An Architecture for Inter-Domain Troubleshooting *

David G. Thaler and Chinya V. Ravishankar
Electrical Engineering and Computer Science Department
The University of Michigan, Ann Arbor, Michigan 48109-2122

thalerd@eecs.umich.edu ravi@eecs.umich.edu

Abstract

In this paper, we explore the constraints of a new problem: that of coordinating network troubleshooting
among peer administrative domains or Internet Service Providers, and untrusted observers. Allowing untrusted
observers permits any entilty to report problems, whether it is a Network Operations Center (NOC), end-user,
or application.

QOur goals here are to define the inter-domain coordination problem clearly, and to develop an architecture
which allows observers to report problems and receive timely feedback, regardless of their own locations and
tdentities. By automating this process, we also relieve human bottlenecks at help desks and NOCs whenever
possible.

We begin by presenting a troubleshooting methodology for coordinating problem diagnosis. We then describe
GDT, a distributed protocol which realizes this methodology. We show through simulation that GDT performs
well as the number of observers and problems grows, and continues to function robustly amidst heavy packet
loss.

1 Introduction

Work to date in network management has concentrated on effectively managing a single network. Typically,
it has also been assumed that the management software and the managed devices are all owned by the same
administration, or that network management entities are mutually trusted. To our knowledge, little has been done
to address the problem of coordinated network management across administrative domains, although the need for
such a global coordination system has long been recognized [1, 2, 3, 4].

In one recent informal study of routing instability [5], it was found that while the majority of catastrophic
routing problems could be identified as software and configuration errors, about 10% of the problems could only be
classified as “somebody else’s problem”, since all parties questioned pointed to another party as the cause. Such
problems are the most difficult to resolve, and underscore the need for inter-domain coordination, so that the true
causes of problems may be identified and such circular referrals detected and resolved.

A second important point is that the true cause of a problem may be distant from its effect. For example, the
failure to access a web page may be the result of a problem located anywhere between the user’s browser and the
remote server. Contacting one’s local help desk is unlikely to be of much benefit in this case.

We will investigate the problem of such inter-domain troubleshooting coordination. Our ultimate goal is to
automate coordination of troubleshooting and repair efforts between administrative domains. In this paper, how-
ever, we address the subproblem of developing a communication protocol for detecting and reporting problems
across administrative domains. We aim to provide timely feedback to (dis)affected end-users, and to relieve human
bottlenecks at help desks and Network Operations Centers (NOCs) whenever possible.

In this paper, we will address the issues of reporting network outages and other problems, and acquiring
feedback about them, but not the problem of negotiating solutions. We leave inter-administration negotiation as
an opportunity for future work. We also leave the issue of pre-notification, or notifying organizations of downtime
scheduled in the future, to other mechanisms. While some work currently in progress, such as IPN [6], addresses the
issue of pre-notification, we observe that pre-notification does not solve the problem of coordinating troubleshooting
during a problem, since past announcements (if any) may have been lost, ignored, or forgotten, and may be
inaccessible during the problem.

*This work was supported in part by National Science Foundation Grant NCR-9417032.

Many of the assumptions made by intra-administration management methods do not apply to the inter-
administration case. For example, management entities in one domain may not be allowed to access information
in another administrative domain, and management entities in one domain cannot assume that observers in other
domains are trustworthy. Hence, new mechanisms are needed to address new constraints.

Our task can be made easier by building inter-administration coordination on top of the existing management
functionality available within each administrative domain. Given such functionality, we need only concern ourselves
with the task of coordinating information between domains in an effective manner.

Our goal in this paper is to clearly define the inter-domain coordination problem, and to provide a framework
and protocol which allows any entity (including a user, a NOC, or an application) to report problems and receive
appropriate feedback, regardless of its own location.

Our framework consists of three parts:

1. Domain-expertise modules: These are existing tools upon which we build. They apply traditional man-
agement techniques, usually within an administrative domain. Example domain-expertise modules include
existing Network Management Systems (NMS’s), connectivity diagnosis tools such as CT [7], up-down and
congestion experts as used by ANM [8], and agents employing newer techniques such as Anomaly Signature

Matching [9].

2. Troubleshooting Methodology: This is the theory and algorithm behind the protocol which allows
effective troubleshooting in an inter-domain environment.

3. Coordination Protocol: This protocol conveys information between management entities which may be
in different administrative domains, and enables the methodology.

The remainder of this paper is organized as follows. Section 2 outlines our design philosophy and describes
the constraints relevant to the inter-domain problem. Section 3 presents a methodology for diagnosing problems.
Section 4 describes our protocol, Section 5 gives simulation results, and Section 6 covers conclusions and the
future.

2 Design Philosophy

In this section, we discuss some social and administrative policy issues arising in the context of a global network
composed of a large number of autonomous administrations. We will illustrate a number of design principles and
provide the motivation for the application of our methodology.
2.1 Policy principles

We present the following principles as relevant in the context of an inter-domain environment.
Principle 1 (Freedom of information): “Outage” information should be available to all those affected by it.

Users (and even applications) can often benefit from information such as the expected downtime. Tt is also
important to provide enough information to allow troubleshooting problems which span several administrative
domains. To obtain such information quickly, it is desirable to remove human intervention (e.g., help desks) from
the loop whenever possible.

Principle 2 (Privacy): “Outage” information should be available only to those affected by it.

Internet Service Providers (ISP’s) typically do not want statistics on the number of problems observed in their
network to be publicly available. Hence, information on problems is only distributed on a “need-to-know” basis.

Principle 3 (Freedom of speech): Any entity should be able to report a problem, whether or not it is trusted.

This principle is a direct consequence of the Freedom of Information principle and the fact that the cause of
a problem may be distant from its effect. No assumption is made initially about the correctness (or the non-
maliciousness) of the problem report.

Principle 4 (Conservation of effort): One should perform the minimum repairs required to fix the problem in
a timely fashion. In addition, no attempis should be made to repair non-existent problems.

The first part requires that a repair be performed as near as possible to the source of the problem, to avoid having
to react to each effect separately. The second part implies that problems reported by untrusted sources must be
confirmed before being acted upon.

2.2 Architectural Constraints

Our architecture follows the Internet design philosophy described in [10]. We summarize this philosophy with the
following set of constraints ranked in order of importance: high availability, allowing multiple services, networks,
and centers of administration, cost-effectiveness, low-effort deployment, and accountability. We now adapt these
constraints to the problem of network troubleshooting as discussed below.

We paraphrase our foremost constraint (from Rose [11]) as follows:

Constraint 1 (Reliability): When all else fails, troubleshooting must continue to function, if at all possible.

It is instructive to contrast the reliability requirements of troubleshooting services with those of ordinary dis-
tributed services. Whereas “reliability” of distributed systems is measured under normal operating conditions,
troubleshooting must be reliable precisely when the operating conditions are harsh.

This Reliability constraint implies that a global troubleshooting system must require as few other services
as possible to be functional. For example, it should continue to function (although not necessarily as well) if
nameservice, filesystems, or TCP are not available.

Constraint 2 (Scalability): The architecture must be scalable to span the global Iniernet.

This means that multiple (perhaps very many) problems may exist simultaneously, and that the network spans
multiple (perhaps very many) autonomous administrations. In addition, the network configuration may change
over time. If the architecture automatically adapts to network changes, the need for manual configuration of the
troubleshooting system is minimized.

Constraint 3 (Low-cost deployment): The architecture must be both simple to implement and deploy, as well
as consume resources at a reasonably low rate.

In other words, the requirements for other entities to participate in the troubleshooting framework must be as
simple as possible. In addition, the bandwidth and memory costs required must not outweigh the benefits of a
troubleshooting architecture.

Constraint 4 (Security): The architecture must be secure and adhere to the Privacy principle.

First, it must not publish information on current problems to those unaffected by them. Second, it must prevent
unnecessary “repairs” from being performed.

3 Troubleshooting Methodology

In this section, we describe the methodology we use to coordinate troubleshooting efforts. In the remainder of
this paper, the term object will refer to a logical entity in the network, such as a router or a stream of data. We
will refer to classes of objects, and instances of specific classes. For example, a “TCP session” may be a class,
while an instance of that class would be identified by a pair of IP addresses and port numbers.

3.1 Fault-propagation model

To understand how to coordinate troubleshooting efforts between administrative domains, we must first under-
stand how faults propagate through the network. A good introduction to fault propagation can be found in [12],
which describes how faults propagate both vertically, as well as horizontally through the network. For the hori-
zontal directions, we use the term downstream to denote the direction of data flow, and upstream to denote the
reverse direction. In the vertical direction, up and down are defined with respect to the seven-layer protocol stack
defined by the ISO [13].

To expand upon this notion, we propose the use of resource dependency graphs. We first use a resource de-
pendency graph to describe the network, in which each node represents an object, and directed edges denote
dependencies. Figure 1 shows one such example, depicting both vertical and horizontal dependencies. In such
graphs, the arrows denote the direction of a demand for the resources of one object by another. For example, the
audio client and server applications demand resources from the host CPU and the filesystem, and as the router
forwards packets, 1t imposes a resource demand upon the downstream link. The efficiency and correctness of an
object’s performance thus depend on the extent to which its resource remands are met, and hence on the efficiency
and correctness of the performance of those objects below it and downstream from it.

Audio
Server

\
Up AN l //

Audio

_____ »~UDP stream =— =— =—— _"Client

\\ St St St /
ream ream ream
Link — ™ Node — ™ Link

i
oo

Host = =~ Link =— -~ Router = = Link =— =%~ Host

/N /N

CPU Filesystem CPU Filesystem

Upstream == === Downstream

Figure 1: Sample Resource Dependency Graph

process __ __ __ _ p.Stream
stream path
N\
N\
N\
process \ StreaMeg — —m=Stream
‘ link node
host <& — — >~ link <& — — >~ router
CPU Filesystem

Figure 2: Static Resource Dependency Graph

When logically constructing such a resource dependency graph, it is important to distinguish between static
relationships, and dynamic relationships. Relationships between classes of objects are typically static (see Figure 2),
whereas relationships between specific instances of objects are often dynamic. For example, a UDP stream will
always depend upon links and routers, but the specific instances may change over time (even during the lifetime
of the stream). Our goal in practice will be to statically know static relationships, and to dynamically resolve
dynamic relationships.

We now define several additional terms to better understand the relationship between fault propagation and
resource dependencies. Let an object’s capacity denote the total amount of resources it makes available. For
example, a link’s capacity might be measured in Mbps, and a file system’s capacity might be measured in Gbytes.
Let an object’s utilization denote the total amount of its resources in use.

Finally, we adopt the concept of a “health function” from [14]. We let an object’s health be a measure of its
performance and its ability to adequately meet imposed demands. Low health is thus an indication of degraded
performance. We will use the term problem to denote an object experiencing low health. The precise meaning of
this depends on the definition of the health function, and may be different for each class of objects. For example,
the health of a TCP session may be measured by latency (possibly in addition to other factors), while the health
of a filesystem might be measured by average read and write access times. Other literature in the field recognizes
two different categories of low health. Hard failures (or complete lack of service) result when an element fails
completely. Soft failures, on the other hand, represent only partial failures, such as degraded performance due to
congestion. Our framework encompasses both notions, since zero health represents a hard failure, while healths
in the range (0,1) represent soft failures of various degrees. This is important, since an observer may not be
able to distinguish between the two, and our definition allows us to coordinate information relating to both fault
management and performance management, as defined by the ISO [13].

Our methodology requires creating and maintaining, for each class of objects, means for determining an instance’s
capacity, utilization, and health, and methods for determining the set of instances above, below, upstream, and
downstream from a given instance. This implies that if there are several methods of determining whether an
object 1s healthy, for instance, then these may represent separate classes of objects. For example, a link may look

congested to a single stream, but uncongested when looking at the aggregate traffic. In our examples, the object
class streamlink refers to the former concept, and 1ink to the latter.

With the above definitions, we are ready to analyze fault propagation in more detail. We begin with the following
observations:

Observation 1 High utilization propagates in the direction of resource dependencies, i.e., downwards and down-
stream.

Any object which is highly utilized may consequently impose higher demands on those objects on which it depends.

Observation 2 Low health propagates in the opposite direction from resource dependencies, i.e., upwards and
(perhaps) upstream.

Degraded performance at some object may cause a degradation in performance of all objects which impose resource
demands on it. Often, low health will not in fact propagate upstream since the degraded performance will merely
result in lost packets which will be dealt with at a higher layer.

Observation 3 High utilization can cause low health, as utilization approaches the object’s capacity.

That is, low health may arise from soft failures (congestion) in addition to hard failures (hardware or software
faults).
3.2 Cause-effect graphs

Previous studies (e.g., [15]) have typically only looked at one direction of fault propagation (i.e., “up”). We
introduce cause-effect graphs as a more comprehensive model for representing fault propagation. Each node in a
cause-effect graph represents a problem, and directed edges lead from effects to causes. We begin with a taxonomy
of problem types based on our discussions in Section 3.1. This taxonomy is shown in Figure 3.

higheruU highU@ab .
aner 'ghu@above lowH health is too low
highU ___ [upstreamU highU@upstream highU utilization is too high
highD lowerH an object below has low health
lowC downstreamH an object downstream has low health
higherU an object above has high utilization
lowH— badHW . . e .
upstreamU an object upstream has high utilization
—lowerH ————= lowH@below highD object itself is demanding too many
——downstreamH ——= lowH@downstream resour.ces.
lowC capacity is too low to meet normal
——badHwW demands
badHW incorrect performance of object itself

Figure 3: Problem Taxonomy

Degraded performance (lowH) of an object can be caused by congestion (highU, Observation 3), by degraded
performance at a lower or downstream object (lowerH, downstreamH, Observation 2), or by an actual hardware or
software problem (badHW) with the object itself. Similarly, congestion (highU) can be caused by high utilization
above or upstream (higherU, upstreamU, Observation 1), by the object itself generating an unusually high demand
(highD), by the object having insufficient capacity to meet normal demands (lowC), or by an actual hardware or
software problem (badHW) with the object itself.

Each of lowerH, higherU, downstreamH, and upstreamU refer to specific problems at objects below, above,
and upstream from the affected object, respectively. The taxonomy thus represents a recursive method to trace
problems back to one or more root causes (i.e., those which are not effects of other problems). A root cause can
only be one of highD, lowC, or badHW.

Figure 4 shows a sample network topology. In this topology, nodes A, B, E, and F are connected via 10 Mbps full
duplex links to nodes C and D which connect to each other via a 500 Kbps full duplex link. Using the taxonomy
we described above, we can now construct directed cause-effect graphs, where each node represents a problem,
and directed edges lead from an effect to a cause (see Figure 5). The dotted lines in this figure simply group all

problems with the same object, since the taxonomy refers to problem types at a given object. (Note that, as we
will see in Section 4, this graph will be distributed in practice to provide scalability and support privacy.)

We call a symptom from which cause-effect graph construction begins a “leaf effect” (such as lowH of stream(A,E)),
since diagnosis always proceeds from an effect to its cause. A problem such as highD of processstream(B) which is
not an effect of any other problem is a “root cause.” If problems occur often enough that the capacity is insufficient
to support normal demand, 1owC will be another root cause, as shown. Since each cause may have multiple effects,
and vice versa, the superposition of the trees constructed by tracing back from each leaf effect forms the complete
cause-effect graph.

r— - r— - - -
‘ lowH ——= lowerH Lis lowH ——= lowerH || higheruU 4

| stream(AE) stream(A,E) | | streamlink streamlink\\L link(C,D) |
| J | (AE,C,D) (A,E,C,D)J

\

ffffffffff [lowH ___ highU |
oo oo link(C,D) Iink(C,D)\ |
‘ lowH —= lowerH > lowH —=lowerH” | | lowC |
\

\

‘stream(B,E) stream(B,E)‘ I streamlink streamlink | | link(C,D)
\ | | (B,EC,D) (B,ECD) | |
e - - 1L J

highU ——upstreamU —& highu ——= highD
| stream(B, F) stream(B,F) | | processstream(B) processstream(B)
\

-

Figure 5: Cause-Effect Graph of Problems

The nine problem types shown in Figure 3 are necessary and sufficient for inter-domain coordination since they
enumerate and distinguish the different directions in which fault and performance problems can be propagated.
Problems in real networks will simply be instances of these types, and further subdivisions will be specific to the
classes of objects. Since we are interested in efficient coordination of troubleshooting efforts, rather than the details
of the efforts themselves, the high-level classifications will suffice for our purposes. We have no need, therefore, to
classify problems at any finer granularity.

This observation i1s important, since we want to make use of existing techniques developed for specific classes of
objects or within specific administrative domains. This is the purpose of the Domain-Expertise Modules.

In addition, we observe that since problems can only be propagated across resource dependencies, cycles can
occur in cause-effect graphs only if cycles are present in the resource dependency graph. Cycles in cause-effect
graphs are particularly important. They may lead all administrations involved to conclude it is “somebody else’s
problem” | as observed in the informal routing instability study [5], resulting in no action taken at all. We will
return to this issue in Section 4.3.

3.2.1 Constructing cause-effect graphs

Given an initial problem (leaf effect) report, a cause-effect graph can be constructed according to the following
procedure:

1. Run a test to confirm whether the problem exists (this is done by a domain-expertise module). If none exists,
stop. Note that this step is necessary when the origin of the report is either untrusted or unsure. In cases
where the origin is both trusted and sure of the problem’s existence, this step can be omitted.

2. Generate hypotheses about possible causes by referring to the Problem Taxonomy (Figure 3) and the Resource
Dependency Graph (Figure 1) which includes the affected object.

3. Repeat from step 1 for each new hypothesis generated.

Figure 6 gives an example, starting with a low-health report for a stream object. If the report is confirmed,
hypotheses of highU, lowerH, and badHW are generated in accordance with Figure 3. If lowerH is confirmed, a
lowH hypothesis will be generated for each object below the stream object in the resource dependency graph. We
prune back branches for all hypotheses which are rejected by tests or whose tests were indeterminate, leaving only
confirmed problems.

highU lowH

stream(A,E)

downstreamH
stream(A,E)

lowH lowerH

streamlink(A,E,A,C)

lowH
streamnode(A,E,C)

lowH

streamlink(A,E,C,D)

lowH
streamnode(A,E,D)

stream(A,E) \stream(A,E)
badHW

stream(A,E)

lowH
streamlink(A,E,D,E)

Figure 6: Generating Hypotheses

This process continues until all branches are pruned back or reach either root causes or previously-confirmed
problems. Figure 5 shows the results of applying this process to two leaf effects: low health of both stream (A E)
and stream (B,E). These effects are traced to a common cause: low health of the C-D link, which is in turn a result
of B generating too much traffic.

4 Problem report coordination

In this section, we describe how the methodology outlined in Section 3 can be applied in a scalable manner to
a distributed architecture which meets the requirements in Section 2.

To scale to a global network composed of a large number of administrative domains, we propose a society of
troubleshooting coordination agents. These agents are called ezperts, and communicate with each other and with
clients, which are agents acting on behalf of the end-user, application, or NOC observing a problem. Each expert
has one or more areas of expertise. An area of expertise is defined as knowledge about problems with a specific
class of objects, and the capabilities and permissions necessary to diagnose a specific set (e.g., a range or list) of
instances of that class.

For each class of objects in its area of expertise, an expert must have the ability to determine the set of objects
immediately above, below, upstream, and downstream from a given object, and the ability to test for (at least)
lowH, highU, highD, and lowC. The results of each test should either confirm or deny the existence of the problem,
or report that the test was indeterminate. Any test which is indeterminate is later considered to be confirmed if an
immediate effect was confirmed, and all other potential hypotheses are rejected. For example, badHW is frequently
difficult to test because of the many ways in which hardware and software may be faulty. If no test is available, then
badHW is considered to be confirmed if lowH was confirmed but highU, lowerH, and downstreamH were rejected.

Intermediate problem types (lowerH, downstreamH, upstreamU, and higherU) are considered confirmed if any
hypothesis they generate is confirmed, rejected if all hypotheses they generate are rejected (or if no hypotheses are
generated), and are indeterminate otherwise. Note that the same strategy could be used for any other indeterminate
problem by testing the hypotheses it would have generated if confirmed.

The cause-effect graph spans the society of experts, with all nodes in the graph for the same object being located
at the same expert. The resource dependency graph is likewise distributed, since each expert knows the static
relationships between classes in its areas of expertise, and is able to dynamically determine which objects relate
to any given problematic object within its areas of expertise. Finally, the same taxonomy is used by all experts in
generating hypotheses.

Deferred

Isolated

Figure 7: State Transition Table for a Problem

Each expert keeps a list of unresolved problems within its areas of expertise which have been reported to it.
The state transition table seen by each problem (i.e., each node in the cause-effect graph) is shown in Figure 7.
State transitions correspond to timer expirations and receipt of protocol messages. Details can be found in [16].

Each expert then locally follows the methodology of Section 3 for the nodes of the global cause-effect graph
which it holds, and GDT protocol messages are exchanged between experts to create and maintain the cause-effect
graph.

We reiterate that each expert only keeps information on its own problems, and only receives information about
problems which directly affect it or its problems. This provides scalability as well as meets the privacy requirement
from Section 2.

4.1 Expert Location

The following considerations are important in designing a scalable mechanism for locating appropriate experts
to which to submit problem reports. First, an expert location service will be used precisely when problems exist.
The Reliability constraint (see Section 2.2) thus mandates that the expert location service should not make use
of any existing system for service location. For example, it should not require multicast, or else it cannot be
used in diagnosing problems with multicast routing. Therefore, we must construct an expert location service
tailored specifically to our needs. Note that we do not preclude the use of multicast as an optimization when it 1s
available. We simply present a method below which is able to function without the use of multicast. An analysis
of optimizations which introduce such additional dependencies is a topic for future work.

In our scheme, object names are attribute-based and correspond to individual points in the namespace. The name
of an object consists of two sets of attribute=value pairs: a mandatory set which uniquely identifies the instance,
and an optional set to provide additional information. For example, the name of a specific UDP stream might be
“class=UDPstream, sourceAddr=141.213.10.41, sourcePort=1234, destAddr=204.140.133.4,destPort=5678,
application=vat”, where application is an optional attribute. To report a problem with a specific object, all
required attributes must be specified.

Areas of expertise, on the other hand, correspond to regions in the namespace. The description of a region
contains attribute=set or attribute=range pairs, and need not specify required attributes. For example, one area
of expertise might be “capability=diagnosisOnly, class=UDPstream, sourceAddr=141.213/16". To submit
a hypothesis, one must be able to map the name of a problematic object to one or more experts whose areas of
expertise include the given object. This problem is analogous to that of performing a point query in a spatial
database to get a list of regions covering the given point.

Traditional spatial database techniques such as R-trees[17] are not directly applicable, however, since scalability
requires that the database of regions be physically distributed. In addition, it doesn’t matter whether a region is
matched if the associated expert isn’t reachable. This means that the work of locating particular experts is wasted
if we then find that we cannot reach them. Thus, there are fundamental differences imposed by our constraints
which make traditional approaches less applicable.

We summarize our design requirements for nameservice below, in order of importance:

1. Allow availability during network partitions (i.e., locate reachable experts).
2. Minimize point query time by minimizing the number of exchanges of network messages.

3. Maintain low bandwidth and memory overhead (thus trying not to exacerbate congestion problems, and
interfering as little as possible with other objects).

The first constraint suggests that a hierarchy of servers corresponding to a hierarchy in the namespace (as is used
by DNS [18], X.500 [19], etc) will not work, since we must have successful queries even when we are partitioned from
a large part of the network. Replicating such servers everywhere will not keep the bandwidth overhead low. We
also want to avoid mandating a hierarchical namespace to preserve domain autonomy and class independence. On
the other hand, we desire some structure to the servers so that expert location can provide higher availability, and
be easily adapted to changing conditions without manual reconfiguration. Many existing attribute-based naming
schemes (e.g., [20]) provide no structure to servers and hence rely on manual configuration.

The solution we adopt is as follows. Expert location servers (ELS’s) are organized into a hierarchy according to
their location. Informally, each expert location server is responsible for knowing about namespace regions (areas
of expertise) in the subtree rooted at itself. While we do not describe the hierarchy formation procedure in this
paper, we anticipate that it will be formed as the result of a self-configuring process. This process is one area of
current research. A trivial heuristic would be to manually configure the hierarchy, as is done with DNS and X.500.

Experts form the actual leaves of the tree so formed, with each expert’s parent being the closest expert location
server. We will refer to a server whose children are experts (as opposed to other servers) as a leaf server. Each
expert periodically advertises its areas of expertise to its local leaf server. Each server then reports to its parent
server, either the bounding box covering the regions it has, with its own address as the “owner” (or expert to
contact), or preferably, the union of the regions. Tradeoffs exist between the amount of bandwidth and state used,
and the speed of queries. In general, we prefer to keep a greater amount of more accurate state, so as to minimize
the query time.

To perform a point query, one starts at one’s local leaf server. If any matches occur, the query is completed and
returns. Otherwise, the next higher server in the hierarchy is consulted to determine if any knowledgeable experts
exist in a wider area. This procedure ensures that closer experts will be found before more distant experts. This
approach both helps to ensure availability of experts matched, and minimizes latency and bandwidth used.

A second issue is the ordering of the list of experts. Bowman, et al. [21] describe a framework for reasoning
about naming systems and describe how ordering rules can be expressed in terms of a “preference hierarchy”. The
constraints listed above lead us to the following preference hierarchy for ordering the list of experts.

1. Prefer closer experts first to achieve availability. This heuristic corresponds to using the levels of the hierarchy,
starting at the bottom and working upwards. The remaining preferences (below) thus correspond to rules
employed by a level-i server to construct a list of experts in response to a query it receives.

2. Required attributes must match exactly between the requested object and matched areas of expertise, and
any optional attributes must not be in conflict. This means that the list constructed by a level-i server must
not contain any experts whose areas of expertise are known not to include the given object. Note that within
the server, spatial database techniques such as R-trees may be used to implement this rule. The remaining
preferences (below) then describe how a single server should order the regions it finds.

3. Experts with more advanced capability are preferred (e.g., ones that can repair, not just diagnose) over less
advanced experts. Note that the capability level is a required attribute in describing regions (but not objects)
to enable this rule.

4. Prefer experts which match more of the optional attributes. If a region’s description does not specify an
optional attribute contained in the request, it is not considered to match when counting matched attributes.

5. Finally, to break ties, we use the Highest Random Weight (HRW) algorithm described in [22]. If two requests
for the same object retrieve the same set S of servers, HRW generates the same ordering of servers in S
for both requests. However, requests for different objects generate different orderings on .S, so HRW both
helps to balance the load on equivalent experts, and reduces duplication of work in accordance with the
Conservation of Effort principle. For classes of objects which are popular, but not confined to a small area,
all experts found in step 2 will often be tied and hence HRW will determine expert selection.

According to the algorithm described above, the list of “experts” returned by a query may actually be location
servers. However, when a request is sent to an “expert” which is actually a level-7 server, the server responds by
redirecting the request to a list of level-(i — 1) servers (or experts). This means that any non-expert can be resolved
to a list of actual experts.

Finally, we optimize the lookup procedure and enhance availability by caching the results of previous lookups.
That is, if an entity wants to locate an expert on a particular object, and any experts’ areas of expertise in the
cache include that object, then no network messages are needed to resolve the list of experts.

Information distribution schemes may follow either a “push” model, where new information is sent out to
everyone, or a “pull” model, where information is sent out only on request. We concluded that expert location
service best fits the pull model due to our constraints. For example, we do not want the world to be flooded with
messages conveying areas of expertise, as might be the case if the entire database were replicated at numerous sites.
We also do not want the world to be flooded with requests for experts, as is done in the Contract Net protocol [23].
In addition, we did not want to require multicast capability due to the Reliability constraint; this decision allows
us to diagnose problems with multicast routing, while not precluding the use of multicast as an optimization.
4.2 Security Issues

It is important, though not required, that a reporter be able to trust the feedback from an expert. If a malicious
expert rejects a true hypothesis (violating the Freedom of Information principle), the reporter will simply attempt
to cope with the symptoms.

If a malicious expert confirms a false hypothesis, the reporter may choose either to wait for repairs to complete if
the expert’s expected time to repair is acceptable, or to simply cope with the symptoms. An expert that frequently
provides wrong feedback must be isolated. We provide a mechanism for identifying such experts by requiring that
the originators of capability advertisements be authenticated. In practice, only short-term intruders are a concern,
since experts wishing to establish a long-term presence would have no incentive to become known as unreliable.

To ensure integrity of capability advertisements and authentication of their origin, we adopt the current model
recommended by the IETF for use with nameservice-like applications, which is known as DNSsec [24]. Briefly,
a public/private key pair is associated with each domain, and all capabilities are signed with a domain key. To
reliably learn the public key of a domain, the key itself must be signed. A resolver must therefore be configured
with at least the public key of one domain that it can use to authenticate signatures. It can then securely read the
public keys of other domains if the intervening domains in the ELS tree are secure and their signed keys accessible.
See [24, 25] for a more detailed discussion of the security model and associated concerns.

A second security issue is denial-of-service attacks by observers reporting non-existent problems. Such attacks
can be combatted in GDT by deferring tests and repairs once such an attack is suspected. For example, if a
large number of reports arrive from the same origin, and the first few are rejected, the rest may be deferred (and
perhaps a “GDT denial-of-service” problem report generated). If the client never refreshes the deferred state (see
Section 4.3), the tests need not be performed.

4.3 Protocol Overview

In this section we give a brief overview of the GDT protocol. A detailed specification can be found elsewhere [16].

Any entity may report a problem, whether the entity is a client perceiving a problem, or an expert hypothesizing
about potential causes of a known problem. To report a problem, an ordered list of experts with appropriate areas
of expertise is first obtained using the method outlined in Section 4.1. A Hypothesis message describing the
potential problem is then sent to each of these experts in turn until one responds (i.e., until one is found to be
reachable).

GDT is designed to be a soft state protocol, meaning that all state held in experts and servers will eventually
expire and be deleted unless explicitly refreshed by receiving relevant messages. Significant events cause experts
to return a status report to each entity which sent it a Hypothesis message for that problem. These status reports
are not acknowledged, but are periodically resent to allow for lost messages and to keep state alive at the origin so
it need not try another expert. Hypotheses are periodically (at low frequency) resent to experts to indicate that
the sender is still interested in receiving status reports for reported problems.

When an expert receives a Hypothesis about a new problem, a domain-expertise module applies known domain-
specific tests to confirm or deny the existence of the reported problem. Such a test may consist of any of: a
simple table lookup if information were periodically polled and kept in memory, an automated test, or alerting
an operator to request a manual test. The expert merely acts as a supervisor for these tests, letting the domain
expertise module (or a human) conduct the actual test using its own methods. This confirmation step may be

10

to H1 to H2

to H3 & misbehaving stream)/
- // _ to H4
d\ ~ _ -7 - -
f\/\ aggglr;%i?te i St el mpied Fy uncongested
4" 1" (lossless)
paths P : RN paths
toH5 =< congested link \ ~. 10 H6
link T \ -
bl
probiem to Hn-1 to Hn
(a) Network Partition (b) Simulated Congestion Problem

Figure 8: Network Problems

skipped if the Hypothesis is received from a trusted source and indicates that the problem has already been
confirmed. When a test completes, all origins are informed that the hypothesis was confirmed, rejected, or that
it was indeterminate. (Since a problem can have multiple effects, there can be multiple origins, one per reported
effect.)

Once a problem is confirmed, the expert generates hypotheses about potential causes according to the procedure
described in Section 3. This may entail employing a resolution procedure to determine the list of objects above,
below, upstream, or downstream from the problematic object. Each hypothesis is then sent to an appropriate
expert as described above.

If no potential causes were found for a confirmed problem, or if all hypotheses have been rejected or are
indeterminate, then a root cause has been reached, and repairs may begin whenever possible.

To conserve effort and ensure that repairs are conducted as close to the root cause as possible, no actions will
be initially requested for problems with confirmed causes. When a root cause cannot be repaired immediately,
its status is set to Repair-Deferred, and all entities from which a hypothesis of the cause has been received are
informed. When all confirmed causes of a problem have had repairs deferred, then repairs may begin (or be
deferred) for the effect where possible. This process continues down the tree of effects until repairs are begun
immediately, or until the origins of problem reports for leaf effects are reached.

We emphasize that the specific tests and repairs to be done are domain-specific and hence are outside the
scope of the coordination protocol. This also allows each administration or even each expert to have its own
troubleshooting procedures, while still allowing coordination between heterogeneous experts.

Breaking cycles in the graph

As discussed in Section 3.2, cycles in cause-effect graphs are an important concern. To prevent deadlock, cycles
are detected by propagating selected Status Report messages down to leaf effects in the cause-effect graph when
potential for a cycle exists (namely, when a Hypothesis message is received for a previously-confirmed problem).
If a Status Report about a specific problem is relayed down to the same problem, then a cycle must exist, and the
cycle 1s broken by treating its cause as indeterminate, forcing the problem to be treated as a root cause.

5 Simulation

In this section, we evaluate the performance of the GDT protocol. To do this, we implemented GDT clients
and experts using “ns”, the LBNL Network Simulator [26]. Our goal will be to test its performance and reliability
under conditions particularly adverse to GDT.

It is first useful to understand the effects on GDT of hard and soft failures. If a hard failure is present, the
network may be partitioned, potentially making some experts unreachable (Figure 8(a)). In this case, if any experts
able to diagnose the problem and supervise repairs are reachable, then troubleshooting will succeed. If no reachable
experts exist, then repairs will be requested at effects whenever possible, and either the leaf effects’ problems will
be repaired or nothing further can be done. (This is less likely if the client itself has areas of expertise). In any case,
the situation is relatively time-invariant compared with a soft failure. Most of the Internet is also “self-correcting”
since the routing protocols automatically adapt (in time) to hard failures, masking them from higher layers. In

11

110 T T 1 t T
Nodes —+— Nodes —+—
100 1 09 | Unpruned Nodes -~ -
90 - Objects —=—
0.8 | Unpruned Objects = 1
80 1 "
© 0.7 | 1
70] < .
€ 2 06 | |
§ 60 | * T
° e ’ S |
40 o] 3 o4 T)]
20 | gy e g :
- . a
T — o 1 0.2 e - . o
0 L L L L L L Ol L L L L L L
40 50 60 70 80 90 100 110 40 50 60 70 80 90 100 110
Nodes Nodes
Figure 9: Cause-Tree Statistics
300 ; — 6
Construction ——
Maintenance - Maintenance -
250 + Notification ~»-— 4 5 Notification -—*-— 4
& = Loop Detect —=
3 Teardown ---=---
200 1 o 4+ 1
(%] o
[—_
(2] [}
& 150 : o 3t :
) Q
= 4
100 1 2 2t]
()
= x—x————x\\
50 1 1 fes 1
[T B8 o) v
0 L L 0 L L L L
40 50 60 70 80 90 40 50 60 70 80 90
Cause-tree nodes Cause-tree nodes

Figure 10: Messages Sent

our methodology, this is equivalent to automatically modifying the dynamic resource dependency graph such that
objects do not depend upon failed nodes or links. This means that, unlike effects of soft failures, many symptoms
of hard failures will go away after some convergence time without the need to report the symptoms.

When a soft failure is present, on the other hand, “reachability” can be a somewhat fuzzy concept, since some
messages may get through and others may not. A hard failure may be indistinguishable from a soft failure during
some period of time where no demands are met. These characteristics make soft failures more difficult to diagnose,
and hence we will use one in our simulations to show how GDT performs in this case.

We first place one “misbehaving” stream between one host in each cloud shown in Figure 8(a). This stream
sends 400 Kbps of constant bit-rate data across a 500 Kbps link, adversely affecting one or more other low (but
constant) bit-rate data streams (Figure 8(b)), each of which has a client at the receiving end.

We generate a varying number of reporters (clients observing and reporting problems) by varying the number
and bandwidth demands of the well-behaved streams. Figure 9 summarizes various characteristics of the resulting
cause-effect graphs, showing both the absolute values as well as the ratios relative to the total number of nodes
in the cause-effect graph. The first set of simulations used paths of length 3, and all clients and experts were
on the same side of the congested link, so that no GDT messages were lost. Each of the clusters of data points
corresponds to adding another reporter. After the first reporter, only enough nodes are added to determine that
the new effect is caused by a previously-confirmed problem. Finally, we observe that only about 36% of the nodes
get confirmed; the rest get pruned back.

Figure 10 shows the results of this simulation in terms of the number of messages sent, and the number of
messages sent per object in the cause-effect graph. Construction messages are messages (e.g., Hypothesis messages)

12

60 : 200

Nodes
S e || Maintenance -
50 | Objects -
Unpruned Objects L |
150 Teardown ---=---
40 f]
(%]
= @
= g
3 30t S 100 |]
I 0
20 ¢ R 1
S 50 f 1
10 + 1
O L L L L L L L 0 1 I I I
3 4 5 6 7 8 9 10 11 2 4 6 8 10 12
Path lengths Path lengths
(a) Total State Generated (b) Total Messages Generated

Figure 11: Effects of Path Length

exchanged to construct the distributed cause-effect graph. Maintenance messages are periodic retransmissions
to keep state alive. Notification messages relay important information (such as expected time to repair) back
to reporters. Loop detect messages are used to detect and resolve loops in the cause-effect graph. Teardown
messages flush state for problems which have been resolved. Note that the message counts shown refer to potential
network messages. If all objects in the cause-effect graph were covered by different experts, all messages would be
transmitted over the network. Thus, Figure 10 represents the worst-case scenario. When all objects are assigned
to the same expert, the number of actual network messages (between the clients and the expert) sent is only about
5 to 10 messages total per reporter. In each case simulated, the cache of experts’ areas of expertise was warm.
That is, we did not simulate expert location.

In the next simulation, we vary the path lengths of the simulated streams to see how the size of the network
topology affects GDT. Figure 11(a) shows that as the path length increases, the total number of objects in the
distributed graph increases by 2 per additional link traversed, reflecting the additional nodes in the resource
dependency graph. These additional objects all get pruned since they aren’t problematic.

Figure 11(b) shows that the total number of messages needed for construction scales linearly with the path
length, since they are a function of the total number of nodes on the graph, while all message types relating only
to unpruned nodes are unaffected.

To assess how well GDT functions under harsh network conditions, we now look at the effects of message loss on
GDT performance. We assume that clients start with a warm cache of expert capabilities, and vary the loss rate of
GDT messages by artificially injecting loss. Our simulations assumed that all messages had an equal probability of
being lost when the aggregate bandwidth demand is constant (e.g., as with RED [27]). When routers with a drop-
tail queueing policy exist in the network, this assumption is invalid; the policy is biased against bursty streams.
Since GDT is somewhat bursty (e.g., several hypotheses may be sent out when a problem is confirmed), GDT is
unfairly penalized and hence performs less well. In the future, we will investigate techniques for making GDT
less bursty. Another potential scheme for improving GDT performance is to send troubleshooting coordination
messages at a higher priority than normal traffic. GDT messages would then see a lower loss rate than normal
traffic, and thus have an increased ability to coordinate troubleshooting information.

Figures 12 and 13 give the results of this simulation, with each point representing an average over 100 trials.
Figure 12(a) shows the percentage of the trials in which the problem was repaired. Note that this simulation
represented a worst-case scenario, since there was only one possible expert available for each problem. In practice,
multiple experts would be used to provide robustness and to increase the chances of there being a reachable
expert capable of determining the root cause. The chances of successful repair depend upon who must perform
the repair and whether the expert can communicate with that party (or is that party). Repairs are handled by
domain-expertise modules, and are outside the scope of GDT.

13

1 Network Usage
160 . -
Construction
0.8 140 | Maintenance /- |
T il Notification -
120 r Loop Detect @ |
o Teardown ~—-=---
© 06 7 o 100 R
3 S
o o] L |
Q 7] 80
T o4l] 4
] ! s 60]
02}] 40T 1
200 Lo P]
0 0 CE et e e ; f:’:»* KT e
0 25 50 75 100 0 25 50 75 100
% Loss % Loss
(a) Probability of Repair (b) Resource Usage

Figure 12: Effects of Loss

Figure 12(b) shows the number of messages of each type sent as the loss rate increased. We observed that
the number of messages remained roughly constant as long as the repair occurred. When repairs did not occur,
construction messages continued since Hypothesis messages were resent periodically in the hopes of reaching an
expert.

Figure 13(a) shows that the distributed cause-effect graph is relatively unaffected until more than 50% of the
GDT messages get lost. After that point, fewer clients’ reports reach experts, and the cause-effect graph becomes
smaller. The “Expert Timeouts” line shows how many times experts detected problems with connectivity to other
experts, and began diagnosing these connectivity problems in addition to any reported by clients. GDT is therefore
somewhat self-diagnosing.

Finally, Figure 13(b) shows that the time to repair the problem (when the problem was in fact repaired) increases
slightly until around 75% GDT message loss (assuming the problem is repaired shortly after the root cause is found),
after which point the problem was not repaired since a root cause was not found. In this simulation, no repairs
to effects were performed when a cause could not be repaired. The resolution time is the time until the original
reporter was notified of the repair and all cause-effect graph state was removed. If the problem was not repaired,
the resolution time was the end of the simulation (400 seconds). For low loss, all times are dominated by the times
required by domain-expertise modules to perform tests and repairs, whereas for higher loss, GDT’s retransmission
timeout intervals dominate the resolution time.

6 Conclusions

In this paper, we have explored the constraints of a new problem: that of coordinating troubleshooting infor-
mation among peers and untrusted observers. Allowing untrusted observers removes any restrictions on who may
be an observer, and may include NOCs, end-users, and even applications.

As part of our architectural framework, we have presented a troubleshooting methodology for coordinating
problem diagnosis under these contraints. We then described a distributed protocol, GDT, which realizes our
methodology, and showed through simulation that it performs well as the number of observers and problems
grows, and continues to function amidst heavy packet loss.

We believe that our architecture scales well, and is potentially suitable for the global Internet. Our vision is
to allow troubleshooting to proceed automatically so that end users and applications can get accurate and timely
feedback on problems, such as obtaining the expected time until repair. We believe this is especially important
(and potentially difficult) when the cause of observed problems is very distant.

In the future, we will investigate techniques for having expert location servers organize themselves into a hier-
archy, and explore whether the architecture may be easily expanded to allow negotiating repairs. We also plan to
develop optimizations to make GDT less bursty and hence see lower packet loss across drop-tail routers.

14

50 T 400 . - ,
Nodes —— . Resolution Time
Objects -/ 350 | Repaiy Ti
Client Timeouts -/
40 F Expert Timeouts ~a-/ | 300 |
_ 30°¢ | @ 250 B
c c
3 ; § 200 1
S 3
20 1 150 |
T X***X** >< 100 s 1
10 Trd o Bg o | e
0 P ‘ R 0 ‘ ‘ ‘
0 25 50 75 100 0 25 50 75 100
% Loss % Loss
(a) Cause-effect graph statistics (b) Reaction Time
Figure 13: Effects of Loss
References

(1]

Shri K. Goyal and Ralph W. Worrest. Expert systems in network maintenance and management. In /FEFE International
Conference on Communications, June 1986.

Makoto Yoshida, Makoto Kobayashi, and Haruo Yamaguchi. Customer control of network management from the service
provider’s perspective. IFEE Communications Magazine, pages 35-40, March 1990.

Kraig R. Meyer and Dale S. Johnson. Experience in network management: The Merit network operations center. In

Integrated Network Management, I1. TFTP TC6/WG6.6, April 1991.

Alan Hannan. Inter-provider outage notification. North American Network Operator’s Group, May 1996.
http://www.acaden. com/nanog/may1996/outage.html.

Craig Labovitz. Routing stability analysis. North American Network Operator’s Group, October 1996.
http://www.acaden.com/nanog/oct1996/routing-stability.html.

Merit/ISI. Inter-provider notification. http://compute.merit.edu/ipn.html.

Metin Feridun. Diagnosis of connectivity problems in the internet. In Integrated Network Management, II. IFIP
TC6/WG6.6, April 1991.

M. Feridun, M. Leib, M. Nodine, and J. Ong. ANM: Automated network management system. [FEE Network,
2(2):13-19, March 1988.

Frank Feather, Dan Slewlorek, and Roy Maxion. Fault detection in an ethernet network using anomaly signature

matching. In Proceedings of the ACM SIGCOMM, September 1993.

David D. Clark. The design philosophy of the DARPA Internet protocols. Proc. of ACM SIGCOMM ’88, pages 106-114,
1988.

Marshall T. Rose. The Simple Book. Prentice Hall, 2nd edition, 1994.
Zheng Wang. Model of network faults. In Integrated Network Management, I. IFIP TC6/WG6.6, April 1989.

ISO. Information processing systems - open systems interconnection - basic reference model - part 4: Management
framework, 1989. ISO 7498-4.

German Goldszmidt and Yechiam Yemini. Evaluating management decisions via delegation. In Integrated Network

Management, II1. TFTP TC6/WG6.6, April 1993.

Willis Stinson and Shaygan Kheradpir. A state-based approach to real-time telecommunications network management.

In NOMS, 1992.
D. Thaler. Globally-distributed troubleshooting (GDT): Protocol specification. Work in progress, November 1996.

A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD
International Conference on Management of Data, pages 47-57, June 1984.

15

Paul Mockapetris. Domain names - concepts and facilities, November 1987. RFC-1034.
Gerald W. Neufeld. Descriptive names in X.500. In Proceedings of the ACM SIGCOMM, pages 64-70, 1989.

Larry L. Peterson. The profile naming service. ACM Transactions on Compuler Systems, 6(4):341-364, November
1988.

Mic Bowman, Saumya K. Debray, and Larry L. Peterson. Reasoning about naming systems. ACM Transactions on
Programming Languages and Systems, 15(5):795-825, November 1993.

D. Thaler and C.V. Ravishankar. Using name-based mappings to increase hit rates. ACM/IEEE Transactions on
Networking, to appear.

Reid G. Smith. The contract net protocol: High-level communication and control in a distributed problem solver. ACM
Transactions on Computers, pages 1104-1113, December 1980.

D. Eastlake and C. Kaufman. Domain name system security extensions, January 1997. RFC-2065.
D. Eastlake. Secure domain name system dynamic update, April 1997. RFC-2137.
Lawrence Berkeley National Labs. ns software. http://www-nrg.ee.lbl.gov/ns/.

Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions
on Networking, 1(4):397-413, August 1993.

16

