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Abstract

This paper examines the use of adaptable priority marking for providing soft bandwidth
guarantees to individual connections or connection groups over the Internet. The proposed
scheme does not require resource reservation for individual connections and can be supported
with minimal changes to the network infrastructure. The scheme uses modest support from
the network in the form of priority handling for appropriately marked packets and relies on
intelligent transmission control mechanisms at the edges of the network to achieve the desired
throughput levels. The paper describes the control mechanisms and evaluates their behavior
in various network environments. The mechanisms described have the flexibility to adapt to
different network environments, thereby making them suitable for deployment in an evolving
Internet.
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Figure 1: Packet Marking Scenarios

1 Introduction

It is a common perception in the Internet community that the best-effort service model of today’s
Internet is not rich enough for the diverse set of users and applications it intends to support. In an
attempt to enrich this service model, the Internet Engineering Task Force is considering a number
of extensions that permit the allocation of different levels of service to different users. One of the
outcomes of this effort is RSVP [4,21], a signaling protocol for resource reservation. RSVP and
its associated suite of service classes [19,20] can be used to offer service discrimination for delay
sensitive applications by explicit allocation of resources in the network.

While the deployment of an RSVP-based quality of service infrastructure is underway, a more
evolutionary approach to provide service differentiation in the Internet is also under consideration [5,
13]. The crux of this approach is to create service classes with different priorities using either the
type-of-service (ToS) feature of IPv4 [1,17,18] or the priority bits of IPv6 [7,8]. Depending on how
packets with different priorities are handled by the network, a priority scheme usually translates into
higher achieved throughput for higher priority classes and can be a useful building block for explicit
service differentiation. One of the major attractions of priority schemes is their simplicity. When
coupled with appropriate end-to-end control mechanisms, they can potentially offer the desired
service levels without the overhead of explicit signaling and per-flow state management. The main
drawback of priority schemes is that they do not provide users with a precise guarantee of network
behavior.

In this paper, we explore how network support for type-of-service can be used in conjunction
with control mechanisms at the edges of the network to achieve per-flow quality of service. In
particular, we target applications which require a minimum rate of service in order to function
properly. We consider a service model that is a modest enhancement to the best-effort services
provided by today’s Internet. More specifically, we assume that the network supports two classes
of service: (1) priority service, and (2) best-effort service, which are represented using a single
priority bit in the IP header. As with any type of differential service mechanism, we assume that
the network provides incentives that would prevent users from continually requesting the highest



level of service. Usage-based pricing is an example of one such incentive mechanism. Many Internet
service providers, such as UUNet, PSINet, MCI, already provide services wherein users are charged
based on link utilization measured over five minute intervals. It is quite simple to extend this pricing
model to two levels of priorities with higher prices for the high priority traffic. Network connections
would then use priorities judiciously based on application requirements and usage policies.

As shown in Figure 1, packets can be marked to reflect their service priorities at different points
in the network. The objective of packet marking engines located at the host-network boundaries
is to help users achieve a desired level of service using an optimal mix of priority and best-effort
packets. The marking engines placed at the network-network boundaries are mainly responsible for
enforcing service contracts between different networks. In this paper, our objective is to develop
marking algorithms and study their interaction with the transmission control mechanisms used
at the source. More specifically, we examine how TCP sources can be used in conjunction with
adaptive packet marking engines to maintain target service levels for individual connections as well
as connection groups.

In our model, the user specifies a desired minimum service rate for a connection or a connection
group. At any point of time, the sender, in cooperation with the packet marking engine, tries to
achieve and potentially exceed the requested minimum service rate without using the high priority
service. If however, it fails to achieve the minimum target rate, the packet marking engine starts
prioritizing packets until the observed service rate reaches the desired target rate. Once the target
is reached, it strives to reduce the number of priority packets without falling below the target.
When the number of priority packets comes down to zero, the source tries to increase its share of
the best-effort bandwidth.

We consider marking mechanisms of two distinct flavors: (1) where packet marking is completely
independent of and transparent to the traffic source, and (2) where the marking module is integrated
with the transmission control mechanisms at the source. Sections 3 and 4 examine these two
approaches in detail. To address the robustness of the algorithms, we evaluate their performance
under a variety of situations. Section 5 investigates the performance of the priority marking schemes
when the network is over-subscribed and when the network contains non-responsive flows. Section 6
addresses the pragmatics of deploying the proposed mechanism in the Internet. In particular, we
consider scenarios where only some parts of the network support service differentiation and propose
mechanisms for detecting and reacting to such situations at the source. Finally, we discuss issues in
interoperating ToS-based mechanisms with alternative mechanisms [3,6,12] for supporting service
differentiation in the Internet.

2 Service Model

In this section, we present a detailed description of our service model and architecture. As men-
tioned earlier, our objective is to provide service discrimination in the network without using explicit
reservation of resources. We assume a network infrastructure where the routers and gateways pro-
vide only modest functionality to support service discrimination, namely appropriate handling of
multi-priority traffic. There is no guaranteed service level associated with a priority class, although
a higher priority generally translates into a better quality of service. In this paper, we assume
that there are only two levels of service: (1) priority service, and (2) best-effort service. The two
service classes differ only in the loss rates they experience in the network. We also assume that the
traffic types are carried in the type-of-service (ToS) bits in the IP header. For reasons of simplicity,
we refer to the ToS bits in the headers of best-effort IP traffic as the default and denote them as
unmarked packets. Consequently, we refer to the priority traffic as marked traffic.



One way of providing different services to marked and unmarked packets is to maintain separate
queues for each class and to serve them according to their scheduling priority. We propose, however,
to use a common queue for both marked and unmarked traffic and to serve them in FIFO order.
A common FIFO queue not only simplifies the scheduling mechanism at the router, it also helps
maintain packet ordering. Although maintaining packet ordering is not a requirement at the IP
layer, failure to do so may have serious performance impact on transport protocols such as TCP.
Our approach to service differentiation between marked and unmarked packets relies on a selective
packet discard mechanism. We use an enhanced version of the RED (Random FEarly Detection)
algorithm [2,11] for this purpose. In classical RED routers, a single FIFO queue is maintained
for all packets. Packets are dropped randomly with a given probability when the queue length
exceeds a certain threshold. The drop probability itself depends on the queue length and the time
elapsed since the last packet was dropped. Enhanced Random Early Detection (ERED) is a minor
modification to the original RED algorithm. In ERED, the drop probabilities of marked packets are
considerably lower than that of unmarked packets.

Given this service model, we examine the use of various packet marking schemes which can be
deployed at the host-network or network-network boundaries and which will allow an individual
connection or a group of connections to achieve a specified service level by the appropriate use of
priority marking. For example, a user may request a specific target rate for a particular connection
or an aggregate rate for a group of connections. The objective of a packet marking engine is to
monitor the throughput received by the connection or connection group and appropriately adjust
the packet marking so that the target rate is maintained. Due to the particular nature of the
service model, at times it may not be possible to sustain the requested target rate because of the
over-commitment of resources. Such lapses may also be caused by partial deployment of IP type-
of-service or heterogeneity in network services. A significant part of our effort goes into detecting
such cases and taking appropriate actions whenever required.

It is possible that packet marking be performed at multiple points in the network to enforce
different policies. Consider the scenario described in in Figure 1. Marking engines at host-network
boundaries may mark packets at certain rates in order to achieve target throughputs for specific
connections or connection groups. Packets may then be remarked at the network-network bound-
aries to enforce the service agreements different networks. In this paper, we consider scenarios
where packets are marked only once. The impact of packet remarking is under investigation and
will be addressed in future work.

We consider two different places for packet marking: (1) external to the host, and (2) within
the host. In the first case, the packet marking engine, which we call a packet marking gateway
(PMG), is completely independent of the source. In this case, the marking policy and mechanism are
entirely decoupled from the flow and congestion control mechanisms used at the source. The PMG is
responsible for monitoring the throughput seen by the TCP source and marking packets with higher
priority, when required, in order to achieve the user specified minimum service rate. Having the
marking module be transparent and external to the source has several deployment benefits. First,
it does not require any changes to host protocol stack and can be integrated into the infrastructure
without affecting other hosts and routers. Second, it can be used to provide service guarantees not
only to individual connections, but also to a group of connections. On the other hand, integrating
the packet marking scheme with the host protocol engine can provide a solution that adapts better
with the flow and congestion control mechanisms used at the transport layer. One disadvantage of
using an external marking module is that at times it may mark more packets than required. When
the marking module is integrated with the TCP source, it can control TCP windowing mechanisms
for optimal performance.



Every update interval:
scale = | 1 — obw/tbw |
if (obw < thw)
mprob = mprob + scale * increment
else
mprob = mprob — scale * increment

Figure 2: TcP independent algorithm
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Figure 3: Network topology.

3 Packet Marking Gateway

A PMG snoops on connections passing through it and measures their observed throughputs. If
the measured throughput is sufficiently close to the requested target rate, it takes the role of a
passive monitor. However, if the observed throughput of a connection is lower than its requested
target, the PMG takes a more active role and starts marking packets belonging to the connection or
connection group. The fraction of marked packets varies from 0 to 1 depending upon the measured
and target throughputs. Selective marking essentially upgrades a fraction of the packets belonging
to the connection to the higher priority level. The PMG constantly adjusts the fraction of packets
to be marked in order to sustain a bandwidth which is close to the requested target rate, while
keeping the number of marked packets as low as possible.

One of the important tasks performed by a PMG is measuring the throughput seen by connec-
tions passing through it. This is fed into the packet marking process that has to adapt to the
changes in observed throughput caused by variations in network load. While the overall measure
of network performance from an application’s point of view is goodput, the PMG used in our exper-
iments only measures the local bandwidth that is consumed by a connection. The gateway counts
bandwidth against a connection or connection group when it either sends (or receives) a packet
from it, even though the packet may be dropped later on in the transit path. One of the reasons
for measuring local throughput, instead of end-to-end goodput, is simplicity. The pMG does not
have to understand the transport layer protocol semantics in order to determine whether or not the
application’s data was actually delivered. In some cases, even if the PMG is well aware of the trans-
port layer semantics, it may not have access to the stream of acknowledgments from the receiver
to compute goodput. This may be the case when the forward and the return paths of connections
are different.

The local throughput seen by a connection at the PMG can be measured in several ways. One
simple technique is to measure the amount of data transferred with a sliding window and to use
the average bandwidth received over this window as a measure of the observed bandwidth. If
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Figure 4: Effect of external packet marking.

the window is small, the measured throughput is biased towards the more recent observations. If
window is large, the computed throughput converges to the long-term average bandwidth seen by
the connection. While this is a fairly accurate and tunable measure of the observed throughput, it
requires a window’s worth of information stored for each connection. For the experiments reported
in this study, we use a lightweight alternative mechanism. We measure throughput seen by a
connection over a small time window. We then compute the observed bandwidth as a weighted
average of this measured throughput and the current value of observed bandwidth.

The most important task of a PMG is to adaptively adjust the packet marking rate based on
the measured throughput. In this paper, we consider a probabilistic marking scheme where the
packets are marked randomly as they pass through the pmG . The marking probability (mprob)
is periodically updated depending on the observed bandwidth (obw) and the corresponding target
bandwidth (tbw). Figure 2 shows a simple algorithm designed for this purpose. As can be seen from
the algorithm, when the observed bandwidth is less than the target bandwidth, the packet marking
probability is incremented in steps. Similarly, the marking probability is decremented in steps if
the observed throughput exceeds the target rate. Note that both increments and decrements in
marking probability are scaled by the difference between observed and target throughputs. That
is, the changes in the marking probability get smaller as the observed bandwidth nears the target
bandwidth. This scaling damps the amplitude of oscillations of the marking probability.

In order to understand the effect of packet marking, we simulated a simple scenario using the
ns [16] network simulator. As shown in Figure 3, the simulated network consists of six nodes, n0
through nb, and five links connecting them. Each link is labeled with its respective link bandwidth
and transmission delay. The queues in the routers are ERED queues with ming, of 10 packets, mazyy,
of 80 packets, and an initial drop probability of 0.05 for unmarked packets. Marked packets have a
drop probability two orders of magnitude less than unmarked packets, but use the same threshold
values. Additional experiments using ERED queues with separate threshholds for priority and best-
effort traffic were also performed and showed similar results. We simulate three connections between
nodes n0 and nj: an infinite best-effort TCP connection (C7), a second infinite TCP connection (C?2)
with a 4Mbs target bandwidth, and a third TCP connection (C3) that toggles between on and off
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Figure 5: Burstiness observed using packet marking schemes

states every 50 seconds, but has a throughput requirement of 4 Mbs when it is on. We assume that
the observed throughputs and marking probabilities are updated every 100ms.

In this network configuration, when only C7 and C2 are active, the bottle link bandwidth of
10Mbs is shared evenly between them and thus, no packet marking is required for C2 to achieve its
target of 4Mbs. However, when C3is active, an even share of the bottleneck bandwidth (3.33Mbs)
does not satisfy the target throughput requested by C2 and C3. The pMG has to mark packets
belonging to C2 and €3 in order for them to obtain the higher throughput.

Figure 4(a) shows the throughputs received by C2 and C3 over time. In this experiment, the
marking probability is adjusted in steps of 0.01. As the figure shows, (2 is slow in reacting to
changes in the network. When all of the sources are on, it is consistently below its 4Mbs target
bandwidth. It takes a significant amount of time to build up the marking probability in response
to the changes in the network load. Figure 4(a) also shows the marking rate for connection C2. As
expected, the marking rate lags behind the changes in the network load, slowly rising in response
to an increased traffic load and slowly falling in response to a decreased traffic load. To experiment
with the other end of the spectrum, we repeated the experiment allowing the marking probability
to be updated in steps of 1.0. That is, when more bandwidth is needed, all packets are marked.
Otherwise, packet marking is turned off. Figure 4(b) shows the results from this experiment. As
expected, in this experiment, the packet marking probability adapts very quickly to the changes in
the network load, thus allowing C2 to achieve its target rate even during the periods of increased
traffic load. This rapid response also allows the PMG to turn off the packet marking quickly when it
detects that the available bandwidth is sufficient to satisfy the target rate. While adapting quickly
to changes in network conditions has its benefits, it can also cause significant burstiness in both
marked and unmarked packet streams. For example, if packet marking is turned on for a connection
with a relatively high target throughput, it may cause large spikes in the number of marked packets
in the network. Similarly, when packet marking is turned off, a spike of unmarked packets may
be injected into the the network. Figure 5(a) shows a sample packet trace of a connection using
this algorithm. The figure plots the number of marked and unmarked packets sent. As the figure
shows, as soon as the connection reaches its target, the PMG quickly cuts down the number of



Every acknowledgement:
cwnd = obw * rit
pwnd = mprob * cwnd
if (obw < tbw)
pwnd = pwnd + 1/cwnd
else
pwnd = pwnd — 1/cwnd
mprob = pwnd / cwnd

Figure 6: TcP-like algorithm for changing marking probabilities

marked packets sent and starts sending a large amount of unmarked packets. In the simulations
performed, we do not observe any significant impact from the bursts of marked and unmarked
packets. This is due to the fact that the TCP congestion control algorithm controls the combined
stream of marked and unmarked packets in a very network-friendly fashion. The use of a common
queue for marked and unmarked packets also adds to stability. When the PMG changes the marking
probability in large steps, the overall impact is a mere replacement of marked packets by an equal
number of unmarked packets or vice versa. However, in situations where not all of the sources use
TCP or where not all queues are ERED queues, large swings in the number of marked and unmarked
packets can potentially lead to network instability.

In order to minimize the chances of triggering such instability in the network, the pMG should
update marking probabilities in a manner that is more network-friendly, while maintaining the
ability to react to the changes in network load. To address the potential shortcoming of the
algorithm presented in Figure 2, we experimented with an algorithm (shown in Figure 6) that
updates the marking probability in a more network-friendly manner. It draws on the windowing
mechanisms used in TCP and tries to ensure that the number of marked (or unmarked) packets
in the network increases by no more than 1 per round-trip time. This is in some sense similar to
the linear increase algorithm for congestion avoidance used by Tcp [14]. As shown in Figure 6,
we compute an estimated number of marked packets in flight (pwnd) by taking the estimated
congestion window given as the product of the observed bandwidth and the estimated round-trip
time (rtt) and multiplying it by the marking probability. At every update epoch, if the observed
bandwidth is less than the target rate, pwnd is incremented linearly (1/cwnd). This ensures that
the number of marked packets increases by no more than one in every round-trip time. Similarly,
when the observed bandwidth is higher than the target rate, the decrease in the number of marked
packets (and hence increase in the number of unmarked packets) is limited to one every round-trip
time. Figure 5(b) shows the packet trace of the modified scheme. Unlike the previous trace, this
time the connection slowly increases and decreases the number of marked and unmarked packets
sent.

Figure 7(a) shows the result from the same experiment with the PMG implementing the packet
marking algorithm presented in Figure 6. As seen from the graph, the marking algorithm is very
reactive to changes in the network load and hence observed throughput. Consequently, connection
(2 maintains an average throughput at or above its 4Mbs target most of the time. However, it
changes the marking probability in a more network-friendly fashion and reduces the risk of network
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Figure 7: Performance of TcP-like algorithm.

instability.

While these experiments show how per-connection target throughputs can be achieved, the
PMG can also be used to meet the throughput target of an aggregation of connections. As in
the case of individual connections, it simply monitors the throughput of the connection group and
adjusts the marking rate based on the observed throughput and requested target. Figure 7(b) shows
the results of an experiment where a PMG is used to control two sets of connections sharing a 10M bs
bottleneck link. The first set of connections requires at least 6 M bs of bandwidth at all times while
the other set is simply treated as best-effort. In this simulation, there are 3 identical connections
in the first set and 4 identical connections in the second set. Initially, only the three connections
of the first set are active. Thus, the aggregate bandwidth seen is the entire link bandwidth with
each source receiving a third of the bandwidth. Note that the marking rate for the connection
group is zero as there is enough bandwidth available to meet the target service level. At ¢ = 100s,
one best-effort connection is started. Since an even split of the bandwidth gives each connection
approximately 2.5Mbs, the three connections in the first set get a total of 7.5Mbs without any
packet marking. At ¢t = 200s, the other three best-effort connections are started. In this case,
an even split of the bandwidth across all connections is not sufficient to sustain the target rate of
6Mbs for the first set. Thus, the PMG begins to mark packets in order to sustain the target rate of
6Mbs. As the figure shows, the marking increases to a level sufficient to maintain the target rate.
The best-effort connections then get an equal share of the leftover 4 Mbs. Finally, at ¢t = 300s, all
connections of the first set are terminated. As the figure shows, the best-effort connections get the
entire 10M bs with each getting a fair share of it.

4 TCP Modifications

One of the problems with having the marking module external to the source is that it has little
control on the flow and congestion control mechanisms excercised by the source. This lack of control
can have detrimental impact on performance. For example, while the packet marking gateway is
fairly effective in maintaining the observered throughput close to the target bandwidth, it often
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Figure 8: Bandwidth sharing example

marks more packets than required. In an ideal scenario, a connection that stripes its packets accross
two priorities should receive a fair share of the best-effort bandwidth in addition to the bandwidth
received due to priority packets. A TcP source oblivious of the packet marking module fails to
compete fairly with best-effort connections for its share of best-effort bandwidth. Consequently,
the marking module marks more packets than it should have, had the connection received its fair
share of the best-effort bandwidth.

In Figure 8(a) we present results from an experiment that substantiates this conjecture. In
this experiment, we spawn connection C7 with a target bandwidth of 3Mbs, and 5 best-effort
connections (C2, C3, C4, C5, C6) between nodes n0 and ns. Figure 8 shows the marking rate,
the best-effort bandwidth, and the total bandwidth received by C7 along with the total bandwidth
received by C2, one of the 5 identical best-effort connections. As shown in the figure, (1 gets a
much smaller share of the best-effeort bandwidth than C2. Thus, it must mark a larger portion of
its packets than it should in order to maintain the desired level of performance.

This phenomenon can be easily explained if we take into account the windowing mechanism
used by TcP. The congestion window of C1 essentailly consists of two parts: (1) a priority window
consisting of priority packets, and (2) a best-effort window consisting of best-effort packets. Assume
that the size of the priority window is w, and that of the best-effort window is wy. The best-effort
connections should also have congestion windows of size wj. When congestion is detected in the
network, ideally, C'7 should cut its best-effort window in half resulting in a window size of w, +
. However, since the source has no knowledge of the priority marking and service differentiation,

the window is cut to

wp;w" instead. In other words, by marking packets the pMG puts C7 at a

disadvantage in competing for the best-effort bandwidth. A similar bias is also seen when TCP
opens its congestion window.

In order to address this problem, we experimented with a packet marking scheme that is in-
tegrated with the TCP sender. Figures 9 and 10 show the new algorithm. In this scheme, the
congestion window (cwnd) maintained by a TCP source is split into two parts: (1) a priority win-
dow (pwnd) which is a measure of the number of marked packets that are in the network, and (2)
a best-effort window (bwnd) that reflects the number of unmarked packets that are outstanding.

10



After every acknowledgment (opencwnd)
pwnd = mprob *cwnd
bwnd = (1-mprob )*cwnd
if (obw < thw)

else

if (pwnd < pssthresh ) pwnd = pwnd + pwnd/cwnd
else pwnd = pwnd 4 1/cwnd
if (bwnd < bssthresh ) bwnd = bwnd + bwnd/cwnd
else bwnd = bwnd 4 1/cwnd

if (pwnd > 0)
if (bwnd < bssthresh ) pwnd = pwnd - bwnd/cwnd
else pwnd = pwnd - 1/cwnd

else
if (bwnd < bssthresh ) bwnd = bwnd + bwnd/cwnd
else bwnd = bwnd 4 1/cwnd

if (pwnd < 0) pwnd =0
cwnd = pwnd + bwnd
mprob = pwnd/cwnd

Figure 9: Customized TCP congestion window opening.

After every segment loss from dupack (closecwnd)

pwnd = mprob *cwnd

bwnd = (1-mprob )*cwnd

if (priority loss)
cwnd = cwnd /2
pssthresh =mprob * cund
bssthresh =(1-mprob )*cwnd

else
bwnd = bwnd/2
bssthresh = bwnd
cwnd = pwnd + bwnd
mprob = pwnd/cwnd

Figure 10: Customized TCP congestion window closing.

Upon a loss, the sender determines whether the lost packet was sent as a marked or an unmarked
packet. The loss of a marked packet is an indication of severe congestion in the network. Conse-
quently, both the priority and best-effort windows are reduced. However, the loss of an unmarked
packet is an indication of congestion potentially only in the best-effort service class and hence only
the best-effort window is backed off. The procedure for opening the congestion window is also

11




modified. The connection keeps track of two additional thresholds values, namely pssthresh and
bssthresh which are updated whenever the connection experiences a priority and a best-effort loss,
respectively. When a connection is below its target bandwidth, it opens up both the priority and
best-effort windows. If either one of the windows is below its respective threshhold (pssthresh and
bssthresh), it is in the slow start mode. Note that the increases are scaled so that the overall con-
gestion window does not grow any faster than that in an unmodified TCP. Scaling these increases
is slightly conservative, since it temporarily hinders the source from growing its best-effort window
as quickly as other best-effort sources. However, the conservative behavior aids in avoiding con-
gestion collapse scenarios. When either window is above its threshhold, it increases linearly (i.e.
one segment per round-trip time). Note that while cwnd grows by two segments every round-trip
time, the best-effort part of the window (bwnd) only grows as quickly as the cwnd of a best-effort
connection. While this modified windowing algorithm is essential in obtaining a fair share of the
best-effort bandwidth in a network that supports service differentiation, it essentially behaves like
two fairly independent connections. In a network that does not support end-to-end service differ-
entiation, a TCP source modified in this manner may receive twice as much bandwidth as compared
to unmodified TCP sources. We discuss additional modifications to address this aspect in Section 6.
Figure 8(b) shows results from the experiment presented in Figure 8(a) using the algorithm de-
scribed above. In contrast to Figure 8(a), the amount of best-effort bandwidth received by the
3Mbs source closely matches the bandwidth received by the best-effort sources.

To further examine the issue of fair bandwidth sharing, we took a closer look at the packet mark-
ing rate and its deviation from the theoretically computed optimal marking rate. The computation
of ideal marking rates is quite straightforward. For example, suppose we have a network with a
bottleneck link of bandwidth B. Assume that n connections with target ratesof R;, 71 =1,2,...,n,
are passing through it. Let r; be the optimal marking rate of the connection with a target rate of
R;, and let b be share of best-effort bandwidth received by all connections. A connection j with
R; < b, is essentially a best-effort connection with r; = 0. The following set of equations capture
the system constraints.

ri+b=R;
Sriri+nb=1B

Figure 11 shows the results of an experiment with two connections C7 and C2 with target
rates of 3Mbs and 2M bs, respectively, and six best-effort connections sharing a bottleneck link of
10Mbs. The connections C'f and C2 start at time ¢t = 0s, followed by two best-effort connections at
t = 100s, another two at ¢ = 200s, and the last two at ¢ = 300s. Figure 11(a) shows the bandwidth
received by C7 and €2 and three of the best-effort connections. Figure 11(b) shows the marking
rate of both C'7 and C2, as well as their calculated ideal marking rates. At time ¢ = Os, when only
two connections are on-line, a fair split of the bandwidth satisfies target rates of both C'7 and C2.
Thus, neither source marks any of their packets and each gets approximately half of the bottleneck
bandwidth. At ¢t = 100s, two best-effort connections are added. At this point, C7 needs to mark
at a 0.67Mbs rate and each of the sources should get 2.33Mbs of the excess best-effort bandwidth.
Since C2’s share of best-effort bandwidth is more than its target rate, it need not mark any of its
packets. As Figure 11 shows, the marking rate and total bandwidth graphs reflect the change.

At t = 200s, two more best-effort connections are added. Now, C7 has to mark at a rate of
1.75Mbs while C2 needs to mark at at a rate of 0.75Mbs. This leaves each source 1.25Mbs of
the excess bandwidth. As the total bandwidth graph shows, the best-effort connections get about
1.25Mbs while C1 and (2 get their respective target bandwidths. The marking rates of C'7 and
(2 also adapt to this change, increasing to the optimal marking rates. Finally, at ¢ = 300s, the
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Figure 11: TcP with modified windowing
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Figure 12: TcP with PMG

last two best-effort sources are added. This time, C'7 needs to mark at 2.17Mbs while (2 needs
to mark at 1.17Mbs. Each connection now gets 0.83M bs of the excess bandwidth. Again, as the
graphs show, both the priority and best-effort connections perform as expected.

To examine the impact that the windowing modifications have, we performed the same set
of experiments with a PMG. Figure 12 shows the total bandwidth and marking rate for different
connections. Since TCP windowing algorithms restricts the connections C7 and C2 from competing
for the excess bandwidth, the PMG consistently overmarks its packets as shown in Figure 12(b).
Increased marking can potentially lead the ERED queue to be full of marked packets, making it
behave more like a regular RED queue. As Figure 12(a) shows, loss of priority packets causes
periods of time where throughputs of connections C'f and C2 drop significantly below their target
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Figure 13: Over-subscription and non-responsive flows

rates.

5 Handling Over-subscription and Non-responsive Flows

One of the key advantages of using an adaptive packet marking scheme is that it obviates the need
for a signaling protocol. However, since there is no resource reservation, the service guarantees it
provides are necessarily soft. In an RSVP-based network, when demand for differential services
continually exceeds the supply, admission control is used to deny additional connections access to
the services in order to maintain the service levels of the current set of connections. In ToS based
networks where no reservations or admission control is in place, the network must instead offer
degraded service when the demand exceeds the supply. In both cases, pricing and access policies
in conjunction with capacity planning must be used to balance the supply and the demand of
resources.

This section describes how over-subscription is handled in our service model. When considering
packet marking gateways, over-subscription can be strictly avoided by making sure that the marking
bandwidth allocated between connections or sets of connections does not exceed the individual link
bandwidths in the network. In the absence of such an allocation, there are several ways that
bandwidth can be distributed amongst the competing connections or connection groups. One way
is to simply revert back to best-effort service.

The mechanisms presented in this paper can provide best-effort bandwidth sharing when de-
mand exceeds supply. When demand exceeds supply, all connections with non-zero target rates
carry only marked packets. Consequently, they only compete for priority bandwidth and the
ERED queue at the bottleneck degenerates into to RED queue serving only priority traffic. In the
case of the PMG, since the underlying TcP windowing algorithm is not changed, the requested target
bandwidth does not influence the throughput a source receives. As a result, each source receives an
equal fair share of the bottleneck bandwidth. Over-subscription results in the same outcome when
the marking module is integrated within the source. In this case, since the algorithms for growing
and shrinking the priority window are independent of the bandwidth demand, the windowing al-
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gorithm simply behaves as normal Tcp. This adaptation in presence of overload prevents possible
congestion collapse. Figure 13(a) shows an example scenario with four connections C1, C2, C3,
and C4 spanning from node n0 to n5. The connections C1 and C2 have a target rate of of 5Mbs
each. Connections C'3and C/ aim at a target rate of 10Mbs. As the figure shows, when using the
integrated marking scheme, each connection gets a fair share of the bottleneck bandwidth when
the demand exceeds the supply.

Another possible way to handle situations where resources are over-subscribed, is to provide
weighted bandwidth sharing depending on the target rates or the importance of the connections
or connection groups. Because our schemes assume the use of a single priority bit, it cannot itself
be used to provide weighted bandwidth sharing. However, it is possible to implement weighted
bandwidth sharing easily through the use of additional priority levels which give the network an
indication of the connection’s target rate and/or importance. Future work will address such issues.

Another important issue is protection against non-responsive (non-Tcp) flows [9,15]. Such
flows have the potential of stealing bandwidth away from other flows which are responsive to
congestion. One of the advantages of using a PMG is that it can insulate a connection or a connection
group from others. Figure 13(b) shows a scenario where three TCP connections are competing for
bandwidth with a non-responsive flow across a 10Mbs link. In this simulation, the link uses an
ERED queue with separate thresholds for marked and unmarked packets. The aggregate target
rate for TCcp flows is set at 7Mbs. The target rate for the non-responsive flow is 3Mbs. Initially,
only the TCP sources are active. They compete fairly for the link bandwidth. The non-responsive
flow starts transmitting at 2Mbs at ¢ = 100s. As shown in the figure, the aggregate throughput
of the TCP connections drops from 10Mbs to 8 Mbs when the non-responsive flow becomes active.
Note that the pMG marks all of the packets of the non-responsive flow since it is below its 3Mbs
target. Without additional information, the PMG cannot determine the difference between an idle
application or an application being throttled by congestion in the network. At ¢t = 200s, the
non-responsive flow increases its transmission rate to 4Mbs, thus exceeding its allocated rate of
3Mbs. As shown in the figure, the marking rate of this flow immediately drops to zero and the
loss rate increases to approximately the difference between the transmission rate and the allocated
rate. The non-responsive flow further increases its transmission rate to 6 Mbs and 8 Mbs at times
t = 300s and ¢t = 400s, respectively. Each time, the throughput observed by the non-responsive
flow remains fairly constant near its allocated rate of 3Mbs, while the amount of packets which
are dropped increases at the same rate as the transmission rate. Thus, the non-responsive flow
gains little by sending any amount above its allocated rate. Note that the non-responsive flow does
have some impact on the TCP connections. As Figure 13(b) shows, the aggregate marking rate
of the TCP connections approaches the aggregate transmission rate, since the unmarked packets
from these connections see the same increased drop rates as the non-responsive flow. In order to
provide fairness between connections competing for best-effort bandwidth, it is possible to extend
ERED queues with additional fairness mechanisms [15].

6 Deployment Issues

The Internet is a highly heterogeneous and slowly evolving networking environment. It is imprac-
tical to assume that all routers in the Internet will handle priority packets in the same way. As
a matter of fact, it is quite likely that only a fraction of them will support service differentiation
between packets of different priorities. In order to be successful in this environment, it is important
that the packet marking scheme proposed in this paper is capable of handling heterogeneity in the
network. More specifically, it should be able to operate in an environment where all routers do
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Figure 14: Performance over an all drop-tail network

not support service differentiation between priority and best-effort packets. It is also important
that it interoperates with other mechanisms for handling quality of service in the Internet. In the
following we discuss these deployment issues in detail.

6.1 Heterogeneous Networks

One of the salient features of the proposed scheme is its ability to perform in a network that does
not provide service differentiation. When the packet marking module is external to the source, the
sending TCP is unchanged. Thus, the lack of service differentiation simply makes the packet marking
ineffective and the TCP sources behave as normal TCP sources in a best-effort network. When the
marking module is integrated with the source, however, the situation is little different. In this case,
we essentially have two connections with differing priorities. In absence of service differentiation,
this scheme can potentially be twice as aggressive as a regular TCP connection. While such behavior
may be justified when a user is charged for marked packets, it may be desirable to turn off marking
when service differentiation is not supported by the network.

To address this, we implemented a simple mechanism for turning off the marking and modified
windowing when the network does not support end-to-end service differentiation. Note that the
bottleneck of a connection may shift from a link that supports service differentiation to one that
does not and vice versa. Hence detection of service level on a connection path is not a one time
process; it requires constant monitoring. To minimize the cost of monitoring and at the same time
remain reactive to changes in the network dynamics, we use an exponential back off algorithm
to determine monitoring intervals. In particular, the source keeps track of the inter-drop times
for both priority and best-effort packets. In a network which supports service discrimination, the
number of priority packets transmitted between successive priority packet drops is expected to be
substantially greater than the number of best-effort packets transmitted between successive non-
priority packet drops. When this is not the case, the source simply turns off the marking and the
windowing algorithm, reverting back to normal Tcp. After a preset interval, marking is turned on
again and the source monitors inter-drop intervals to detect service differentiation. If it fails to
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Figure 15: Effects of heterogeneity

detect service differentiation, it shuts down marking for twice the duration it had before. If the
source observes that service differentiation is supported by the network, the connection continues
using the modified windowing algorithm and resets the backoff interval to its initial (smaller) value.
While this mechanism successfully handles the cases when service differentiation is either supported
or not supported on a connection path, it may not be as effective when the network performs some
re-marking of packets. In the following we present experimental results showing the effect of network
heterogeneity.

Figure 14(a) shows the throughput observed by five connections C1, €2, C3, C4, and C5 going
from n0 to nd when all of the queues in network are drop-tail queues with no support for service
differentiation. Connection C7 has a target rate of 4Mbs. All other connections are best-effort. We
use a packet marking gateway to mark packets in this example. As expected, bottleneck bandwidth
is shared fairly among all five connections. Note that the packets are continually being marked
even though they are ignored by the network. This is because the PMG cannot determine that the
marks in the packets are being ignored unless it keeps additional connection information. Since
the connection is always below its target bandwidth, the pMG simply marks all of the packets.
Figure 14(b) shows the same experimental setup as before. However, in this example, the packet
marking module is integrated within the source. As the figure shows, C7 backs off its marking
as it detects that the network does not support any service differentiation. Thus, the connection
competes fairly with all of the other best-effort connections for the excess bandwidth.

The backoff mechanisms used when the marking module is integrated into the source adapt
quickly to changes in the network. This helps the source change its windowing and marking strat-
egy as the bottleneck link shifts from non-priority to priority queues in a heterogeneous network.
Figure 15(a) shows a network with 4 nodes where r0 implements the ERED queueing mechanism
while r1 and r2 are simple drop-tail gateways. In this network, we simulate two priority connec-
tions C'7 and €2 with 4Mbs target bandwidths and several transient best-effort connections. We
use the transient connections to move the bottleneck link from r0-r2 to r2-r3. Figure 15(b) shows
the throughputs seen by different sources as the bottleneck moves from one link to another. We
start with connections C71 and C2 going from r0 to r3. In the absence of any other connections,
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they do not have to mark any of their packets in order to achieve their target rates. At ¢t = 100s, a
best-effort connection is spawned between r0 and r!. Since a fair share of the bottleneck bandwidth
of 10M bs does not satisfy the target rates of connections C'7 and C2, they both mark their packets
at a rate of 2Mbs. From the equations outlined in Section 4, this is the optimal marking rate in this
scenario. Each connection, including the best-effort connections, also receives 2M bs of the leftover
best-effort bandwidth. At ¢ = 200s, the best-effort connection terminates and two new best-effort
connections are started between nodes r7 and r3. At this time, the bottleneck link is between r2
and r3 which happens to be a drop-tail queue with no support for service differentiation. In this
case, even though €7 and C2 fail to sustain their target rates, they back off their marking and
revert back to the original windowing algorithm. Consequently, all four connections now receive
an equal share of the bottleneck bandwidth of 10Mbs. At t = 300s, the best-effort connections
terminate and a new best-effort connection is spawned between nodes r0 and r1. At this point, the
bottleneck shifts to the link r0-r2 which supports service differentiation. This change is detected
by C1 and C2 and they turn on marking to reach their target rate of 4Mbs. Finally, at ¢ = 400s,
the best-effort connection terminates, leaving the network in its initial state. The connections C7
and C2 once again turn off their marking since they can support their target throughput without
packet marking.

6.2 Integration with Alternative QoS Frameworks

Another important pre-requisite for successful deployment is the ability to interoperate and co-
exist with other mechanisms for service differentiation. There are two distinct and separate ways
of supporting service discrimination over the Internet (explicit reservation using RSVP and ToS).
Here, we examine issues in having both mechanisms coexist in a particular network and in having
them interoperate when different networks support different and only one of the mechanisms.

Since the ToS-based mechanisms described here rely only on preferential queueing based on
the priority levels, they can be embedded without modification into any of the packet and link
scheduling frameworks which have been proposed for supporting various integrated services [3,6, 12].
Hence, co-existence of ToS and RSVP-based mechanisms is quite straight forward.

For networks in which different network segments on the path of a connection offer different
types of service differentiation, mapping between priority levels and RSVP service levels is required
to ensure interoperability. We first examine the case where ToS priority has to be mapped onto
RSVP-based service architecture. In a multi-priority system, this mapping can be fairly involved
since there is no definite way of mapping priorities into a traffic specification required to setup
an RSVP connection. Handling two levels of priorities used in our model is a little easier. One
possible solution is to map a mixed priority stream into a controlled-load connection. Since the
traffic compliant to the T'spec (negotiated traffic envelope) has the same low loss semantic as the
priority traffic in our scheme, priority packets can be reshaped to conform to the Tspec through an
RSVP-style network. However, this still requires a T'spec capturing the characteristics of priority
packets.

The reverse mapping between RSVP flows and priority levels can potentially be performed by
a PMG placed at the boundary between such networks. Currently there are two services which
have been proposed and advanced through the IETF: guaranteed and controlled-load. It is hard
to map guaranteed service into priorities in a ToS domain. Mapping controlled-load service into
priorities in ToS network is a potentially simpler task. Previous work, in fact, has shown how one
could implement a controlled-load service variant [10] through use of ERED queues. In this case,
the delay bounds are loosened in favor of maintaining packet ordering. One simple way of handling
controlled-load flows entering a ToS based network is to simply mark all incoming packets that
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are Tspec compliant. Note that the amount of marking in the network must still be controlled in
order to provide guarantees. Failure to do so will cause the ERED queues to degenerate to regular
RED queues without any support for service differentiation.

7 Conclusions

In this paper, we have proposed and analyzed adaptive packet marking algorithms for providing
soft bandwidth guarantees over the Internet. We have considered marking algorithms that are
external and transparent to the source, and algorithms that are integrated with the congestion and
flow control mechanisms at the source. Both sets of algorithms have advantages and disadvantages
from the standpoint of performance and deployment issues. The results presented in this paper
clearly demonstrate that simple service differentiation, when used in conjunction with adaptive
source control, can be an effective means to provide quality of service in the Internet.

This work can be extended in several ways. We are currently investigating the impact of
marking packets at multiple places in the network. Also under investigation is the interaction and
interoperability of the proposed schemes with alternative mechanisms to support quality of service
in the Internet. Generalization of the two priority ToS scheme to multiple priorities is also under
consideration.

19



References

[1]
2]

3]

[4]

[11]

[12]

[13]
[14]

[15]

[16]
[17]
[18]

P. Almquist. Type of Service in the Internet Protocol Suite. RFC 1349, July 1992.

R. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and
L. Zhang. Recommendations on Queue Management and Congestion Avoidance in the Internet.
Internet Draft draft-irtf-e2e-queue-mgt-00.txt, March 1997.

R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: An
Overview. RFC 1633, June 1994. ISI/MIT/PARC.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol
(RSVP) - Version 1 Functional Specification. Internet Draft draft-ietf-rsvp-spec-16.txt, Novem-
ber 1997. ISI/PARC/IBM/UM.

D. Clark. A Model for Cost Allocation and Pricing in the Internet. MIT Workshop on Internet
FEconomics, March 1995.

D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an Integrated
Services Packet Network: Architecture and Mechanism. In Proc. of ACM SIGCOMM, pages
14-26, August 1992.

S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 1883,
December 1995.

S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. Internet Draft
draft-ietf-ipngwg-ipv6-spec-v2-00.tzt, July 1997.

K. Fall and S. Floyd. Router Mechanisms to Support End-to-End Congestion Control.
ftp:/ /ftp.ee.lbl.gov/papers/collapse.ps, February 1997.

W. Feng, D. Kandlur, D. Saha, and K. Shin. Understanding TCP Dynamics in an Integrated
Services Internet. In Proc. of NOSSDAV 97, May 1997.

S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoidance.
ACM/IEEFE Transactions on Networking, 1(4):397-413, August 1993.

S. Floyd and V. Jacobson. Link-sharing and Resource Management Models for Packet Net-
works. IEFFE/ACM Transactions on Networking, 3(4), August 1995.

IETF BOF Notes. Future Directions for Differential Services BOF (fddifs). April 1997.

V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM SIGCOMM, pages
314-329, August 1988.

D. Lin and R. Morris. Dynamics of Random Early Detection. In Proc. of ACM SIGCOMM,
September 1997.

S. McCanne and S. Floyd. http://www-nrg.ee.lbl.gov/ns/. ns-LBNL Network Simulator, 1996.
J. Postel. Internet Protocol. RFC 791, September 1981.
J. Reynolds and J. Postel. Assigned Numbers. RFC 1340, July 1992.

20



[19] S. Shenker, C. Partridge, and R. Guerin. Specification of Guaranteed Quality of Service.
Internet Draft draft-ietf-intserv-guaranteed-svc-08.txt, February 1997. Xerox/BBN/IBM.

[20] J. Wroclawski. Specification of Controlled-Load Network Element Service. [Internet Draft
draft-ietf-intserv-ctrl-load-sve-05.txt, May 1997. MIT.

[21] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource ReSer-
Vation Protocol. IFFFE Network, pages 8-18, September 1993.

21



