The Semantics of the Java Programming Language:
Preliminary Version

Charles Wallace*
Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, Michigan 48109-2122 USA

wallace@eecs.umich.edu

December 9, 1997

Abstract

A mathematical model of the Java programming language is constructed.

1 Introduction

We provide operational semantics for the Java programming language using the Abstract State Machine
(ASM)} methodology of [Gur95, ASM]. We use Montages ([KP97b]) to specify not only the runtime behavior
of a Java program but also the actions performed at compile time. Following previous work in the area
([GH93, Wal95, KP97a], we present the specification of Java as a sequence of ASMs, each a refinement of
its predecessor which provides new details of a particular aspect of the language. The goal is an orderly and
understandable presentation that culminates in a complete specification of the language.

Amid the growing number of products and concepts bearing the name “Java”, it is important to identify
what this specification comprises and what it does not. We focus solely on the Java programming language
(or simply Java, following standard usage), a class-based, object-oriented high-level programming language.
Actions in a Java program have the form of operations performed on objects, instances of user-defined classes
with named state variables (fields) and procedures (methods). The set of classes forms a hierarchy, with
each class inheriting fields and methods from its superclasses. The programmer defines new methods and
fields for a class at the time of its declaration.

100% Pure Java is an approach to program development that integrates the Java programming language
with the Java Platform, a system-independent programming interface ([Jav]). The Java Platform consists of
the set of core classes and the Java Virtual Machine. The core classes are members of the fixed set of classes
included in the package java.*. The Virtual Machine is a specification of a mechanism for interpreting
(decoding and executing) programs in a low-level language called Java bytecode. A high-level programming
language using the Java Platform® has a compiler to translate its programs to bytecode. A Java runtime
system 1is a software environment in which programs compiled for the Virtual Machine can run. In addition
to implementing the Java Platform, a Java runtime system must have facilities for loading bytecode programs
and managing memory, among other duties.

While Java is normally used in conjunction with the Java Platform, the language can be considered in
isolation. A key feature of Java is its high level of abstraction; the details of the low-level representation are
hidden from the programmer. This specification does not rely on the existence of a Java Platform beneath

*Partially supported by NSF grant CCR-95-04375 and ONR grant N00014-94-1-1182.
1Java, for instance. However, the Java Platform can be (and is) used by other programming languages (e.g. Ada ([App])).

the programming language. Where Java does make assumptions about the underlying system, we express
these assumptions as abstractly as possible.

An important aspect of Java is its emphasis on compile-time safety checks. The language is designed
to catch as many erroneous or malicious programs as possible before they execute. As a result, there are
many subtle issues concerning compilation of Java programs. A mathematical model of the language, such
as the one presented here, can present these issues in a clear and unambiguous way. Early work in the
area (e.g. [GH93, Wal95]) considered only runtime semantics. All compile-time information was represented
informally and was assumed to exist in the initial state of the model. More recently, the Montage approach
has provided a convenient way to represent how this information is derived at compile time. We believe
that the specification presented here can be useful to implementers of Java in clarifying complicated details
about the language. Furthermore, as the specification 1s a mathematical object, it can be used to verify
compile-time and runtime properties of the language.

In Section 2, we introduce terminology and concepts related to Java, ASMs and Montages. The first
specification, in Section 3, concerns the creation of user-defined types or classes. The refinement in Section 4
provides the details of control flow. Section 5 specifies how ezpressions are evaluated. Section 6 deals
with the invocation of methods. Section 7 explains the initialization of classes and class instances, and the
finalization of class instances. Section 8 concerns the execution of threads. Finally, Section 9 deals with locks
and wait sets.

Another effort to provide semantics for Java is the work of [BS97]. However, only an abstract of this
paper 1s provided publicly. To the best of our knowledge, our paper is the first publicly available document
providing both compile-time and runtime semantics for Java.

In this preliminary version, there are some aspects of the language which we do not cover. The specifi-
cation covers only Java version 1.0, so the changes to the language in Java 1.1 do not appear. In addition,
we do not handle volatile variables, or definite assignment of variables before use. We hope to have these
language features included soon in our specification.

Acknowledgments

The following people richly deserve credit for their assistance in this work. Prof. Yuri Gurevich supervised
this work and contributed some of the ideas. Philipp Kutter provided useful input on Montages. Matthias
Anlauff developed the GemMex tool ([Gem]), which was used to produce the diagrams in this paper. Jim
Huggins gave insightful comments on a draft of the paper.

2 Preliminaries

In this section, we provide brief introductions to ASMs and Montages. We use [Gur95, Gur97] as our
references for ASMs. We use the definition of Montages in [KP97b], with a few extensions.

2.1 Abstract state machines
2.1.1 States and updates

A wvocabulary is a finite collection of function names, each with a fixed arity. Relations are treated as Boolean-
valued functions; we call them relation functions. Certain function names appear in every vocabulary: the
nullary (0-ary) functions ¢rue, false and undef, the binary equality function, and the standard Boolean
operations.

A state S of an ASM M with vocabulary T consists of a nonempty set X, called the superuniverse of .S,
and an interpretation of each function name in YT over X. The function names true, false and undef denote
distinct elements of X. The Boolean operations are defined in the expected way over the interpretations of
true and false. the interpretation of undef represents an undefined value and is used to represent partial
functions. While every function f in the state is total, we may define a “domain” for f and set its value to

unde f for every tuple outside its domain. A unary relation symbol U can be seen as representing a universe:
the set of all elements for which U(z) evaluates to true.

An ASM changes from state to state as it runs. An update is an atomic state change: a change in the
interpretation of a single function name for a single tuple of arguments. We define an update as follows. A
location of a state S is a pair | = (f, Z), where f is an r-ary function name in the vocabulary of S and z is
an r-tuple of elements of (the superuniverse of) S. Then an update of S is a pair (I, y), where [is a location
of S and y is an element of S.

At a given state, some elements of the superuniverse are inaccessible through functions of the vocabulary;
we call the set of these elements the reserve. Elements of the reserve may be used later as the ASM requires
more elements. An element is in the reserve if (1) every relational function returns false when given the
element as an argument; (2) every other function returns undef when given the element as an argument;
(3) no function returns the element.

2.1.2 Terms and transition rules

Terms are defined as follows. We use (#)s to represent the interpretation of term ¢ at state S.

e If t = v, where v is a variable name, then (¢)g is the interpretation of v at S.

o If ¢ is of the form f(¢,...1,), where f is an r-ary function name and t; ...t, are terms, then (t)g =

(Hs((t)s - (tr)s).

o If ¢ is of the form (if go then 4y ... elseif g, then ¢,), then (t)s = (¢;)s, where ¢ is the minimum value
for which (g;)s = true. If there is no such 4, then (¢)s = undef.

o If ¢t is of the form {t : v € U : ¢}, where t is a term, v is a variable name, U is a universe name
and ¢ is a Boolean term, then (t)s is the set consisting of all (#)g(y—q4) for all elements a of S where
(U(v))s(v—a) = true and (c)s—a) = true. (S(v — a) is the state S extended to vocabulary T U {v},
with v interpreted as a.)?

o If ¢ is of the form (Yv : g)e, where v is a variable name and g and ¢ are Boolean terms, then (#)s is
true if forall elements a of S, either (¢)s(y—a) = false or (¢)sw—a) = true.

e If ¢ is of the form (Jv : g)e, where v is a variable name and g and ¢ are Boolean terms, then (#)s is
true if for some element a of S, either (g)s(y—aq) = false or (¢)sw—a) = true.

In this paper, we use the following alternative notation. If f is a nullary function name, f abbreviates
F(O. Tf f is a unary function name, z.f abbreviates f(z), where z is a term. If f is an (r 4+ 1)-ary function
name, z.f(Z) abbreviates f(z,z), where z is a term and Z is an r-tuple of terms. We also use t.def? to
abbreviate t # undef and t.undef? to abbreviate ¢ = undef.

An ASM performs controlled state updates through transition rules. For a given state S, a rule gives rise
to a set of updates, as follows.

o If R is a skip instruction, of the form skip, then the update set of R is the empty set.

o If R is an update instruction, of the form f(¢1...t,) := to, where f is an r-ary function name and
each #; is a term, then the update set of R contains a single update (I,y), where y = (9)s and
I=(f,((t1)s ... (tr)s)). To execute R at S, set f((t1)s...(tr)s) to (to)s.

o If R is a block rule, a sequence R ...R, of transition rules, then the update set of R is the union of
the update sets of each R;. To execute R at S, execute all R; simultaneously.

2This type of term first appeared in [BGS97].

o If R is a conditional rule, of the form if gy then Ry ...elseif g, then R, endif, where g;...g, (the
guards) are terms and Ry ... R, are rules, then the update set of R is the update set of R;, where ¢ is
the minimum value for which g¢; evaluates to true. If all g; evaluate to false, then the update set of R
is empty. To execute R at S, execute R; if it exists; otherwise do nothing.

o If R is an import rule, of the form import v Ry endimport, where v is a variable name and Ry is a
rule, then the update set of R at S is the update set of Ry at S(v — a), where a is a reserve element.
To execute R at S, execute Ry at S(v — a).

o If R is a forall rule, of the form do-forall v : ¢ Ry enddo, then the update set of R is the union of
the update sets of Ry at all S(v — a), where a is any element of S for which g evaluates to true at
S(v — a). To execute R at S, execute Ry at S(v — a) for all such a.

e If R is a choice rule, of the form choose v : ¢ Ry endchoose, then the update set of R is the update
set of Ry at some S(v — a), where a is an element of S for which g evaluates to true at S(v — a). To
execute R at S, choose some such a and execute Rg at S(v — a).

We use the following abbreviations for transition rules.

e let v =t Ry endlet abbreviates Rg(v —), the result of substituting ¢ for v in Ry everywhere v is
free.

e if go then Ry ...else R, endif abbreviates if gy then Rj ...elseif true then R, endif.

e extend U with v Ry endextend abbreviates

import v
U(v) := true
Ry

endimport
e choose among R; ... R, abbreviates

choose vg : vg € Bool ...choose v, : v, € Bool
if vy then Ry ...else R,41 endif
endchoose.. . endchoose

2.1.3 Runs

We are ready to describe how an ASM changes from state to state as it runs.

Let T be a vocabulary containing a universe Agent, a unary function mod, and a nullary function Self.
A program II of vocabulary T consists of a finite set of modules, each of which is a named transition rule over
T. A (global) state of T is a structure S of vocabulary T — {Self}, where each module name is interpreted
as a distinct element of S, and mod maps elements of Agent to module names. If Mod(a) = M, we say that
« is an agent with program M.

For every agent a, View,(S) (the local state of a) is the reduct of S to the functions appearing in
mod(a), extended by interpreting the function name Self as a. To fire a at state S, execute mod(a) at
state Viewqy(S).

A run p of a program Il is a triple (M, A, o), where

o M, the moves of p, is a poset where every set {v : v < u} is finite. If M is totally ordered, we say that
p is sequential.

e Aisafunction mapping agents to moves so that every nonempty set {u : A(u) = e} is linearly ordered.
This condition asserts that every agent executes sequentially.

e o is a function mapping finite initial segments of M to states of II. ¢(X) is the state that results from
performing all moves of X in an order according to the relation <. () is the initial state Sp.

e (Coherence) If z is a maximal element in a finite initial segment X of M and Y = X — {z}, then A(x)
is an agent in o(Y), z is a move of A(z) and ¢(X) is obtained from ¢(Y") by performing z at o(Y).

2.2 Montages

We give operational semantics for the Java programming language as an ASM which takes a Java program
as input, compiles it (sets up the program’s initial state and checks it for errors), and then executes it. The
specification of the language is given as a collection of montages, each associated with a production rule of
the syntax.>

A montage has four components: its production rule, an ASM transition rule for compilation (given
partly in graphical format), a condition on the program’s initial state, and a transition rule for program
execution. FEach montage provides a compile-time transition rule C' and a runtime transition rule R. The
ASM rules from all montages are included in the ASM J which gives the semantics of Java. Execution of
J proceeds in two phases: construction and analysis of the program’s initial state, followed by execution of
the program.

The initial state of J contains the compact derivation tree of a program P. A compact derivation tree
is derived from a parse tree by repeatedly collapsing each node n with a single child ¢ to a single node,
with the labels of both n and ¢ and having only the children of ¢ as children, until no such nodes remain.
For every node label u, there is a universe U containing all nodes with that label. The initial state of J
contains a universe of Nodes in the derivation tree, sorted into the universes Leaf (nodes without children)
and Nonleaf (nodes with children). Selector functions link a nonleaf with its children. Let m be a node
labeled with u, and let n be a child of m labeled with v and generated by the production rule uw ::=...v....
Then the function » maps m to n.*

A montage has the following general form:

3We use a grammar equivalent to the LALR(1) grammar of [GJS96], but with certain modifications to ease understanding.
4In our syntax for Java, a production rule has at most one occurrence of a given label on its right-hand side. Thus v selects
a unique c.

PRODUCTION RULES

Main production rule
Unit productions (optional)

COMPILE-TIME RULES
Control/Data flow graph (optional)

Compile-time ASM rule (optional)

COMPILE-TIME CONDITION

condition ASM guard (optional)

RUNTIME RULES

Task Label: Runtime ASM rule (optional)

Compilation of the program consists of two passes, which visit the nodes of the tree in bottom-up, left-
to-right order. Compile-time rules and conditions are characterized as first-pass or second-pass. The nullary
function cur Node returns the currently visited node. (Terms of the form curNode. f(Z), where f is a selector
function name and z is a sequence of terms, appear frequently in our montages and are usually abbreviated
as f(z).) The montage with production rule u ::= vy ...v, is selected when the visited node is in universe
u and has descendants in universes vy ...v,. Square brackets around a node on the right-hand side of a
production signifies that the node is optional (the production for the node may be null). If n is an element
of node universe u, in a production of the form u ::= ...[v].. ., the function v maps m either to an element
n of the universe v, or to an element n of the universe NoN ode.

A universe of tasks represents units of work in the program. Each agent running the program identifies
its current task by the dynamic function curTask. The program has a store of data, represented by dynamic
functions. At any stage of its execution, an agent fires transition rules which may alter the current task or
the store.

During visitation of a node on a given pass, the conditions on the program’s initial state are tested; if
the result of any condition is false, the program is inconsistent and the evaluation ends. Otherwise, the
compile-time rules for the currently visited node set up the compile-time information for the node. In the
graphical portion of the rules, the nodes of the right-hand side of the production rule are represented as
boxes and the tasks to create are represented as ovals. Control and data flow are represented as attributes of
the tasks. The elements (nodes or tasks) containing the initial task (to which control passes from outside the
node) and terminal task (from which control flows beyond the node) are designated in the graph by arrows
labeled I and T, respectively. The functions initialTask and terminalTask map nodes to their initial and
terminal tasks. A result task (from which data flows beyond the node) is designated in the graph by the label
(R). The function resultTask maps nodes to their result tasks. A dotted arrow between elements represents
a control flow relationship between the terminal task of the source and the initial task of the destination. A
solid arrow between elements represents a data flow relationship between the result task of the source and
the result task of the destination. Any compile-time action not representable in terms of arrows between
elements is given as an explicit ASM rule. Terms in compile-time rules may be abbreviated by omitting the

function name resultTask wherever its presence is obvious through context.
For a concrete example, consider the following montage, taken from Section 5.

Multiplication ::= MultiplicativeExpression * UnaryExpression
MultiplicativeExpression = UnaryExpression |Multiplication |Division |Remainder
right Fxpr

;

I->{ MultiplicativeExpression —]\LT—> UnaryExpression —Jyz w ->T

t leftExpr

Multiply.type := binaryPromotion(MultiplicativeExpression, UnaryExpression)

condition MultiplicativeExpression.type.numeric?
UnaryExpression.type.numeric?

Multiply:
result := leftExpr.result.convert To(type) * right Expr.result.convertTo(type)
Proceed Sequentially

The production for this montage has the nonleaf Multiplication on its left-hand side and the non-
leaves Multiplicative Fxpression and UnaryEzpression on its right-hand side. Unit productions for
Multiplicative Expression are given below the main production rule. Multiplicative Fxpression and
UnaryEzpression appear as boxes in the control/data flow graph, along with a task oval labeled Multiply.
The task oval is labeled (R) and has an outgoing T-arrow, indicating that it is the terminal and expression-
end task for the Multiplication production. M ultiplicative Expression has an incoming I-arrow which
means that the initial task of the Multiplicative Expression is also the initial task of the Multiplication
production.

The NT arrow indicates that the terminal task of Multiplicative Expression is to be mapped to the
initial task of UnaryFEzpression by the nextTask function. The le ft Fxpr and right Expr arrows map the
Multiply task to the expression-end tasks of Multiplicative Fxpression and UnaryFzpression. Additional
compile-time rules are given below the graph. These set the type and constant? attributes for the Multiply
task. Note that curNode. Multiply.type 1s abbreviated as M ultiply.type.

The compile-time condition states that the types associated with the expression-end tasks of
Multiplicative Expression and UnaryEzpression are both numeric. Note that the condition
curNode. M ultiplicative Expression.resultTask.type. numeric? is abbreviated by omitting resultTask. Fi-
nally, the runtime rule for the task Multiply is given below the label Multiply. Note that curTask.result
is abbreviated as result.

List productions, of the form A = LIST(B) (or A = LIST(B, s)), produce lists of syntactic elements of
the same type (delimited by the symbol s). For each application of such a production, the derivation tree
has a list of B-elements with a common parent, called a list node. The function List Node[Nat] : Node maps
a list node to each element, and Node.Position : Nat returns each element’s position in the list. The initial
leaf of the list node is the initial leaf of the first element, and the terminal leaf is the terminal leaf of the last
element. Between the terminal task of each list element and the initial task of its successor in the list, there
is a control flow link nextTask.

Function and macro definitions

We assume that any node labeled Identifier has an associated 7D, and any node labeled Literal has an
associated result and type.

macro N.memberOf?(L): (I)L[{]] =N

macro N.firstInList?(L,C(N)):
(Ts node N the first member of list I for which condition C' holds?)
N.memberOf?(L) and C(N) and not (3p : C(p))p.position < N.position

macro N.astInList?(L,C(N)):
(Ts node N the last member of list I for which condition C' holds?)
N.memberOf?(L) and C(N) and not (Ip : C(p))N.position < p.position

macro P.next?(N,L,C(P)):

(Ts node P the next member of list L after node N for which condition C' holds?)

N.memberO f?(L) and P.memberOf?(L) and C(N) and C(P) and N.position < P.position
and not (3¢ : C(q) and qg.memberO f?(L))N.position < q.position < P.position

macro For Each Member N Of List I, C(N)
(VN : N.memberOf?(L))C(N)

macro For All Distinct Members M, N Of List . C(M, N)
For Each Member M Of List L
For Each Member N Of List L
M # N = C(M,N)

macro Process Each Node V In List L R:
(For each child ¢ of the list node L, fire a copy of rule R with variable V set to c.)
do-forall 7 with L[i].def?
let V = LJ[i]
R

At points in the compilation phase, actions are performed in parallel on all the tasks contained within
a certain node. A function Node.contains?(Task) : Boolean determines whether the task is created during
compilation of the node or one of its descendants. We add some rules to the compile-time block of each
montage to establish the values of this function. For a montage whose production rule generates nonterminals
Ni...Np, and which generates tasks ¢y ...t,, add the following:

cur Node.contains?(t1) := true .. .curNode.contains?(t,) := true
do-forall ¢ : t.isA?(Task) : Ny.contains?(t) or ... or Ny,.contains?(t)
cur Node.contains?(t) := true

3 Class and interface structure

Our first model focuses solely on the construction of a program’s user-defined types (classes and interfaces).
No details of the program’s execution are considered, so the ASM has only a compilation phase. We specify
how members are assigned to a class, and how the hierarchy of user-defined types is constructed.

Java has primitive and reference types and a null type. Primitive types are an inherent part of Java
and cannot be modified by the programmer. Instances of primitive types do not change their states during
program execution. The set of primitive types consists of the numeric types and the type Boolean. Numeric
types consist of floating-point (Float and Double) and integral (Long, Int, Short, Char and Byte) types. The
type Boolean has two instances, named True and False. Instances of the types Byte, Short, Int and Long
are 8-bit, 16-bit, 32-bit and 64-bit signed two’s-complement integers, respectively. Instances of type Char

are 16-bit unsigned integers. Instances of Float and Double are 32-bit and 64-bit floating-point numbers,
respectively.

Reference types are defined by the programmer. Reference types consist of classes, interfaces and arrays.
Of these, only classes and arrays have instances. These instances, called objects, are created and may be
destroyed (when no longer needed) during a program’s execution. Associated with an object is a class which
is the type which the object instantiates.® An object’s state may be changed during execution, but its class
remains constant.

Relations between types

Types are related to one another in the following ways. A class C' may eziend a class B, in which case B
becomes the parent of C' and C' becomes a subclass of B and all classes of which B is a subclass. Each class
has a unique parent (except the class Object, which has no parent) and is a subclass of its parent and its
parent’s subclasses. Every array type has exactly one parent: the class Object. An interface J may extend
a number of interfaces Iy ... I,, in which case each I; becomes a parent of J and J becomes a subclass of
each I; and all interfaces of which I; is a subinterface. A class B may also implement an interface A. A class
is a subclass of all interfaces 1t implements and all their superinterfaces.

An array type is built from another type, called its component type. Let ¢ be a type; then t[] is the
array type with t as its component type. We use the notation []?, defined as follows: #[]° = ¢, and
t[]" = (#[1"~H[]. Arrays are unidimensional: an instance of an array has a set of components, each indexed
by a single number. For example, an instance of type int[][] has components of type int[]. The base type
of an array is defined as follows: the base type of a non-array type is the type itself; the base type of an
array type is the base type of its component type. The dimensionality of an array is defined as follows: the
dimensionality of a non-array type is zero; the dimensionality of an array type is the dimensionality of its
component type plus one.

We define a narrower-than relation between types as follows. A class is narrower than the classes and
interfaces of which it is a subclass. An interface is narrower than the interfaces of which it is a subinterface.
The numeric primitive types have the following narrower-than relationship. Byte is narrower than all other
primitive numeric types. Short is narrower than all other primitive numeric types except Byte. Char is
narrower than all other primitive numeric types except Byte. Int is narrower than Long, Float and Double.
Long is narrower than Float and Double. Float is narrower than Double. Finally, an array A is narrower
than another array B if the component type of A i1s narrower than the component type of B.

An expression that computes a result returns either a value or a vartable. A value is an instance of a
type, and a variable is a reference to a value. Variables are typed. A variable of primitive type may refer
only to a value of exactly that type. A variable of reference type may refer only to an instance of a reference
type or to a null value. A non-null variable of class type may refer only to an instance of that class or one of
its subclasses. A non-null variable of interface type may refer only to an instance of a class that implements
the interface. A variable of array type of component type 7' may refer to an array of component type U only
if a variable of type T may refer to a value of type U.

Declarations

In a declaration of a class, a programmer defines its name, members, static initializers and constructors.
Members are fields or methods. A field is a named variable, specified as either a class variable (one variable
shared by all instances of the class) or an instance variable (one unique variable for each instance of the
class). A method is a named procedure that performs operations on the fields of the class. A method is
specified as either a class method (which operates only on the class’s class variables and needs no access
to a particular object of the class) or an instance method (which operates on the variables of a given class
instance). Every program in Java is an invocation of a method. Static initializers are procedures that set

5Note that an array instance has a class.

the initial state of the class (for instance, the values of its class variables). Constructors are procedures that
set the initial state of a class instance.

Members, constructors, classes and interfaces are declared entities. Their declarations may include certain
keywords representing modifiers. The presence of one of these keywords indicates that the entity being
declared has the modifier as an attribute. We describe the meanings of particular modifiers later. The
modifiers public, protected and private are access modifiers. A declaration may contain at most one of
these modifiers. In addition, a declaration may contain at most one instance of the same modifier.

3.1 ASM J,

Later in this section, we define a set of montages My. The ASM J; has a single agent, the compiler, whose
module is Cy, the compile-time rule of My. All compile-time rules and conditions introduced in this section
apply to the first compilation pass. The first pass establishes information on the structure of classes and the
relations between classes, which is needed in the actions of the second pass.

3.2 Function and macro definitions
PrimativeType Universe of primitive types.
Boolean, Byte, Short,
Char, Int, Long,
Float, Double : PrimitiveType Particular primitive types.
Class Universe of classes.
String, Throwable : Class Particular classes.
Interface Universe of interfaces.
Array Universe of array types.
NullType Universe of null types.
Null : NullType The null type.
VarDeclaration Universe of variable declarations.
Method Universe of methods.
Constructor Universe of constructors.
IDString Universe of identifier strings.
IDString.class : Class The class with the given identifier.
IDString.inter face : Inter face | The interface with the given identifier.

macro T.integral?: T € {Byte, Short, Char, Int, Long}
macro T.numeric?: T.integral? or T € {Float, Double}
macro ReferenceType: Class U Inter face U Array

macro Type: PrimitiveType U ReferenceType U NullType

Variable Universe of variables.

PrimitiveV alue Universe of primitive values.

ClassInst Universe of class instances.

Arraylnst Universe of array instances.

NullRef Universe of null references.

null : NullRef The null reference.

StringV alue Universe of string values.
ClassInst.stringVal : StringV alue String contents of the (String) class instance.
ArraylInst.component(Nat) : Variable | Array component with the given index.
Arraylnst.length : Nat Length of the array.
ReferenceType.declared? : Boolean Has the class or interface been declared?

10

macro Object: ClassInst U ArrayInst U NullRef
macro Value: PrimitiveV alue U Object
macro Result: Variable U Value

Object.class : ReferenceType Class of the object.
Value.representableIn?(Type) : Boolean | Can the value be represented in the given type?
Value.convertTo(Type) : Value Result of converting the value to the given type.

Relations between types

Class.subelassO f7(Re ferenceType) : Boolean Is the class a subclass of the reference type?
Inter face.subinter faceO f?(Inter face) : Boolean | Ts the first interface a subinterface
of the second interface?

Type.array(Nat) : Type Type t[]*, given type t and dimensionality n.
Array.componentType : Type Component type of the array.

Type.baseType : Type Base type of the type.

Type.numDims : Type Dimensionality of the type.

macro T.narrowerThan?(U):

(T.subclassOf?(U) or T.subinter faceO f7(U))

or (T'= Byte and U € {Double, Float, Long, Int, Short, Char})
or (T'= Short and U € {Double, Float, Long, Int, Char})

or (T'= Char and U € {Double, Float, Long, Int, Short})

or (T'= Int and U € {Double, Float, Long})
or (I'= Long and U € {Double, Float})
or (T = Float and U = Double)

Declarations

macro DeclaredEntity: Class U Interface U VarDeclaration U Method U Constructor

Modifier Universe of declaration modifiers.
public, protected, private,
static, abstract, final, native,
synchronized,transient, native Identify particular modifiers.
Node.modifier : Modifier Modifier contained in given node.
Declared Entity.accessStatus : Modifier | Access status of entity.

Declared Entity.static? : Boolean,
Declared Entity.abstract? . Boolean,
Declared Entity. final? : Boolean,
Declared Entity.native? : Boolean,
Declared Entity.synchronized? : Boolean,
Declared Entity.transient? : Boolean,
Declared Entity.volatile? : Boolean Does the entity have this modifier?

macro MODLIST.hasModifier?(MOD):
(Does modifier list node MODLIST contain modifier MOD?)
(In : n.memberO f7(MODLIST))n.modifier = MOD

11

macro Assign MODLIST To E:
(Assigns modifiers in modifier list node MODLIST to entity F.)
Process Each Node n In List MODLIST
if n.modifier € {public, protected, private} then E.accessStatus := n.modifier
elseif n.modifier = static then F .static? := true
elseif n.modifier = abstract then E.abstract? :=true
elseif n.modifier = final then E.final? :=true
elseif n.modifier = native then E.native? := true
elseif n.modifier = synchronized then E.synchronized? := true
elseif n.modifier = transient then E.transient? := true
elseif n.modifier = volatile then FE.volatile? := true

macro MODLIST .consistent?:
(Ts modifier list node MODLIST free of duplicate modifiers and conflicting access modifiers?)
For All Distinct Members m,n Of List MODLIST

m.modifier # n.modifier

and (m.modifier € {public, protected, private} = n.modifier & {public, protected, private})

3.3 Type references

A given primitive type is identified by the appropriate keyword (e.g. boolean). A given class or interface
is identified by its identifier string. An array is identified by a type reference followed by a sequence of []
tokens, each representing a dimension of the array.

Node.type : Type Type specified in the given node.
Node.ID : IDString | Identifier specified in the given node.

Type = PrimitiveType |ReferenceType
PrimitiveType = boolean |byte |short |char |int |long |float |double
ReferenceType = ClassType |InterfaceType |ArrayType

if curNode.type.undef? then
curNode.type :=

(if curNode.isA?(booleanNode) then Boolean
elseif curNode.isA?(byteNode) then Byte
elseif curNode.isA?(shortNode) then Short
elseif curNode.isA?(charNode) then Char
elseif curNode.isA?(intNode) then Int
elseif curNode.isA?(longNode) then Long
elseif curNode.isA?(floatNode) then Float
elseif curNode.isA?(doubleNode) then Double)

TypeName = Identifier

curNode.type := (if curNode.ID.class.declared? then curNode.ID.class
else curNode.ID.interface)

condition curNode.ID.class.declared? <=> not curNode.ID.interface.declared?

12

ClassType = TypeName

condition curNode.type.isA?(Class)

InterfaceType = TypeName

condition curNode.type.isA?(Interface)

ArrayType 1= Type]|]

curNode.type := Type.type.array(1)

3.4 Field declaration

By including a field declaration in the declaration of a class ¢, a programmer declares a set of fields for c.
Each field in the declaration has a distinct identifier. A common type and set of modifiers are specified for
all the fields in the declaration. The modifiers are any of the following;:

e access status: determines where references to these fields may appear. (Discussed further in Section 5.)

o final: selected if classes that extend ¢ are forbidden to hide any of these fields. (Discussed further in
Section 3.8.)

e static: determines whether these fields are static (class) variables, each with one instantiation per class,
or instance variables, each with one instantiation per class instance.

Field declaration

A FieldDeclaration contains a Type, a list of FieldDeclarations and a list of Variable Declarators. The
identifiers in Variable Declarators must be distinct. The modifiers in Flield M odifiers must be distinct and
must specify at most one access status.

To process FieldDeclaration, create a new field for each identifier in the list Variable Declarators and
assign each the type specified in Type and the modifier attributes in FieldModifiers. If the fields are
declared static, create a new variable for each one.

Node.field(IDString) : VarDeclaration | Field declared in given declaration node with given ID.
Node.declaration : VarDeclaration Variable declaration in given declarator node.
VarDeclaration.type : Type Type of field’s variable.

VarDeclaration.init Expr : Task Initializer expression for field.

13

FieldDeclaration = [FieldModifiers] Type VariableDeclarators ;

FieldModifiers = LIST(FieldModifier)
FieldModifier = public |protected |private |final |static |transient |volatile
VariableDeclarators = LIST(VariableDeclarator,)

Process Each Node n In List VariableDeclarators
curNode.field(n.ID) := n.declaration
Assign FieldModifiers To n.declaration
n.declaration.type := Type.type

condition FieldModifiers.consistent?

(For All Distinct Members m,n Of List VariableDeclarators) m.ID # n.ID

Variable declarator

VariableDeclarator ::= VariableDeclaratorld [= VariablelInitializer]

I——->{ Varnablelnitializer ——-=>T

curNode.ID := VariableDeclaratorld.ID
extend Declaration with d
curNode.declaration := d
d.initExpr := VariableInitializer
VariableDeclaratorld.ID.localVarDecl := d

condition VariableDeclaratorId.ID.localVarDecl.undef?”

3.5

Method declaration

By including a method declaration in the declaration of a class ¢, a programmer declares a method for class

c. A

have

method has an identifier, a list of parameter types, a return type, a list of thrown exceptions, and may
any of the following attributes:

access status: determines where invocations of this method may appear. (Discussed further in Sec-
tion 5.)

final: selected if classes that extend ¢ are forbidden to hide or override this method. (Discussed further
in Section 3.8.)

static: determines whether this method is a static (class) method (invoked without reference to a
particular object) or an instance method (invoked upon an instance of this class).

abstract: selected if the programmer has supplied only the signature (identifier, return type and
parameter types) for the method.

native: selected if the implementation of the method is given in terms of non-Java code.

14

TypeSeq Universe of indexed sets of types.

Method.type : Type Return type of the method.

Method.throws?(Class) : Boolean Does the method throw the given class?

Method.ID : IDString Identifier of the given method.

Method.paramTypes : TypeSeq Types of the given method’s parameters.
Method.paramDecl(Nat) : VarDeclaration | Parameter declaration with given index for the method.

Method declaration

A MethodDeclaration contains a MethodHeader and a MethodBody. If MethodBody is a block of code,
then the method created in MethodH eader must not be specified as abstract.

| Node.method : Method | Method created within the given node. |

MethodDeclaration ::= MethodHeader MethodBody
MethodBody = Block [;

curNode.method := MethodHeader.method

condition MethodBody.isA?(BlockNode) =>
not (MethodHeader.method.abstract? or MethodHeader.method.native?)

Method header

A MethodH eader contains an optional list of MethodModifiers, a ReturnType, a MethodDeclarator and
an optional list Throws of thrown exception types. There must be at most one instance of each modifier,
and at most one access status modifier, in MethodM odifiers. If the method is declared abstract, then it
must not be declared private, static, final, native or synchronized.

To process MethodHeader, assign the modifiers in MethodM odifiers and the list of thrown exceptions
in Throws to the method created in MethodDeclarator. Assign the method the return type ¢[]*, where ¢
is the type specified in ReturnType, and n is the number of dimensions specified in Method Declarator.

Node.numDims : Nat Number of array dimensions specified in the given node.
Node.throws?(Class) : Boolean | Has the given class been specified as a thrown exception
in the given node?

15

MethodHeader ::= [MethodModifiers] ReturnType MethodDeclarator [Throws]

ReturnType = Type |void
MethodModifiers = LIST(MethodModifier)
MethodModifier = public |protected |private |final |static |abstract [native

let m = MethodDeclarator.method
curNode.method := m
Assign MethodModifiers To m
m.type := ReturnType.type.array(MethodDeclarator.numDims)
do-forall e: e.isA?(Class): Throws.throws?(e)

m.throws?(e) := true

condition MethodModifiers.consistent?
MethodModifiers.hasModifier?(abstract) =>
(forall mod: mod in {private,static,final,native,synchronized})
not MethodModifiers.hasModifier?(mod)
ReturnType.isA?(voidNode) => MethodDeclarator.numDims = 0

Method declarator

A MethodDeclarator contains an Identifier, an optional FormalParameterList and an optional list Dims
of [] tokens. The identifiers in FormalParameterList must be distinct.

To process MethodDeclarator, create a method and assign it the identifier in Identifier and the pa-
rameter types in Formal Parameter List.

MethodDeclarator ::= Identifier ([FormalParameterList]) [Dims]
FormalParameterList = LIST(FormalParameter;)
Dims = LIST()

curNode.numDims := Dims.length
extend Method with m
curNode.method := m
m.ID := Identifier.ID
m.paramTypes :=
{(i,FormalParameterList[i].declaration.type): FormalParameterList[i].def?}
Process Each Node n In List FormalParameterList
m.paramDecl(n.position) := n.declaration

condition (For All Distinct Members m,n Of List FormalParameterList) m.ID # n.ID

Formal parameter

A FormalParameter specifies a Variable DeclaratorId identifier and Type for a variable. The identifier
must not name any previously declared local variable or parameter.

16

FormalParameter ::= Type VariableDeclaratorIld

curNode.ID := VariableDeclaratorld.ID
extend Declaration with d
curNode.declaration := d

d.type := Type.type
VariableDeclaratorId.ID.localVarDecl := d

condition VariableDeclaratorId.ID.localVarDecl.undef”

Throws clause

A Throws clause specifies a set of thrown exception classes in ClassTypeList. Each thrown class must be
a subclass of the class Throwable.

Throws ::= throws ClassTypeList
ClassTypeList = LIST(ClassType,)

Process Each Node n In List ClassTypeList
curNode.throws?(n.type) := true

condition (For Fach Member n Of List ClassTypeList) n.type.subclassOf?(Throwable)

3.6 Static initializer

A StaticInitializer declaration specifies a block of code to execute when a class is initialized. We discuss
static initializers further in Section 7.

StaticInitializer ::= static Block

[--=>{ Block ——>T

3.7 Constructor declaration

By including a constructor declaration in the declaration of a class ¢, a programmer declares a constructor
for class ¢. A constructor has an identifier (which must match the identifier of the class), a list of parameter
types, a list of thrown exceptions, and an access status modifier.

Constructor.throws?(Class) : Boolean Has the given class been specified

as a thrown exception in the given constructor?
Constructor.paramTypes : TypeSeq Types of the given constructor’s parameters.
Constructor.ID : IDString Identifier of the given constructor.

(must match identifier of its class).
Constructor.paramDecl(Nat) : VarDeclaration | Parameter declaration with given index.

17

Constructor declaration

| Node.constructor : Constructor | Constructor created within the given node. |

ConstructorDeclaration ::= [ConstructorModifiers] ConstructorDeclarator
[Throws] ConstructorBody

ConstructorModifiers = LIST(ConstructorModifer)

ConstructorModifier = public |protected |private

let ¢ = ConstructorDeclarator.constructor
curNode.constructor := ¢
Assign ConstructorModifiers To ¢
do-forall e: e.isA?(Class): Throws.throws?(e)
c.throws?(e) := true

condition ConstructorModifiers.consistent?

Constructor declarator

A Constructor Declarator contains a TypeName and an optional FormalParameterList. The identifiers
in FormalParameterList must be distinct.

To process Constructor Declarator, create a constructor and assign it the parameter types in
Formal Parameter List.

ConstructorDeclarator ::= TypeName ([FormalParameterList])

extend Constructor with ¢
curNode.constructor := ¢
c.ID := TypeName.ID
c.paramTypes :=
{(i,FormalParameterList[i].declaration.type): FormalParameterList[i].def?}
Process Each Node n In List FormalParameterList
c.paramDecl(n.position) := n.declaration

3.8 Class declaration

In a class declaration, a programmer defines a new class. A class has an identifier specified in Identifier, a
parent class specified in Super, a list of implemented interfaces specified in Inter faces, a set of members,
static initializers and constructors specified in ClassBody, and may have any of the following attributes

specified in C'lassM odi fiers:

e public: to be discussed later.

o abstract: selected if the class has an incomplete definition because (1) it declares an abstract method,
(2) it inherits an abstract method, or (3) it fails to implement a method declared in an interface.

e final: selected if the class 1s forbidden to have subclasses.

18

Members are installed in a class by either explicit declaration or inheritance. A class inherits the fields
of its superclass and superinterfaces. If it declares a field with the same identifier as an inherited field, the
inherited field 1s hidden. A field declared as final may not be hidden. If a class inherits a field from its parent
class and another field of the same identifier from an interface, or if it inherits two fields of the same identifier
from different interfaces, the fields are not installed. A class inherits any method of its superclass for which
it does not declare a method of the same signature. If it declares a method with the same identifier and
parameter types as an inherited method, the declared method owverrides the inherited method. A method
declared as final may not be overridden.

Class.parentClass : Class Parent of the class.
Class.field(IDString, Re ferenceType) : Variable Declaration | Field of the class with the given ID,
inherited from the given superclass.
Class.method(IDString, TypeSeq) : Method Method of the class with the given
identifier and parameter types.

Class declaration

The identifier of the class must not be used by another class or interface. The declared parent class must not
be final. If the class definition is incomplete, the class must be declared abstract, and must not be declared
final. An interface must not be named more than once in the Interfaces clause, and any methods they
share, matching in identifier and parameter types, must also agree in return type. Interface methods must
also agree with any matching declared or inherited methods in terms of return type.

Node.hasInter face?(Inter face) : Boolean Does the given interface list node contain
the given interface?
Node.method(I1DString, TypeSeq) : Method | Method declared in the node

with given identifier and parameter types.

Node.constructor(TypeSeq) : Constructor Constructor declared in the node

with given parameter types.
Task.curClass : Class Class in whose declaration the task appears.
Declared Entity.declarer : Class Class in which the field or method is declared.

macro declared Parent:
(parent class of new class)
(if Identifier.ID = ”Object” then undef else (if Super.isPresent? then Super.type else Object))

macro NAM E.methodTolInstall(TY PES):

(Method with given identifier and parameter types to install in the class:

method declared in ClassBody, if present; otherwise, method of parent)

(if ClassBody.method(NAME,TY PES).def? then ClassBody.method(NAME,TY PES)
else declared Parent.method(NAME,TY PES))

macro inter facesTolmplement:
(set of interfaces listed in Inter faces clause)
{int : int.isA?(Inter face) : Inter faces.hasInter face?(int)}

macro incompleteClassDe finition?:
(Does the new class install an abstract method?)
(Fid, 1 : id.isA?(IDString) and t.isA?(TypeSeq))
id.methodTolnstall(t).abstract?
or (id.methodTolnstall(t).undef? and (i € inter facesToImplement)i.method(id,t).def?)

19

macro C'LASS Inherit From Parent Class:
(Establish CLASS as subclass of its parent and of all its parent’s subclasses;
inherit fields and methods from parent class.)
do-forall b : b.isA?(Class) : declared Parent.subclassO f7(b)
CLASS.subclassOf?(b) := true
do-forall id : id.isA?(I1DString)
CLASS.field(id,b) := declaredParent.field(id,b)
do-forall id : ClassBody.field(id).undef? and declaredParent.field(id, declaredParent).def?
if (Vint € inter facesTolImplement : int.field(id, int).def?)
int.field(id,int) = declared Parent.field(id, declared Parent) then
CLASS.field(id, CLASS) := declaredParent. field(id, declared Parent)
do-forall id,t : ClassBody.method(id,t).undef? and declared Parent.method(id,t).def?
CLASS.method(id,t) := declared Parent.method(id, t)

macro C'LASS Inherit From Interfaces:
(Establish CLASS as subclass of the interfaces it implements; inherit fields from interfaces.)
do-forall i : i € inter facesToIlmplement
do-forall j : i = j or i.subinter faceO f7(j)
CLASS.subclassOf?(j) :=true
do-forall id : id.isA?(I1DString)
CLASS.field(id, j) := i.field(id, j)
do-forall id : ClassBody.field(id).undef? and i.field(id,7).def?
if declaredParent. field(id, declared Parent).undef?
and (Vj € inter facesToImplement: j.field(id,j).def?) j.field(id, j) = i.field(id, 7)) then
CLASS.field(id, CLASS) = i.field(id, i)

macro Set Up Initializers:

(Establish static and instance initializers for class. Details given in Section 7.)
skip

20

ClassDeclaration ::= [ClassModifiers] class Identifier [Super]| [Interfaces]
ClassBody

ClassModifiers = LIST(ClassModifier)

ClassModifier public |abstract [final

let ¢ = Identifier.ID.class
c.declared? := true
do-forall t: t.isA?(Task): ClassBody.contains?(t)
t.curClass := ¢
Assign ClassModifiers To ¢
c.parentClass := parent
¢ Inherit From Parent Class
¢ Inherit From Interfaces
do-forall id: ClassBody.field(id).def?
c.field(id,c) := ClassBody.field(id)
ClassBody.field(id).declarer := ¢
do-forall id,t: ClassBody.method(id,t).def?
c.method(id,t) := ClassBody.method(id,t)
ClassBody.method(id,t).declarer := ¢
do-forall t: ClassBody.constructor(t).def?
c.constructor(t) := ClassBody.constructor(t)
Set Up Initializers

condition not (Identifier.ID.class.declared? or Identifier.ID.interface.declared?)

declaredParent.def? => declaredParent.declared?

Identifier.ID = "Object” => not Super.isPresent?

incompleteClassDefinition? =>
(ClassModifiers.hasModifier?(abstract) and not ClassModifiers.hasModifier?(final))

not declaredParent.final?

(forall id,t: id.methodTolnstall(t).def?)
(forall int: int in interfacesToImplement: int.method(id,t).def?)

id.methodToInstall(t).type = int.method(id,t).type

(forall ¢: ClassBody.constructor(t).def?)

ClassBody.constructor(t).ID = Identifier.ID

Super clause

Super := extends ClassType

curNode.type := ClassType.type

Interfaces clause

An Interfaces clause specifies a list of interfaces in Inter faceTypeList. Each interface must be distinct,
and any method declarations between interfaces that match in terms of identifier and parameter types must
also agree in terms of return type.

21

Interfaces ::= implements InterfaceTypeList
InterfaceTypeList = LIST(InterfaceType,)

Process Each Node n In List InterfaceTypeList
curNode.hasInterface?(n.type) := true

condition (For All Distinct Members m,n Of List InterfaceTypeList) m.type # n.type
(forall id,t: id.isA?(IDString) and t.isA?(TypeSeq))
(For All Distinct Members m,n Of List InterfaceTypeList)
m.type.method(id,t).def? and n.type.method(id,t).def?) =>
m.type.method(id,t).type = n.type.method(id,t).type

Class body

A ClassBody contains a list of C'lassBodyDeclarations; each is a declaration of a field, method, static
initializer or constructor. There must be no two method declarations that match in terms of identifier and
parameter types, no two constructor declarations that match in terms of parameter types, and no two field
declarations which declare fields with the same identifier.

macro Add Class Initializer:
(Add static initializer for class. Details given in Section 7.)
skip

macro Add Field Initializers:

(Add initializers of instance fields for class. Details given in Section 7.)
skip

22

ClassBody i:= { [ClassBodyDeclarations] }

ClassBodyDeclarations = LIST(ClassBodyDeclaration)
ClassBodyDeclaration = ClassMemberDeclaration |StaticInitializer
. = |ConstructorDeclaration
ClassMemberDeclaration = FieldDeclaration |MethodDeclaration

Process Each Node n In List ClassBodyDeclarations
if n.isA ?(MethodDeclarationNode) then
curNode.method(n.method.ID, n.method.paramTypes) := n.method
elseif n.isA ?(ConstructorDeclarationNode) then
curNode.constructor(n.constructor.paramTypes) := n.constructor
elseif n.isA ?(StaticInitializerNode) then
Add Class Initializer
elseif n.isA ?(FieldDeclarationNode) then
do-forall id in IDString with n.field(id).def?
field(id) := n.field(id)
if n.static? then Add Class Initializer
else Add Field Initializers

condition (For All Distinct Members m,n Of List ClassBodyDeclarations)
m.isA ?(MethodDeclarationNode) and n.isA?(MethodDeclarationNode)) =>
not (m.method.ID = n.method.ID
and m.method.paramTypes = n.method.paramTypes)
(For All Distinct Members m,n Of List ClassBodyDeclarations)
m.isA ?(ConstructorDeclarationNode) and n.isA?(ConstructorDeclarationNode)) =>
m.constructor.paramTypes # n.constructor.paramTypes
(For All Distinct Members m,n Of List ClassBodyDeclarations)
(forall id: id.isA?(IDString)) not (m.field(id).def? and n.field(id).def?)

3.9 Interface declaration

In an interface declaration, a programmer defines a new interface. An interface has an identifier specified
in Identifier, a list of parent interfaces specified in ExtendsInterfaces, and a set of members specified
in InterfaceBody. FEvery interface is implicitly public and abstract. If an interface specifies no parent
interfaces, it implicitly extends the interface Cloneable.

macro inter facesToF xtend:
(Set of interfaces listed in FatendsInterfaces clause.)
{int : int.isA?(Inter face) : ExtendsInter faces.hasInter face?(int)}

macro INTERF ACE Inherit From Parent Interfaces:
(Establish INTERF ACE as subinterface of all the interfaces it extends; inherit fields from interfaces.)
if Interfaces.isPresent? then
do-forall i : i € inter facesToFE xtend
do-forall j : i = j or i.subinter faceOf7(j)
INTERF ACE .subinter faceO f?(j) = true
do-forall id : id.isA?(IDString)
INTERFACE.field(id,j) := i.field(id, j)
do-forall id : id.isA?(IDString) : Inter face Body.field(id).undef? and i.field(id, 7). undef?
if (Vj € interfacesToFxtend : j.field(id, j).def?)j.field(id, j) = i.field(id, i) then

23

INTERFACE ficld(id, INTERFACE) = i.ficld(id, i)
else INTERF ACE.subinter faceO f?(Cloneable) := true

InterfaceDeclaration ::= [InterfaceModifiers] interface Identifier
[ExtendsInterfaces] InterfaceBody

InterfaceModifiers = LIST(InterfaceModifier)

InterfaceModifier = public |abstract

let int = Identifier.ID.interface

int.declared? := true

int.accessStatus := public

int.abstract? := true

int Inherit From Parent Interfaces

do-forall id: id.isA?(IDString): InterfaceBody.field(id).def?
int.field(id,int) := InterfaceBody.field(id)
InterfaceBody.field(id).declarer := int

do-forall id, t: id.isA?(IDString) and t.isA?(TypeSeq): InterfaceBody.method(id,t).def?
int.method(id,t) := InterfaceBody.method(id,t)

condition not (Identifier.ID.class.declared? or Identifier.ID.interface.declared?)
(forall int: int in interfacesToExtend) int.declared?

Interface extension clause

An FxtendsInter faces clause specifies a list of interfaces in Inter faceTypeList. Each interface must be
distinct, and any method declarations between interfaces that match in terms of identifier and parameter
types must also agree in terms of return type.

ExtendsInterfaces ::= extends InterfaceTypeList

Process Each Node n In List InterfaceTypeList
curNode.hasInterface?(n.type) := true

condition (or All Distinct Members Of List InterfaceTypeList) m.type # n.type
(forall id,t: id.isA?(IDString) and t.isA?(TypeSeq))
(For All Distinct Members m,n Of List InterfaceTypeList)
m.type.method(id,t).def? and n.type.method(id,t).def? =>
m.type.method(id,t).type = n.type.method(id,t).type

Interface body

An Inter face Body contains a list of Inter face BodyDeclarations; each is a declaration of a constant field
or an abstract method. There must be no two method declarations that match in terms of identifier and
parameter types, and no two field declarations which declare fields with the same type.

24

InterfaceBody = { [InterfaceMemberDeclarations] }
InterfaceMemberDeclarations = LIST(InterfaceMemberDeclaration)
InterfaceMemberDeclaration = ConstantDeclaration |AbstractMethodDeclaration

Process Each Node n In List InterfaceMemberDeclarations
if n.isA ?(AbstractMethodDeclarationNode) then
curNode.method(n.method.ID, n.method.paramTypes) := n.method
elseif n.isA ?(ConstantDeclarationNode) then
do-forall id: id.isA?(IDString): n.field(id).def?
curNode.field(id) := n.field(id)

condition (For All Distinct Members m,n Of List InterfaceMemberDeclarations)
m.method.def? and n.method.def? => not (m.method.ID = n.method.ID
and m.method.paramTypes = n.methodParamTypes)
(For All Distinct Members m,n Of List InterfaceMemberDeclarations)
m.constructor.def? and n.constructor.def? =>
m.constructor.paramTypes # n.constructor.paramTypes
(For All Distinct Members m,n Of List InterfaceMemberDeclarations)
(forall id: id.isA?(IDString)) not (m.field(id).undef? and n.field(id).undef?)

Constant declaration

A ConstantDeclaration is a restricted form of Field Declaration in which each declared field is implicitly
public, static and final and is required to have an initializing value.

ConstantDeclaration ::= ConstantModifiers Type VariableDeclarators
ConstantModifiers = LIST(ConstantModifier)
ConstantModifier = public |static |final

Process Each Node n In List VariableDeclarators
curNode.field(n.ID) := n.declaration
n.declaration.accessStatus := public
n.declaration.static? := true
n.declaration.final? := true
n.declaration.type := Type.type

condition (For All Distinct Members m,n Of List VariableDeclarators) m.ID # n.ID

Abstract method declaration

An Abstract M ethodDeclaration 1s a restricted form of method declaration in which the declared method 1s
implicitly public and abstract.

25

AbstractMethodDeclaration ::= [AbstractMethodModifiers] ReturnType

MethodDeclarator [Throws] ;
AbstractMethodModifiers = LIST(AbstractMethodModifier)
AbstractMethodModifier = public |abstract

let m = MethodDeclarator.method
curNode.method := m
m.accessStatus := public
m.abstract? := true
m.type := ReturnType.type.array(MethodDeclarator.numDims)
do-forall e: e.isA?(Class): Throws.throws?(e)
m.throws?(e) := true

4 Execution of statements

Control flow, the ordering of program actions during a run, is determined by statements, syntactic constructs
representing commands. This ASM specifies for each statement type how control flow is established for
statements of that type.

4.1 Preliminaries

In normal execution mode, control passes from a statement to one of a fixed set of successors. Normal
execution may be interrupted by the abrupt completion of a statement. This may arise from the execution
of a statement that orders an abrupt completion, or the occurrence of an ezception during the evaluation of
an expression. When a statement completes abruptly, an enclosing target statement is established, and all
statements intervening between the current and target statements complete abruptly. Of these statements,
only those components marked as mandatory are executed. Normal execution resumes when the target
is reached. We refer to the process of executing the mandatory portions of the intervening statements as
Jumping toward the target.

Tasks are atomic units of work that serve as statement components. They may be classified according to
their control flow characteristics. For a sequential task, there is a unique successor always chosen as the next
task. For a branch task, selection of the next task is based on a previously calculated test result. The task has
fixed successors for certain results and a default successor for all others. For a jump task, a target is chosen.
If the target is reachable immediately, control passes to it. Otherwise, there are intervening mandatory tasks
to execute, so control passes to the first intervening mandatory task. If a target had previously been set, it
is discarded in favor of the new target.

4.2 ASM

The ASM J; has two agents. The compiler has module C7, the compile-time rules of My, and the ezecutor
has module R;, the runtime rules of M;. M; consists of the montages of My plus the montages defined in
the remainder of this section. In all runs of J;, the compiler runs to completion before the executor.

4.3 Function and macro definitions

All compile-time rules and conditions introduced in this section and all following sections apply to the second
compilation pass.

26

normal? : Boolean is execution in normal mode?
curTask : Task Current task to execute.
curTargetTask : Task current target task (if jumping).
Task.nextTask : Task task to which control passes in normal execution mode.
Task.test Expr : Task test expression for branch task.
Task.branchTask(Result) : Task task to which control passes given the test value.
Task.next MandatoryBlock : Task first task of the next mandatory block.
Task.endTask : Task final task of the given task’s method or constructor.
Task.targetTask : Task target of the given jump task.
Task.catchTarget(Class) : Task target task to establish

if an exception of the given class is thrown.
Task.inMandatoryBlock? : Boolean | Is this task part of a mandatory block?

Terms of the form curTask.f(Z), where f is a function name and Z is a sequence of terms, are usually

abbreviated as f(Z).

macro Jump Toward ¢
(Jump toward a target task. If there are mandatory tasks between the current and target tasks,
start a jump toward the target. Otherwise, pass control directly to the target.)
if next MandatoryBlock # t.nextMandatoryBlock then

normal? := false

curTargetTask =t

curTask := next M andatoryBlock
elseif t.undef? then curTask := endTask
else

normal? := true

curTask =1

macro Proceed Sequentially

(Pass control from a sequential task to another task. If the execution mode is normal
or a mandatory block is being executed, pass control to the task’s successor.
Otherwise, continue the jump in progress toward a target task.)

if normal? or nextTask.inMandatoryBlock? then curTask := nextTask

else Jump Toward curTargetTask

macro BranchOnTestResult:

(Choose a successor based on a previously computed test result.

If a successor is defined for the test result, pass control to that successor;

otherwise pass to a default successor.)

if branchTask(test Expr.result).def? then curTask := branchTask(test Expr.result)
else Proceed Sequentially

macro Throw E:

(Throw the exception given by F.)
cur Exception .= F

Jump Toward catchTarget(E.class)

macro Throw Exception Of Class C"
(Create an exception object of class C' and throw it.)
extend ClassInst with e

curFxception := e

e.class :=C

Jump Toward catchTarget(C)

27

4.4 Construction of statements

For each type of statement, we describe the actions performed when executing a statement of that type,
and how to construct a representation of the statement in the initial state. Since we consider only the
flow of control between statements here, we ignore the internal structure of expressions. The montage for
expressions contains a single task Evaluate. This task is assigned an arbitrary type and executes by either
(1) returning an arbitrary result and proceeding sequentially or (2) throwing an exception.

Task.result : Result result of expression evaluation.
Task.type : Type type of result returned by the task.
Task.constant? : Boolean | Is the expression (task) constant?

Expression =

- Evaluate(R) =T

choose t: t.isA?(Type)
Evaluate.type := t

Evaluate:
choose among

do
choose r: r.isA?(Result): r.representableIn?(type)
result :=r
Proceed Sequentially

choose ¢ in Class with c.subclassOf?(Throwable)
Throw Exception Of Class ¢

ConstantExpression = Expression

condition Expression.constant?

4.4.1 Block

A Block contains a list of BlockStatements. To execute Block, execute the statements in BlockStatements
sequentially. (Any local variables declared within the Block are undefined outside the Block.)

IDString.localV arDecl : Variable Declaration | Declaration of local variable or parameter
with given identifier.

28

Block 2= { [BlockStatements] }

BlockStatements = LIST(BlockStatement)
BlockStatement = LocalVariableDeclarationStatement |Statement
Statement = StatementNoTrailingSubstatement |LabeledStatement

IfThenStatement |[IfThenElseStatement
|WhileStatement |ForStatement

Block |EmptyStatement |ExpressionStatement
|[SwitchStatement |DoStatement |BreakStatement
|ContinueStatement |ReturnStatement
|SynchronizedStatement |ThrowStatement

= | TryStatement

StatementNoTrailingSubstatement

BlockStatements(LIST)
- ——— > =T

BlockStatement

Process Each Node m in List BlockStatements
if m.isA?(LocalVariableDeclarationStatement) then

Process Each Node n in List m.VariableDeclarators
n.ID.varDecl := undef

4.4.2 Local variable declaration statement

A LocalVariable DeclarationStatement contains a list of Variable Declarators. Each variable declaration
in Variable Declarators is assigned the type given in T'ype. The variable identifiers of Variable Declarators
must be distinct, and the initializer expression of each Variable Declarator (if it is present) must be assignable
to the type given in Type.

To execute LocalV ariable DeclarationStatement, create a variable of the type specified by T'ype for each
declarator in Variable Declarators. If the declarator specifies an initial value for the variable, assign it to
the variable.

| Variable Declaration.localV ar : Variable | Local variable created by the declaration. |

macro F.assignableTo?(T):
(Ts the result of the expression F assignable to the type 77
Only if E’s type is narrower than or equal to T,
or if E is a constant int value and 7" is narrower than Int.) F.type.numDims = T.numDims
and (F.type.baseType = T.baseType

or E.type.baseType.narrowerThan?(T.baseType)

or (T.baseType.narrowerThan?(E type.baseType) and E.constant? and

T.baseType € {Byte, Short, Char} and FE.result.representableIn?(T.baseType))

29

LocalVariableDeclarationStatement ::= Type VariableDeclarators ;
VariableDeclarators = LIST(VariableDeclarator,)

——— VariableDeclarators(LIST)

I— = VariableDeclarator -

initExpr(.)

Process Each Node n In List VariableDeclarators
n.declaration.type := Type.type
DeclareVariables.declaration(n.position) := n.declaration

condition (For All Distinct Members m,n Of List VariableDeclarators) m.ID # n.ID
(For Each Member n Of List VariableDeclarators) n.assignableTo?(Type.type)

DeclareVariables:
do-forall i: declaration(i).def?
extend Variable with var
declaration(i).localVar := var
if initExpr(i).def? then var.value := initExpr(i).result
Proceed Sequentially

4.4.3 Empty statement
An EmptyStatement is not executed.

EmptyStatement ::= ;

Proceed: Proceed Sequentially

4.4.4 Labeled statement

A LabeledStatement contains an Identifier and a Statement. Statement must not contain any labeled
statements with the same label as that of I'dentifier. If Statement contains a C'ontinueStatement with the
same label as that of Identifier, then Statement must be a loop statement (W hileStatement, DoStatement
or ForStatement).

To execute LabeledStatement, execute Statement. (For any break or continue statement within
Statement with the label of Tdentifier, Statement contains its target.)

Default Universe of default values.
default : Default | The default label value.

30

macro JumpLabel: 1DString U De fault

Task.label : JumpLabel Label of this break or continue task.
Node.continueTarget : Task | target of any continue task within this node.

LabeledStatement ::= Identifier : Statement

I-—-> Statement ----=>T

do-forall ¢: t.isA?(BreakTask): Statement.contains?(t) and t.label = Identifier.ID
t.target Task := Statement.terminalTask

do-forall t: t.isA?(ContinueTask): Statement.contains?(t) and t.label = Identifier.ID
t.targetTask := Statement.continueTarget

condition ((exists ¢ : Statement.contains?(t) and t.isA?(ContinueTask)) t.label = Identifier.ID) =>
(Statement.isA ?(WhileStatementNode) or Statement.isA?(DoStatementNode)
or Statement.isA ?(ForStatementNode))
not (exists n : Statement.contains?(n) and n.isA?(LabeledStatement))
n.Identifier.ID = Identifier.ID

4.4.5 Expression statement

An EzpressionStatement contains a Statement Expression. Statement Exzpression must not have a type.
To execute ExpressionStatement, evaluate Statement Fxpression.

ExpressionStatement ::= StatementExpression ;

- >{ StatementExpression | —>T

condition StatementExpression.type.undef?

4.4.6 If statements

An I fThenStatement contains an Exzpression and a Statement. The type of Fxpression must be Boolean.

To execute I fThenStatement, evaluate Fxpression. If the result is true, execute Statement.

An IfThenFlseStatement contains an Fzpression, a Statement and a StatementNoShortIf. The
type of Expression must be Boolean.

To execute [fThenElseStatement, evaluate FEzxpression. If the result is true, execute
Statement NoShortIf; if it is false, execute Statement.

31

IfThenStatement ::= if (Expression) Statement

testEzpr

;

I-->{ Expression N ﬂ@ ——]—\]I———>——>T

| branchTask(irue) !
I
|
K NT)
Statement F-————---
condition Expression.type = Boolean
Branch: Branch On Test Result
IfThenElseStatement ::= if (Expression) StatementNoShortIf else Statement
StatementNoShortIf = StatementNoTrailingSubstatement |LabeledStatementNoShortIf

= [IfThenElseStatementNoShortIf [WhileStatementNoShortIf
= |ForStatementNoShortIf

testFxpr
Y branch Task(false)

I-->{ Expression [---- ranch Statement

T
branchTask(irue) : NT

NT
StatementNoShortlf r—-————-—-—-— —> --=>T

condition Expression.type = Boolean

4.4.7 Switch statement

A SwitchStatement contains an Ezpression and a SwitchBlock. The type of Exzpression must be Char,
Byte, Short or Int. Every SwitchLabel in SwitchBlock must be assignable to the type of Ezpression.

To execute SwitchStatement, evaluate Fxpression to get a result r. If there is a
SwitchBlockStatementGroup in the SwitchBlock with a SwitchLabel of the form case r :, pass con-
trol to the first of its BlockStatements. Otherwise, if there is a SwitchBlockStatementGroup with a
SwitchLabel default :, pass control to the first of its BlockStatements.

macro SwitchLabelValue: Value U Default

Node.case Expr(SwitchLabelV alue) : Task | result task of (constant) expression
returning the given switch label value.
Node.caseTask(SwitchLabelV alue) : Task | initial task associated with the switch label value.

32

SwitchStatement ::= switch (Expression) SwitchBlock

testFxpr

"
I-->| Expression --21- @ SwitchBlock |- 2 - —> -->T

do-forall val: val.isA?(Value): SwitchBlock.caseTask(val).def?
Branch.branchTask(val) := SwitchBlock.caseTask(val)

Branch.nextTask :=
(if SwitchBlock.caseTask(default).def? then SwitchBlock.caseTask(default) else Proceed)

condition Expression.resultType in {Char,Byte,Short,Int}
(forall val: val.isA?(Value): SwitchBlock.caseTask(val).def?)
SwitchBlock.caseExpr(val).assignableTo?(Expression.type)

Switch block

A SwitchBlock contains a list of SwitchBlockStatementGroups and a list of SwitchLabels. There is
a set of label values associated with each SwitchBlockStatementGroup, and these sets must not over-
lap. The label values in SwitchLabels must be distinct from one another and from the label values in
SwitchBlockStatementGroups.

The SwitchLabels within the SwitchBlockStatementGroups list associate label values with statements
within the block. The SwitchLabels at the end of SwitchBlock associate label values with the statement

following the block.

| Node.switchLabelV alue : SwitchLabelV alue | Value specified in the switch label node. |

33

SwitchBlock 2= { [SwitchBlockStatementGroups] [SwitchLabels] }

SwitchBlockStatementGroups = LIST(SwitchBlockStatementGroup)
SwitchLabels = LIST(SwitchLabel)
SwitchLabel = CaseSwitchLabel |DefaultSwitchLabel

SwitchBlockStatement Groups(LIST)

SwitchBlockStatementGroup ->T

Process Each Node n In List SwitchBlockStatementGroups
do-forall val: val.isA?(SwitchLabelValue): n.caseTask(val).def?
curNode.caseTask(val) := n.caseTask(val)
if n.caseExpr(val).def? then
curNode.caseExpr(val) := n.caseExpr(val)

condition (For All Distinct Members m,n Of List SwitchBlockStatementGroups)
(forall val: val.isA?(SwitchLabelValue)
not (m.caseTask(val).def? and n.caseTask(val).def?)
(For All Distinct Members m,n Of List SwitchLabels)
m.switchLabelValue # n.switchLabelValue
(For Each Member m Of List SwitchBlockStatementGroups)
(For Each Member n Of List SwitchLabels) m.caseTask(n.switchLabelValue).undef?

Switch block statement group

A SwitchBlockStatementGroup contains a list of BlockStatements and a list of SwitchLabels. For each
label value, the 1nitial statement of the BlockStatements is associated with the label.
The labels in Switch Labels must be distinct.

SwitchBlockStatementGroup ::= SwitchLabels BlockStatements

BlockStatements(LIST)

I-—— > BlockStatement -->T

do-forall n: n.memberOf?(SwitchLabels)

curNode.caseTask(n.switchLabelValue) := BlockStatements.initial Task
if n.isA ?(CaseSwitchLabelNode) then
curNode.caseExpr(n.switchLabelValue) := n

condition (For All Distinct Members m,n Of List SwitchLabels)
m.switchLabelValue # n.switchLabelValue

34

Switch label

A SwitchLabel takes one of two forms: either specifying a label value or a default value.

CaseSwitchLabel ::= case ConstantExpression :
ConstantExpression = Expression

ConstantExpression (R)

curNode.switchLabelValue := Constant Expression.result

DefaultSwitchLabel ::= default :

curNode.switchLabel Value := default

4.4.8 While statement

W hileStatement contains an Ezpression and a Statement. The type of Fzpression must be Boolean.

To execute WhileStatement, evaluate Fxpression. If the result is ftrue, execute Statement and then
repeat execution of WhileStatement.

WhileStatement ::=

while (Expression) Statement

testFxpr

;

I— —| Expression L NT @ — T
A

:bmnchTask(true)
v

Statement

do-forall t: Statement.contains?(t) and t.label = default and t.target Task.undef?
if t.isA ?(BreakTask) then

t.target Task := branch
elseif t.isA?(ContinueTask) then
t.target Task := Expression.initial Task
curNode.continueTarget := Expression.initial Task

condition Expression.type = Boolean

4.4.9 Do statement

DoStatement contains an Fzpresston and a Statement. The type of Ezpression must be Boolean

To execute DoStatement, execute Statement and then evaluate Exzpression. If the result is true, repeat
execution of DoStatement.

35

DoStatement ::= do Statement while (Expression) ;

testFxpr

{

I-——>| Statement - NT_ > Expression | NI @ —-—>T

| branch Task(irue) |

do-forall t: Statement.contains?(t) and t.label = default and t.target Task.undef?
if t.isA ?(BreakTask) then
t.target Task := Branch
elseif t.isA ?(ContinueTask) then
t.target Task := Expression.initial Task
curNode.continueTarget := Expression.initial Task

condition Expression.type = Boolean

4.4.10 For statement

ForStatement contains an optional Forlnit block, an optional Ezpression, an optional ForUpdate block
and a Statement. The type of Ezpression must be Boolean. (Any local variables declared within the
ForInit block are undefined outside the ForStatement.)

To execute ForStatement, execute ForInit. Then evaluate Fxpression; if the result is true, execute
Statement, then execute ForUpdate, and repeat execution of ForStatement, starting with the evaluation
of Expression.

36

ForStatement ::= for ([ForInit] ; [Expression] ; [ForUpdate]) Statement

ForlInit = StatementExpressionList |LocalVariableDeclarationStatement
StatementExpressionList = LIST(StatementExpression)
ForUpdate = StatementExpressionList

testFxpr

;

I-—=—> Forlnit [ANT_, Expression |- NT_ @ —— T

TNT \L branchTask(irue)

ForUpdate [« ———-—- Statement

do-forall t: Statement.contains?(t) and t.label = default and t.target Task.undef?
if t.isA ?(BreakTask) then
t.target Task := Branch
elseif t.isA?(ContinueTask) then
t.targetTask := ForUpdate.initial
curNode.continueTarget := ForUpdate.initial Task
if ForlInit.isA?(LocalVariableDeclarationStatementNode) then
Process Each Node n In List Forlnit. VariableDeclarators
n.ID.localVarDecl := undef

condition Expression.type = Boolean

4.4.11 Break statement

BreakStatement contains an optional Identifier. To execute BreakStatement, jump toward the target of
the break (determined at compile time). If Tdentifier is present, the target is the task immediately after
the enclosing statement labeled with Identifier. Otherwise, the target is the task immediately after the
innermost enclosing W hileStatement, DoStatement or ForStatement.

BreakStatement ::= break [Identifier] ;

Break.label := (if Identifier.def? then Identifier.ID else default)

Break: Jump Toward targetTask.nextTask

4.4.12 Continue statement

ContinueStatement contains an optional Identifier. To execute ContinueStatement, jump toward the
target of the continue (determined at compile time). If Identifier is present, the target is the test expression
of the enclosing WhileStatement or DoStatement labeled with Identifier, or the update statement of
the enclosing ForStatement labeled with Identifier. Otherwise, the target is the test expression of the

37

innermost enclosing W hileStatement or DoStatement or the update statement of the innermost enclosing
ForStatement.

ContinueStatement ::= continue [Identifier] ;

Continue.label := (if Identifier.def? then Identifier.ID else default)

Continue: Jump Toward targetTask

4.4.13 Return statement

ReturnStatement contains an optional Ezpression. To execute ReturnStatement, evaluate Expression (if
it is present) and jump toward the end of the method.

macro Return:
(Jump toward end of method/constructor. Further details in Section 6.)
Jump Toward endTask

ReturnStatement ::= return [Expression] ;

retEzpr

;

I——>| Expression |- NT_ —> ->T

Return: Return

4.4.14 Throw statement

ThrowStatement contains an Exzpression. The type of Ezpression must be a subclass of the class Throw-
able.

To execute ThrowStatement, evaluate Fxpression to get a result r and jump toward the initial statement
of the catch block appropriate to the class of Fxpression’s result.

38

ThrowStatement ::= throw Expression ;

exceptionFxpr

v
I-->{ Expression |--=-- > —— T

condition Expression.type.subclassOf?(Throwable)

Throw:
Throw exceptionExpr.result

4.4.15 Synchronized statement

A SynchronizedStatement contains an Ezpression and a Block. To execute SynchronizedStatement,
evaluate Ezpression. If the result is null, throw a NullPointerException. Otherwise, issue a lock request for
the object returned by Ezpression. Wait until the lock is granted, then execute Block. Finally, issue an
unlock request for the object. (We treat locks in detail in Section 9.

macro Issue Lock Request:
(Tssue lock request for indicated object. Details given in Section 9.)
Proceed Sequentially

macro Synchronize:
(Wait for lock to be granted. Details given in Section 9.)
Proceed Sequentially

macro Issue Unlock Request:

(Tssue unlock request. Details given in Section 9.)
Proceed Sequentially

39

SynchronizedStatement ::= synchronized (Expression) Block

synchFEzpr

;

I-->| Expression

NT NT

synchFEzpr

synchFEzpr

condition Expression.type.isA?(ReferenceType)

Lock: Issue Lock Request
Synchronize: Synchronize
Unlock: Issue Unlock Request

4.4.16 Try statement

A TryStatement contains a Block, an optional list of C'atches clauses and an optional F'inally block. To
execute TryStatement, execute Block. (Statements in Finally are mandatory. In the case of an exception
of class e during execution of Block, control passes to the leftmost C'atchC'lause whose formal parameter
type can be assigned e. After completion of Block or any CatchClause, control passes to Finally.)

TryStatement ::= try Block [Catches] [Finally]
Catches = LIST(CatchClause)
NT .

I--—--> Block F----- > Finally |F---- ->T

A

|

: NTCatches(LIST)

|

CatchClause

do-forall t,e: t.isA?(Task) and e.isA?(Class): Block.contains?(t) and e.subclassOf?(Throwable)
choose n: n.firstInList?(Catches, e = n.type or e.subclassOf?(n.type))
t.catchTarget(e) := n.initial Task
do-forall t: t.isA?(Task): Block.contains?(t) or Catches.contains?(t)
if t.nextMandatoryBlock.undef? then t.nextMandatoryBlock := Finally.initialTask

condition not Catches.isPresent? => Finally.isPresent?

Catch clause

A CatchClause contains a FormalParameter and a Block. The parameter is associated with the block.
The declared type of the parameter must be a subclass of Throwable.

40

CatchClause := catch (FormalParameter) Block

NT
I-- DeclareParameter -——> Block F—--=>T

curNode.type := FormalParameter.type

DeclareParameter.declaration := FormalParameter.declaration
FormalParameter.ID.localVarDecl := undef

condition FormalParameter.type.subclassOf?(Throwable)

DeclareParameter:

extend Variable with var
declaration.localVar := var
var.value := curException

curException := undef

Proceed Sequentially

Finally block

A Finally block contains a Block. All statements in Block are mandatory.

Finally ::= finally Block

I- =~ Block —=>T

do-forall ¢ in Task with Block.contains?(t)
t.inMandatoryBlock? := true

4.5 Compile-time checks for method and constructor declarations

At the level of a method or constructor declaration, several compile-time checks of the statements in the
declaration body are performed. In addition, some extra control-flow information is added. We provide the
details of these compile-time actions.

Method declaration

A MethodDeclaration contains a MethodBody, which contains the code of the newly declared method m,
and a Method H eader, which specifies everything else. The validity of the Method Body and 1ts compatibility
with the information in Method Header is checked as follows.

1. The targets of all break and continue statements in MethodBody must be defined somewhere within
MethodBody.

2. If m is static, there must be no ThisEzpression or Super Fxpression within MethodBody.

3. If m is a void method, then there must be no ReturnStatement in MethodBody containing an
Fzxpression. If m is not void, there must be no ReturnStatement in MethodBody without an

41

FEzpression; moreover, it must be impossible to reach the end of the method through any means
other than a jump.

4. For any exception e thrown within Method Body, one of the following must be true.

(a) e is a subclass of the class RunTimeException;

(c) e is caught within Method Body;

)
(b) e is a subclass of the class Error;
)
(d) e is listed as a thrown exception of m.

MethodDeclaration ::= MethodHeader MethodBody

let m = MethodHeader.method
m.first Task := MethodBody.initial Task
curNode.method := m

condition let m = MethodHeader.method
MethodBody.isA ?(Block) <=> not (m.abstract? or m.native?)
(forall t: MethodBody.contains?(t) and t.isA?(ThrowStatement))
t.exceptionExpr.type.subclass?(RuntimeException)
or t.exceptionExpr.type.subclass?(Error)
or t.catchTarget(exceptionExpr.type).def?
or m.throws?(exceptionExpr.type)
(forall t: MethodBody.contains?(t) and (t.isA?(BreakTask) or t.isA?(ContinueTask)))
t.target Task.def?
m.type.undef? =>
(forall t: MethodBody.contains?(t) and t.isA ?(ReturnTask)) t.retExpr.undef?
m.type.def? =>
(forall t: MethodBody.contains?(t) and t.isA ?(ReturnTask))
t.retExpr.type = MethodHeader.method.type
and not (exists t: MethodBody.contains?(t)) t.nextTask = t.endTask
m.static? =>
not (exists n: MethodBody.contains?(n))
n.isA?(ThisExpressionNode) or n.isA?(SuperExpressionNode)

Method body

A MethodBody is either a Block (representing the code of the method) or a token ; (representing an abstract
or native method). If the MethodBody is a Block, then execution of the method begins at the beginning of
Block and terminates at the end of Block.

macro Terminate Invocation:
(Stop execution of the current method. Details given in Section 6.) curTask := undef

42

MethodBody = Block |;

BN ey MG G

do-forall t: t.isA?(Task): Block.contains?(t)
t.endTask := End

End: Terminate Invocation

Constructor declaration

A Constructor Declaration contains a Constructor Body, which contains the code of the constructor ¢, an
optional access status modifier in Constructor M odifiers, an optional list of thrown exceptions in Throws,
and the rest of the constructor’s specification in Constructor Declarator. The Constructor Body is checked
for validity and compatibility with the other information about ¢, as follows.

1. The targets of all break and continue statements in MethodBody must be defined somewhere within
MethodBody.

2. There must be no ReturnStatement in Constructor Body containing an Ezpression.

3. For any exception e thrown within Method Body, one of the following must be true.

(a) e is a subclass of the class RunTimeException;

(b)

(c) e is caught within MethodBody;
)

(d) e is listed as a thrown exception of m.

e 1s a subclass of the class Error;

43

ConstructorDeclaration := [ConstructorModifiers] ConstructorDeclarator [Throws]
ConstructorBody

ConstructorModifiers = LIST(ConstructorModifer)
ConstructorModifier = public |protected |private
ConstructorBody = ConstructorBodyNolnvocation

= |ConstructorBodyWithInvocation

let ¢ = ConstructorDeclarator.constructor
curNode.constructor := ¢
Assign ConstructorModifiers To ¢
do-forall e: e.isA?(Class): Throws.throws?(e)
c.throws?(e) := true
c.first Task := ConstructorBody.initial

condition ConstructorModifiers.consistent?

(forall ¢: ConstructorBody.contains?(t) and t.isA?(ThrowStatement))
t.exceptionExpr.type.subclass?(RuntimeException)
or t.exceptionExpr.type.subclass?(Error)
or t.catchTarget(exceptionExpr.type).def?
or m.throws?(exceptionExpr.type)

(forall ¢: ConstructorBody.contains?(t) and
(t.isA?(BreakTask) or t.isA?(ContinueTask)))

t.target Task.def?
(forall t: MethodBody.contains?(t) and t.isA?(ReturnTask)) t.retExpr.undef?

Constructor body

A Constructor Body is either a MethodBody (containing a list of BlockStatements or it contains an
EzplicitConstructorInvocation followed by a list of BlockStatements. If it is of the form Method Body,
execution proceeds as follows. First the default constructor of the current class’s parent is invoked. The
default constructor for a class takes no arguments. Next, the initializer expressions for the non-static fields
declared in the current class are evaluated in order and assigned to the target object’s fields. Then the
MethodBody is executed.

An EzplicitConstructor Invocation is of the form this ([ArgumentList]) (an invocation of a con-
structor declared in the current class) or of the form super ([ArgumentList]) (an invocation of
a constructor declared in the parent of the current class). To execute a ConstructorBody with an
EzplicitConstructorInvocation, first evaluate the expressions in ArgumentList, then invoke the appro-
priate constructor. If the constructor invocation is of the form super ([ArgumentList]), evaluate the
initializer expressions for the non-static fields declared in the current class and assign them to the target
object’s fields. Finally, execute BlockStatements.

macro Initialize Fields:

(Assign initial values to the fields of the new class instance. Details given in Section 7.)
Proceed Sequentially

44

ConstructorBodyNoInvocation = MethodBody

NT NT
== >ClokeComtrueior>- o Gitrtd)4 o[Methotiody |47 ~(ond)

do-forall t: t.isA?(Task) and MethodBody.contains?(t)
t.endTask := End

InvokeConstructor: Invoke Constructor
InitFields: Initialize Fields

ConstructorBodyWithInvocation ::= { ExplicitConstructorInvocation
[BlockStatements] }
ExplicitConstructorInvocation = ThisConstructorInvocation

= |SuperConstructorInvocation

I— = ExplicitConstructorInvocation |- NI > BlockStatements |- NI

do-forall t: t.isA?(Task) and MethodBody.contains?(t)
t.endTask := End

ThisConstructorInvocation ::= this ([ArgumentList]) ;
ArgumentList(LIST)
. NT
I--- Expression -—= InvokeConstructor)-—-=>T
L initExpr(.)
SuperConstructorInvocation ::= super ([ArgumentList]) ;
ArgumentList(LIST)
. NT NT
[--- Expression -—= InvokeConstructor)———- —> ->T
L initExpr(.)

5 Evaluation of expressions

Like statements, expressions are defined recursively; expressions may be built from subexpressions. Eval-
uating an expression involves evaluating its subexpressions and computing a result based on the results of

45

its subexpressions. This ASM represents expression evaluations as multi-step procedures and details how
expression results are computed.

5.1 Preliminaries

Java uses strong type checking to ensure the integrity of expression evaluation. Each expression that returns
a result as part of its evaluation has a type, and the set of possible results returned by an expression is
restricted to the set of instances of its type. An expression that returns no result is called void and has no
type. Such an expression cannot be part of a larger expression, as any subexpression must return a result
to 1ts superexpression. Hence a void expression can only serve as an expression statement.

The type of an arithmetic expression (e.g. negation, multiplication) depends on the types of its operands.
Numeric promotion determines the type of an arithmetic expression given the (numeric) types of its subex-
pressions. It may also require that the results of the operands be converted to the promoted type. Unary
promotion is applied to an expression with a single operand. If the type of the operand is Byte, Short or
Int, the promoted type is Int; otherwise, the promoted type is the type of the operand. Binary promotion
is applied to an expression with two operands. If either operand is of type Double, the promoted type is
Double; otherwise, if either operand is of type Float, the promoted type is Float; otherwise, if either operand
is of type Long, the promoted type is Long; otherwise, the promoted type is Int.

Certain expressions access variables to derive their results. An expression name accesses a local variable,
parameter variable, or field variable; a field access accesses a field variable; an array access accesses an array
variable. Depending on the context, such expressions may be required to return either the value stored in
the variable, or the variable itself. In the latter case, the expression is called an lvalue expression. An lvalue
expression is used in an assignment; the returned variable is assigned a new value.

The evaluation of certain expressions may result in thrown exceptions. The creation of a class instance
or array or the concatenation of strings requires allocation of memory for new objects. If the allocation is
unsuccessful due to a lack of available memory, an OutOfMemoryException is thrown. The creation of an
array may also result in a NegativeArraySizeException, if an array of negative size 1s requested. A field or
array access or method invocation results in a NullPointerException if the accessee is null. An array access
beyond the bounds of an array results in an IndexOutOfBoundsException. A ClassCastException occurs in
a cast expression which attempts a conversion that is found to be illegal at runtime. A division or remainder
operation that attempts to divide by zero throws an ArithmeticException. Finally, an assignment to an
array component results in an ArrayStoreException if the assignment conversion is found to be illegal at
runtime.

5.2 ASM J,

M consists of the montages of M; plus the montages defined later in this section. The ASM J5 has two
agents: The compiler with module C (compile-time rules of M») and the ezecutor with module Ry (runtime
rules of My).

5.3 Function and macro definitions

targetObject : Object target object of the current method.

Task.lvalue? : Boolean is this the result task of an lvalue expression?
Task.rightTask : Task initial task of operator’s right subexpression.
Task.subexpr : Task result task of operator’s (unique) subexpression.
Task.leftExpr : Task result task of operator’s left subexpression.
Task.right Expr : Task result task of operator’s right subexpression.
Task.argExzpr(Nat) : Task | result task of argument expression with given index.

46

macro Get New Memory R:
(For expression task that involves allocation of memory,
either execute task rule R or throw OutOfMemoryException.)
choose among

R

Throw Exception Of Class OutO f M emoryFE zception

macro A.unaryPromotion:
(Promoted type, given single operand A.)
(if A.type € {Byte, Short, Char} then Int else A.type)

macro binaryPromotion(A, B):

(Promoted type, given two operands A and B.)

(if A.type = Double or B.type = Double then Double
elseif A.type = Float or B.type = Float then Float
elseif A.type = Long or B.type = Long then Long
else Int)

macro Access VAR:
(Access the variable VAR. If current expression is an lvalue, the result is the variable itself;
otherwise, it is the value of the variable.)
if lvalue? then
result := VAR
Proceed Sequentially
else
result := VAR.value
Proceed Sequentially

macro Assign VAL To VAR:
(Assign the value VAL to the variable VAR.)
VAR.walue .= VAL

5.4 Construction of expressions

For each type of expression, we describe the actions performed when evaluating an expression of that type,
and how to construct a representation of the expression in the initial state. We delay a detailed treatment
of method invocation expressions to Section 6. Since certain groups of expression types behave similarly to
one another, we do not give montages for all expression types. For a group of related expression types, we
give a montage for one representative example and simply give the production rules for the other expression

types.
5.4.1 Primary expression

Literal expression

A Literal Expression contains a Literal, which denotes a fixed value. A Literal Expression is never
evaluated; its result is the value of the Literal, which is computed at compile time. The type of the
Literal Expression is the type of the Literal.

47

Literal Expression Literal

1- Proceed(R) >T

if Literal.type = String then
extend ClassInst with inst

Proceed.result := inst
inst.stringVal := Literal.result
inst.class := String

else Proceed.result := Literal.result

Proceed.type := Literal.type

Proceed.constant? := true

This expression

To evaluate ThisEzpression, return the target object of the method. The type of the expression is the class

in which the expression appears.

ThisExpression = this

1-- ReturnThis(R) >->T

ReturnThis.type := curNode.curClass

ReturnThis:
result := targetObj
Proceed Sequentially

Parenthesized expression

A Parenthesized EFxpression contains an Fxpression.

To evaluate Parenthesized Fxpression, evaluate

FErxpression and return its result. The type of the Parenthesized Expression is the type of Expression.

Parenthesized Expression

(Expression)

Expression(R)

48

Class instance creation expression

A ClassInstanceCreation Expression contains a ClassType and an ArgumentList, a list of Expressions.
The class given by ClassType must not be abstract.

To evaluate ClassInstanceCreation Expression, create an object of the class denoted by ClassType. If
there is insufficient space to allocate the object, throw an QutOfMemoryError. Create instances of all the
fields of the class and initialize them to their default values. Next, evaluate the Fxpressions in Argument List
from left to right, and then invoke the appropriate constructor with the results of ArgumentList as argu-
ments. Finally, return the newly created object. The type of the ClassInstanceCreation Expression is the
class denoted by ClassType.

ClassInstanceCreationExpression ::= new ClassType ([ArgumentList])
ArgumentList = LIST(Expression,)
argFzpr(.)
4 .
ArgumentList(LIST)

_»T

InvokeConstructor

I- NewlInstance(R) N—T—> Expression NT

Newlnstance.type := ClassType.type

condition not ClassType.type.abstract?

Newlnstance:
Get New Memory
extend ClassInst with obj
obj.class := type
result := obj

Array creation expression

An ArrayCreation Exzpression contains an ArrayComponentType, a list DimFEzprs of dimension size ex-
pressions, and a list Dims of [] tokens. Each expression in DimFEzprs must be of type Byte, Short or
Int.

Let m be the number of expressions in DimFEzpr, let n be the number of tokens in Dims, and let ¢
be the type denoted by ArrayComponentType. To evaluate ArrayCreation Expression, first evaluate the
dimension size expressions in DimFzprs from left to right, performing unary numeric promotion on each.
Then check that each of the resulting values dimsize; ...dimsize,, is nonnegative, from left to right. If a
dimension size is negative, throw a NegativeArraySizeException. Next, create an array object a. The type
of a is t[]™*". Then for each dimension i, set the sizes of each i-dimension subarray of a to dimsize;. If
the elements of the ith dimension are of array type, create enough objects or arrays to give each ¢-dimension
subarray dimsize; unique components, and initialize these components to their default values. Return the
new array object a. The type of the ArrayCreation Expression is t[|1,

Each expression in DimEzprs must be of Byte, Short or Int type.

49

Task.dimSizeExpr : Task Task which returns size of given dimension.

Task.previousDim : Task Creation task for next higher dimension.
Task.numNewComponents : Nat Number of array components created by this task.
Task.newArray(Nat) : Array Array with given index created by this task.

Task.create De faultComponents? : Boolean | Shall default values be assigned
to the components of this dimension?

macro Create DIMSIZE Components For NUM ARRAY S Arrays:
(For each of the NUMARRAY S arrays created by the previous dimension-initializer task,
initialize DIM SIZE components. This means either assigning default values for the new components,
or assigning arrays as components (in which case the component arrays
must in turn be initialized by a later dimension-initializer task).)
if create De faultComponents? then
do-forall i : i < NUMARRAY S
previousDim.new Array(i).length :== DIMSIZE
do-forall j : j < DIMSIZE
extend Variable with v
previousDim.new Array(i).component(j) := v
v.value = type.defaultV alue
else
numNewComponents := NUMARRAY S « DIMSIZE
do-forall 7 : i < NUMARRAY S
previousDim.new Array(i).length .= DIMSIZE
do-forall j : j < DIMSIZE
extend Variable with v, Array with a
previousDim.new Array(i).component(j) := v
v.value 1= a
newArray(DIMSIZE xi+j) :=a

50

ArrayCreationExpression ::= new ArrayComponentType DimExprs [Dims]
ArrayComponentType = PrimitiveType | TypeName

DimExprs(LIST)

I- - > DimExpr T NewArray(R) NT,

dimSize Ezpr

CheckDims(LIST)

CheckDim

J

dimSize Ezpr

NT
v
InitDims(LIST)

let numdims = DimExprs.length + Dims.length

NewArray.type := ArrayComponentType.type.array(numdims)

Process Each Node t in List InitDims

t.previousDim := (if t.position = 1 then NewArray else InitDims[t.position - 1])
InitDims[InitDims.length].createDefault Components? := true
InitDims[InitDims.length].type := ArrayComponentType.type.array(Dims.length)

__»T

condition (For Fach Member n Of List DimExprs) n.type in {Byte,Short,Int}

NewArray:
Get New Memory
let dimsize = dimSizeExpr.result.convertTo(Int)
extend Array with a
result := a
numNewComponents := 1
newArray(0) := a
CheckDim:
if dimSizeExpr.result.convertTo(Int) < 0 then
Throw Exception Of Class NegativeArraySizeException
else Proceed Sequentially
InitDim:
Get New Memory
let dimsize = dimSizeExpr.result.convertTo(Int)
let numarrays = previousDim.numNewComponents
Create dimsize Components For numarrays Arrays

DimExpr ::= [Expression]

I-->| Expression(R) |->T

o1

Field access expression

A FieldAccess contains a FlieldAccessee and an Identifier. Let id be the identifier specified in Identifier,
and let ¢ be the type of FieldAccessee. t must be a reference type, and id must i1dentify an accessible field
in t.

To evaluate FieldAccess, evaluate FieldAccessee, then return the value of the field of the resulting
object, given the identifier ¢d and type ¢. The type of FieldAccess is the type of the field of ¢, given the

identifier i¢d and type ¢.

Variable Declaration.staticVar : Variable

Object.fieldVar(Variable Declaration) : Variable

Task.final FieldAccess? : Boolean
Task.staticField Access? : Boolean
Task.field : Variable Declaration

Variable associated with the static field.
Variable associated with the given object’s
instance field.

Is this task an access of a final field?

Is this task an access of a static field?

Field to access for the given field access task.

macro F.accessible Field?(T):
(Ts the field F' accessible in the current class, given field accessee task 7'7)
F.def? and (F.accessStatus = private = curClass = F.declarer)
and (Fl.accessStatus = protected = (curClass = F.declarer or (curClass.subclassO f?(F.declarer)
and (T.Super Expression.isPresent? or T.type = curClass or T.type.subclassO f?(curClass)))))

FieldAccess = FieldAccessee . Identifier
FieldAccessee = Primary |SuperExpression
Primary = PrimaryNoNewArray |ArrayCreationExpression
PrimaryNoNewArray = LiteralExpression | ThisExpression |ParenthesizedExpression
= |ClassInstanceCreationExpression |FieldAccess |MethodInvocation
= |Array Access
subexpr
a NT
I-->| FieldAccessee |—-— AccessField(R) >T

AccessField.ID := Identifier.ID

let f = FieldAccessee.type.field(Identifier.ID,Field Accessee.type)
AccessField.type := f.type
AccessField.field .= f
AccessField.finalField Access?
AccessField.staticFieldAccess?

:= f.final?
:= f.static?

condition let f = FieldAccessee.type.field(Identifier.ID,Field Accessee.type)
f.accessibleField?(FieldAccessee)

AccessField:

if (subexpr.result = null and not staticFieldAccess?) then
Throw Exception Of Class NullPointer Exception

else let var = (if staticFieldAccess? then field.staticVar else subexpr.result.fieldVar(field))
Access var

52

SuperExpression = super

I-->CReturnThis(R) >-->T

ReturnThis.type := curClass.parent

condition curClass.parent.def?

Method invocation expression

A MethodInvocation takes one of the following forms:

1. Identifier ([ArgumentList]). To evaluate, first evaluate the expressions in ArgList, then invoke
the appropriate method.

2. TypeName . Identifier ([ArgumentList]). To evaluate, first evaluate the expressions in ArgList,
then invoke the appropriate method.

3. Invoker . Identifier ([ArgumentList]), where Invoker is an FxzpressionName, Primary or
Super Ezpression. To evaluate, first evaluate Invoker, then the expressions in ArgumentList, and
finally invoke the appropriate method.

The “appropriate method” to invoke is defined in Section 6.

macro Perform Invocation:
(Choose and invoke the appropriate method. Details in Section 6.)
Proceed Sequentially

SimpleMethodInvocation ::= Identifier ([ArgumentList])
ArgumentList(LIST)
. NT -
I- Expression - — — - >{uvokeSimpleMethod(R)— =T

argEzpr(.)

InvokeSimpleMethod: Perform Simple Invocation

93

QualifiedMethodInvocationl ::= TypeName . Identifier ([ArgumentList])

ArgumentList(LIST)
. NT
I—- Expression ——— >{uvokeQualMethod(R
L argFzpr(.)

InvokeQualMethod: Perform Qualified Invocation

QualifiedMethodInvocation2 ::= Invoker . Identifier ([ArgumentList])
Invoker = ExpressionName |Primary |SuperExpression
ArgumentList(LIST)
I1———>| Invoker | NT | Expression NT >QuvokeQualMethod(R
argFEzpr(.
L gEzpr(.)

Array access expression

An ArrayAccess contains an ArrayAccessee and an Expression. The type of ArrayAccessee must be an
array type, and the type of Ezpression must be Byte, Short or Int.

To evaluate ArrayAccess, evaluate the ArrayAccessee to get an array a, then evaluate Ezpression to
get an integer i. Next, if @ is null, throw a NullPointerException; otherwise, if 7 is negative or greater than or
equal to the length of a, throw a IndexOutOfBoundsException. Finally, return the ith component of array
a. The type of ArrayAccess 1s the component type of ArrayAccessee.

Task.check Assignability? : Boolean | Must an assignment expression using this array access
perform a runtime type check?

94

ArrayAccess 1= ArrayAccessee [Expression]
ArrayAccessee = ExpressionName |PrimaryNoNewArray

right Fxpr

;

NT NT

I——>| ArrayAccessee [——->| Expression |==->

AccessArray(R) —=>T

t leftExpr

AccessArray.type := ArrayAccessee.type.componentType
AccessArray.checkTypes? := (ArrayAccessee.type.componentType.isA?(ReferenceType))

condition ArrayAccessee.type.isA?(Array)
Expression.type in {Byte,Short,Int}

AccessArray:
let arr = leftExpr.result
if arr = null then Throw Exception Of Class NullPointerException
else let ind = rightExpr.result.convertTo(Int)
if ind < 0 or ind >= arr.length then Throw Exception Of Class IndexOutOfBoundsException
else let var = arr.component(ind)
Access var

5.4.2 Postfix Expression
Expression name

An FzxpressionName may take one of three forms:

e The simple form Identifier. Let id be the identifier specified by Identifier. If the FxpressionName
appears within the scope of a parameter or local variable with identifier id, return that variable; the
type of the expression is the type of the variable or parameter. If there is no local variable or parameter
in scope with identifier ¢d, then access the field of the target object with that name; the type of the
expression 1s the type of the field. There must be either a local variable or parameter or field with
identifier d.

e The form Type Name.Identifier. Let id be the identifier specified by Identifier, and let ¢ be the class
or interface type denoted by TypeName. Return the value of the static field of ¢ named by id; the
type of the expression is the type of the field. There must be a static field with that identifier, and it
must be static and accessible.

e The form FzpressionName.ldentifier. Let ¢d be the identifier specified by Identifier. Return the
field named by id of the class instance returned by Expression Name.

95

SimpleExpressionName = Identifier

I- EvalSimpleName(R) >--->T

EvalSimpleName.ID := Identifier.ID
if Identifier.ID.localVarDecl.def? then
EvalSimpleName.varReference? := true
EvalSimpleName.type := Identifier.ID.localVarDecl.type
else
EvalSimpleName.varReference? := false
let f = curClass.field(Identifier.ID,curClass)
EvalSimpleName.type := f.type
EvalSimpleName.field := f
if f.final? then
EvalSimpleName.finalFieldAccess? := true
if f.initExpr.constant? then
EvalSimpleName.constant? := true
EvalSimpleName.result := f.init Expr.result
EvalSimpleName.staticFieldAccess? := f.static?

condition (not Identifier.ID.localVarDecl.def?) =>
curClass.field(Identifier.ID,curClass).accessibleField?(curClass)

EvalSimpleName:

if varReference? then Access ID.localVarDecl.localVar
elseif staticFieldAccess? then Access field.staticVar
else Access targetObj.fieldVar(field)

56

QualifiedExpressionNamel ::= TypeName . Identifier

I-->CEvalQualName(R) >-->T

EvalQualName.ID := Identifier.ID
let f = TypeName.type.field(Identifier.ID, TypeName.type)
EvalQualName.type := f.type
EvalQualName.field := f
if f.final? then
EvalQualName.finalFieldAccess? := true
if f.initExpr.constant? then
EvalQualName.constant? := true
EvalQualName.result := f.initExpr.result
EvalQualName.staticFieldAccess? := true

condition let f = TypeName.type.field(Identifier.ID, TypeName.type)
f.static?
f.accessibleField?(TypeName)

EvalQualName:
if (subexpr.result = null and not staticFieldAccess?) then

Throw Exception Of Class NullPointerException
elseif staticFieldAccess? then Access field.staticVar
else Access subexpr.result.fieldVar(field)

QualifiedExpressionName2 ::= ExpressionName . Identifier
expressionName = SimpleExpressionName |QualifiedExpressionNamel
= |QualifiedExpressionName2

subexpr

;

I- — >| ExpressionName [———->CEvalQualName(R) >-———=>T

EvalQualName.ID := Identifier.ID

let f = ExpressionName.type.field(Identifier.ID,ExpressionName.type)
EvalQualName.type := f.type
EvalQualName.field := f
EvalQualName.finalFieldAccess? := f.final?
EvalQualName.staticFieldAccess? := f.static?

condition let f = ExpressionName.type.field(Identifier.ID,ExpressionName.type)
f.accessibleField?(ExpressionName)

a7

Postfix increment /decrement expressions
Postfix increment expression

PostIncrement Expression contains a Post fix Expression. The Post fix Expression must be of numeric
type, must not return a field that is final, and must be able to return an lvalue. Binary numeric
promotion is performed on the result of PostfizExpression and the (Int) constant 1. The type of
Post fixIncrement Expression is the binary promotion of the type of Postfiz Expression and the type
(Int) of 1.

To evaluate PostIncrement Expression, add 1 to the promoted value of the variable returned by
Post fix Expression, store the incremented result in the variable, and return the variable’s value before
the increment.

PostIncrementExpression ::= PostfixExpression +-+
PostfixExpression = Primary |ExpressionName
= |PostIncrementExpression |PostDecrementExpression

subexpr

-

I--—-->| PostfixExpression [~ _NT @ -->T

PostfixExpression.lvalue? := true
PostInc.type := PostfixExpression.type
PostInc.operandType :=
(if PostfixExpression.result Type in {Long,Float,Double} then PostfixExpression.type else Int)

condition PostfixExpression.type.numeric?
not PostfixExpression.final?
PostfixExpression in {FieldAccess,ArrayAccess, ExpressionName}

Postlinc:

Assign (subexpr.result.value.convert To(operandType) + 1).convertTo(resultType)) To subexpr.result
result := subexpr.result.value

Proceed Sequentially

Postfix decrement expression

Post Decrement Fxpression ::= Post fix Expression —-

5.4.3 Unary expression
Prefix increment expression

Prelncrement Expression contains a UnaryEzpression. The UnaryEzpression must be of numeric type,
must not return a field that is final, and must be able to return an lvalue. Binary numeric promotion is
performed on the result of UnaryFzpression and 1. The type of Prelncrement Exzpression is the binary
promotion of the type of UnaryFEzpression and the type of 1.

To evaluate PrelncrementFxpression, add 1 to the promoted value of the variable returned by
UnaryEzpression, store the incremented result in the variable, and return the variable’s incremented value.

58

PreIncrementExpression ::= ++ UnaryExpression

UnaryExpression PrelncrementExpression |PreDecrementExpression
|PositiveExpression |NegativeExpression

= |PostfixExpression |BitwiseComplementExpression
|Logical ComplementExpression |CastExpression

subexpr

-

I-——> UnaryExpression | _NT @ ——>T

UnaryExpression.lvalue? := true
Prelnc.type := UnaryExpression.type
Prelnc.operandType :=
(if UnaryExpression.type in {Long,Float,Double} then UnaryExpression.type else Int)

condition UnaryExpression.type.numeric?
not UnaryExpression.final?
UnaryExpression in {FieldAccess,ArrayAccess,ExpressionName}

Prelnc:

Assign (subexpr.result.value.convert To(operandType) + 1).convertTo(type)) To subexpr.result
result := (subexpr.result.value.convert To(operandType) + 1).convertTo(type)

Proceed Sequentially

Prefix decrement expression

PreDecrement Expression ::= UnaryFExzpression ——

Positive expression

A Positive Expression contains a UnaryFEzpression. The type of the UnaryEzpression must be numeric.
Unary promotion is performed on the result of UnaryFzpression. The type of Positive Expression is the
unary promotion of the type of UnaryEzpression.

To evaluate Positive Expression, return the promoted result of UnaryEzpression.

59

PositiveExpression ::= 4 UnaryExpression

subexpr

;

I- — >{UnaryExpression |- NT @ —>T

let t = UnaryExpression.unaryPromotion
Pos.type := t
if UnaryExpression.constant? then

Pos.constant? := true
Pos.result := UnaryExpression.result.convert To(t)

condition UnaryExpression.type.numeric?

Pos:
result := subexpr.result.convertTo(type)
Proceed Sequentially

Negative expression

Negative Expression ::= - UnaryFEzpression

Bitwise complement expression

A BitwiseComplement Expression contains a UnaryEzpression. The type of the UnaryEzpression must
be integral. Unary numeric promotion is performed on the result of UnaryEzpression. The type of
BitwiseComplement Expression is the unary promotion of the type of UnaryEzpression.

To evaluate BitwiseComplementExzpression, evaluate UnaryEzpression, then return the bit-
wise complement of the result of UnaryFzpression. For a result = of UnaryFzpression,
BitwiseComplement Expression returns (—z) — 1.

BitwiseComplementExpression ::= ~ UnaryExpression

subexpr

;

[---->| UnaryExpression | ==

_+T

BitwiseComp(R)

let t = UnaryExpression.unaryPromotion
BitwiseComp.type := t
if UnaryExpression.constant? then
BitwiseComp.constant? := true
BitwiseComp.result := -(UnaryExpression.result.convertTo(t)) - 1

BitwiseComp:
result := -(subexpr.result.convert To(result Type)) - 1
Proceed Sequentially

60

Logical complement expression

A LogicalComplement Expression contains a UnaryFEzpression. The type of the UnaryEzpression must
be Boolean. The type of LogicalComplement Expression is Boolean.

To evaluate LogicalComplement Expression, rteturn the logical complement of the result of
UnaryExzpression (true if UnaryFExpression returns false; false if UnaryExpression returns true).

LogicalComplementExpression ::= ! UnaryExpression
subexpr
v
I- >| UnaryExpression | NT LogicalComp(R))~ — =T

LogicalComp.type := Boolean

if UnaryExpression.constant? then
LogicalComp.constant? := true
LogicalComp.result := not UnaryExpression.result

condition UnaryExpression.type = Boolean

LogicalComp:
result := not subexpr.result
Proceed Sequentially

Cast expression

A CastEzxpression contains a Type and a UnaryFzpression. Let s be the type of UnaryFzpression and
let t be the type specified by Type. s must be castable to . This is true if s is equal to or narrower than
t, or if ¢ is narrower than s. It is also true if a narrower-than relationship may hold between subclasses or
subinterfaces of s and ¢. The type of Cast Exzpression is t.

To evaluate C'ast Expression, evaluate UnaryEzpression. If the type of UnaryFzpression is assignable
to ¢ or the result of UnaryEzpression is null, convert the result of UnaryEzpression to t and return the
result. Otherwise, check whether the class of the result of UnaryEzpression is assignable to ¢. If it is,
convert the result of UnaryEzpression to t and return the result; otherwise, throw a ClassCastException.

| Task.checkCastability? : Boolean | Must a runtime check be performed on the result before casting? |

macro S.castableTo?(T)
S.numDims = T.numDims
and (S.baseType = T.baseType
or S.baseType.narrowerThan?(T.baseType) or T.baseType.narrowerThan?(S.baseType)
or (S.baseType.isA?(Class) and T.baseType.isA?(Inter face) and not S.baseType.final?)
or (T.baseType.isA?(Class) and S.baseType.isA?(Inter face) and not T.baseType.final?)
or (S.baseType.isA?(Inter face) and T.baseType.is A?(Inter face)
and (Vid,t : id.isA?(IDString) and t.isA?(TypeSeq) :
S.baseType.method(id,t).def? and T.baseType.method(id,t).def?)
S.baseType.method(id, t).type = T.baseType.method(id,t).type

61

CastExpression ::= (Type) UnaryExpression

subexpr

-

I-->| UnaryExpression | NT @ —>T

let casttype = Type.type
Cast.type := casttype
Cast.checkCastability? := not UnaryExpression.type.assignableTo?(casttype)
if (casttype.isA ?(PrimitiveType) or casttype = String) then
Cast.constant? := true
Cast.result := UnaryExpression.result.convertTo(casttype)

condition UnaryExpression.type.castableTo?(Type.type)
Type.type.baseType.isA?(PrimitiveType) =>
not (UnaryExpression.isA?(PrelncrementExpression)
or UnaryExpression.isA ?(PreDecrementExpression)
or UnaryExpression.isA ?(PositiveExpression)
or UnaryExpression.isA?(NegativeExpression))

Cast:
if checkCastability?
and not subexpr.result.class.assignableTo?(type) and subexpr.result # null then
Throw Exception Of Class ClassCastException
else
result := subexpr.result.convertTo(type)
Proceed Sequentially

5.4.4 Multiplicative expressions
Multiplication expression

A Multiply expression contains a Multiplicative Expression and a UnaryFzpression. The types of
Multiplicative Expression and UnaryEzpression must be numeric. Binary promotion is performed on the
results of M ultiplicative Expression and UnaryFzpression. The type of Multiply is the binary promotion
of Multiplicative Expression and UnaryFzpression.

To evaluate Multiply, evaluate Multiplicative Ezpression and then UnaryFzpression. Then return
the result of multiplying the promoted result of Multiplicative Expresion with the promoted result of
UnaryEzpression.

62

Multiplication ::= MultiplicativeExpression * UnaryExpression
MultiplicativeExpression = UnaryExpression |Multiplication |Division |Remainder

right Fxpr

;

I- > MultiplicativeExpression _]X’]_‘) UnaryExpression - ivzj w T

t leftExpr

let t = binaryPromotion(MultiplicativeExpression, UnaryExpression)
Multiply.type := t
if (MultiplicativeExpression.constant? and UnaryExpression.constant?) then
Multiply.constant? := true
Multiply.result :=
MultiplicativeExpression.result.convert To(t) * UnaryFExpression.result.convertTo(t)

condition MultiplicativeExpression.type.numeric?
UnaryExpression.type.numeric?

Multiply:
result := leftExpr.result.convert To(type) * right Expr.result.convertTo(type)
Proceed Sequentially

Other multiplicative expressions

Division ::= Multiplicative Expression / UnaryFEzpression
Remainder ::= Multiplicative Expression % UnaryEzpression

5.4.5 Additive expressions
Addition expression

An Addition expression contains an Additive Expression and a Multiplicative Expression. If
Additive Expression or Multiplicative Expression is of type String, then the type of Addition is String,
and if either Additive Expression or Multiplicative Expression 1s not of type String, string conversion is
performed on its result. If neither Additive Exzpression nor Multiplicative Expression is of type String,
then both Additive Expression and M ultiplicative Fxpression must be of numeric type, binary numeric
promotion is performed on Additive Expression and Multiplicative Expression, and the type of Addition
is the binary promotion of Additive Expression and Multiplicative Expression.

To evaluate Addition, evaluate Additive Fxpression and then Multiplicative Expression. Then do one
of the following;:

o If Additive Expression and Multiplicative Expression are of type String, then append the value of
the String object returned by Multiplicative Fxpression to the value of the String object returned by
Additive Expression, and create a new String object whose value is the appended result. If there is
no space for the new object, throw an OutOfMemoryError.

o If one of Additive Expression and Multiplicative Expression is of type String and the other is not,
perform string conversion on the non-String result. Append the value of the String object returned
by Multiplicative Exzpression to the value of the String object returned by Additive Expression, and

63

create a new String object whose value is the appended result. If there is no space for the new object,
throw an OutOfMemoryError.

o If Additive Expression and M ultiplicative Expression are of numeric type, add the promoted result
of Additive Expression to the promoted result of Multiplicative Expression and return the result.

Addition 2= AdditiveExpression + MultiplicativeExpression
AdditiveExpression = MultiplicativeExpression |Addition |Subtraction
right Fxpr

NT A NT
I- - >| AdditiveExpression [———{ MultiplicativeExpression |——-—->(Add(R) }—-—>T

t leftExpr

let t =
(if (AdditiveExpression.type = String or MultiplicativeExpression.type = String) then String
else binaryPromotion(AdditiveExpression, MultiplicativeExpression))
Add.type := t
if (AdditiveExpression.constant? and MultiplicativeExpression.constant?) then
Add.constant? := true
if t = String then extend ClassInst with str
Add.result := str
str.class := String
str.stringVal := AdditiveExpression.result.convert To(String) +
MultiplicativeExpression.result.convert To(String)
else Add.result :=
AdditiveExpression.result.convert To(t) + MultiplicativeExpression.result.convertTo(t)

condition AdditiveExpression.type = String or MultiplicativeExpression.type = String
or (AdditiveExpression.type.numeric? and MultiplicativeExpression.type.numeric?)

Add:
if type = String then
Get New Memory
extend ClassInst with str
result := str
str.class := String
str.stringVal := leftExpr.result.convertTo(String) + rightExpr.result.convertTo(String)
else
result := leftExpr.result.convert To(type) + right Expr.result.convertTo(type)
Proceed Sequentially

Subtraction expression

Subtraction := Additive Expression — Multiplicative Ezpression

64

5.4.6 Shift expressions

Shift-left expression

A ShiftLeft expression contains a ShiftExzpression and an AdditiveExzpression. The type of
ShiftExpression and Additive Expression must be integral. Unary numeric promotion is performed on
each of ShiftEzpression and Additive Expression. The type of ShiftLeft is the unary promotion of

ShiftExpression.

To evaluate ShiftLe ft, evaluate Shift Expression and then Additive Expression. Then return the result
of multiplying the result of ShiftExpression by two to the power s, where s is the shift distance. If the
promoted type of Additive Ezpression is Int, s is the result of Additive Fxpression modulo 32; if it 1s Long,

s 18 the result of Additive Exzpression modulo 64.

Task.maxShiftDist : Nat Maxmimum distance for left shift: either 32 or 64.
Task.le ftOperandType : Type Promoted type of left operand.
Task.rightOperandType : Type | Promoted type of right operand.

ShiftLeft i:= ShiftExpression << AdditiveExpression
ShiftExpresion = AdditiveExpression |ShiftLeft |ShiftRightSigned |ShiftRightUnsigned
right Fxpr
. . NT . L . NT
I--—>{ ShiftExpression | —— - AdditiveExpression - == — > ——>T
t leftExpr

let t = Shift Expression.unaryPromotion
let maxshift = (if ShiftExpression.unaryPromotion = Int then 32 else 64)
let righttype = AdditiveExpression.unaryPromotion
let lefttype = ShiftExpression.unaryPromotion
Shl.type := t
Shl.maxShiftDist := maxshift
Shl.rightOperandType := righttype
Shl.leftOperandType := lefttype
if ShiftExpression.constant? and AdditiveExpression.constant? then
Shl.constant? := true
let 1 = ShiftExpression.result.convertTo(lefttype)
let r = (AdditiveExpression.result.convert To(righttype)) mod maxshift
Shl.result ;== 1* 21r

condition ShiftExpression.type.integral? and AdditiveExpression.type.integral?

Shl:
let 1 = leftExpr.result.convertTo(leftOperand Type)
let r = (rightExpr.result.convert To(right OperandType)) mod maxShiftDist
result .= 1% 2r
Proceed Sequentially

Other shift expressions

ShiftRightSigned ::= Shift Expression >> Additive Expression

65

ShiftRightUnsigned ::= Shift Expression >>> Additive Exzpression

5.4.7 Relational and equality operations
Less-than expression

A LessThan expression contains a Relational Expression and a ShiftEzpression. The types of
Relational Expression and ShiftExzpression must be numeric. Binary numeric promotion is performed
on Relational Expression and Shift Expression. The type of LessThan is Boolean.

To evaluate LessThan, evaluate Relational Ezpression and then ShiftExzpression. If the result of
Relational Expression 1s less than the result of Shift Exzpression, return True; otherwise, return False.

| Task.operandType : Type | Promoted type of operands. |

LessThan := RelationalExpression < ShiftExpression
RelationalExpression = ShiftExpression |LessThan |GreaterThan
LessThanEqualTo |GreaterThanEqualTo | TypeComparison

right Fxpr

;

. . NT)) NT
I- > Relational Expression - — > ShiftExpression - — —) ->T

t leftExpr

LessThan.type := Boolean
let t = binaryPromotion(RelationalExpression,ShiftExpression)
LessThan.operandType := t
if RelationalExpression.constant? and Shift Expression.constant? then
LessThan.constant? := true
LessThan.result :=
(Relational Expression.result.convert To(t) < ShiftExpression.result.convertTo(t))

condition RelationalExpression.type.numeric? and Shift Expression.type.numeric?

LessThan:
result := (leftExpr.result.convert To(operandType) < rightExpr.result.convert To(operandType))
Proceed Sequentially

Type comparison expression

A TypeComparison expression contains a Relational Fxpression and a ReferenceType. The type of
Relational Expression must be a reference type or null, and the type of Relational Expression must be
castable to ReferencelType. The type of TypeComparison is Boolean.

To evaluate T'ypeComparison, evaluate Relational Expression. If the result of Relational Expression
is not null and is castable to the type denoted by ReferenceType, return True; otherwise, return False.

| Task.testType : Type | (Fixed) type to test for in type comparison expression. |

66

TypeComparison := RelationalExpression instanceof ReferenceType

subexpr

‘ NT
I--—>| RelationalExpression |--- CompareTypes(R) >-->T

CompareTypes.type := Boolean
CompareTypes.test Type := ReferenceType.type

condition RelationalExpression.type.isA?(ReferenceType)
RelationalExpression.type.castableTo?(Reference Type.type)

CompareTypes:
result := subexpr.result # null and subexpr.result.class.castableTo?(test Type)

Proceed Sequentially

Equality expression

An FEquality expression contains an FEqualityEzpression and a Relational Expression. The types of
FEqualityEzpression and Relational Expression must be both Boolean, both numeric or both reference.
If the types of EqualityEzpression and Relational Expression are both numeric, binary numeric promo-
tion is performed on the results of FqualityFzpression and Relational Ezpression. The type of Fquality
is Boolean.

To evaluate Equality, evaluate FqualityExpression and then Relational Expression. If the (promoted)
result of EqualityEzpression is equal to the (promoted) result of RelationalExzpression, return True;
otherwise, return False. In the case where EqualityEzpression and Relational Expression are reference
types, equality is defined as whether the results of FqualityEzpression and Relational Expression are the

same object.

67

Equality ::= EqualityExpression == RelationalExpression
EqualityExpression = RelationalExpression |Equality |Inequality

right Fxpr

;

NT
I- —>| EqualityExpression | ——->{ RelationalExpression N @ ->T

t leftExpr

Equal.type := Boolean
let t = binaryPromotion(Equality Expression,RelationalExpression)
Equal.operandType := t
if EqualityExpression.constant? and RelationalExpression.constant? then
Equal.constant? := true
Equal.result :=

(Equality Expression.result.convert To(t) = RelationalExpression.result.convertTo(t))

condition EqualityExpression.type = Boolean <=> RelationalExpression.type = Boolean
EqualityExpression.type.numeric? <=> RelationalExpression.type.numeric?
EqualityExpression.type.isA ?(Reference Type) <=>
RelationalExpression.type.isA?(ReferenceType)

equal:

result := (leftExpr.result.convert To(operand Type) = rightExpr.result.convert To(operandType))
Proceed Sequentially

Inequality expression

Inequality ::= EqualityExzpression '= Relational Expression

5.4.8 Bitwise and logical operations

An And expression contains an AndFEzpression and an FqualityFxpression. The types of AndExpression
and FqualityEzpression must be both integral, in which case binary numeric promotion is performed on
the results of AndExpression and FqualityExpression and the type of And i1s the binary promotion of
Andexpression and EqualityF xpression, or both Boolean, in which case the type of And is Boolean.

To evaluate And, evaluate AndFExpression and then FEqualityFxpression. If the types of
AndFExpression and FqualityFrpression are numeric, return the bitwise AND of the results of
AndFEzpression and FqualityEzpression. Otherwise, return True if the results of AndFEzpression and
FEqualityFxpression are both True, and return False otherwise.

68

And ::= AndExpression & EqualityExpression
AndExpression = EqualityExpression |[And

right Fxpr

7
I-->{ AndExpression [—N—T—> EqualityExpression NI —> -=>T

t leftExpr

let t =
(if AndExpression.type.numeric? then binaryPromotion(AndExpression,Equality Expression)
else Boolean)
And.type := t
if AndExpression.constant? and EqualityExpression.constant? then
And.constant? := true
And.result := (if t = Boolean then (AndExpression.result and EqualityExpression.result,
else AndExpression.result.convertTo(t).and(EqualityExpression.result.convertTo(t)))

condition (AndExpression.type.numeric? and EqualityExpression.type.numeric?)
or (AndExpression.type = EqualityExpression.type = Boolean)

And:
result :=
(if result Type = Boolean then (leftExpr.result and right Expr.result)
else left Expr.result.convertTo(type).bitwiseAnd(right Expr.result.convert To(type)))
Proceed Sequentially

EzclusiveOr ::= EzclusiveOr Ezpression =~ AndEzpression
InclusiveOr ::= InclusiveOrExpression | EzclusiveOrExzpression

5.4.9 Conditional logical operations

A Conditional And contains a Conditional AndEzpression and an InclusiveOrFExzpression. The types of
Conditional AndFEzpression and InclusiveOrExzpression must be Boolean. The type of Conditional And
is Boolean.

To evaluate Conditional And, evaluate Conditional AndEzpression. If its result is False, return False;
otherwise, evaluate InclusiveOrExzpression and return its result.

69

ConditionalAnd ::= Conditional AndExpression && InclusiveOrExpression

Conditional AndExpression = InclusiveOrExpression |Conditional And
leftExpr
~N
{ testEzpr
v NT branchTask(false)

I—| ConditionalAndExpression | —- —> ————————— »@nd(f{) >T
|
IbranchTask(true) NT: '
v right Fxpr

InclusiveOrExpression [«—/

CondAnd.type := Boolean
if Conditional AndExpression.constant? and InclusiveOrExpression.constant? then
CondAnd.constant? := true
CondAnd.result := (if Conditional AndExpression.result = false then false
else InclusiveOrExpression.result)

Condand:
result := (if leftExpr.result = false then false else right Expr.result)
Proceed Sequentially

ConditionalOr := ConditionalOrExpression || Conditional AndEzxpression
ConditionalOr Expression = Conditional AndExpression | ConditionalOr

5.4.10 Conditional operation

A Conditional contains a ConditionalOrExzpression, an Ezxpression and a Conditional Expression. The
type of ConditionalOr Exzpression must be Boolean. The types of Ezpression and Conditional Expression
must be both numeric, both Boolean or both reference. (One of the types must be assignable to the other.)
The type of Conditional is determined as follows:

o If Fxpression and Conditional Expression have the same type, then Conditional has that type.

o Otherwise, if Fzpression and Conditional Expression have numeric types, then one of the following
applies:
— If one of the types is Byte and the other is Short, then C'onditional has type Short.

— If one operand has type Byte, Short or Int (call it T') and the other operand is a constant expression
of type Int whose value is representable in T, then the type of Conditional is T

— Otherwise, binary numeric promotion is applied to the operands, and the type of Conditional is
the binary promotion of the types of the operands.

e Otherwise, if one of Ezpression and Conditional Expression is of the null type and the other is of
reference type, then the type of Conditional is the reference type.

e Otherwise, if Fzpression and Conditional Fxpression are of different reference types, then it must
be possible to convert one of the types (S) to the other (T) by assignment conversion. The type of
Conditional is T

70

To evaluate C'onditional, evaluate ConditionalOr Expression. If the result is True, evaluate Ezpression
and return its (promoted) result; otherwise, evaluate Conditional Exzpression and return its (promoted)
result.

Conditional := ConditionalOrExpression 7 Expression :
ConditionalExpression
ConditionalExpression = Conditional OrExpression |Conditional
testExpr

v NT branchTask(irue)
- ConditionalOrExpression {—- @ ————————— > Expression

T
| |
i{ branchTask(false) NT! leftExpr
- . NT
ConditionalExpression ————— @ ->T
t right Fxpr
testFxpr

-

let A = Expression, let B = Conditional Expression
let atype = Expression.type, btype = ConditionalExpression.type
let t = (if atype = btype then atype

elseif atype in {Byte,Short} and btype in {Byte,Short} then Short
elseif atype in {Byte,Short,Char} and btype = Int and

B.constant? and B.result.representableIn?(atype) then atype
elseif btype in {Byte,Short,Char} and atype = Int and

A.constant? and A.result.representableIn?(btype) then btype
elseif atype.numeric? and btype.numeric? then binaryPromotion(A,B)
elseif atype = Null and btype.reference? then btype
elseif btype = Null and atype.reference? then atype
elseif atype.assignableTo?(btype) then btype
elseif btype.assignableTo?(atype) then atype)

CondOp.resultType := t

if ConditionalOrExpression.constant? and Expression.constant?

and ConditionalExpression.constant? then
CondOp.constant? := true
CondOp.result :=
(if ConditionalOrExpression.result = true then ConditionalOrExpression.result
else Expression.result)

Cond:
result := (if testExpr.result = true then leftExpr.result else rightExpr.result)
Proceed Sequentially

5.4.11 Assignment operations
Simple assign expression

An Assignment expression contains a LeftHandSide and an Assignment Exzpression. The type of
Assignment Expression must be assignment-convertible to the type of LeftHandSide. LeftHandSide
must be able to return an lvalue. The type of Assignment is the type of Left HandSide.

To evaluate Assignment, evaluate LeftHandSide, then evaluate AssignmentFEzpression. If the
LeftHandSide is an array access, and LeftHandSide and AssignmentFxpression are of reference type,
check that the result of AssignmentEzpression is of a class that is assignment-convertible to the type of
Le ft HandS'ide; if not, throw an ArrayStoreException. Finally, assign the result of Assignment Ezpression
to the variable returned by Left HandSide.

Assignment = LeftHandSide = AssignmentExpression
LeftHandSide = ExpressionName |FieldAccess |ArrayAccess
AssignmentExpression = ConditionalExpression |Assignment
right Fxpr
] NT . ¢ . NT .
I- > TeftHandSide |—-—---| AssignmentExpression | ——— Assign(R) ->T
t leftExpr

LeftHandSide.Ivalue? := true
Assign.type := LeftHandSide.type

condition AssignmentExpression.assignableTo?(LeftHandSide)
not LeftHandSide.finalFieldAccess?
LeftHandSide.isA?(FieldAccess) or LeftHandSide.isA?(ArrayAccess)
or LeftHandSide.isA?(ExpressionName)

Assign:
if leftExpr.checkAssignability? and not rightExpr.result.class.assignableTo?(type) then
Throw Exception Of Class ArrayStoreException
else
Assign rightExpr.result.convertTo(type) To leftExpr.result
result := rightExpr.result.convertTo(type)
Proceed Sequentially

Add-assign expression

An AddAssignment expression contains a LeftHandSide and an AssignmentFzpresston. If the type of

LeftHandSide is String, then string conversion is performed on the result of AssignmentFzpression if it

is not of type String. If the type of Left HandSide 1s not String, then the types of both Left HandSide and

Assignment Expression must be both numeric. The type of AddAssignment is the type of Le ft HandSide.
To evaluate AddAssignment, evaluate Le ft HandSide, then evaluate AssignmentFxpression.

o If the types of LeftHandSide and AssignmentExzpression are both String, append the value of
the String object returned by AssignmentFEzpression to the value of the String object returned by

72

LeftHandSide, and create a new String object whose value is the appended result. If there is no
space for the new object, throw an OQutOfMemoryError.

o If the type of Left HandSide is String but the type of Assignment Exzpression is not, perform string
conversion on the result of Assignment Exzpression. Append the value of the string-converted result
of Assignment Ezpression to the value of the String object returned by Left HandSide, and create a
new String object whose value is the appended result. If there is no space for the new object, throw
an OutOfMemoryError.

e Otherwise, the types of Left HandSide and Assignment Expression are both numeric. Add the result
of LeftHandSide to the result of AssignmentEzpression and then convert the result to the type of
LeftHandSide.

Store the result in the variable result of Left HandSide and return it.

AddAssignment = LeftHandSide += AssignmentExpression
LeftHandSide = ExpressionName |FieldAccess |ArrayAccess
AssignmentExpression = ConditionalExpression |Assignment

right Expr

NT ¢ NT

I— > LeftHandSide |~——=>{ AssignmentExpression |-——

AddAssign(R) >->T

t leftExpr

LeftHandSide.Ivalue? := true
Assign.type := LeftHandSide.type

condition LeftHandSide.type # String => AssignmentExpression.assignableTo?(LeftHandSide)
not LeftHandSide.finalFieldAccess?
LeftHandSide.isA?(FieldAccess) or LeftHandSide.isA?(ArrayAccess)
or LeftHandSide.isA?(ExpressionName)

AddAssign:
if leftExpr.type = String then
Get New Memory
extend ClassInst with str
str.class := String
str.stringVal := leftExpr.result.value + rightExpr.result.convertTo(String)
result := str
Assign str To left Expr.result
elseif leftExpr.checkAssignability? and not right Expr.result.class.assignableTo?(type) then
Throw Exception Of Class ArrayStoreException
else
Assign (leftExpr.result.value + rightExpr.result.convertTo(type)) To left Expr.result
result := (leftExpr.result.value + right Expr.result.convertTo(type))
Proceed Sequentially

73

6 Method and constructor invocation

When a method is invoked upon an object, execution of the current method (the invoker) is suspended
and execution of the newly invoked method (the invokee) begins. Control returns to the invoker when the
invokee terminates. involve actions not specified in the previous section. In the ASM of this section, the
actions of passing control to an invokee and returning it to an invoker are defined explicitly.

6.1 Preliminaries

Methods may invoke methods; when a method invocation expression is evaluated during execution of a
method, control passes to the indicated invokee. Before the invokee executes, information about the invoker
is recorded: the target object and argument values supplied in the invocation expression, and the point
to which control returns after the invokee terminates. As methods may be invoked recursively, multiple
invocations of the same method may be active at once. A stack of method invocations is maintained, whose
top element (or frame) corresponds to the current invocation.

A method invocation contains an identifier and a number of arguments (subexpressions), and may contain
a target reference. The target reference is an expression that evaluates to the target object of the invocation.
All the arguments of an invocation are evaluated, in their order of appearance, before the invocation itself.

Compile-time method selection

A descriptor method is chosen for the invocation expression at compile time. If the invocation is not virtual
(see below), this is the method to invoke when the expression is evaluated. Otherwise, the descriptor
(signature and return type) of the method is used at runtime to select a method to invoke. The choice of
descriptor method at compile time i1s narrowed to methods of a single class; then the most specific applicable
and accesstble method installed in this class is chosen. The choice of class proceeds as follows.

1. If the expression is of the simple form Identifier ([ArgumentList]), then the descriptor method is
to be found in the current class.

2. If the expression is of the form TypeName . Identifier ([ArgumentList]), then the descriptor
method is to be found in the (class) type of T'ype Name. TypeName must not name an interface, and
the method must be static.

3. If the expression is of the form EzpressionName . Identifier ([ArgumentList]), then the descriptor
method is to be found in the (class) type of EFzpressionName.

4. Tf the expression is of the form Primary . Identifier ([ArgumentList]), then the descriptor method
is to be found in the (class) type of Primary.

5. If the expression is of the form Super Exzpression . Identifier ([ArgumentList]), then the descriptor
method is to be found in the type of Super Expression, i.e. the parent of the current class. The current
class must not be Object, and the method must not be static. An expression of this form must not
appear in a static initializer or an initializer for a static variable.

Of the methods installed in the chosen class, a method is applicable to the invocation if the number of
its parameters equals the number of argument expressions in the invocation expression, and each argument
can be converted via method invocation conversion to the type of the corresponding parameter. Method
invocation conversion is possible if the argument type is equal to or narrower than the parameter type.

Accessibility 1s defined as follows. A method is accessible if the method has public access status. If
the method has protected status, it is accessible if the invocation i1s of the simple form Identifier (
[ArgumentList]) or the form @ . Identifier ([ArgumentList]), where the type of @ is a subclass
of the current class. If the method has private status, it is accessible only if the invocation is of the simple
form Identifier ([ArgumentList]).

74

Of the applicable, accessible methods in the class, a mazimally specific method is one for which the
parameter types are not convertible to the parameter types of any other method. There must be exactly
one maximally specific method, and this is the descriptor method chosen at compile time.

Runtime method selection

The runtime actions taken in a method invocation depend on the characteristics of the method and the form
of the expression:

1. Tf the method is declared static, no target object is given for the invocation (although a target reference
expression may appear). Reference to the target object is impossible within the method. The descriptor
method is invoked.

2. If the method is declared private but not static, a target object is given for the invocation. If a target
reference expression evaluates to null, a NullPointerException is thrown. The descriptor method is
invoked.

3. Otherwise, the invocation is wirtual. A target object is given for the invocation, and if a target
reference expression evaluates to null, a NullPointerException i1s thrown. At runtime, a search for a
method matching the signature of the compile-time method occurs. Starting from a class ¢ (which is
the class of the target object, or the parent of the class of the target object if the invocation is of the
form SuperEzpression . Identifier ([ArgumentList]), the search locates the lowest superclass of
¢ in which a matching method is installed and accessible. The result may be the descriptor method.

6.2 ASM J;

M3 consists of the montages of M5 plus the montages defined later in this section. The ASM J3 has a compiler
agent with module C3 (compile-time rules of M3), and an executor agent with module Rz (runtime rules
of M3) for each element of the universe Frrame. The module for each executor has the guard Self.active?.
Initially, there is a single element of F'rame and thus a single executor agent. The compiler agent runs before
all executors and no two executors run concurrently.

6.3 Function and macro definitions

Compile-time method selection

macro M.installedIn?(C)
(Is method M installed in class C7?)
M = C.method(M.ID, M.paramTypes)

macro T.methodInvocation AssignableTo?(U)
(Ts type T assignable to type U through method invocation conversion?)
T = U or T.narrowerThan?(U)

macro M.applicableTo?(ID, TY PES)

(Does method M match the identifier 7D and are its parameter types assignable to those in TY PES?)
M.ID =ID and |M.paramTypes| = |TY PES| and

(V(i,t) e TYPES, (j,u) € M.paramTypes : i = j)t.methodInvocation AssignableTo?(u)

macro M.accessibleTo?(C)

(Ts method M accessible, given the invoker class C7)

(M.accessStatus = public) or (M.accessStatus = private and M.declarer = curClass)
or (m.accessStatus = protected and (C = curClass or C.subclassOf?(curClass)))

75

macro M.mazimallySpecificIn?(C)
(Does method M have a maximally narrow set of parameter types among the accessible methods of C?)
(Vm' # M : m/.installedIn?(C))

m’.accessibleTo?(C') = not m'.applicableTo?(M.ID, M.paramTypes)

macro M.validDescriptor Method?(ID,TY PES, C)

(Ts M a valid descriptor method for the invocation

(with identifier 7D, parameter types TY PES, invoker class C)?)

M.installedIn?(C) and M.applicableTo?(ID, TY PES) and M.accessibleTo?(C')
and M.mazimallySpecificIn?(C)

macro Set Up Invocation With Invoker Class C'
let argtypes = {(i, Argument List[i].type) : Argument List[i].def?}
choose m : m.isA?(Method) : m.valid Descriptor M ethod?(Identifier.1D, argtypes, C)
InvokeMethod.descriptor M ethod := m
InvokeM ethod.type := m.type
InvokeM ethod.virtual Invocation? := not (m.static? or m.accessStatus = private)
InvokeM ethod.superInvocation? := Invoker.isA?(Super Expression)

macro C.hasUniqueDescriptor M ethod?
let argtypes = {(i, Argument List[i].type) : Argument List[i].def?}
(Im : m.isA?(Method))m.valid Descriptor M ethod?(Identifier.ID, argtypes, C)
and (Vm,n : m.isA?(Method) and n.isA?(Method)) and m # n
not (m.validDescriptor M ethod?(Identifier.ID, argtypes, C)
and n.valid Descriptor M ethod?(Identifier.ID, argtypes, C))

Runtime method selection

macro M.invokableUpon?(C)
(Can M be invoked upon an object of class C'7 i.e. Is C a subclass of M’s class?)
M .declarer = C or C.subclassO f?(M.declarer)

macro M’'.matchesDescriptor?(M)
(Does method M’ match method M in terms of descriptor?)
M'ID = M.ID and M’ type = M type and
(V(i,t) € M'.paramTypes, (j,u) € M.paramTypes : 1= j)t = u
and (M'.declarer = M.declarer or M'.declarer.subclassO f?(M.declarer))

macro M'.mostRelevant Applicable M ethod?(M, C)
(Is M' a method that matches M, is invokable upon C,
and is declared in the lowest possible superclass of C'?7)
M'.matchesDescriptor?(M) and M'.invokableU pon?(C')
and (Vm/'" € Method : m" # M' and m"”.matchesDescriptor(M) and m" .invokableUpon?(C))
M’ .class.subelassO f7(m" .class)

76

Frame Universe of invocation frames.

Frame.active? : Boolean Is this the active invocation frame (i.e. top of the stack)?
Frame.invoker : Task method invocation task that created this frame.
Frame.returnValue : Value Return value computed in this invocation.
Frame.targetObyj : Object Target object of this invocation frame.
Task.virtualInvocation? : Boolean | Is this a virtual method invocation?
Task.superInvocation? : Boolean Is this a method invocation of the form super(...)?
Task.descriptor M ethod : Method Descriptor method for the invocation.

Different invocations execute different tasks, have distinct local variables, and compute different results
even when they execute the same code. Thus the functions curTask, curTargetTask, localVar and result
take an additional Frame argument. In all previous ASM rules, add the term Self as an argument to all
occurrences of curTask, curTargetTask, result and localVar.

Frame.curTask : Task Current task for the invocation to execute.
Frame.curTargetTask : Task Current target task of the invocation.
Task.result(Frame) : Result Result of expression evaluation for the invocation.

Variable Declaration.localV ar(Frame) : Variable | Local variable created by the declaration
for this invocation.

Terms of the form Self.curTask.f(Z), where f is a function name and Z is a sequence of terms, are usually

abbreviated as f(Zz).

macro Activate New Frame F' R:

(Create frame, make it the active frame, and fire rule R.) extend Frame with F'
F.prevFrame := self
self.active? := false
F.active? := true

R

macro Invoke M On OBJ
(Activate a new frame and supply it with target reference and arguments.)
Activate New Frame f
f.eurTask .= M.firstTask
finvoker := self.curTask
ftargetObj := OBJ
do-forall i : argEzpr(i).def?
extend Variable with var
m.paramDecl(i).localVar(f) := var
var.value := argExpr(i).result(sel f)
Proceed Sequentially
macro Invoke Static Method M
(Activate a new frame and supply it with arguments (but no target reference).)
Activate New Frame f
f.eurTask .= M.firstTask
finvoker := self.curTask
do-forall 7 : argEzpr(i).def?
extend Variable with var
m.paramDecl(i).localVar(f) := var
var.walue := argExpr(i).result(sel f)
Proceed Sequentially
macro Perform Simple Invocation:
if virtuallInvocation? then

77

choose m : m.most Relevant Applicable M ethod?(descriptor M ethod, sel f targetObj.class)
Invoke m On Self.targetObj
else Invoke StaticMethod descriptor M ethod

macro Perform Qualified Invocation:
if virtualInvocation? then
if superInvocation? then
choose m : m.most Relevant Applicable M ethod?(descriptor M ethod,
self.target Ref Expr.result.class.parent)
Invoke m On target Ref Expr.result(self)
else
choose m : m.most Relevant Applicable M ethod?(descriptor M ethod,
self.targetObj.result.class.parent)
Invoke m On target Ref Expr.result(self)
else Invoke StaticMethod descriptor M ethod

macro Return:

(Record return value, if one is present; jump toward end of method/constructor.)
if retExpr.def? then self.returnValue := ret Expr.result(self)

Jump Toward endTask

macro Deactivate Current Frame

(Remove current (active) frame; make next lowest frame active.)
sel f.prevFrame.active? := true

Remove sel f

macro Terminate Invocation:
(Deactivate current invocation frame; record return value in next lowest frame.)
Deactivate Current Frame
if self.prevFrame.def? then
if curEzxception.def? then
self.prevFrame.curTargetTask := self.prevFrame.curTask.catchTarget(cur Exception.class)
elseif self.returnValue.def? then
self.invoker.result(self.prevFrame) = sel f.returnV alue

6.4 Construction of method invocation expressions and return statement

SimpleMethodInvocation ::= Identifier ([ArgumentList])
ArgumentList(LIST)
. NT i -
I- Expression - = — - >QuvokeSimpleMethod(R

E .
L argFzpr(.)

Set Up Invocation With Invoker Class curClass

condition curClass.hasUniqueDescriptorMethod?

78

QualifiedMethodInvocationl ::= TypeName . Identifier ([ArgumentList])

ArgumentList(LIST)
. NT
- Expression — - — — >QuvokeQualMethod(R
Frpr(.
L argEzpr(.)

Set Up Invocation With Invoker Class TypeName.type

condition TypeName.type. hasUniqueDescriptorMethod?

QualifiedMethodInvocation2 ::= Invoker . Identifier ([ArgumentList])
Invoker = ExpressionName |Primary |SuperExpression
ArgumentList(LIST)
NT NT

I———>{ Invoker |———=-> Expression ——= >

nvokeQualMethod(R

E .
L argFzpr(.)

targetRefEzpr

Set Up Invocation With Invoker Class Invoker.type

condition Invoker.type.hasUniqueDescriptorMethod?

7 Initialization and finalization

Classes and objects are implicitly initialized before their use. In addition, unreachable objects are implicitly
finalized before their removal via garbage collection. In this section, we provide the details of these processes.

7.1 Preliminaries
Class initialization

A class must be initialized before it can be used in a program. Initialization consists of executing the class’s
static initializer block and static field initializers, in the order in which they appear in the declaration. Class
initialization may occur concurrently with program execution.

Initialization of class instance fields

The non-static fields of a class instance are initialized during the invocation of the constructor, after the
superclass constructor has terminated. The field initialization expressions are evaluated in the order in which
they appear in the class declaration.

Object finalization and destruction

While the Java programmer explicitly creates objects (through class instance and array creation expressions),
their removal when no longer needed is implicit. A garbage collector agent runs concurrently with the program
executor to test the reachability of each object: whether it may ever be an evaluation result in a continuation
of the computation. If not, the object is removed to provide storage space for other objects. How and when
the garbage collector finds and removes unreachable objects are outside the specification of Java.

A method finalize() is defined for the Object class. This method is invoked after an object has been
deemed unreachable but before its removal. The intended use of finalize() is to perform cleanup actions
on the target object (e.g. closing files opened by the object) before its removal. While the finalize()
method of class Object does nothing, it may be overridden by other classes.

Each object is characterized by its finalization status and its reachability status. An object 1s finalized
if its finalizer has been automatically invoked. (A program may explicitly invoke finalize(); this does
not affect the finalization status of any object.) An object is finalizable if it is not finalized but may have
its finalizer automatically invoked at the present time. An object is unfinalized if it is neither finalized nor
finalizable. An object is reachable if it can be accessed in any potential continuing computation. This is
true if and only if there is a chain of references from a variable declaration of an active method invocation
to the object. An object is finalizer-reachable if it can be accessed from a finalizable object through a chain
of references. An unreachable object cannot be accessed by either means.

Finalization and removal of objects proceed as follows. Initially an object is unfinalized and reachable.
During the course of a computation , a reachable object may become finalizer-reachable or unreachable. If
its class inherits the vacuous definition of finalize() from class Object, it may be immediately removed
once it becomes unreachable. Otherwise, the garbage collector may identify it as finalizable. Once an
object becomes finalizable, its finalizer may be invoked automatically, at which point it becomes finalized
(and reachable, through the invocation of finalize()). At the point that the object becomes once again
unreachable, it may be removed.

7.2 ASM J,

The ASM J, has a compiler agent with module C4 and executor agents with module R4, each associated
with an element of the Frame universe. There are a number of initializer agents, each associated with an
element of the Class universe, with module R4. In addition, there are a number of finalizer agents, each
with module Rz U {FinalizeObjects}. The executor agents run exclusively with regard to one another, but
concurrently with the finalizers.

7.8 Function and macro definitions
Class initialization

macro N.classInitializer?:
(Ts node N a declaration of a static initializer or static fields?)
N.isA?(StaticInitializer Node) or (N.isA?(FieldDeclarationNode) and N.static?)

macro Add Class Initializer:

(Add initializer code to the class initializer block.)

if n.firstInList?(ClassBodyDeclarations,n.classInitializer?) then
staticInitTask := n.anitialTask

choose p : p.nextInList?(n,ClassBodyDeclarations, p.classInitializer?)
n.terminal.nextTask := p.anitialTask

Initialization of class instance fields

macro N.instancelnitializer?:

80

(Ts node N a declaration of instance fields?)
N.isA?(FieldDeclarationNode) and not N.static?

macro Add Field Initializers:
(Add initializer code to the field initializer block.)
if n.firstInList?(ClassBodyDeclarations, n.instancelnitializer?) then
curNode. fieldInitTask := n.initialTask
if n.lastInList?(ClassBodyDeclarations, n.instanceInitializer?) then
extend ReturnTask with ¢
n.terminal.nextTask =1
else
choose p : p.nextInList?(n, ClassBodyDeclarations, p.instanceInitializer?)
n.terminal.nextTask := p.anitialTask

macro Set Initializers:
c.curTask := ClassBody.staticInitTask
c.fieldInitTask := ClassBody. fieldInitTask

macro Initialize Fields:

Activate New Frame f
f.curTask := curClass. fieldInitTask
ftargetObj .= sel f.targetObj
Proceed Sequentially

Object finalization and destruction

macro immediatelyReachableV ariables:

(All variables immediately reachable through a static field, local variable/parameter,

or instance field of a target object.)

{d.staticVar : d.isA?(Variable Declaration) : d.staticVar.def?}

U{d.localVar(f) : d.isA?(Variable Declaration), f.isA?(Frame) : d.localVar(f).def?}

U{f.targetObj.fieldVar(d) : f.isA?(Frame),d.isA?(Variable Declaration) :
ftargetObj.fieldV ar(d).def?}

macro current References:

{(var, var.value) : var.isA?(Variable) : var.value.def?}

U{(obj, obj.fieldVar(d)) : obj.isA?(Object),d.isA?(Variable Declaration) : obj.fieldVar(d).def?}
U{(arr, arr.component(i)) : arr.isA?(Array) : arr.component(i).def?}

macro OB/J.reachable?:
(Ts there a sequence of variable-value pairs, starting from an immediately reachable variable
and reaching the object OBJ?)
(Frefseq : refseq.isA?(ReferenceSequence))
refseq[l] € immediatelyReachableV ariables and refseq[refseq.length) = OBJ
and (Vi: 1 <i<refseq.length)(refseqli],refseq[i + 1]) € current References

macro OB/J.finalizer Reachable?:
(Ts there a sequence of variable-value pairs starting from an object marked as finalizable
and reaching the object OBJ?)
(Frefseq : refseq.isA?(ReferenceSeq))
refseq[l].isA?(Object) and refseq[l].finalizable? and refseq[refseq.length] = OBJ

81

and (Vi: 1 <i<refseqlength)(refseqli],refseq[i + 1]) € current References

macro OBJ.unreachable?:
(Ts object OBJ neither reachable nor finalizer-reachable?)
not OBJ.reachable? and not OB.J.finalizer Reachable?

7.4 Montage and rule definitions

Initialization of class instance fields

FieldDeclaration ::= [FieldModifiers] Type VariableDeclarators ;
FieldModifiers = LIST(FieldModifier)
FieldModifier = public |protected |private |final |static |transient |volatile
VariableDeclarators = LIST(VariableDeclarator,)
—— VariableDeclarators(LIST)
. NT .
[-——~> VariableDeclarator -———- DeclareFields ->T
initF .
L initExpr(.)

Process Each Node n In List VariableDeclarators
curNode.field(n.ID) := n.declaration
Assign FieldModifiers To n.declaration
n.declaration.type := Type.type
DeclareFields.declaration(n.position) := n.declaration
DeclareFields.staticFieldDecl? := (FieldModifiers.hasModifier?(static))

condition FieldModifiers.consistent?
(For All Distinct Members m,n Of List VariableDeclarators) m.ID # n.ID

DeclareFields:
do-forall i: initExpr(i).def?
extend Variable with var
if staticFieldDecl? then declaration(i).staticVar := var
else targetObj.fieldVar(declaration(i)) := var
if initExpr(i).def? then var.value := initExpr(i).result
Proceed Sequentially

Object finalization and destruction

rule FinalizeObjects:
if self.curTask = FinalizeObjects then
choose obj in Object
if obj.finalizeMode = finalized and obj.unreachable? then
Remove obj
elseif obj.finalize Mode = un finalized and obj.finalizer Reachable? then
obj.finalizable? := true
elseif obj.finalizeMode = finalizable then

82

obj.finalizeMode := finalized
Invoke Method obj.class.method(” finalize”,)
endif

endchoose

8 Threads

8.1 Preliminaries

In a Java program, multiple agents or threads may execute various parts of the program simultaneously. These
agents, once created and initiated explicitly in the program code, may execute serially but concurrently on a
single processor, or in parallel on multiple processors. As threads may access and update common data, the
order of their actions affects the results of an execution. Java establishes some conditions on the interaction
of threads with respect to shared data, but implementations of Java may differ in their policies of thread
scheduling. This introduces an element of nondeterminism: executions of a multi-threaded program on
different implementations of Java may produce different results, if there is data shared among the threads.

During its execution, a thread performs actions on variables: it may use the value of a variable, or it
may assign a value to a variable. Each thread has a working memory where it keeps temporary working
coptes of used and assigned variables. There is also a main memory which contains the master copy of each
variable. Threads use and assign variable values by respectively reading from and writing to main memory.

A thread’s ezecution engine (which executes code) and its working memory manager (which handles the
transfer of data between the working memory and main memory) are separate agents. A use or assign action
is a tightly coupled interaction between a thread’s execution engine and its working memory manager; the
used or assigned value 1s transmitted in a single atomic action. In contrast, the transfer of data between a
thread’s working memory and main memory is a loosely coupled interaction. In transferring a value from
main memory to a thread’s working memory, the main memory manager issues a read action, which transfers
the master value to the working memory. This is followed by a load action by the working memory manager,
which installs the value into working memory. A transfer in the opposite direction begins with a store action
by the working memory manager, which transfers the working value to main memory. This is followed by a
write action by the main memory manager, which installs the value into main memory.

Rule for actions of a thread
e The actions of a single thread are totally ordered. (Threads view the actions of a single thread T in
the order in which T performed them.)
Rule for actions on a variable
e The actions by the main memory manager on any single variable are totally ordered. (Threads view
the actions of main memory in the order in which it performed them.)
Rules for actions of a thread on a variable

e A use or assign action by T is issued only when dictated by 7T’s code, and in the order dictated by the
code.

o If T assigns to z and later loads from z, then it must store to # in the interim. (This ensures that if
T issues a sequence of assigns to z, at least the latest value is transmitted to the main memory.)

o If 7' loads from or stores to z, and later stores to 2, then it must assign to z in the interim. (This
ensures that 7 issues a store only if there is a new value to transmit to the main memory.)

83

o If T uses or stores to z, it must first assign to or load from z. (This ensures that the contents of T’s
working memory come only from the execution engine or the main memory.)

Rules for the interaction of a thread and main memory on a variable

e If T loads from 2z, main memory must first read = to T, and the load must put the value of the read
into T’s working memory. (This ensures that each load is “uniquely paired” with a read.)

e If T stores to x, main memory must later write to x, and the write must put the value of the store into
main memory. (This ensures that each store is “uniquely paired” with a write.)

e Let a; be a load from or store to z, and let b; be the corresponding read or write. Let ay be another
load from or store to x, and let by be the corresponding read or write. If T' issues a; before ay, then
main memory issues by before by. (This ensures that a thread’s actions on a variable are performed in
the order that the thread requested.)

8.2 ASM J;

The ASM J5 has a compiler agent with module C5, an executor agent with module R5 for each element
of the F'rame universe, a single main memory agent with module MainMemory, and a working memory
agent with module Working Memory for each element of the universe Thread.

8.3 Function and macro definitions

Thread Universe of threads.

Frame.thread : Thread Thread associated with the frame.

Variable. masterV alue : Value Master copy of variable in main memory.
Thread.workingV alue(Variable) : Value Value for variable in thread’s working memory.

Thread.store Pending?(Variable) : Boolean | Is there a new value for the variable,
to be stored by the thread’s working memory?

Thread.curW M Indez : Nat Current timestamp value for actions

by this thread’s working memory.
Thread.curM M Indez : Nat Current timestamp value for actions

by main memory on behalf of this thread.
Store Universe of store actions.
Read Universe of read actions.

Different threads may throw different exceptions concurrently. Thus the functions normal? and
curEzception take an additional Thread argument. In all previous ASM rules, add the term Self.thread
as an argument to all occurrences of Normal? and curEzception.

macro Action: Store U Load

Action.M M Indez : Nat | Timestamp recording when main memory processed this store/read.
Store. WM Index : Nat Timestamp recording when working memory processed this store.
Read.loaded? : Boolean | Has this read been loaded by the recipient’s working memory?

macro Access var:
(Access value of variable from working memory, if it exists there.)
if lvalue? then

result(self) .= var

Proceed Sequentially

84

elseif self.thread.workingValue(var).def? then
result := self.thread.workingV alue(var)
Proceed Sequentially

macro Assign val To var:

(Assign new value to variable in working memory,

signaling that a store must copy this value to main memory.
self.thread.workingV alue(var) := val

self.thread.store Pending?(var) = true

macro R.loadable?:
(May the value of read action R be loaded by the thread’s working memory?
Only if all previous stores by this thread to this value have been written by the main memory,
and only if this is the most recent read of the variable.)
(Vs : s.isA?(Store) and s.var = R.var and s.thread = R.thread)s.M M Index < R.M M Index
and (Vr' : r'isA?(Read) and r'.var = R.var and v’ .thread = R.thread and r'.loaded?)

' M MIndex < R.M M Index

macro S.written? :
(Has main memory written the value of store action S7

S.M M Index.def?

macro S.writeable?:

(May the value of store action S be written by main memory?

Only if all previous stores by this thread to this value have been written by main memory.)

(Vs' : s'.isA?(Store) and s'.thread = S.thread and s'.var = S.war and " WM Index < SSWM Index)

s’ written?

8.4 Rule definitions

rule WorkingMemory:
choose var : var.isA?(Variable)
if self.store Pending?(var) then
extend Store with s
s.thread := self
s.var := var
s.walue := sel f.workingV alue(var)
s.WMIndex = self.curW M Index
self.storePending?(var) := false
self.curW M Index := sel f.curW M Index + 1
else choose r : r.isA?(Read) : r.thread = self and r.var = var and r.loadable?
self.workingV alue(var) := r.value
r.loaded? := true

rule MainMemory:
choose among

choose s : s.isA?(Store) : s.writeable?

s.MMIndex .= t.curM M Index
s.var.masterValue := s.value

85

s.thread.curM M Index := s.thread.cur M M Index + 1

choose var,t : var.isA?(Variable) and t.isA?(Thread)
extend Read with r
rthread ;=1
r.var = var
r.value ‘= var.masterV alue
r.MMIndex :=t.curM M Index
t.curM M Index = t.curM M Index + 1

9 Locks and Wait sets

9.1 Preliminaries

If multiple threads execute a common code region that accesses shared data, the result of the execution may
not be determinable from the Java specification. A programmer may wish to impose determinism upon such
regions by restricting them to one thread at a time. To ensure that only one thread is granted access, any
thread trying to enter the region must first acquire a lock. Each object has an associated lock. By issuing a
lock action, a thread requests a claim on a lock. Only one thread at a time may have a claim on a lock, and
a thread may gather multiple claims. An unlock action relinquishes one claim on a lock. When a thread’s
claims on a lock increase from zero, we say that it gains the lock; likewise, when a thread’s claims on a lock
decrease to zero, we say that it releases the lock. A lock or unlock action is a tightly coupled interaction
between a thread’s execution engine and the main memory manager.

Rule for actions on a lock

e The actions by the main memory manager on any single lock are totally ordered.

Rules for the actions of a thread on a lock

e If T gains a lock on [, then for all threads other than 7" the number of lock and unlock actions on [
must be equal. (This ensures that one thread at a time may own a lock; a thread may obtain multiple
claims on a lock and surrenders ownership only when it has given up all claims.)

e If T relinquishes a lock on [, then the number of 7”s lock actions on ! must be greater than the number
of its unlock actions on [. (This ensures that a thread may not relinquish a claim on a lock if it has
none.)

Rules for the actions of a thread on a lock and a variable

o If T" assigns to z and later relinquishes a lock on [, in the interim it must first store to # and then main
memory must write to z.

e If T gains a lock on [and later uses or stores to z, then one of two things happens in the interim:

— T assigns to z, or
— main memory reads from z and later 7" loads from z.
When a thread reaches a state from which it cannot progress by itself, it may temporarily give up control
to other threads. In doing so, it may need to release a lock so that other threads may use it. The method

wait of class Object releases the lock on an object and temporarily disables the thread. Other threads may
then signal to the thread that further progress is possible through the notify or notifyAll methods. In

86

this way, a waiting thread may resume execution when it is possible, without repeatedly checking its state
(and possibly regaining a lock).

Associated with each object is a wait set. This set, empty when the object is created, contains all threads
waiting for the lock on the object.

The method wait is invoked by a thread 7 on an object 0bj. Let n be the number of claims the T has
on the lock of obj. If n is zero, an IllegalMonitorStateException is thrown. Otherwise, n unlock actions are
performed, and ¢ is added to the wait set of 0bj and disabled. When ¢ is re-enabled (through a notify or
notifyAll), it attempts to regain n claims on the lock; it may need to compete with other threads to do
this. Once the lock claims are restored, the method terminates.

The method notify is also invoked by a thread 7" on an object obj. If the number of claims that 7" has
on the lock of 0bj is zero, an IllegalMonitorStateException is thrown. Otherwise, if the wait set of 0bj 1s not
empty, one thread is removed from it and enabled. The method notifyAll operates similarly but removes
and enables all threads from the wait set. Neither method releases any of T’s claims on the lock of 0bj.

9.2 ASM Js

The ASM J5 has a compiler agent with module C5, an executor agent with module R5 for each element
of the F'rame universe, a single main memory agent with module MainMemory, and a working memory
agent with module Working M emory for each element of the universe Thread, and a lock manager agent
with module Lock M anager for each element of the universe Variable. The module for each executor has
the guard Self.waitsFor.undef? and Self.active?.

9.3 Function and macro definitions

Thread.numLocks(Object) : Nat | Number of locks the thread has on the object.

Lock Request Universe of lock requests.

Unlock Request Universe of unlock requests.

Thread.waitsFor : Object Object for which the thread is waiting.

Thread.old NumLocks : Nat Number of locks that the waiting thread had on the object
before it began waiting.

macro Request: LockRequest UUnlock Request

Request.thread : Thread | Thread issuing this request.
Request.obj : Object Object of request.

macro Issue Lock Request:
(Tssue a request for a lock.)
if synchEzpr.result(Self) = null then Throw Exception Of Class Null Pointer Exception
else
extend LockRequest with r
r.ithread := self.thread
r.obj := synchEzpr.result(Self)
Proceed Sequentially

macro Synchronize:
(Wait until a lock for the object has been granted, then proceed.)
if thread.numLocks(synchExpr.result(Self)) > 0 then Proceed Sequentially

macro Issue Unlock Request:

87

(Tssue an unlock request for a lock on the given variable.)
extend Unlock Request with r

rthread := self.thread

r.obj .= synchExzpr.result(Self)
Proceed Sequentially

9.4 Rule definitions

rule Lock Manager:
choose among

choose t : t.isA?(Thread) : (V' : t'.isA?(Thread) and t' # t)t' .numLocks(self) = 0
choose [: l.isA?(Lock Request) : l.thread =t and l.obj = self
if (not t.store Pending?(self))
and not (3r : risA?(Read))r.thread =t and r.loadable? then
t.numLocks(self) := t.numLocks(self) + 1
Remove [

choose t : t.isA?(Thread) : t.numLocks(self) > 0
choose u : u.isA?(Unlock Request) : u.thread =t and u.var = self
if (Vs :s.isA?(Store) and s.thread = t)s.written? then
t.numLocks(self) := t.numLocks(self) — 1
Remove u

if curTask = waitUnlock then

if self.thread.numLocks(self.targetObj) > 0 then
selfthread.waitsFor .= self.targetObj
self.thread.oldNumLocks := self.thread.numLocks
do-forall i : i < self.thread.numLocks(self.targetObj)

Unlock self.targetObj

curTask := wait Relock

else
Throw Exception Of Class Illegal M onitor State Fxception

if curTask = wait Relock then
if self.thread.numLocks(self.targetObj) = 0 then
do-forall i : i < self.thread.oldNumLocks(self.targetObj)
Lock self.targetObj
curTask := wait Return

if curTask = wait Return then
if self.thread.numLocks = selfthread.old NumLocks then
Deactivate Current Frame

if curTask = notify then
choose t in Thread with thread.waitsFor(targetObj)
t.waitsFor .= undef
Deactivate Current Frame

if curTask = notifyAll then
do-forall t : t.isA?(Thread) : thread.waitsFor(targetOby)
t.waitsFor .= undef

88

Deactivate Current Frame

References

[App] AppletMagic home page. http://www.appletmagic.com. Intermetrics, Inc.
[ASM] ASM home page. http://www.eecs.umich. edu/groups/gasm/. University of Michigan.

[BGS97] A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Technical Report CSE-TR-338-
97, University of Michigan, 1997.

[Bor95] E. Borger, editor. Specification and Validation Methods. Oxford University Press, 1995.

[BS97] E. Borger and Wolfram Schulte. Proving the correctness for compiling Java programs to Java VM
code. In Proceedings of IFIP Working Group 2.2 Meeting, 1997.

[Gem] GemMex home page. http://www.first.gmd.de/ ma/gem/index.html. Matthias Anlauff, GMD
FIRST.

[GH93] Y. Gurevich and J. Huggins. The semantics of the C programming language. In E. Borger, H. Kleine
Buning, G. Jager, S. Martini, and M.M. Richter, editors, Computer Science Logic, volume 702 of
Lecture Notes in Computer Science, pages 274-309. Springer, 1993.

GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley, 1996.
Gur95] Y. Gurevich. Evolving Algebras 1993: Lipari guide. In Borger [Bor95], pages 9-36.

[

[

[Gur97] Y. Gurevich. May 1997 draft of the ASM guide. University of Michigan, 1997.
[Jav] Java glossary. http://java.sun.com/docs/glossary.html. Sun Microsystems.
[

KP97a] P.W. Kutter and A. Pierantonio. The formal specification of Oberon. Journal of Universal Com-
puter Science, 3(5):443-503, 1997.

[KP97b] P.W. Kutter and A. Pierantonio. Montages specifications of realistic programming languages.
Journal of Universal Computer Science, 3(5):416-442, 1997.

[Wal95] C. Wallace. The semantics of the C++ programming language. In Borger [Bor95], pages 131-164.

89

