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Abstract

A common approach to building fauli-tolerant distributed systems is to replicate servers that fail indepen-
dently. The objective is to give the clients the illusion of service that is provided by a single server. The main
approaches for structuring fault-tolerant servers are passive and active replication. This paper presents a
primary-backup (passive) replication scheme for supporting fault-tolerant real-time applications. The proposed
scheme, called Real-Time PB (RTPB) replication service, is an elegant and simple approach that provides the
benefits of fault-tolerance, real-time access, and temporal consistency guaraniees that are not otherwise easily
attainable.

This paper formally defines two types of temporal consistency, namely external temporal consistency and
inter-object temporal consistency. By introducing a key concept called phase variance, we are able to build
our temporal consistency models and derive necessary and sufficient conditions that can be used as the basis
for update and transmission scheduling that achieve temporal consistency guarantees. Furthermore, we prove
that the term phase variance used in the models can be bounded under various scheduling algorithms, namely
EDF, Rate Monotonic [20], and Distance-Constrained Scheduling [9].

The paper also presents an implementation of the real-time primary-backup replication scheme with the
aforementioned temporal consistency models. This implementation was developed within the x-kernel archi-
tecture on the MK 7.2 microkernel from the Open Group. The results of a detailed performance evaluation of
this implementation is also discussed.

1 Introduction

With ever-increasing reliance on digital computers in embedded real-time systems for diverse applications
such as avionics, automated manufacturing and process control, air-traffic control, and patient life-support
monotoring, the need for dependable systems that deliver services in a timely manner has become crucial.
Embedded real-time systems are in essence responsive: they interact with the environment by “reacting to
stimuli of external events and producing results, within specified timing constraints” [14]. To guarantee this
responsiveness, a system must be able to tolerate failures. Thus, a fundamental requirement of fault-tolerant
real-time systems is that they provide the expected service even in the presence of failures.

Most real-time computer systems are distributed and consist of a set of nodes interconnected by a real-
time communication subsystem. Conceptually, a real-time computer system provides a set of well-defined
services to the environment. These services must be made fault-tolerant to meet the availability and reliability
requirements on the entire system. Therefore, some sort of redundancy must be employed for failure detection
and recovery. This redundancy can take many forms: it may be a set of replicated hardware or software
components that can mask the failure of a component (space redundancy), or it may be a backward error
recovery scheme that allows a computation to be restarted from an earlier consistent state after an error 1s



detected (time redundancy).

Two common approaches for space redundancy are active (state-machine) and passive (primary-backup)
replication. In active replication, a collection of identical servers maintain copies of the system state. Client
write operations are applied atomically to all of the replicas so that after detecting a server failure, the
remaining servers can continue the service. Passive replication, on the other hand, distinguishes one replica
as the primary server, which handles all client requests. A write operation at the primary server invokes the
transmission of an update message to the backup servers. If the primary fails, a failover occurs and one of the
backups becomes the new primary.

Although maintaining redundant components adds overhead to the system, this overhead can be reduced
by exploring weak consistency semantics of applications. The resulted relaxization of consistency constraints
could dramatically reduce system cost. This is true not only in the field of fault tolerance, but in other areas
too. For example, many researchers in the database field have long recognized that strict serializability is too
costly and often unnecessary. Instead, relaxed correctness criteria are used in scheduling database transactions
which consequently permits a higher degree of concurrency. Similarly, imprecise computations exploit the fact
that some computations can be completed successfully even if the input data is not totally up to date [21].

Different consistency semantics exist and are used in diverse applications depending on the objective and
environment of the tasks. One category of consistency semantics that is particularly relevant to the primary-
backup replication in a real-time environment is the temporal consistency, which is the consistency view seen
from the perspective of the time continuum. Two common types of temporal consistency are the ezternal
temporal consistency which deals with the relationship between an object of the external world and its image
on the servers, and the inter-object temporal consistency which is concerned with the relationship between
different objects or events.

External temporal consistency at the primary server is needed because the primary provides services to
outside clients. In order to provide meaningful and correct service, the state of the primary must closely reflect
that of the actual world, or in other words, be consistent with the outside world. This consistency is also
needed at the backup server because the backup is supposed to replace the primary in case of primary failure.
The closeness of the state of the backup to that of the actual world is vital for a successful failover. Usually
the restriction of the closeness placed on the backup is not as tight as that on the primary but must be within
a tolerable range for the applications. Inter-object temporal consistency comes into play when two objects or
two events are related in a temporal sense. For example, when an airplane takes off, there is a time bound
between accelerating the plane and the lifting of the plane into air because the runway is of limited length
and the airplane can not keep accelerating on the runway indefinitely without lifting off.

This paper presents the design and implementation of a real-time primary-backup replication scheme that
combines fault-tolerant protocols, real-time scheduling, temporal consistency guarantees, and flexible z-kernel
architecture to accommodate various system requirements. This work builds on the Window Consistent
Replication Service by Mehra et al. [22] but distinguishes itself from that work in the following areas:

e The temporal consistency model is more general.
e Inter-object temporal consistency is proposed.
e Implementation is built within z-kernel architecture.

The most important contributions of this paper are the introduction of the concept of inter-object tem-
poral consistency, the definition of the term phase variance, the theoretical models of all kinds of temporal
consistency semantics, and the necessary and sufficient conditions that can be used as a basis for update and
transmission scheduling such that (both external and inter-object) temporal consistency at both the primary
and backup are preserved. The implementation is built within the z-kernel architecture on MK 7.2 microkernel
from the Open Group®. Performance data are collected to evaluate the implementation.

The rest of the paper is organized as follows: section 2 introduces the concept of external temporal

1Open Group is formerly known as the Open Software Foundation (OSF)



consistency and develops an abstraction model for it. Section 3 presents the concept of inter-object temporal
consistency. Section 4 addresses implementation issues in our experience of building a real-time primary-
backup replication system followed by performance analysis of our system in Section 5. Section 6 summarizes
the related work, and finally, Section 7 draws some conclusions about the RTPB system and discusses possible
future extensions.

2 External temporal consistency

External temporal consistency is concerned with the relationship between an object of the real world and
its image on a server. The problem of enforcing a temporal bound between an object/image pair is essentially
equivalent to the problem of enforcing such a bound between any two successive updates of the object on the
server. If the maximum time gap between a version of an object on the server and the version of the object in
the real world must be bounded by some &, then the time gap between two successive updates of the object
on the server must be bounded by é too, and vice versa. Hence, the problem of guaranteeing an object’s
external temporal consistency is transformed to the problem of guaranteeing that the time gap between two
successive updates of the object on the server is bounded by some é. If we define timestamp T (t), T2 (¢) at
time instant ¢ to be the finish time of the last update of object i before or on time instant ¢ at the primary and
backup respectively, then the temporal consistency requirement stipulates that inequalities ¢ — T (¢) < 6F
and t — TP (t) < 62 hold at all t. This concept of external temporal consistency is illustrated in Figure 1.

External World t— TP(t) < é6F
; <

Primary Backup
T (1) T2 (1)

Figure 1: concept of external temporal consistency

2.1 Consistency at primary

Here we want to find out the condition that can guarantee an object’s external temporal consistency
constraint at the primary. Let:

OF denote object i at the primary.

TF(t) denote timestamp of OF at time instant ¢.

p; denote the period of the task that updates OF.

e; denote the execution time of the task updating OF.
6F denote the external consistency constraint for OF.

A sufficient condition to guarantee the external temporal consistency is given below:
Lemma 1: External temporal consistency for object OF at the primary is satisfied if p; < (6F + ¢;)/2.

The correctness of the lemma is intuitive because any two consecutive invocations is bounded by 67 + e;
and hence the temporal distance of any two time instants is within 67 . A proof is supplied in the appendix.

The above condition can be significantly relaxed with the introduction of the concept of phase variance.

Definition 1: The k-th phase variance vf, k=1,2,... 00 of a task is the absolute difference between the



time gap of its k-th and (k-1)-th invocations, and its period p;. Let Ip, Iy_; represent the k-th, (k-1)-th
invocations of the task, respectively, Then vf = |(Iy — It_1) — pi|, k=1,2,..., 00

Figure 2 and 3 illustrate this concept.
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Figure 2: k-th phase variance, Iy — I_1 > p;
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Figure 3: k-th phase variance, Iy — I_1 < p;

Definition 2: The phase variance v; of a task is the maximum of its k-th phase wvariance. ie.: v; =
max(vf), k=1,2,..., 0.

Since any two consecutive invocations of a periodic task is bounded between e; and 2p; — €;, 1t follows
immediately from the definition of phase variance that:

v; = max(|(Iy — Ix—1) — pi|) <pi — € (2.1)

Now, we can derive a necessary and sufficient condition that guarantees external temporal consistency for
an object at the primary.

Theorem 1: External temporal consistency for OF at the primary is satisfied if only if p; < 6 — v;. here
v; is the phase variance of the task that updates OF.

The proof is supplied in the appendix.

Bound of phase variance

The result of Theorem 1 is of little use if phase variance can not be bounded by a bound that is better
than the one given by Inequality 2.1. Fortunately, we are able to derive better bounds on phase variance for
various scheduling algorithms.

Theorem 2: Inequalities v; < zp; —¢; and v; < (m.pi)/(n(‘Zl/” — 1)) —e; are satisfiable under EDF and Rate
Monotonic Algorithm [20], respectively. Here n is the number of tasks on the particular processor, z is the
utilization rate of the task set.

A proof is supplied in the appendix.

From Theorem 1 and 2, we see that the restriction on an object can be significantly relaxed if the utilization
rate of a task set is known (this is usually the case). It can also be shown that if the number of objects whose
external temporal consistency we want to guarantee is less than the number of tasks in the task set, the bound



on phase variance can be further tightened. The formula that takes into account the number of objects for
which we want to guarantee temporal consistency is straight forward to derive.

Zero bound of phase variance

Thus far, we have demonstrated that phase variance can indeed be bounded by some known number. In
fact, we can ensure that the phase variance is exactly zero in most cases through a direct application of the
schedulabilities results from Distant-Constrained Scheduling (DCS) [9].

The DCS algorithm is used to schedule real-time tasks in which consecutive executions of the same task must
be bounded, i.e. the finish time for one execution is no more than § time units apart from the next execution.
The solution proposed to distanced-constrained scheduling is largely based on the Pinwheel problem. A set of
schedulers including Sa, Sx, and Sr that can achieve the purpose have been discussed [9].

Consider a task set T'= 11,75, ...,T,. Suppose e; and ¢; denote the execution time and distance constraint
of task T;, respectively. Any two invocations of task T; is bounded by ¢;. Han and Lin [9] have shown that
the task set can be feasibly scheduled under scheduler S, if 2?21 eifci < n(21/” —1).

If we substitute p; for ¢;, then each invocation of task T; is executed at exactly the same interval p; after
some iterations (could be 0). Thus, the phase variance of task 7; in this case is |(I — It—1) —pi| = |p; —pi| = 0.
Therefore, we have the following theorem.

Theorem 3: wv; = 0 is satisfiable by scheduler S, if

n

YO <@ - (2.2)

i=1 pi

Combining with the result of Theorem 1, one can show that under the condition stated in inequality 2.2,
the condition to guarantee external temporal consistency for an object is relaxed to that of ensuring that the
period of the task updating the object is bounded by the temporal constraint placed on the object.

2.2 Consistency at backup

In a primary-backup replication service system, the temporal consistency at the backup site is maintained
by the primary’s timely sending of update messages to the backup. Our interest here is to find out at
what frequency the primary should schedule update messages to the backup such that the external temporal
consistency of an object at the backup is guaranteed. We introduce the following additional notations:

OZ denotes object i at the backup.

TB(t) denotes timestamp of OF at time instant ¢.

r; denotes the period of the task that updates OF.

et denotes the execution time of the task updating OF.
£ 1s the communication delay from primary to backup.
6P denotes the external temporal constraint for OF.

A sufficient condition to guarantee the external temproal consistency is given below:
Lemma 2: External temporal consistency for OF at the backup is satisfied if r; < (62 +¢; +¢t —£)/2—p;.
With the introduction of phase variance, a necessary and sufficient condition can be derived:

Theorem 4: External temporal consistency for OF at the backup is satisfied if only if r; < 62 —v}—p; —v; —¢,
where v; and v}, are the phase variances of the tasks that updates OF and OF respectively.



A proof is attached in Appendix E.

If we choose p; to be the largest that satisfies the external temporal constraint of object ¢ at the primary,
le. p; = 6ZP — v;, we derive:

ri < 6P — b — (6F —wi) —wi — 4= (6P —6F) — vl —¢

K3

Moreover, if v} = 0, then the above formula is simplified to r; < (62 — §F

; ;) — £. Hence, we have:

Theorem 5: If v/ = 0, then external temporal consistency for object OF at the backup is satisfied if only if
r < (68 - 6Py —¢.

Let 6 denote 62 — 6F then Theorem 5 states that in order to guarantee the external temporal consistency for
object OF at the backup, an update message from the primary to the backup must be sent within the next
6 — £ time units after the completion of each update on the primary. This is identical to the window-consistent
protocol proposed by Mehra et. al. [22], here é is the window of inconsistency (or window consistent bound)
between the primary and backup.

3 Inter-object temporal consistency

The previous section introduced the notion of external temporal consistency which deals with the relation-
ship of an object in the external world and its images on the servers. This section presents the concept of
inter-object temporal consistency which is concerned with the relationship between different objects or events.
If one object is related to another object in a temporal sense, then a temporal constraint between the two
objects must be maintained. For example, when an airplane takes off, there is a time bound between accel-
erating the plane and the lifting of the plane into air because the runway length is limited and the airplane
can not keep accelerating on the runway indefinitely without lifting off. The concept of inter-object temporal
consistency 1s illustrated in Figure 4:

External World |l]»P(t) —~TF@)| < 6F
; <

B B B

IT57(t) = T2 ()] < 6

Primary Backup
TP (), T (1) TP (1), T (1)

Figure 4: inter-object temporal consistency

In the following, we establish the conditions that must be met by an object pair such that their relative
temporal bound is guaranteed. Let ¢;; denote the inter-object temporal consistency constraint between object
1 and j, the inter-object temporal consistency requires that inequality |TjP(t) — TF ()] < 65 to hold at both
the primary and backup at all {. A sufficient condition to guarantee this is:

Lemma 3: Inter-object temporal consistency between object OF and OF is satisfied at the primary if p; <
(6ij +€:)/2, pj < (6i5 +€;)/2, and at the backup if r; < (6;; +¢€})/2, r; < (65 + e?)/?.

The correctness of the lemma is intuitive since any two consecutive invocations of one task that meets the
condition is bound by the temporal constraint, any two neighboring invocations of two tasks that meet the
same condition are bound by the temporal constraint too. Notice that the dealing with inter-object temporal



consistency makes the update scheduling for the backup independent of that at the primary. Hence, we do
not need to consider the update frequence at the primary when considering inter-object temporal consistency
at the backup.

With the introduction of phase variance, a necessary and sufficient condition can be expressed as:

Theorem 6: Inter-object temporal consistency between object OF and O;D is satisfied at the primary if only
/

if p; < 65 — v, pj < b5 — vj, and at the backup if only if r; < 6;; — v}, rj < &5 — v;.
The correctness of the theorem is agian intuitive since any two consecutive invocations of one task that meets
the condition is bound by the temporal constraint, any two neighboring invocations of two tasks that meet
the same condition are also bound by the temporal constraint. A formal proof for this theorem is attached in
Appendix F.

If the phase variacnes of the tasks that update object OF and OF are made zero (i.e. v; = v; = v} = vi = 0),
then the conditions stated in Theorem 6 are simplified to the following:

p; < &5, and p; < &; for the primary
r; < 6;5, and r; < &;; for the backup

which means that the inter-object temporal constraint between object ¢ and j at both the primary and backup
can be maintained by scheduling the two updates (for object ¢ and j, respectively) within a bound of é;; time
units.

4 TImplementation

We have developed a prototype implementation of a real-time primary-backup (RTPB) replication service
based on the temporal consistency models described in previous sections. The remainder of Section 4 describes
the key features of this implementation with its performance evaluations presented in Section 5.

4.1 Implementation environment and system configuration

Our system is implemented as a user-level z-kernel based server on the MK 7.2 microkernel from the
Open Group. The z-kernel is a protocol development environment which explicitly implements the protocol
graph [12]. The protocol objects communicate with each other through a set of z-kernel uniform protocol
interfaces. A given instance of the z-kernel can be configured by specifying a protocol graph in the configuration
file. A protocol graph declares the protocol objects to be included in a given instance of the z-kernel and their
relationships.

We chose the z-kernel as the implementation environment because of its several unique features. First,
it provides an architecture for building and composing network protocols. Its object-oriented framework
promotes reuse by allowing construction of a large network software system from smaller building blocks.
Secondly, it has the capability of dynamically configuring the network software, which allows application
programmers to configure the right combination of protocols for their applications. Thirdly, its dynamic
architecture can adapt more quickly to changes in the underlying network technology [24].

Our system includes a primary server and a backup server. A client application resides on the same
machine as the primary. The client continuously senses the environment and periodically sends updates to
the primary. The client accesses the server using Mach TPC-based interface (cross-domain remote procedure
call). The primary is responsible for backing up the data on the backup site and limiting the inconsistency
of the data between the two sites within some specified window. The following assumptions are made in the
implementation:

e Link failures are handled using physical redundancy such that network partitions are avoided.
e An upper bound exists on the communication delay between the primary and backup. Missed message



deadlines are treated as performance failures.
e Servers are assumed to suffer crash failures only.
e The underlying operating system is assumed to support priority-based scheduling.

Figure 5 shows the RTPB system architecture and z-kernel protocol stack. At the top level is the RTPB
application programming interface which is used to connect the outside clients to the Mach server on one end
and Mach server to the z-kernel on the other end. Our real-time primary-backup (RTPB) protocol sits right
below the RTPB API layer. It serves as an anchor protocol in the z-kernel protocol stack. From above, it
provides an interface between the z-kernel and the outside host operating system, the OSF Mach in our case.
From below, it connects with the rest of the protocol stack through the z-kernel uniform protocol interface.
The underlying transport protocol is UDP. Since UDP does not provide reliable delivery of messages, we need
to use explicit acknowledgments when necessary. The primary host interacts with the backup host through the

Primary Backup

RTPB API RTPB API
x-kernel

paths
RTPB

ETHDRV

LA
Dl

RTPB server RTPB server

OSF MACH KERNEL

OSF MACH KERNEL

Ethernet

Figure 5: system architecture and protocol stack

underlying RTPB protocol that is implemented inside the xz-kernel protocol stack (on top of UDP as shown
in Figure 5). There are two identical versions of the client application residing on the primary and backup
hosts respectively. Normally, only the primary client application is running. But when the backup takes over
in case of primary failure, it also activates the backup client application and brings it up to the most recent
state. The client application interacts with the RTPB system through the Mach API interface we developed
for the system.

4.2 Admission control

Before a client starts to send updates of a data object to the primary periodically, it first registers the object
with the service so that the primary can perform admission control to decide whether to admit the object into
the service. During registration, the client reserves the necessary space for the object on the primary server
and on the backup server. In addition, the client specifies the period it will update the object p; as well as the
temporal consistency allowed for the object on both the primary site and the backup site, where the temporal
consistency specified by the client is relative to the external world. The consistency window between the real
data object i and its copy on the primary is §F. Because the copy of object i on the primary changes only
when the client sends a new update, the inconsistency between the real data and its image on the primary
is dependent on the frequency of client updates. Hence, it is the responsibility of the client to send updates



frequently enough to make sure the primary has a fresh copy of the data.

The primary server compares the value of 6§ and p;. If p; < 6, then the inconsistency between the real
data and the primary copy will always fall into the specified consistency window (as shown in Section 2). If
the condition does not hold, the primary will not admit the object. The primary can provide feedback so that
the client can negotiate for an alternative quality of service for the object.

Given the temporal consistency constraint for object i on the primary 6 and the constraint on the
backup 2, the consistency window for object i between the primary and the backup é; can be calculated as
6; = 68 — 6F. There is an upper bound, ¢, on the communication delay between the primary and the backup.
If the consistency window §é; is less than the bound ¢, it is impossible to maintain consistency between the
primary and backup servers. Therefore, during the registration of object 7, the primary will check if relation
6; > £ holds for object . If the relation does not hold, the primary rejects the object.

After testing that the temporal consistency constraints hold for object ¢, the primary needs to further
check if it can schedule a periodic update event (to the backup) for object ¢ that will meet the consistency
constraint of the object on the backup without violating the consistency constraints of all existing objects. For
example, the primary will perform a schedulability test based on the rate-monotonic scheduling algorithm [20].
If all existing update tasks as well as the newly added update task for object i are schedulable, the object is
admitted into the system.

Each inter-object temporal constraint is converted into two external temporal constraints according to the
results derived in Section 3. Specifically, given objects ¢ adn j and their inter-object temporal constraint é;;,
their inter-object temporal bound can be met at the primary if p; < &;, p; < 6&;, and the schedulability
test is successful. This same constraint can be met at the backup as long as the constraint &;; is sufficiently
large such that the primary can schedule two new update tasks that periodically send update messages to the
backup without violating the temporal constraints of any existing object that is registered with the replication
service.

4.3 Update scheduling

In our model, client updates are decoupled from the updates to the backup. The primary needs to send
updates to the backup periodically for all objects admitted in the service. It is important to schedule sufficient
update transmissions to the backup for each object in order to control the inconsistency between the primary
and the backup. In the absence of link failures, there is an upper bound, ¢, on the communication delay
between the primary and the backup.

For external temporal constraint, if a client modifies an object ¢, the primary must send an update for
the object to the backup within the next é; — £ time units; otherwise the object on the backup may fall out
of the consistency window. In order to bound the temporal inconsistency, it is sufficient that the primary
send an update for object 7 to the backup at least once every é; — £ time units. Because UDP, the underlying
transport protocol we use, does not provide reliability of message delivery, we build enough slack such that
the primary can retransmit updates to the backup to compensate for potential message loss. For example, we
set the period for the update task of object ¢ as (§; — £)/2 in our experiments.

For inter-object temporal constraint, the primary need not send update to the backup within the next
6; — £ time units after the primary is updated. But rather, the primary schedules the two updates for object
i and j within é;; time units (see Section 3).

Another question is whether the backup should acknowledge each update message. We chose not to send
acknowledgement messages for two reasons. First, acknowledging each update for each object introduces con-
siderable communication overhead. Secondly, the local area network is fairly reliable under normal load. Most
of the message losses occur when the network is overloaded, in which case acknowledgments and retransmis-
sions can only make the situation worse. Retransmission is triggered by a request from the backup.



4.4 Failure detection and recovery

Failure detection and recovery is a key component of the replication service. It determines the availability
of the service. The approach is that all replication servers exchange periodic messages. These messages serves
as the heartbeats among those servers. In our system, both the primary and the backup have a “ping” thread
which sends periodic messages to the other server. Each server acknowledges the “ping” message from the
other one. If a server receives no acknowledgment over some time, it will timeout and resend a “ping” message.
If there is no response beyond a certain amount of time, the server will declare the other end dead. If the
backup is dead, the primary cancels the “ping” messages as well as update events for each registered object. If
the primary crashes, the backup takes over as the new primary. The new primary changes the address in the
name file to its own internet address, invokes a backup version of the client application at the local machine,
feeds the new client with information stored in its memory by an up call, starts listening to all client requests,
and then waits to recruit a new backup. The new client replaces the client at the crashed machine to perform
the sensing task. Our implementation supports the integration of a new backup after a failure is detected.

5 System performance

This section summarizes the results of a detailed performance evaluation of the RTPB replication service
introduced in this paper. The prototype evaluation considers several performability metrics:

e Response time with/without admission control.
e Average maximum primary-backup distance.
e Average duration of backup inconsistency

These metrics are influenced by several parameters, including client write rate, object size, number of
objects being accepted, window size, communication failure, and scheduling compression.

All graphs in this section illustrate both the external temporal consistency and inter-object temporal
consistency. Each inter-object temporal constraint is converted into two external temporal constraints with
the external temporal constraint being replaced by the inter-object temporal constraint.

5.1 Client response time within RTPB

To show that our admission control process is functioning correctly, we measured the system response
time to client requests under two different conditions with and without admission control. Figure 6 shows the
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Figure 6: client response time with admission control
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client response time as a function of the number of objects being accepted by the admission control process
running at primary. As shown in the graph, the number of objects has little impact on the response time of the
system. This is due to the fact that the admission control in the primary acts as a gate keeper that prevents
too many objects from being admitted. The decoupling of client updates from backup updates is also a major
contributing factor. Figure 7 shows the same metric without admission control. As we can see from the graph,
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Figure 7: response time without admission control

the number of objects has little impact on the response time of the system when it is within the allowable
limit of the window size. But the response time increases dramatically if the number of objects exceeds the
maximum allowable number of objects under a given window size. By disabling admission control, the number
of objects accepted into the system can go out of control which consequently degrade system performance.

For the same number of objects in Figure 6 and 7, larger window sizes ensure a better response time.
The larger the window size, the more leeway the primary has (due to the decoupling in RTPB) in scheduling
update messages to the backup. Hence, the primary is able to schedule local updates and client responses
while delaying transmission of updates to the backup.

5.2 Primary-backup distance

Since the relaxation of consistency constraint between the primary and the backup can potentially introduce
data inconsistency, it is important to measure the average maximum distance between the primary and the
backup. Figure 8 shows the average maximum distance as a function of the probability of message loss from
the primary to the backup. The graph illustrates average maximum distance for various client update rates.

From the figure, we see that the average maximum distance between the primary and the backup 1s close
to zero when there is no message loss. However, as message loss rate goes up, the distance also increases. For
example, when the message loss is 10 percent, the average maximum distance between the primary and the
backup approaches 700 milliseconds. In general, the distance increases as message loss rate or client write rate
increases.

It can be inferred that the average maximum distance can be reduced by compensating for message loss.
It is desirable to build our real-time primary-backup protocol on top of a transport protocol which provides
reliable and timely message delivery. In our experiments, the primary sends updates twice as often as necessary
to compensate for potential message loss.

Figure 9 and 10 measure the average maximum distance between the primary and backup as a function
of the number of objects being accepted at primary. As shown in Figure 9, when admission control is used,
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Figure 8: average maximum primary/backup distance

the number of objects has little impact on the average maximum distance between the primary and the
backup. The admission control in the primary acts as a gate keeper that prevents too many objects from
being admitted. Hence, it guarantees that the average maximum distance for admitted objects is minimized.

However, as shown in Figure 10, if the admission control process is disabled, then the number of objects
being admitted into the RTPB system can exceed the maximum allowable number of objects for a particular
window size. This results in an increase in the average maximum distance between the primary and the
backup. The comparison of Figure 9 and 10 demonstrates the need for an admission control policy.
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Figure 9: average maximum primary/backup distance with admission control

5.3 Duration of backup inconsistency

Another interesting metrics measures the duration of inconsistency at the backup. Figure 11 and 12 show
the duration of backup inconsistency as a function of the probability of message loss between the primary
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Figure 10: average maximum primary/backup distance without admission control

and the backup. The difference between these two graphs is that Figure 11 shows the result under normal
scheduling while Figure 12 shows the result under compressed scheduling (primary schedules as many updates
to backup as the resources allow [22]). The figures show that under both normal and compressed scheduling,
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Figure 11: duration of backup inconsistency

the larger the probability of message loss, the longer the backup stays in an inconsistent state from the
primary. However, for the same window size, the results for compressed scheduling are different from normal
scheduling. For normal scheduling, the larger the window size, the longer the backup stays in an inconsistent
state. But for compressed scheduling, the effect of window size on the duration of backup inconsistency is just
the opposite. If an update message is lost, the backup would stay inconsistent until the next update message
comes. Since the frequency of update message is determined by window size under normal scheduling, a larger
window size would mean longer duration of backup inconsistency. However, under compressed scheduling, the
frequency of update messages is not determined by window size but by the capacity of the CPU resource at
the primary. Therefore, larger window size would mean shorter duration of backup inconsistency because the
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Figure 12: duration of backup inconsistency with compressed scheduling

update frequency at the backup is much higher than the update frequency at primary.

6 Related work
6.1 Replication models

One can structure a distributed system as a collection of servers that provide services to the outside clients
or other servers within the system. A common approach to building fault-tolerant distributed systems is to
replicate servers that fail independently. The objective is to give the clients the illusion of service that is
provided by a single server. The main approaches for structuring fault-tolerant servers are passive and active
replication. In passive replication schemes [3,4,23], the system state is maintained by a primary and one or
more backup servers. The primary communicates its local state to the backups so that a backup can take over
when a failure of the primary is detected. This architecture is commonly called the primary-backup approach
and has been widely used in building commercial fault-tolerant systems. In active replication schemes [5—
7], also known as the state-machine approach, a collection of identical servers maintain replicated copies of
the system state. Updates are applied atomically to all the replicas so that after detecting the failure of a
server, the remaining servers continue the service. Schemes based on passive replication tend to require longer
recovery time since a backup must execute an explicit recovery algorithm to take over the role of the primary.
Schemes based on active replication, however, tend to have more overhead in responding to client requests
since an agreement protocol must be performed to ensure atomic ordered delivery of messages to all replicas.

Past work on synchronous and asynchronous replication protocols has focused, in most cases, on applica-
tions for which timing predictability is not a key requirement. Real-time applications, however, operate under
strict timing and dependability constraints that require the system to ensure timely delivery of services and
to meet certain consistency constraints. Hence, the problem of server replication posses additional challenges
in a real-time environment. In recent years, several experimental projects have begun to address the problem
of replication in distributed hard real-time systems. For example, MARS [11] is a time-triggered distributed
real-time system: its architecture is based on the assumption that the worst-case load is determined aprior: at
design time, and the system response to external events is cyclic at predetermined time-intervals. The MARS
architecture provides fault-tolerance by implementing active redundancy. A Fault-Tolerant Unit (FTU) in a
MARS system consists of a collection of replicated components operating in active redundancy. A component,
consisting of a node and its application software, relies on a number of hardware and software mechanisms for
error detection to ensure a fail-silent behavior.
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RTCAST [1] is a lightweight fault-tolerant multicast and membership service for real-time process groups
which exchange periodic and aperiodic messages. The service supports bounded-time message transport,
atomicity, and order for multicasts within a group of communicating processes in the presence of processor
crashes and communication failures. It guarantees agreement on membership among the communicating
processors, and ensures that membership changes resulting from processor joins or departures are atomic and
ordered with respect to multicast messages. Both MARS and RTCAST are based on active replication whereas
RTPB is a passive scheme.

Rajkumar [8,26] present a publisher/subscriber model for distributed real-time systems. It provides a
simple user interface for publishing messages on a logical “channel”, and for subscribing to selected channels
as needed by each application. In the absence of faults each message sent by a publisher on a channel should
be received by all subscribers. The abstraction hides a portable, analyzable, scalable and efficient mechanism
for group communication. It does not, however, attempt to guarantee atomicity and order in the presence of
failures, which may compromise consistency.

6.2 Consistency semantics

The approach proposed in this paper bounds the overhead by relaxing the requirements on the consistency
of the replicated data. For a large class of real-time applications, the system can recover from a server failure
even though the servers may not have maintained identical copies of the replicated state. This facilitates alter-
native approaches that trade atomic or causal consistency amongst the replicas for less expensive replication
protocols. Enforcing a weaker correctness criterion has been studied extensively for different purposes and
application domains. In particular, a number of researchers have observed that serializability is too strict as a
correctness criterion for real-time databases. Relaxed correctness criteria facilitate higher concurrency by per-
mitting a limited amount of inconsistency in how a transaction views the database state [10,13,15-19,25,27].

For example, a recent work [16] [15] proposed a class of real-time data access protocols called SSP (Similarity
Stack Protocol) applicable to distributed real-time systems. The correctness of the SSP protocol is justified
by the concept of similarity which allows different but sufficiently timely data to be used in a computation
without adversely affecting the outcome. Data items that are similar would produce the same result if used
as input. SSP schedules are deadlock-free, subject to limited blocking and do not use locks. Furthermore, a
schedulability bound can be given for the SSP scheduler. Simulation results show that SSP is especially useful
for scheduling real-time data access on multiprocessor systems.

Similarly, the notion of imprecise computation [21] explores weaker application semantics and guarantees
timely completion of tasks by relaxing the accuracy requirements of the computation. This is particularly useful
in applications that use discrete samples of continuous time variables, since these values can be approximated
when there is not sufficient time to compute an exact value. Weak consistency can also improve performance
in non-real-time applications. For instance, the quasi-copy model permits some inconsistency between the
central data and its cached copies at remote sites [2]. This gives the scheduler more flexibility in propagating
updates to the cached copies. In the same spirit, the RTPB replication service allows computation that may
otherwise be disallowed by existing active or passive protocols that support atomic updates to a collection of
replicas.

7 Conclusions and future work

The conclusions can be draw about RTPB are:

e Simple elegant approach for fault tolerance.

e Fast response to clients (due to consistency relaxation and decoupling of client writes/backup updates).
e Temporal consistent with regard to both the external world and the inter-object relationships.

e Controlled inconsistency between primary/backup.

The principle of our RTPB model is simple and easy to understand. The interaction between the primary
and clients as well as between the primary and backup are well defined. Our RTPB replication service can
provide fast response to client demands due to relaxation of the temporal constraint placed between the
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primary and the backup, and the decoupling of client updates from backup updates. Yet the system is still
able to maintain a controlled inconsistency (window consistency) between the primary and backup.

Avenues for future study include: optimization of scheduling update messages from the primary to the

backup; support for multiple backups; application of external and inter-object temporal consistency to active
replication; and hybrid active/passive replication schemes for real-time systems.
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Appendix

Proof of Lemma 1

Proof: In the worst case, a version of object OF at the primary could stay current for as long as 2p; — e;
e units before the completion of the next update, hence, at any time instant ¢, we have:

t=T ) <2pi—e; <2-(6f +ei)/2—ei =6 D

Proof of Theorem 1

Proof: Without loss of generality, assume v; = v¥ = |I; — It _; — p;|.

Sufficient: There are two cases:

(1)

t —

(2)

t —

Iy — I—1 < pi, then:
TP() < I — Loy < pi <67 —vi < 8F

Iy — Iy—1 > p;, then:
T»P(t) <Ip—Ix1=v;+p; Svi+(6ip_vi):6P

K3 K3
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Thus, the condition is sufficient.
Necessary: We proceed by contradiction. Suppose p; > 6 — v;. Then for Iy — Iy_; > p;, we have:

Iy — Loy = vi +p; > v + (6] —vi) = 6F

Hence, the temporal constraint could be violated. Thus, the condition is also necessary. a

C Proof of Theorem 2

Proof: We only prove the formula under EDF. The formula under RM can be proved similarly.

when the utilization rate is x, we have:

€1 €9 €n
—t+ =+ +—=2
P P2 Pn
Divide the equation by z, we get:
L 4 £2 4t fn _ 1
Ip1  IPp2 LPn

Hence if we shrink the period of each task by a factor of z, the resulting task set is still schedulable under
EDF. According to Inequality 2.1, we get: v; < zp; — e;. a

D Proof of Lemma 2

Proof: In the worst case, a version of object O; could stay at the primary for a maximum of 2p; — e;
time units before it is sent to the backup; the message takes £ time units to reach the backup; and the update
occurs at the backup after the message arrival; and can stay current at the backup for a maximum of 2r; — e}
time units. Thus, at any time instant ¢, we have:

E—TP() < 2ps — €5+ £+ 2 — ¢} < 2p; — e + £+ 2LFEHEGTE iy ot B =

(3 (3

E Proof of Theorem 4

Sufficient: In the worst case, a version of object O; could stay at the primary for a maximum of p; + v;
time units before it is sent to the backup; the message takes £ time units to reach the backup; and the update
occurs at the backup after the message’s arrival; and can stay current at the backup for a maximum of r; 4+ v},
time units. Thus, at any time instant ¢, we have:

t—TE) <ri+v)+pi+vi+¢

Apply the given condition in Theorem 4 to the above formula, we have:
t=TPH) <& —vi—pi—vi—L4v}+pi+v+£=06

Therefore, our condition in Theorem 4 is sufficient.

Necessary: We proceed by contradiction. Suppose 7; > 62 —v! —p; —v; —£. Then we only need to construct
a situation under which the external temporal consistency for object OF at the backup is broken.

We construct our case as follows: first, let v; = v} = 0. Then we have r; > 623 — p; — £ from the assumption.
Next, we find some maximum positive values A; and Ay such that: 0 < Ay <e;,0 < Ay < ¢j

Now, let’s consider the worst case scenario under the above assumptions. An update on the primary could
stay for a maximum of p; +d; time units (remember v; = 0) before it is sent to the backup; the update message
takes £ time units to reach the backup; the update happens at the backup after the message’s arrival; and can
stay current at the backup for a maximum of r; + Ay time units (remember v, = 0). Therefore, we have:
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t—TEPW) =pi + A1+ LA+ Ay >pi + Ay + L4 (68 —pi — )+ Ay = 6F + A1 + Ay > 68

Thus, the external temporal consistency for object OF at the backup is broken. Therefore, our condition
in Theorem 4 is also necessary. a

F Proof of Theorem 6

Here we only prove the case involving the primary. The case for the backup can be similarly derived.

Sufficient: Use the result of Theorem 1’s proof:
0<t =T <pi+ui
0<t—=TF{) <pj +v

With simple operations, we can get:
—(pi + i) TP () = T (8) < pj + v
—(pj +vi) TP ) = TF () <pi+ v
Combine the above results, we have:
TP (t) = T (t)| < max(p; + vi, pj + vj)
Apply the given condition in Theorem 6, we have:
TP () = T (1)] < max(8ij — vi + vi, 8ij — vj +vj) = b5
Therefore, our condition in Theorem 6 is sufficient.

Necessary: We proceed by contradiction. Suppose p; > 6;; — v;. Then we need to show a situation under
which the inter-object temporal consistency between object OF and Of is violated.

We construct the scenario as follows: first, let v; = 0, then we have: p; > §;; from the assumption. Then
there exists a value A such that: p; > 6; + A and A > 0. Now, there are two cases to be considered:

Case 1: p; < p;. We do the following:

let the initial phase of the task that updates OJP be 0, the phase of the first invocation of the task that
updates OF that extends pass time instant pj be p;j +e; —e; — AL

Then we pick time instant £ = p; +¢; — A. We have: TF(t) = p;j +e; — A (because the latest invocation of
the task that updates OF was started at p; +e; —e; — A, and thus must be finished on p; +¢; —e; —A+¢; =
pj +e; —A). We also have ij(t) = ¢; (because the first invocation of the task that updates O;D was started at
0, and therefore must be finished by e;, and its second invocation can NOT be finished by p; +e; —A < p; +¢;).
Therefore, we have:

@P(t)—ﬂp(t)zpj+6j—A—6jij—AZpi—A>6ij+A—AI(SZ’]’

P

Thus, the inter-object temporal consistency between object O], O;D at primary is broken.

Case 2: p; > p;. We do the following:

let the initial phase of the task that updates OF be 0, and the phase of the first invocation of the task that
updates O;D that extends pass time instant p; be p; + ¢; —e; — A.

Then we pick time instant ¢ = p; +e; —A. We have: TjP (t) = pi+e; — A (because the latest invocation of the
task that updates O;D was started at p;+e; —e; —A, and thus must be finished on p;+e; —e; —A+e; = pjte;—A).
We also have TF'(t) = e; (because the first invocation of the task that updates OF was started at 0, and

(3

therefore must be finished by e;, and its second invocation can NOT be finished by p; + ¢; — A < p; + €;)
Therefore, we have:

Y}P(t)—TZ-P(t):Pi—FGi—A—Ei:pi—A>6Z’j+A—A:5ij
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Again, the inter-object temporal consistency between object OF and O;D at the primary is broken.

We can show similar results under assumption p; > 6;; — v; or p; > &; — v; and p; > &;; — v; Hence, our
condition in Theorem 6 is also necessary. a

20



