .32 29 | 27| .30 | .30 | .33
pea 25 .27 | .30 | .31 28 | .26 | .26 | .37 | .24
tooth | .23 | .27 | .29 .28 27 25 .29 | .29 27

Table 1: Results from the x-chromaticity diagrams

‘ ‘ cyl ‘ gel ‘ gun ‘ gun’ ‘ horse ‘ nut ‘ pad ‘ pea ‘ tooth ‘
cyl .82 | 57 | 43 | .46 .58 | B3| .50 | .56 AT
gel .64 | .87 | .52 | .b5 .70 | .70 | .69 | .66 .64
gun b0 | .52 | .83 | .82 b9 | 45| .61 | .58 .44
horse | .66 | .77 | .61 | .66 90 | .71 .78 | .71 .59
nut D7 |73 ] b1 | .55 73 1.90| .69 | .73 .66
pad b1 | .67 | .60 | .69 7 | .56 | .84 | .56 .59
pea 72| 72 | b4 | 61 .16 | .76 | .70 | .88 | .63
tooth | .b4 | .64 | .51 | .52 69 | .72 | 66 | .68 | .84

Table 2: Results from the &-chromaticity diagrams

placed over the & chromaticity space ranging from -4.0 to 4.0. Test images are created by
varying the pose of the new objects and by not filtering the incandescent light. Test images,
their chromaticity diagrams in the x space and in the & space are shown in Figure 3 (d),
(e) and (f), respectively. Some of the test images contain specularities while some do not.
These test objects are then used to test the illumination pose and color invariance. Notice
that the x-chromaticity diagrams show substantial deformation between the database and
test objects while the &-chromaticity diagrams do not.

To provide a reference for the &-chromaticity performace, the x-chromaticity performance
is tested, and the results are shown in Table 1. The leftmost column represents the database
objects under the reference light and the top row the test objects under the unfiltered
incandescent light. For the plastic gun, an extra pose is generated for more specularities
(denoted by “gun’ 7). The data entries in the table are correlation values between the test
and database objects. Not surprisingly, this approach does not perform very well. Because
the test images are taken under a different illumination color, the & diagrams are deformed
beyond a simple translation. Of the nine test images only three are recognized successfully.
Six of the tests images are marked as non-distinct because the test image returns matched
values within ten percent of each other. The results provide a reference to judge the effect
of the & chromaticity space.
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Figure 3: (a) Database objects, (b) & chromaticity diagrams, (c¢) & chromaticity diagrams,
(d) test objects, (e) & chromaticity diagrams, and (f) & chromaticity diagrams. Color versions
of columns (a) and (d) are available at http:1ai.eecs.umich.edu/vision/database.html




H ‘ x-chromaticity ‘ &-chromaticity H

No. of Tests 9 9
No. Recog 3 9
No. Non-distinct 6 0
Average Rank 1.2 1

Table 3: Summary of results from a-chromaticity and £-chromaticity diagrams

The matching results from the £ chromaticity diagrams are shown in Table 2. The
algorithm showed significant improvement over the & chromaticity method. All except one
of the test images are correctly matched. The remaining image, of the gel (which contained
significant specularities), is originally marked non-distinct because two high match values
are returned. Even though the algorithm cannot determine with certainty which object is
in the test image, it is aware of its failure. Our specularity detection/rejection method was
applied to the non-distinct test image and the two best matching model images: the gel and
the horse. The differencing increased the correlation of the test image with the gel model,
but did not change the correlation with the model horse image. Table 3 summarizes the
performance of the & and £ chromaticity spaces in terms of some measures: “No. Recog”,
and “No. Non-distinct” denote the number of times the algorithm correctly recognizes a test
object and cannot distinguish between matches, respectively, and the rank is the position of
the correct matching in the sorted list of match values.

6 Discussion

Chromaticity representations of object colors discount object shading variation that results
from illumination pose change. It is our intent to separate the color information from geomet-
ric information that is otherwise confounded in RGB values. The proposed log-sensor-ratio
chromaticity space further provides illumination color invariance up to translation and our
specularity rejection method reduce the influence of specular reflections on chromaticity
distribution.

Methods that are based on reflectance ratios and narrow-band filters have been suggested
previously by Funt and Finlayson [14] and Nayar and Bolle [29]. The main difference is that
the proposed log-sensor-ratio method creates the signature from the ratio of different color
bands at the same pixel, while the previous ratio-based methods use ratios of different
pixels in the same color band. Another difference is that the previous ratio-based methods
concentrate only on image regions where color varies substantially, such as color edges, and
do not utilize uniformly colored areas. If surface orientations do not vary over neighboring
pixels, the previous reflectance-ratio methods achieve illumination color and pose invariance.
This invariance occurs because the illumination and surface normal are considered to be the
same for the pixels used in the ratio and hence only the ratio of object color remains.
However, if the surface normals are not the same, then the ratio will not be invariant. The
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different shading that may result from altering the incident light configuration will cause
the ratios to vary. This may occur where surface orientation changes substantially such as
vertices of polyhedral objects. Our proposed method eliminates this problem by eliminating
the effects of shading using the chromaticity space. On the other hand, the previous ratio-
based methods require only local illumination color uniformity and less sensitive to gradual
change of illumination color across a scene. Varying illumination in the log-sensor-ratio
chromaticity space will cause different pixels to experience a different translation 7. These
differing translation will cause the signature to warp beyond a simple translation of the
model signature. Thus, the log-sensor-ratio space can only be effective if illumination color
is uniform throughout the scene.

In this paper, we introduce a specularity rejection method that is closely coupled with
illumination color-invariant chromaticity matching. To our knowledge, specularity has not
been addressed by previous methods. We assume that specularity is localized in space
(specular spike) and does not fully occlude critical colors in diffuse reflections. The color
distribution is in general insensitive to partial occlusions since a color distribution signature
is generated from a whole object surface. Slight color variation due to spatially extended
but weak luster is regarded as noise. Beyond this condition, our method adds chromaticity
differencing to help reduce the effect of specularity. In a test image containing specularity,
the specular region will add chromaticity clusters ranging from the object chromaticity to the
illumination chromaticity. These additional chromaticities should appear as an additional
lobe to the model signature. Chromaticity differencing forces the test signature to be closer
to the model signature eliminating lobes that extend from model chromaticity clusters to
illumination chromaticity.

7 Conclusion

To effectively employ color information as a reliable descriptor of an object for recognition,
color reflectance intrinsic to the object surface should be extracted, and the variation of color
appearance due to viewing and illumination pose, illumination color, and specularity needs
to be discounted. We propose the use of a chromaticity space based on log-sensor-ratio of
sensor responses for illumination-pose and illumination-color invariance. We also suggest a
specularity rejection method based on chromaticity differencing. Experimental results are
presented to demonstrate the efficacy of the proposed chromaticity space and specularity
rejection method.
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