Techniques for Eliminating Packet Loss in Congested TCP /TP
Networks

Wu-chang Fengi Dilip D. Kandluri Debanjan Sahaf Kang G. Shinft
TDepartment of EECS INetwork Systems Department
University of Michigan IBM T.J. Watson Research Center
Ann Arbor, MI 63130 Yorktown Heights, NY 10598

Phone: (313) 763-5363 Fax: (313) 763-4617 Phone: (914) 784-7194 Fax: (914) 784-6205

{wuchang,kgshin}@eecs.umich.edu {kandlur,debanjan}@watson.ibm.com
Abstract

The congestion control mechanisms used in TCP have been the focus of numerous studies
and have undergone a number of enhancements. However, even with these enhancements,
TCP connections still experience alarmingly high loss rates, especially during times of congestion.
To alleviate this problem, the IETF is considering active queue management mechanisms, such
as RED, for deployment in the network. In this paper, we first show that even with RED,
loss rates can only be reduced marginally in times of congestion. We then show that the
solution to this problem lies in understanding the traffic generated by an aggregation of a
large number of sources. Given this, we then propose and experiment with more adaptive active
queue management algorithms and more intelligent end-host mechanisms which can significantly
reduce loss rates across congested links. When used together, these mechanisms can effectively
eliminate packet loss while maintaining high link utilizations under the most difficult scenarios.

Keywords: Congestion control, Internet, TCP, RED, queue management

1 Introduction

It is important to avoid high packet loss rates in the Internet. When a packet is dropped before
it reaches its destination, all of the resources it has consumed in transit have been wasted. In
extreme cases, this situation can lead to congestion collapse [12]. Over the last decade, TCP and its
congestion control mechanisms have been instrumental in controlling packet loss and in preventing
congestion collapse across the Internet. Optimizing the congestion control mechanisms used in
TCP has been one of the most active areas of research in the past few years. While a number of
proposed TCP enhancements have made their way into actual implementations, TCP connections
still experience high loss rates. Loss rates are especially high during times of heavy congestion,
when a large number of connections compete for scarce network bandwidth. Recent measurements
have shown that the growing demand for network bandwidth has driven loss rates up across various
links in the Internet [21].

One of the reasons for high packet loss rate is the failure of the network to provide early
congestion notification to sources. This has led to proposals for active queue management, such as
Random Early Detection (RED) [1,11] and variations thereof [16]. While RED certainly outperforms
traditional drop-tail queues, our experiments show that it is difficult to parameterize RED queues to
perform well under different congestion scenarios. The key problem is that congestion notification
does not directly depend on the number of connections multiplexed across the link. In order for early
detection to work, congestion notification must be given at a rate which is high enough to prevent
packet loss due to buffer overflow, while low enough to prevent underutilization of the bottleneck
link. Section 3 examines this problem and shows how RED queues can self-parameterize themselves
depending on traffic load in order to reduce packet loss and maintain high link utilization.

While adaptive queue-management techniques can provide some benefit, high loss rates at heavy
loads are, in part, an artifact of TCP’s congestion control algorithm. In steady state, TCP uses a
window based algorithm which multiplicatively decreases its sending rate in response to congestion
and linearly increases it otherwise. Unfortunately, when the window sizes are small, which is
typically the case at times of congestion, a linear increase in window size has non-linear impact
on a connection’s sending rate. When a large number of small TCP connections share a common
bottleneck, the traffic generated can cause rapid fluctuations in queue lengths which result in packet
loss. Section 4 investigates several ways of modifying TCP’s congestion control mechanism in order
to make the aggregate traffic generated by a large number of TCP connections better-behaved. In
particular, using a scaled linear increase or a bandwidth-based linear increase in the window size,
instead of the linear increase used by TCP, is shown to substantially reduce packet losses. When
used together, the adaptive queue management mechanisms and the proposed enhancements to
TCP’s windowing algorithm can effectively eliminate packet loss even in highly-congested networks.
Section b presents extensive simulation results to demonstrate this. Finally, Section 6 concludes
the paper with a discussion of possible extensions.

2 Background

When a network is congested, a large number of connections compete for a share of scarce link
bandwidth. Over the last decade, TCP congestion control has been used to effectively regulate the
rates of individual connections sharing network links. TCP congestion control is window-based.
The sender keeps a congestion window whose size limits the number of unacknowledged packets
the sender can have outstanding in the network. Upon receiving acknowledgments for successfully
transmitted data, the sender increases its transmission rate by incrementing the size of its congestion

window. At some point in time, the rate at which TCP sends its packets eventually exceeds the
network’s capacity. When this happens, queues build up in the routers and overflow, causing
packets to be dropped. TCP assumes that packet loss is due to congestion and reduces its congestion
window upon detecting the loss. The TCP congestion control algorithm is fairly straightforward.
When a connection starts up, it attempts to ramp up its sending rate quickly by exponentially
increasing its congestion window. This stage is called slow-start and allows the source to double its
congestion window, and thus its sending rate, every round-trip time. In order to prevent excessive
losses due to an exponentially-increasing sending rate, TCP senders typically employ what is known
as the congestion-avoidance algorithm [12]. In this algorithm, TcP keeps track of a threshold
value (ssthresh) which is a conservative approximation of the window size which the network can
support. When the window size exceeds this threshold, TCP enters the congestion avoidance phase.
In this phase, the window is increased at a much slower rate of one segment per round-trip time.
When the sending rates of the active connections exceed the network’s capacity, queues build up
and eventually packets are dropped. One way in which TCP detects a packet loss is through the
receipt of a number of duplicate acknowledgments from the receiver [13]. Upon receiving a given
number of duplicate acknowledgments, TCP infers that a packet loss has occurred and immediately
reduces its sending rate in half by halving its congestion window. These mechanisms are called fast
retransmit and fast recovery. When congestion is severe enough such that packet loss cannot be
inferred in such a manner, TCP relies on a retransmission timeout mechanism to trigger subsequent
retransmissions of lost packets. When a the retransmission timer is triggered, TCP reduces its
window size to one segment and retransmits the lost segment. To prevent continual retransmissions
in times of severe congestion and network outages, TCP employs an exponential back-off algorithm.
In particular, if the sender continually sends the same segment, but receives no acknowledgments
for it, TCP doubles its retransmission timeout interval. Upon receipt of an acknowledgment for
subsequent new segment, TCP resets the timeout interval and resumes its normal sending.

One problem with the TCP congestion control algorithm over current networks is that the send-
ing sources back off their rates only after detecting packet loss due to queue overflow. This is a
problem since some time may pass between when the packet is dropped at the router and when
the source actually detects the loss. In the meantime, a considerable number of packets may be
dropped as sending sources continue to send at a rate that the network cannot support. Active
queue management has been proposed as a solution for preventing losses due to buffer overflow.
The idea behind active queue management is to detect incipient congestion early and convey con-
gestion notification to the end-hosts, allowing them to back off before queue overflow and packet
loss occur. One form of active queue management being proposed by the 1ETF for deployment in
the network is RED (Random Early Detection) [1,8]. RED maintains an exponentially weighted
moving average of the queue length which it uses to detect congestion. When the average queue
length exceeds a minimum threshold (miny;), packets are randomly dropped or marked with an
explicit congestion notification (ECN) bit [8,22,23] with a given probability. A connection receiving
congestion notification in the form of an ECN mark, cuts its congestion window in half as it would
if it had detected a packet loss. The probability that a packet arriving at the RED queue is either
dropped or marked depends on, among other things, the average queue length, the time elapsed
since the last packet was dropped, and an initial probability parameter (maz,). When the average
queue length exceeds a maximum threshold (mazy,), all packets are dropped or marked.

(RED: MINh=20KB, MAX{h=80KB, Qsize=80KB)

Figure 1: Network Topology

3 Active Queue Management

One of the inherent weaknesses of RED and some of the other proposed active queue-management
schemes is that congestion notification does not directly depend on the number of connections mul-
tiplexed over the link. In order for early detection to work in heavily-congested networks, congestion
notification must be given to enough sources so that the offered load is reduced sufficiently to avoid
packet loss due to buffer overflow. Conversely, the RED queue must also prevent congestion notifi-
cation from being given to too many sources in order to avoid situations where the bottleneck link
becomes underutilized. For example, consider a bottleneck link of capacity 10M bs which is equally
shared amongst several connections. Assuming TcP windowing, when 100 connections share the
link, sending congestion notification to one connection reduces the offered load to 9.95Mbs. On the
other hand, when only 2 connections share the link, sending congestion notification to one of them
reduces the offered load to 7.5Mbs. In general, with a bottleneck link that supports N connections,
giving congestion notification to one connection reduces the offered load by a factor of (1 — ﬁ) As
N becomes large, the impact of individual congestion notifications decreases. Without modifying
the RED algorithm to be more aggressive, the RED queue degenerates into a simple drop-tail queue.
On the other hand, as N becomes small, the impact of individual congestion notifications increases.
In this case, without modifying the RED algorithm to be less aggressive, underutilization can occur
as too many sources back off their sending rates in response to the observed congestion. This
section examines the impact that traffic load has on active queue management techniques such as
RED and proposes on-line mechanisms for optimizing performance.

3.1 Traffic Load and Early Detection

To examine the impact that traffic load has on early detection mechanisms, we performed a set of
experiments using the ns simulator [18] which varied both the aggressiveness of the early detection
algorithm and the total number of connections multiplexed on the bottleneck link. Figure 1 shows
the network topology used in the experiments. Each connection originates at one of the leftmost
nodes (n0,n1,n2,n3,n4) and terminates at n8, making the link between n5 and n6 the bottleneck.
We first examine the performance of RED using ECN. By using RED and end-host TCPs enabled
with ECN, all packet losses from the RED queue can be attributed to buffer overflow. In order to
isolate the effects of congestion notification triggered by min, from that triggered by mazy, the
max, parameter is set to the queue size. This, in effect, disables maz;; and causes packet loss to
occur whenever early detection does not work. Additional experiments using maz;; values which
are below the queue size are described in Section 3.2. Figure 2 shows the queue-length plot of

80.0 80.0

60.0 |- . 60.0]/\/J\/_\"/\/J\/\/\/\/\f

40.0 1

Queue Length (KB)
»
o
o
T
I
Queue Length (KB)

20.0 1 20.0

Actual Length Actual Length
Average Lengtl Average Lengtl
0! (I | 0.0 I I I I

0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0

Time (s) Time (s)

(a) 8 Connections (b) 32 Connections

Figure 2: Aggressive early detection (maz, = 0.250)

80.0 80.0 | T T y T

AT TN TN MY

60.0 - 60.0 1
o o
X X
e e
5 5
T 400 | H T 400 B
| -
[} [}
=] =]
[} [}
> >
o o
20.0 B 20.0 B
Actual Length Actual Length
Average Lengtl Average Lengtl
0.0 ‘ ‘ ‘ : 0.0 ‘ ‘ ‘ :
0.0 2.0 40 6.0 8.0 10.0 0.0 2.0 40 6.0 8.0 10.0
Time (s) Time (s)
(a) 8 connections (b) 32 connections

Figure 3: Conservative early detection (maz, = 0.016)

the congested queue located from n5 to n6 when there are 8 and 32 connections simultaneously
competing for bandwidth over the link. In these experiments, the RED algorithm is made aggressive
by changing maz,, RED’s initial drop probability. As Figure 2(a) shows, when only 8 connections
are active, aggressive early detection sends congestion notification back to the sending sources at
a rate which is too high, causing the offered load to be significantly smaller at times than the
bottleneck link bandwidth. This causes periodic underutilization where the queue is empty and
the bottleneck link has no packets to send. Figure 2(b) shows the queue plot when the number of
connections is increased to 32. In contrast, aggressive early detection performs as desired, sending
congestion notification at a rate which can both avoid packet loss and achieve high link utilization.

Figure 3 shows the same set of experiments using conservative early detection. In contrast
to Figure 2(a), Fligure 3(a) shows that by using less aggressive early detection, the RED queue
can maintain high link utilization while avoiding packet loss over smaller numbers of connections.

10.0

100.0 = é
@—@ Drop-tail (4) G—ORED-ECN (4)
8.0 | O-~ORED-ECN (4) | | A—ARED-ECN (8)
A—A Drop-tail (8) o— RED-ECN (32)
A RED-ECN (8) [5—FEJRED-ECN (64)
g 4—& Drop-tail (32) —
@ OO RED-ECN (32) =
S 6.0 B— Drop-tail (64) N o 950
g C+—ORED-ECN (64) g
T % &
g :
= & o
g 40, : = ;
- & 2 900 |
20 B
. "‘<>.1_
0.0 |26t 8
. . . . 85.0 | . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
max max
P p
(a) Packet loss rates (b) Bottleneck link utilization

Figure 4: Impact of early detection aggressiveness on RED-ECN

However, when the number of connections is increased to 32, as Figure 3(b) shows, conservative
early detection does not deliver enough congestion notification to the sending sources. Thus, the
queue continually overflows causing the RED queue to behave more like a drop-tail queue. The
figure also shows that the bottleneck queue never drains even though it is dropping a significant
number of packets. This indicates that TCP is not aggressive enough in backing off its sending
rate in response to congestion and that the packets which are successfully delivered through the
bottleneck queue are enough to trigger subsequent rate increases in sending TCP sources. Thus,
the bottleneck queue remains close to fully occupied through the duration of the experiment.

To quantitatively evaluate the impact of maz,, the experiments were repeated across a range
of traffic loads and the loss rates and link utilizations observed were plotted’. The loss rate is
calculated as the number of packets dropped by the queue divided by the total number of packets
which arrive at the queue. The link utilization is calculated as the total number of packets sent
divided by the maximum number of packets the link could send. Figure 4(a) shows the loss rates
observed for experiments using 4, 8, 32, and 64 connections. The figure also plots the loss rates
when a drop-tail queue is used at the bottleneck link. As the drop-tail results show, loss rates
at the bottleneck link increase proportionally to the number of connections using the link. There
are two main reasons why this is the case. One reason, as described earlier, is that with a large
number of connections, it takes a larger amount of congestion notification (i.e. packet drops),
to sufficiently signal the end hosts to back off their sending rates. The other reason is due to a
fundamental problem with TCP congestion control which is described in Section 4. Figure 4(a) also
shows the loss rates using RED-ECN over a range of maz, values. The corresponding bottleneck
link utilization for each experiment is shown in Figure 4(b). The figures show that for small
numbers of connections, loss rates remain low across all values of maz,, while only small values of
mazx, can keep the bottleneck link at full utilization. Thus, to optimize performance over a small
number of connections, early detection must be made conservative. In contrast, for large numbers
of connections, bottleneck link utilizations remain high across all max, values while only large
values of maz, are able to prevent packet loss from occurring. In order to optimize performance
in this case, early detection must be made aggressive.

n each experiment, connections are started within the first 10 seconds of simulation. After 100 seconds, both

the loss rates and the link utilization for the bottleneck link are recorded for 100 seconds.

120.0 T T T T 240.0

100.0 200.0 [
@ 800 @ 160.0 [
< <
s s
o o
& 600 g 1200
o -
(4] [F]
> >
g g
& 400 - & 800 -
20.0 | . 400 | i
Actual Length
Average Length| Average Length|
00 Lo Ll A ‘ [| | 00 | ‘ | ‘ ‘ ; /|
0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
Time (s) Time (s)
(a) queue size=120K B; maxz,=80K B (b) queue size=240K B; maz;,=80K B

Figure 5: Impact of mazy, and queue size

3.2 Avoiding Deterministic Congestion Notification

In the previous section, we set mazy, equal to the queue size so that whenever the early de-
tection algorithm fails, packet loss occurs. By setting maxy, sufficiently below the queue size, the
RED algorithm can avoid packet losses when early detection fails by deterministically marking every
incoming packet. Figure 5 shows the queue-length plot using the same experiment as in Figure 3(b)
with a larger bottleneck queue size and a fixed mazs, of 8OK B. When the queue size is 120K B,
the queue-length plot shows that even with a fairly significant amount of additional buffer space,
packet loss is not eliminated. The plot also shows that the combined effect of using ECN and packet
drops for signaling congestion notification leads to periods of time where TCP is able to impact the
sending rates of the sources. This is in contrast to the behavior seen in Figure 3(b). In that exper-
iment, a connection which was able to send a packet through the bottleneck link always increased
its sending rate even though the bottleneck queue was full. By setting maazy, sufficiently low and
using ECN, all connections receive congestion notification when the queue is full whether it is from
an ECN or from a packet loss. Thus, as Figure 5 shows, after a sustained period of ECN marking
and packet loss, the sources back off enough to allow the queue to drain. One of the problems with
deterministic marking is that it often goes overboard in signaling congestion to the end-hosts. As
the queue-length plots in Figure 5 show, periods of congestion are immediately followed by fairly
long periods of underutilization where the queue is empty. Furthermore, it takes quite a bit of
extra buffer space in order to ensure that no loss occurs. Figure 5(b) shows the queue-length plot
using a queue size of 240K B. As the figure shows, even when deterministic marking is done at
average queue lengths of 80 K B, the actual queue length can more than double before sources have
a chance to back off.

3.3 Adaptive RED

From the previous experiments, it is clear that more aggressive early detection is needed when a large
number of flows are active in order to avoid packet loss and deterministic congestion notification.
Because adapting RED parameters can be beneficial to network performance, this section proposes
an on-line mechanism for adaptively changing the parameters according to the observed traffic.
The algorithm is shown in Figure 6. The idea behind this algorithm is to infer whether or not

Every Q(ave) Update:

if (ming, < Q(ave) < mazyy,)
status = Between;

if (Q(ave) < miny, && status != Below)
status = Below;
maz, = maz, | o;

if (Q(ave) > mazy, && status != Above)
status = Above;
maz, = maz, * 3;

Figure 6: Adaptive RED algorithm

RED should become more or less aggressive by examining the average queue length behavior. If
the average queue length continually crosses back and forth over mingy,, then the early detection
mechanism is being too aggressive. If the average queue length continually crosses back and forth
over maz,, then the early detection mechanism is not aggressive enough. Given the behavior
of the average queue length, the algorithm then adjusts its value of maxz, accordingly. For this
algorithm, we simply scale maz, by constant factors of a and 8 depending on which threshold it
crosses. To show the feasibility of such an approach, we ran another experiment using the same
network as shown in Figure 1, but with RED queues of size 100K B. In this experiment, we vary the
number of active connections between 8 and 32 over 40 second intervals. Figure 7 shows the queue-
length plots using RED queues statically configured to be either aggressive or conservative. When
aggressive early detection is used, as shown in Figure 7(a), the RED queue performs well whenever
32 connections are active. When only 8 connections are active, however, the RED queue is too
aggressive in its congestion notification, thus causing periodic underutilization where the queue is
empty. When conservative early detection is used, as shown in Figure 7(b), the RED queue only
performs well when 8 connections are active. When all 32 connections are active, the RED queue
continually fluctuates between periods of sustained packet loss and ECN marking and subsequent
periods of underutilization.

Figure 8(a) shows the queue-length plot of the same experiment using the adaptive RED algorithm
with o and 3 set to 3 and 2, respectively. We initially set maz, to 0.020 and then allow the al-
gorithm to adjust the parameter accordingly. As the plot shows, after brief learning periods when
the experiment starts and when the input traffic changes, the RED queue is able to adapt itself
well. Figure 8(b) plots the maz, parameter as the RED queue adapts it to the input traffic. As
expected, its value adapts to reflect the number of active flows. When all 32 connections are active,
mazx, increases significantly, causing the RED algorithm to become more aggressive. When only 8
connections are active, maz, decreases, causing the RED algorithm to become less aggressive.

3.4 Using Packet Loss for Congestion Notification

The previous experiments examine the use of early detection in its “purest” form where congestion
notification is free and causes no packet losses. Without support for ECN, however, RED must resort
to dropping a packet in order to signal congestion. In order to show the performance of RED using
packet drops, we repeated the above experiments using a normal RED queue. Figure 9 shows the

(a) Aggressive detection (maz, = 0.250)

100.0

* = ™ N T
| \ | i
I 1| I I i
: : W : ; |
80.0 | | 80.0 | | i
I I |
i) I | | |
e : |
= = I
P 60.0 w P 60.0 ! |
j=)] j=2) I
c c |
() ()
- -
Q Q I
3 400 3 400 -
> >
& & |
200 - 20.0 H | I
I
‘ I
8 sources 32 sources [8'sources] i 32 sources
oo [T 0.0 ULl ‘ ~
0.0 20.0 40.0 60.0 80.0 100.0 120.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0
Time (s) Time (s)

(b) Conservative detection (maz, = 0.016)

Figure 7: Static random early detection

(a) Queue Length

(b) max, parameter

| j 0.20
| |
I 1|
| |
80.0 i ! _
| 1 015 - .
g
T 600 a
j=2) x
§ g 0.10 - il
i
2 400 —
>
(64
0.05 1
20.0 - B
|
32 sources 8 sources | i 32 sources
0.0 I I { I 0.00 I I I I L
0.0 20.0 40.0 60.0 80. 100.0 120.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0
Time (s) Time (s)

Figure 8: Adaptive random early detection

loss rates of RED under a traffic load of 32 and 64 connections over a range of maz, values. As
the figure shows, RED only has a marginal impact on the packet loss rates observed. For small
values of maz,, early detection is ineffective and the loss rates and performance approach that of
a drop-tail queue. As maz, is increased, loss rates slightly decrease since the RED queue is able
to send congestion notification back to the sources in time to prevent continual buffer overflow.
Finally, as maxz, becomes large, the RED queue, in fact, causes a slight increase in packet loss rates
over drop-tail queues. Note that in both figures, the value of maxz, which minimizes the loss rates
is different. As more connections are added, the optimal value of maz, increases.

The reason why active queue management has little effect on packet loss rates is the fact that
using packet drops as a means for congestion notification fundamentally limits packet loss rates. As
more connections become active, the rate of congestion notification, and thus, the loss rates must
increase. Steady state analysis of the TCP congestion avoidance algorithm [7,15,17,18,20] gives
some insight as to why this is the case. Such analysis has shown that given random packet loss at

65 i 105
601 o o] o
o 100 - .
= z g
@ o c
£ 55 : S
[
e &
%]
Q o 95 o 7
g g
T 50t] &
@ ° 2
3 3 he
e} y
Y. 90 o / i
a5t o] w/
y
O---ORED O-—ORED
40 ‘ ‘ ‘ ‘ 85 ‘ ‘ ‘ :
0.0 0.2 0.4 06 0.8 1.0 0.0 02 0.4 06 08 10
max max
p P
(a) 32 connections (b) 64 connections

Figure 9: Impact of early detection aggressiveness on RED

constant probability p, the upper bound on the bandwidth a TCP connection sees can be estimated
as:

MSS C (1)
RTT \/p

where M S5 is the segment size, RTT is the round-trip time, and C' is a constant. Using this
model, we can then approximate packet loss rates over a single bottleneck link of L Mbs for a fixed
number of connections N. In this situation, the bandwidth delivered to each individual connection
is approximately the link bandwidth divided by the number of connections (L /N). By substituting
this into the previous equation and solving for p, we obtain

(N MSS * 0)2
P Moo *C

BW <«

L RIT (2)

As the equation shows, when all of the connections are using the TCP congestion avoidance
algorithm, the upper bound on the packet loss rate quadratically increases with the number of
connections present. Intuitively, this can be shown using an idealized example. Suppose we have
two identical networks with bandwidth-delay products of 64K B from a given pair of end points.
In one network, we have 4 identical connections while in another we have 8 identical connections
going across the network. Given fair sharing amongst the connections, the congestion windows
of each connection will approximately be the bandwidth-delay product divided by the number
of connections present. For 4 connections, each connection will have congestion windows which
oscillate near 16 K B. Assuming normal TCP windowing and a segment size of 1 K B, an individual
connection in this network will typically build its congestion window up to around 16 packets,
receive congestion notification in the form of a lost packet, back off its window to about 8 packets
and then slowly build its congestion window back up at a rate of one packet per round-trip time.
Given this behavior, the loss rate across all connections in this idealized model would then be
approximately 4 packet drops every 8 round-trip times or 0.5 packets/round-trip time. Similarly,
using the same idealized model, it can be shown that when 8 connections are present, losses occur
at a rate of 2.0 packets/round-trip time, a quadratic increase.

Because the derivation of Equation 2 is based on idealized scenarios, the actual loss rates do
not quite vary quadratically with the number of connections. From the drop-tail experiments

10

Queue Length (KB)
Queue Length (KB)
Queue Length (KB)

0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 0.0 2.0 4.0 6.0 8.0 10.0
Time (s) Time (s) Time (s)

(a) maz, = 0.16 (b) maz, = 0.063 (c) maz, = 1.00

Figure 10: Queue length plots of RED over maz,

in Figure 9, the loss rates observed show a dependence on the number of connections which is
somewhere between linear and quadratic. This is partially due to the fact that connections can
experience retransmission timeouts causing them to send less packets than the equation predicts.
Still, since packet loss rates increase rapidly as networks become more congested, it is necessary
to decouple packet loss from congestion notification through the use of ECN in order to prevent
congestion collapse. In lieu of explicit congestion notification, Equation 2 provides some insight on
how to reduce loss rates. In particular, decreasing the segment size used in congestion avoidance,
increasing the bandwidth of the congested link, and increasing the round-trip times through the
use of additional buffers [24] can slow the rate of congestion notification considerably and thus,
decrease the amount of packet loss observed. Note that the dependence of packet loss rates on
round-trip times explains why RED queues, which attempt to reduce network queueing delays, can
potentially increase packet loss rates (as observed in Figure 9). To examine this particular effect,
Figure 10 plots the queue lengths of the congested RED queue over several values of maz, in the 32
connection experiment. When maz, is small as in Figure 10(a), early detection is ineffective and
the queue’s behavior approaches that of a drop-tail queue with buffer overflow signalling congestion.
Figure 10(b) shows the queue length plot for the maz, value which minimizes packet loss (0.063). In
this case, the RED algorithm is just aggressive enough to eliminate packet loss due to buffer overflow
while keeping the average queue length as close to the size of the queue as possible. Finally, as
maz, becomes increasingly larger as shown in Figure 10(c), RED becomes more aggressive in its
early detection causing the average queue length and the round-trip times of each connection to
drop. Because packet loss rates increase with decreasing round-trip times as derived in Equation 2,
this causes the loss rates observed using the RED queue to eventually exceed that of the drop-tail
queue for this experiment.

4 End Host Congestion Control

While properly designed active queue-management mechanisms, such as adaptive RED, can help
reduce packet losses, such techniques alone cannot guarantee low loss rates especially when traffic
load fluctuates widely. Instead, intelligent queue management must be combined with intelligent
end-host congestion control in order to obtain high utilization with a minimal amount of packet
loss. If the offered load overwhelms the bottleneck link before congestion notification can be
delivered, buffer overflow and packet loss is inevitable. This section describes several weaknesses
in TCP congestion control and how they can cause high loss rates even in the presence of active
queue management. Given this behavior, we propose and experiment with possible modifications

11

(1) closecwnd()
if (cwnd == 1)
sub_scale = sub_scale * 2;
counter = int(sub_scale* RTT [timer_interval) + 1;
else normal_tcp_closecwnd();
(2) send()
if (cwnd == 1)
if (counter < 0)
send_next_segment;
counter = int(sub_scale* RTT [timer_interval) + 1;
return;
else normal_tcp_send();
(3) opencwnd()
if (cwnd==1 && sub_scale > 1)
sub_scale = sub_scale | 2;
if (sub_scale < 1) sub_scale = 1;
return;
normal_tcp_opencwnd();
(4) Every timer_interval
counter = counter - 1;

Figure 11: suBTCP algorithm
to TCP’s windowing mechanism which alleviate this problem.

4.1 Adjusting the Minimum Transmission Rate

One of the limitations of TCP’s congestion control mechanism is that in normal operation, the
minimum transmission rate of a TCP sender is one segment per round-trip time [4]. When a large
number of connections are multiplexed over a low bandwidth link, the inability of TCP to transmit
at lower rates causes a significant number of packet losses and retransmission timeouts [19]. TCP,
by exponentially backing off its retransmission timeout interval, does in fact have a mechanism
which allows it to transmit at a rate lower than one segment per round-trip time. However, upon a
single successful transmission, TCP resets this timer and resumes transmitting at a minimum rate
of one segment per round-trip time. From the standpoint of transmission rates, this in effect makes
TCP congestion control an exponentially-increasing algorithm. If a large number of connections
increase their transmission rates in this manner, the network sees substantial bursts which lead to
packet loss. One way to fix this problem is to decrease the exponential back-off interval when a
packet is successfully transmitted rather than resetting the value. This prevents the source from
automatically ramping up its sending rate as soon as it has received a single acknowledgment after
a retransmission timeout. Figure 11 shows a simple algorithm for doing so. In this case, instead
of resetting TCP’s back-off interval, it is halved. In the rest of the paper, this variation of TCP is
referred to as SUBTCP. TCP’s minimum transmission rate is also directly determined by the segment
size and the minimum window size used. Smaller segment and window sizes translate into lower
minimum sending rates. In addition, from Equation 2 in Section 3, using a smaller segment size

12

A 1.5Mbs A

Figure 12: Network Topology

40.0 : :
—— Normal TCP, Normal RED
O—O Normal TCP, REglaECN 100.0
O — ONormal TCP, RED-ECN, MSS=500
AN—ASubTCP , RED-ECN
/s — ASubTCP , RED-ECN, MSS=50
300 - X—X Normal TCP, RED-ECN, IW=2 B 80.0 /\/\/\/
192
[%2]
o —~
= 2
e < 600 -
& 200 — =)
e 3
c -
S S 400 1
o e :
o &
100 - 1
200 + -
A Actual Length
0.0 F I A i P —— , Average Length|
- L L OO L L L L
0.0 80.0 160.0 240.0 320.0 0.0 2.0 4.0 6.0 8.0 10.0
Buffer Size (KB) Time (s)
(a) Packet-loss rates (b) Queue plot of normal TcP with RED-ECN

Figure 13: Minimum sending rates and the performance of TCP

makes linear increase less aggressive and thus reduces the amount of packet losses.

To understand the impact that the sUBTCP modifications, the segment size, and the minimum
window size have on packet loss rates in congested networks, we examine a number scenarios in the
network shown in Figure 12. In this network, 100 connections are run from nodes n0-n4 through
the bottleneck 1.5 Mbs link between node A and node B to nodes nb5—n9. For the RED queues,
mazxy, is used as the measure of buffer size in an attempt to more fairly compare drop-tail and
RED queues. The actual queue size is set at (1.2%maxy,) while mingy, is set at (0.25%mawzy). For
most of the experiments in this section, we make early detection conservative by fixing maz, to
0.016, in order to isolate the impact end-host modifications have on performance. Figure 13(a)
shows the packet loss rates observed by TcP and suBTCP for different segment sizes and minimum
windows. As the figure shows, the use of the smaller segment size of 500 bytes significantly improves
loss rates over the use of the larger 1000 byte segment size. In addition, the figure also shows
that the suBTCP modifications have a very modest impact on the loss rates. Finally, we observe
that doubling TCP’s minimum window leads to a significant increase in the amount of packet loss
observed. For a better understanding of the above observations, we examine the queue length plots
of the bottleneck link for the various experiments. Figure 13(b) shows the queue length plot of the

13

100.0

100.0 & "
80.0 | q
o o
3 3
= - 600 - q
IS IS
c c
3 3
[N [N
3 3 400 f 1
=] =]
(o4 (o4
20.0 - 4 20.0 - 4
Actual Length Actual Length
Average Length| Average Length|
0.0 I I I I 0.0 I I I I
0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
Time (s) Time (s)
(a) suBTCP with MSS=500 (b) Tcp with minimum window = 2

Figure 14: Queue plots for decreased segment size and increased window size

experiment using TCP with RED-ECN queues?. The mazy, used in the experiment was 80 K B. The
figure shows that the queue quickly fills up soon after congestion notification stops being delivered.
This is due to the fact that TCP ramps its transmission rate too quickly upon successfully sending
its segments, causing large queue-length fluctuations which defeat the early detection mechanism
and induce packet loss.

Figure 14(a) shows the queue-length plot using the smaller segment size and the suBTCP modifi-
cations. As the figure shows, the modifications slow the increase in transmission rates of individual
connections and thus help reduce the amount of queue fluctuations and packet loss. Note that the
suBTCP modifications alone are not enough to allow early detection to work. One of the reasons
why is that while SUBTCP can reduce the minimum sending rates of the sources, it still allows a
multiplicative increase in sending rates. Such traffic easily defeats early detection causing packet
loss to occur. Additional modifications which address this are described in Section 4.2. Figure 14(b)
shows the queue length plot of normal TCP over RED-ECN queues using an minimum window of
two segments. As shown in the trace, using the large minimum window defeats the early detec-
tion mechanism of RED as well as the congestion control mechanism of Tcp. Thus, while a large
minimum window may be desirable in unloaded networks where it can reduce transfer latencies
considerably, it must be used carefully when the network is congested.

4.2 Adjusting Linear Increase

In steady state, TCP uses its congestion-avoidance algorithm to slowly increase its transmission
rate. In this phase, the congestion window of a connection increases linearly by one segment per
round-trip time. During times of congestion when a large number of connections are competing
for bandwidth, the window size of each connection is small. Unfortunately, for small windows,
linear increase is a misnomer since increasing the window size by a segment can have a non-linear
impact on the connection’s transmission rate. For example, when a connection has a congestion
window of 1, it doubles its sending rate when it increments its window by a segment. When a
large number of connections with small windows are aggregated, the network sees traffic which is
multiplicatively increasing and decreasing. This causes rapid fluctuations in queue lengths, periods

2The quene length plot of normal TCP over normal RED quenes shows results similar to Figure 3(b).

14

opencwnd()
if (cwnd==1 && sub_scale > 1)
sub_scale = sub_scale - scaled_ancrease;
if (sub_scale < 1) sub_scale = 1;
else normal_tcp_opencwnd();

Figure 15: Scaled Sub-linear suBTCP algorithm

opencwnd()
effective_.cwnd = (cwnd/sub_scale);
new_wnd = effective_cwnd * (1 + bandwidth_percent);
if (new_wnd < 1)
cwnd = 1;
sub_scale = 1/new_wnd;
else
cwnd = new_wnd;
sub_scale = 1;

Figure 16: Bandwidth-based suBTCP algorithm

of high utilization and packet loss followed by periods of underutilization. Such traffic patterns
also defeat early detection mechanisms such as RED because large queues can accumulate over very
short time periods.

In this section, we examine how the linear increase mechanims can be modified to work better
under heavy congestion. We consider two techniques: (1) scaled linear increase and (2) bandwidth-
based linear increase. The idea behind the scaled increase is to increase the congestion window by
a fixed fractional amount when the congestion window is small. This is a heuristic much like the
current linear increase algorithm. While it can certainly alleviate some of the problems seen with
standard linear increase, fixed increases in general have the problem of either not being aggressive
enough when the network is uncongested or being too aggressive when the network is congested.
Figure 15 shows the scaled linear increase algorithm used. In our experiments, we use the scaled
increases to slow the increase in transmission rates when the congestion window is effectively below
one. Thus, when the network is not congested, the source simply behaves as a normal TCP source.

In addition to the scaled linear increase algorithm, we also experimented with a bandwidth-based
linear increase algorithm. The motivation of the bandwidth-based algorithm is rather intuitive.
Assume that the bottleneck router has enough buffers to absorb X% higher than its bottleneck
bandwidth for a duration of about a round-trip time. This is the time it takes for congestion
notification to reflect itself back to the bottleneck link. Then, if each source only increases its
transmission rate by X% every round-trip time, the network can ensure a minimal amount of
packet loss. Bandwidth-based increases inherently depend on the round-trip times of each of the

15

40.0

—— Normal TC‘P. Normal RED ‘ 100.0 i
(O—O Normal TCP, RED-ECN
35.0 ~—A Scaled SUbTCP (1/4), RED-ECI 1
<O— BW-based SubTCP, RED-ECN|
30.0 b
192
1%}
S 250 ¢ 1 95.0 - 1
o c
< (9]
g 200 {1 =
& g
1= =
8 150 102
5]
o 90.0 - q
10.0 b
50 + B —— Normal TCP, Normal RED
|O—CO Normal TCP, RED-ECN
A— Scaled SubTCP (1/4), RED-ECI
<O—<C BW-based SubTCP, RED-ECN|
0.0 ¢ % : ¢ . 1 85.0 : : : \
0.0 80.0 160.0 240.0 320.0 0.0 80.0 160.0 240.0 320.0
Buffer size (in KB) Buffer size (in KB)
(a) Packet loss rates (b) Bottleneck link utilization

Figure 17: Performance of modified linear-increase algorithms

connections. This is because it takes at least a round-trip time for congestion notification to have
an impact on the offered load seen by the router. Bandwidth-based increases also inherently depend
on the amount of buffering at the bottleneck link. If the buffers are increased at the bottleneck
link, the end sources can be more aggressive in ramping up their transmission rates. On the other
hand, increased buffering can also prevent sources from ramping up their transmission rates by
increasing the round-trip time and thus the latency in delivering congestion notification. Even with
bandwidth-based increases, there is still a small likelihood of buffer overflow. One reason is that in
the case of RED queues, deterministic congestion notification is triggered only when the weighted
average exceeds mazs,. The actual queue length can often be larger than the average queue
length especially when the offered load is steadily increasing. Another reason is that Tcp traffic
exhibits short-term burstiness which makes its offered load appear to be much larger than it actually
s [27]. Such burstiness can cause buffer overflow even when the overall offered load is below the
bottleneck link capacity. Still, the key advantage of using bandwidth-based linear increases is that
the behavior of its aggregate traffic is mostly independent of the number of connections present. The
router thus sees traffic which increases at a fairly fixed rate regardless of the amount of congestion
in the network. Controlling the behavior of aggregate traffic allows active queue-management
schemes to work as intended. Figure 16 shows the bandwidth-based linear increase algorithm
used in our experiments. We note that one of the key disadvantage of bandwidth-based increase
algorithm is that it falls under a class of algorithms which have theoretically been shown to not
provide responsive max-min fair sharing independent of the starting state of the network [3,14].
While fairness is a concern, even with TCP’s current congestion control algorithm, fairness between
connections has already been shown to be poor in times of congestion [19] and across multiple round-
trip times [10]. In addition, the idealized model used in [3] assumes that congestion notification is
given to all sources when the bottleneck resource becomes saturated. With queueing algorithms
such as RED and FRED [9,16] that deliver congestion notification preferentially to higher bandwidth
flows, it may be possible for a larger class of increase/decrease algorithms to quickly converge to
max-min fair sharing.

Given these two modified increase algorithms, we reran the previous experiments in order to
evaluate their performance. Figure 17 shows the loss rates and the link utilization observed. For the
fixed scaled increases, the graphs show the results using a scaling factor of %. For the bandwidth-

16

100.0 T T T T 100.0 T T T T

Actual Length
Average Length|

80.0
))
X N4
= ~ 600
£ £
j=2} j=2}
c c
g g AN A N PR A AN T AR
(3] (3]
3 2 400 | 1
=1 =1
(o4 (o4
20.0 b 20.0
Actual Length
Average Lengtl
00 ‘ ‘ ‘ : 00 ‘ ‘ ‘ ‘
0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
Time (s) Time (s)
(a) Scaled increases (scale = 1) (b) Bandwidth-based increases

Figure 18: Sublinear suBTCP Performance

based linear increase algorithm, we set the percent bandwidth increase to 1% in order to prevent
packet loss in the network shown in Figure 12 when using a 25 KB RED queue with a maz,, of 20
K B. Figure 17(a) shows the loss rates observed using the various TCP schemes. The graph shows
that using the sublinear increases greatly reduces the amount of packet loss. In fact, for smaller
buffer sizes, the difference in loss rates is as high as several orders of magnitude. The bandwidth-
based algorithm, in particular, provides extremely low loss rates under heavy congestion even when
a small amount of buffering is present. Figure 17(b) shows the link utilization observed across all
schemes. While the scaled linear increase algorithm provides low losses, it is unable to sustain full
link utilization. The bandwidth-based algorithm, on the other hand, maintains high link utilizations
across all buffer sizes.

In order to understand why the scaled linear increase algorithm sees lower link utilization and
sometimes higher packet loss than the bandwidth-based algorithm, we examine the queue-length
plot of the bottleneck queue. Figure 18(a) plots the queue lengths from the experiment using a
maxq, of 80 K B. The traces show that the use of sublinear increases makes aggregate TCP less
aggressive, thus preventing sustained periods of packet loss observed in the previous experiments
shown in Figure 14. Figure 18(a) also shows, however, that the sources are still aggressive enough
to defeat the early detection mechanism. It takes a sustained period of congestion notification when
the average queue length exceeds maz;, for the offered load to be reduced sufficiently below link
capacity. Asshown in Section 3.2, sustained congestion notification can be detrimental to utilization
since it inevitably causes too many sources to back-off their transmission rates. As the queue plot
shows, when maazyy, is triggered, the bottleneck link can subsequently become underutilized. There
are a couple of ways to fix this problem. One would be to make the scaled increases even smaller so
that static early detection has a chance to signal the end-hosts in time to prevent mazs, from being
triggered. Another way to improve performance is to simply make the early detection mechanism
more aggressive as described in Section 3. Additional experiments have shown both ways can be
effective in improving the performance of scaled increases. In contrast to the scaled linear increase,
Figure 18(b) shows the queue-length plot when each source is using bandwidth-based increases. As
the figure shows, the aggregate traffic fluctuates much less, allowing early detection to perform as
intended.

17

0.5

4—‘F25
X—X50
— 100
o 1000 | @ g "
04 G—0300 |
a 99.0 1
go3t :
5
X c
g S o :
To2t I
= =
g =)
s o7.0 :
01+ :
§§ 9.0 - Hég]
— 100
0.0 b —A200
G—©300
L L L L 95.0 Il Il Il Il
0.0 80.0 160.0 2400 3200 0.0 80.0 160.0 240.0 320.0
Buffer size (in KB) Buffer size (in KB)
(a) Packet loss rates (b) Bottleneck link utilization

Figure 19: Performance across traffic load

5 Tuning for Optimal Performance

The previous two sections have shown how individually, active queue-management and end-host
mechanisms can be used to significantly reduce loss in the network. When used together, they form
a synergistic combination which can allow the network to achieve extremely high efficiency even
in times of heavy congestion. Figure 19 shows the loss rates and bottleneck link utilizations over
a range of workloads using the bandwidth-based suBTCP algorithm with adaptive RED queues in
the network. In these experiments, we use the same topology as in Figure 12 and vary the number
of connections going across the 1.5Mbs link from 25 to 300. As the figure shows, the packet-loss
rates remain extremely low while the bottleneck link utilizations remain remarkably high across all
experiments.

In order to compare the improvements against other schemes, we examine the packet loss rates
using a traffic load of 100 connections. IFigure 20(a) plots the loss rates for a range of end-host
and queue-management schemes. The figure shows the performance of normal TCP using both
drop-tail and RED queues as well as the performance of normal TCP using ECN using both a static
RED-ECN queue and an adaptive RED-ECN queue. In addition, the figure plots the performance
of the bandwidth-based suBTCP algorithm over both static and adaptive RED-ECN queues. In
this figure, the graph shows that decoupling congestion notification from packet loss through the
use of ECN improves loss rates significantly. The graph also shows that both the adaptive RED and
suBTCP modifications provide substantial performance improvement and that, when used together,
they allow the network to achieve optimal performance.

The previous experiments fixed both the round-trip times and the percent bandwidth increase
used (1 %). Since the performance of the proposed congestion control mechanisms have an inherent
dependence on both, we ran several experiments which varied them. Figure 20(b) plots the loss
rates using 100 connections when the percent bandwidth increase used is 10 %, 30 %, and 50 %.
The experiments also vary the transmission delay across the bottleneck link from 5ms to 10ms
and 50ms, thus considerably increasing the round-trip time. As the figure shows, as each source
is allowed to increase its sending rate more quickly, loss rates slowly rise as the burstiness seen at

18

25 T

45.0 T T
O—CO Normal TCP, Drop-tail 10%, 10ms
~—\ Normal TCP, Normal RED ==~ 10%, 50ms
40.0 - Normal TCP, RED-ECN | *—e 30%, 10ms
Normal TCP, Adaptive RED 20 F 0—0 30%, 50ms i
H- —-+BW SubTCP, RED-ECN . ~+—+50%, 10ms
35.0 ¢ X - X BW SubTCP, Adaptive RED] X—X50%, 50ms
@ 300 [] 2
3 415 .
B 250 |] ¢
: <]
@ . S
& 200 ° 108
g 5 1.0 - 1
5 10 {8
10.0 : 05 |]
50 ¢]
0.0 |] 00 * . /ﬁg 1
0.0 80.0 160.0 240.0 3200 0.0 80.0 160.0 240.0 320.0
Buffer size (in KB) Buffer size (in KB)
(a) Comparison between schemes (b) Round-trip time and parameter sensitivity

Figure 20: Performance comparisons

the router increases. However, even with larger percent increases, loss rates still remain relatively
low compared to other schemes. The figure also shows that an increased round-trip time has little
impact on performance, with loss rates remaining low as well.

6 Conclusion and Future Work

This paper has shown how active queue management and end-host congestion control algorithms
can be designed to effectively eliminate packet loss in congested networks. In particular, an adaptive
RED mechanism which is cognizant of the number of active connections and the use of bandwidth-
based linear increases both can provide significant benefits in terms of decreasing packet loss and
increasing network utilization. We are currently working on extending both mechanisms. In par-
ticular, we are examining ways of methodically improving the adaptiveness of the RED algorithm.
This paper presents one specific algorithm for tailoring RED parameters to the input traffic. There
are many other potential alternatives for doing so. For example, the RED queue could actually
keep track of the number of active connections and change its aggressiveness accordingly. Another
mechanism would be to have the RED queue infer the number of connections present by the rate
that the average queue length changes, then adapt its parameters accordingly. It may also be
possible to adapt other RED parameters instead of maz, to optimize performance. For example,
one could adaptively change inter-packet drop probabilities or the RED threshold values depending
on the input traffic. Finally, we are examining ways of applying the adaptive RED algorithm to an
enhanced ToS-enabled version of RED (ERED) [5,6] in order to improve its performance, as well.

We are also examining ways of improving end-host congestion control algorithms. While
bandwidth-based increases provide end-hosts with an upper bound on how aggressively they can
ramp up their sending rates, it is often desirable for a source to change its sending rate more slowly
or not at all when nearing the congestion point [2,25,26] in order to avoid oscillations inherent in
TCP’s windowing algorithm. We are currently investigating incorporating such techniques into the
bandwidth-based increase algorithm. We are also exploring additional mechanisms to improve the

19

fairness of the windowing algorithms. One of the advantages of TCP congestion avoidance is that
it inherently gives an advantage to low-bandwidth flows which allows the algorithm to converge
quickly to max-min fairness. Using additional end-host mechanisms and router fairness mechanisms
such as FRED [9, 16], we are currently examining ways of obtaining the benefits of bandwidth-based
increases while maintaining fairness between connections.

7 Acknowledgments

We thank Sally Floyd for helpful comments on an earlier version of this paper.

References

[1] R. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and
L. Zhang. Recommendations on Queue Management and Congestion Avoidance in the Internet.
Internet Draft draft-irtf-e2e-queue-mgt-00.txt, March 1997.

[2] L.S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New Techniques for Congestion
Detection and Avoidance. In Proceedings of ACM SIGCOMM, pages 24-35, October 1994.

[3] D. Chiu and R. Jain. Analysis of the Increase/Decrease Algorithms for Congestion Avoidance
in Computer Networks. Journal of Computer Networks and ISDN, 17(1), June 1989.

[4] J. Crowcroft. TCP very slow start and freeway avoidance. end2end-interest mailing list,
September 1995.

[65] W. Feng, D. Kandlur, D. Saha, and K. Shin. Adaptive Packet Marking for Providing Differ-
entiated Services in the Internet. UM-CSFE-TR-3/7-97 and IBM RC 21013, October 1997.

[6] W. Feng, D. Kandlur, D. Saha, and K. Shin. Understanding TCP Dynamics in an Integrated
Services Internet. In Proc. of NOSSDAV 97, May 1997.

[7] S. Floyd. Connections with Multiple Congested Gateways in Packet-Switched Networks, Part
1: One-way Traffic. Computer Communication Review, 21(5), October 1991.

[8] S. Floyd. TCP and Explicit Congestion Notification. Computer Communication Review,
24(5):10-23, October 1994.

[9] S. Floyd, M. Allman, and C. Partridge. Increasing TCP’s Initial Window. Internet Draft
draft-floyd-incr-init-win-00.tzt, August 1997.

[10] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-Switched Gateways. Internet-
working: Research and Ezxperience, 3(3):115-156, September 1992.

[11] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoidance.
ACM/IEEFE Transactions on Networking, 1(4):397-413, August 1993.

[12] V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM SIGCOMM, pages
314-329, August 1988.

20

[13] V. Jacobson. Modified TCP Congestion Avoidance Algorithm. end2end-interest mailing list
(ftp://ftp.ee.lbl.gov/email /vang. 90apr30.tzt), April 1990.

[14] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure of Fairness and Discrimination for
Resource Allocation in Shared Computer Systems. DEC Research Report TR-301, Sept. 1984.

[15] T. V. Lakshman and U. Madhow. The Performance of TCP/IP for Networks with High
Bandwidth-Delay Products and Random Loss. [FIP Transactions C-26, High Performance
Networking, pages 135-150, 1994.

[16] D. Lin and R. Morris. Dynamics of Random Early Detection. In Proc. of ACM SIGCOMM,
September 1997.

[17] M. Mathis and J. Semke and J. Mahdavi and T. Ott. The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm. Computer Communication Review, 27(1), July 1997.

[18] S. McCanne and S. Floyd. http://www-nrg.ee.lbl.gov/ns/. ns-LBNL Network Simulator, 1996.

[19] R. Morris. TCP Behavior with Many Flows. In Proc. IEEFE International Conference on
Network Protocols, October 1997.

[20] T. Ott, J. Kemperman, and M. Mathis. The Stationary Behavior of Ideal TCP Congestion
Avoidance. ftp://ftp.bellcore.com/pub/tjo/TCPwindow.ps, August 1996.

[21] V. Paxson. End-to-End Internet Packet Dynamics. In Proc. of ACM SIGCOMM, September
1997.

[22] K. K. Ramakrishnan and S. Floyd. A Proposal to Add Explicit Congestion Notification (ECN)
to IPv6 and to TCP. Internet Draft draft-kksjf-ecn-00.tzt, November 1997.

[23] K. K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for Congestion Avoidance in
Computer Networks. ACM Transaction on Computer Systems, 8(2):158-181, May 1990.

[24] C. Villamizar and C. Song. High Performance TCP in ANSNET. Computer Communication
Review, 24(5):45-60, October 1994.

[25] Z. Wang and J. Crowcroft. A New Congestion Control Scheme: Slow Start and Search (Tri-S).
Computer Communication Review, 21(1):32-43, January 1991.

[26] Z. Wang and J. Crowcroft. Eliminating Periodic Packet Losses in 4.3-Tahoe BSD TCP Con-
gestion Control Algorithm. Computer Communication Review, 22(2):9-16, April 1992.

[27] L. Zhang, S. Shenker, and D. Clark. Observations on the Dynamics of a Congestion Control
Algorithm: The Effects of Two-Way Traffic. In Proceedings of ACM SIGCOMM, pages 133—
148, August 1991.

21

