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Abstract

We describe a meconstructre multilevel logic synthesis system that igtates the traditionally sepa-

rate technology-independent and technology-dependent stages of modern synthesis tools. Dubbed
M32, this system is capable of generating circuits incrementally based on both functional as well as
structural considerations. This is ackid by maintaining a dynamic structural representation of the
evolving implementation and by refining it through progressintroduction of gtes from a taet
technology library Circuit construction proceeds from the primary inputsatals the primary out-

puts. Preliminary xperimental results skothat circuits generated using this approach are generally
superior to those produced by multi-stage synthesis.

I. Introduction and Motiation

In this paper we describe amenultilevel logic synthesis system, M32, that departs ireis important respects from
current practice in logic synthesis technolofiye deelopment of M32 \&s motvated by the oft-cited refrain that wires are
starting to dominate agt logic in determining the area and speed of deep submicron ICs, and that current symtisesis flo
are biased primarily teards optimizing gtes. M32 was designed to address this bias by intertwining the traditionally sep-
arate phases of technology-independent Boolean optimization and technology-dependent mapping in arecysiitueti
sis stratgy that is cognizant of the structural implications of optimization decisions.

To quantify the impact of wires on circuit area we conducted a controdtegtiment that compared the layouts of com-
binational circuits that ha the same aet areas Wt different interconnect patterns. The layouts were generated using the
Epoch [9] standard cell place and route tools for @layer 0.5um CMOS IC process that alie over-cell routing. 1/0
pins were distribted around the perimeter of the standard cell block. The plot in Figshravs the total routing area as
well as delay per logic el as functions of topological complty given by
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whereL(n) is the number of topologicalMels crossed by wira and #Edges is the total number of wires in the circuit.
This metric is similar to theahout range suggested bgishna and Pedram [30] for controlling routing comxitg during
technology-independent logic synthesis. As the figure clearlwshmuting area increases with increasing topological
compleity, and bgins to eceed actie area when topological compity is around 2. Similarlysignal delay per logic
level increases with increased topological comipye While these results may be specific to the particular IC technology
and plysical design system used in thgperiment, thg nevertheless confirm the general belief that wiring can be a signif-
icant contrilutor to area and delay
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Fig. 1. Effects of wiring on circuit area and delay.

An algorithm which produces a technology specific mekvimplementation from the initial phases of synthesis is one of
the goals in this wrk. The motvation for this approach is to alloexploration of dgrees of freedom which are usually lost
in the split between technology-independent and technology-dependent phases. Such an approach enables the algorithm to
account for technology specific functional characteristics (e.g. signadlaime and ertex delay), and netark structure
(e.g. connectity). Furthermore, this mals the task of assessing final design quality more accurate from the initial steps of
synthesis, whose pre-determined properties can be annotatedddaonhe back-end toolsoFexample, plysical location
of gates in the final design can be determined at the early stages of synthesis in order to meet tighter delay constraints.

The remainder of this paper isganized as follws. Section Il gies a brief description of priorask. A synthesis algo-
rithm based on the construaisynthesis methodology is then presented in Section INeftomes the limitations of pre-
vious constructie approaches and benefits from recentiades in synthesis technologjlowing it to handle much lger
circuits. Its prototype implementation in the M32 synthesis system has been demonstrated for combinational circuits con-
taining seeral thousand afes. An gample illustrating wecution of the algorithm is g&n in Section IV Experimental
results discussed in Section V

1. Prior Work

Combinational multileel logic synthesis is the process of implementing a set of logiessions using cells from a
technology libraryeach with a prescribed function andypical characteristics [27]. Most of the current logic synthesis
systems diide the logic synthesis process into technology-independent [5] and technology-dependent stages [17, 11]. The
technology-independent stage focuses on partitioning the logic, whereas the technology-dependent stage chooses appropri-
ate qtes from the library to implement the partitioned logic. Such multi-stage approaches taxooptipkézation prob-
lems are common in electronic design automation (e.g. placememiddlloy routing) and are usually necessitated by the
difficulty of solving these problems conjointly

This “serialization” of the optimization process implies that decisions made in earlier stages must necessarily be based
on loose estimates of what later stages can accomplish. At the same time, the solutions produced by early stages place lim-
itations on the dgrees of freedom to impve final implementation of a designoRwo-stage logic synthesis, decisions
made during the technology-independent stage [6, 8, 7] significantly determine the structure of a ciscaite Tiede
with no regard for the dnstream technologWhen the technology characteristics becowadiable in the mapping stage
it is often too late to augment thdeadts of these decisions to impeocircuit quality

The back-annotated approaches, which perform resynthesis after technology specific informzttiaotésl érom the
mapped circuit, compensate partially for this problenveGiasign-of, information these approache®suwld typically
resynthesize the circuit through critical section correction [15, 32, 2, 22, 14, 28]. While this yieldgeimgmbin circuit
quality, technology-independent and technology-dependent transformations still remain disconnected. In [20], authors
address this problem by dynamically modifying the set of AND2/INV decompositions while deleting others based on the
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Fig. 2. lllustration of the constructive technology-dependent synthesis

actual cost function used in technology mapping. Inaltechnology-independent transformations to be part of the tech-
nology mapping. Heever, these transformations do nahéit global knavliedge about circuit structure and functionality

This problem becomes more important withaues in CMOS technology since interconnections are becoming a major
concern in todag high-performance, high-density ASIC designs [18]. It is therefore critical for a synthesis toet to ha
accurate estimation of wiring from the initial stages of synthesis. In [30], the authors pursued this problem by relying on the
traditional synthesis methods, accounting for routing area during logic decomposition using heuristics for minimizing the
fanout ranges of a decomposed kv Another method of minimizing routing cost by &8rg and maintaining an order
among primary inputs of the circuitas proposed in [24, 1]. These approaches operate during the early phase of synthesis,
and remain remad from the final function-realizing circuit. In [23] an attempt is made to account for the interconnections
during the technology mapping phase of synthesis. The idea is to generate a “companion” placement solution for the circuit
before it is mapped. This placement is then dynamically updated as the mapping processvaieatothe cost of a
matching gte. The algorithm estimates the interconnection castioib to the area and delay by referring to the dynami-
cally updated placement of the netk. Using this technique, the authors are able to generate circuits with shorter wire
length and smaller area.

Realizing the need for synthesis to account for thgsiial” information of back-end tools, Synopsys sk possible
to choose an appropriate wire-load model [19]. The wire-load models specified in the Synopsys technology library are
based on statistical data which is design and process technology-dependent. Thus, inaccuracies in wire-load models can
lead to synthesized designs which are pessimistic, unroutable, omuet tight constraints after routing is performed.
The synthesis process in Synopsys also relies on the methodology of technology-independent transformations, which is not
suited to account for the final wire lengths of a design.

Several attempts to synthesize netks incrementally are reported in the literaturevibson presented a branch-and-
bound algorithm for KND network synthesis [10]. The algorithm constructs a ekwealization incrementally starting
from the primary outputs. In each iteration, the algoritereds a partial solution by introducing amBlAND gate
together with itsdnin connections. Another incremental synthesis procedure for arbititasvas presented by Schneider
and Dietmger [26]. In each step, their algorithm finds the circuit package éte.tgpe in a technology library) that satis-
fies some goal, such as area and del@yle meetingdnin, loading and peer constraints. Such approachesyéer, did
not yield practical synthesis tools: thekpenential run time compkity rendered them uselesscept for \ery small cir-
cuits.

I11. The M32 Logic Synthesis System

M32 is a multileel technology-dependent construetiogic synthesis system. It relies ottesded algebraic decompo-
sition technigues which define a feasible space of transformations which can be applied to a sum-of-ppodssisne
As an optimization objeaté the system considers the structure and size of a circuit. Constraints are implied dfg the g
library. The system is currently gearedviods performance-oriented synthesis which also minimizesmge topological
wire length. In this section we firstvgi an @erview of the system, and then describe its main points in detail.
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Fig. 3. Synthesis loop in the M32 system

A. System Overvie

The overall synthesis process in M32 is depicted in Figure 2. The state of the synthesis process is modigettay a
networkn [4] that captures arvelving structural representation of the functions being synthesized. Edeh v in such
a netvork has an associated Boolean functignthat computes the logi@iue at the ertex’s output in terms of the logic
values on its inputs. Aertex is considered to bienplementedf its function is equialent to one of the functions in asvgn
gate libraryL , andunimplementedtherwise. @ insure aronto mapping fromL to the \ertices inn , the library must, at a
minimum, hae irverter and pass-through wiratgs as well as gr2-input gate that mads it functionally complete.

Reading its functional specificatidh as a set of multi-output cubes, M32 constructs an irgpatificationnetwork
consisting of implementedettices corresponding to the primary inputs and unimplememettides corresponding to the
specified output functions$,, f,, ..., f ;. As the synthesis procesgotves, the functions of unimplementedrtices are
successiely decomposed in terms of those of already implemergdites, resulting in a series dirtial implementation
networks. The decomposition is closely tied with theegi cate library and leads to the creation ofmanplemented erti-
ces, i.e. ertices that correspond to librargtgs. Each implementeénex v introduces a rve variabley, which can nw
be used to simplify the functions of unimplementedices. The dééct of these successi decompositions is axgansion
of n from the Pls twards the POs as more implementediees are created and as the functional caxitplef unimple-
mented ertices is reduced. This construeticreation process mak it possible to control the structural comiieof the
evolving implementation. The synthesis process terminates wheartiles become implemented yieldingreal imple-
mentationnetwork.

The main loop in the M32 synthesis algorithm isveidn the pseudo-code of Figure 3. The algorithm treagsdn as
globally accessible structures. In each iteration, the functions of unimplementiegs/are xamined and one of them,
f,., is selected for a decomposition step.akamicdivisor P is extracted fromf, by an appropriate dision procedure.
The dvisor is subsequently implemented by a small seedfoes corresponding tatgs fromL leading to the)gansion
of the implemented part of . The decomposition step is completed by substituting ahiablesy,, of the nevly created
vertices into the functions of the unimplementedices. An unimplementedextex becomes implemented when its func-
tion reduces to a single literal. Thus, the iteration stops, signalling completion of the synthesis process, when all the func-
tions in F have been reduced to single literals.

This algorithm has seral features that distinguish it from commonly-used synthesis methods:
« It interleaves functional decomposition and technology mapping throughout the synthesis process
« It considers the structural implications of candidate decompositions

« It selectively applies Boolean transformationsinmprove synthesis qualityvithout adversely affecting run time
efficiency

The remainder of this section isvidéed to detailed descriptions of the four main routines of the algoritorfacilitate
these descriptions we introduce the faflog definitions. The depth of a literalepth(y, ) , is the topological depth of its
correspondingertex v in n ; the depth of a primary input is defined to be 0. The depth offarssionE, or a set of liter-
als, is the maximum depth ofyanf their literals. The set of literals appearinggnwill be denotedsuppor{E) . The num-



ber of times a litera,, occurs inE will be denoted byoccurrencey,, E) , andsizg(E) will denote the number of literal
occurrences ik .

B. SelectFunction

The order in which the functions &f are decomposed clearlyfedts the final synthesized implementation. In each iter-
ation of the algorithm, the set oénices that are candidates for decomposition is the subset of unimplemeniees v
whose &nins are already implemented. ThelectFunctiomroutine identifies the mé function to decompose by greedily
choosing the candidateertex whose function has the st number of literals in its cube representation. This choice is
motivated by the xpectation that layer, richer functions yield better disors. In this conte, divisor P, is considered bet-
ter than diisor P, if the \ertices in its implementation subcircuit represent better opportunities for sharing among the
unimplemented ertices. More sophisticated selection sgy@e can be easily @isioned, especially when the initial speci-
fication is a multi-lgel network.

C. GeneateDivisor

Like most modern synthesis algorithms, M32 relies onfaiegft division procedure to decompose a functionto the
form pq+ r. The most commonly usedvilion procedure is weakwdsion [8] which is applied to an SORpression for
f and is equialent to &cluding all Boolean transformationgaept for the distribtive lav. While primarily motvated by
the need for aafst dvision operation, weak dision has been empirically sia to yield acceptable decompositions in
practice. Still, the quality of thedsors, as measured by the total number of literals in the reswuditgyéd form, can be
improved by the judicious application of additional Boolean transformations. Visgodi operation in M32 augments the
distributive lav with the annihilation§'a = 0) and idempoternc(aa = a) properties to generate better decompositions.
This additional flgibility comes at a modest computational cost.

Example 3.1 Let f = abcg+abe+acde+a'b'cd+a'b'e’ +a’'ce’g+cdg. A possible algebraic decomposition fof
obtained using weak division if = (ab+d+a'e')cg+abe+acde+a'b'cd+a'b'e’ which has a literal cost of 21.
Use of annihilation and idempotency yields the more compact decompdsitiofab + cd + a'e’)(ae+ cg + a’'b’) whose

literal cost is only 12. Unlike the algebraic decomposition which yields factors with disjoint support, this decomposition
produces factors that have joint support. [

It is interesting to note that limiting all@ble transformations of Booleaxpgessions to the alse three properties (distrib-

utivity, annihilation, and idempoteylcguarantees that wigenerateddctored form will reproduce the original SOR/eo
underflattening[16]. This, in turn, implies that dérent initial SOP representations of a function can lead ferelift
decompositions. Remal of this bias requires the depioent of the entire arsenal of Boolean transformations, i.e. operat-

ing in the unrestricted functional domain. In general, the attendantvermpent in the quality of such unrestricted decom-
position comes at a steep computational cost to be practical. M32 partially compensates for this bias by intertwining
decomposition with mapping to a specifatglibrary while managing the structural attités of the eolving implementa-

tion.

Divisor selection in M32 is accomplished through suceedactorization, using the distative lav, of repeated literals
from an SOP »pressionf. The annihilation and idempotgntransformations are subsequentlyaked to modify the
resulting quotient and reduce the literal cost of the decomposition. This process is iterated until each literal appears only
once in thedctored form. & account for the structural implications of particular decompositions, literals are chosen based
on a structural cost metric that is computed according to:

[depth( f/x) —depth(y,,)]
occurrence(y,, f/x)

size( /%)

COSt(X) — YO support(f/x)

)

wherex is a candidate literal inxpressionf and f/x is the quotient resulting from algebraiwidion of f by x. Gener-
ateDivisor creates a #lisor by successely selecting the ne¢ candidate literal with least cost according to (2). Signal
arrival times were alsafttored into diisor selection.
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Fig. 4. Meta rules describing variable support selection and construction of the circuit

D. IntroduceGates

The technology mapping step in modern logic synthesis is based on grvaping®f an intermediate Boolean netl
obtained through technology-independent functional decomposition. This “optimizedirkédvinitially translated into a
forest of trees each of whosertices is an werter or a 2-input NND gate. The trees are subsequently mapped, in topolog-
ical order to the taget technology libraryThis involves two steps: (1) pattern matching [11] or Boolean matching [25, 21];
and (2) gte assignment [17]. In the matching step all posstike fyinctions in the library that are logically eglént sub-

trees rooted in agén \ertex are considered. In thatg assignment step an optimal match is selected, and its corresponding
subtree is implemented in terms of the libraateg These steps are applied rewelyi starting from the primary using
dynamic programming [3].

Unlike cowentional technology mappers that operate on an intermediate “optimized” Booleamknebtained in a
prior technology-independent phase, M32 closely ties its creatioate$ gvith functional decomposition. As soon as a
divisor P is found byGeneateDivisor IntroduceGategroceeds to map it to thevgh gate library The mapping process is
also diferent from those used in ca@ntional synthesis tools: no intermediatéject gaphis constructed. Similar to Gen-
erateDvisor, this procedure isveare of the structural implications of its choices, amblires iterating the follving steps
until P is fully implemented by libraryages:

1. A gate from the technology library with its suitable variable suppd? ia selected for instantiation as vertex

2. The vertexv, along with its possible fanin inverters, is instantiated and addgd\ariabley,, is associated with the
new vertexv

3. The divisorP is re-expressed in terms pf

The implementation of IntroduceGates is currently limited to a small technology library defined by
L = {wire, INV, NAND2} . Thus, the gte type selection step in the &b@rocedure is unnecessagnhancements to
IntroduceGateshat are currently undeny extend its capabilities to richeiatg libraries. The selection of a suitabéeiv
able support in step 1 is also simplified by this library choice. Candidasble subsets are determined by considering all
associatie groupings of literal pairs iR, and the best pair is selected.aftg quality in this contd is estimated by a struc-
tural metric: a pair of literals which instantiatestex v of least depth is greedily selected.

The depth ofv in n is derved from the depth ofertices in the subxpressionE of an associate grouping while account-

ing for the possible presence of amdrier onv's fanin lines. The presence of anenter on thednin lines is determined

by matching subgressionE to the MAND2 function under input/output phase assignments. Due to the small number of
possible matching combinations when using onANBD2 gates, we enumerate themrasta rulesn Figure4. To break

ties between the candidate supports weshesed estimated signal &ai times based on the folling delay model:

delay = 1,+nx1,%xC, ®3)

wheret is the intrinsic gte delayn is the @te fin-out,1,, is fanout delayC ; is capacitance on arfout pin. In the SIS-
1.2. sy&em this model is kwa aslibrary model In our experiments we hé& used nominal delay and capacitan@s w
taken from theMCNC library.
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After a cate support and its phases are determined, it is introduced into the circuit by establisam@itohnections
and placing an irerter (either a e one or reusing a prously introduced one) on each connection which hgative (0)
input phase. No irerter is placed on theate output rgardless of the output phase.

Finally, expressionP is re-expressed according to thewlg implemented part oP . This is done by applying substitu-
tion (described beiw), which replaces the sukgressionE with the nev variabley,, using its complemented and non-
complemented forms. Thus, each iteratiorintroduceGategeduceshe size ofP. The process continues unfl is
reduced to a single literal. This literal is then returned bynitneduceGatesoutine, and is later used to substitute itRor
inF.

E. Substitute

At each iteration of the algorithm routiSbstitutere-expresses function$,, ..., f, of the unimplementedevtices in
n in terms of the n&ly introduced ertices. The substitutions applied to the functions are based owilierdoperation. If
pqg +r is the result diiding f by p then substitution rexpressed asy,q+r , wherey,, is a nev literal. Thepqg +r fac-
tored forms define feasible substitutions. At the substitution stgpatlecurrently based on the distriive, annihilation,
and idempotenclaw of Boolean algebra applied to SOP forms allov more feasible decompositions during the substitu-
tion process we lva also used cube reduction, whiclsnvimplemented the using sharp product operafigB, and
defined asAB [12]. Application of these operations is performed ifaitifitates diision with respect to a gen dvisor.
Example in Section IV illustrates Wwathe use of cube reduction can lead to the better design.

Substitutere-expressesf 4, ..., f, in two steps: (1) substituting literg|, (y,, ) for the P (P") function; and (2) substi-
tuting variables of nely introduced ertices for their gte functions, modulo the phase assignment on its inputs determined
in IntroduceGatesThese steps are applied to each of the functigns., f,, individually. The routine performs substitu-
tion selectiely to minimize topological cost. Thus, quotients containimgefecubes than possible may get selected. In the
first stepSubstitutauses the literal returned by th@roduceGatesoutine, which corresponds to the outpette of a sub-
circuit implementingP . The second step of the routine implements substitutions of finer graniBatiistitution of gte
functions in this step is performed for each of thdiges in their topological order

Note that substitution using the distrilvye lav only does not require step (1), since it is subsumed by stepé2hauld
also point out that thewsion under the used properties may not be unique. This is illustrated kathele bela, where
annihilation gves rise to tw distinct decompositions:

Example 3.2 Supposef = abc'e + a'bcd + ac'de' + a'cde, and letP = ac'e + a'cd be a diisor of f. We then can hee
two different quotientsq, = b+c'd+ce and g, = b+ad+ae. Thus either substitutiorf =y, (b+c'd+ce) or

7



is feasible. m

IV. An M32 Synthesis Example

Synthesis of a full adder will be used to as aneple of the M32 system. M32 first reads the functional specification
z=albOc = abc+abc +ab'c'+abc 4)

c,. = ab+ac+bc (5)

out

of the circuit to be synthesized. M3%pects it to be in the wlevel pl a format [31]. ThusF = {z c,} is the set of
unimplementedertices to be synthesized. The algorithm then selects furctsance it has more literals they,,, . A sub-
expressionP selected frome by theGenerateDivisor routine isa'b + ab'. GeneateDivisorselects this disor since it
has the least cost, with the assumption that sigreirives later than te other input signals. andb. This epression is
then implemented usirigtroduceGatedy introducing gtesy;,, y, , andy, through the follwing sequence of transforma-
tions of P:

P=ab+a' 3 y, +ab' S /) & Y3 (6)

where a number alie each arn indicates a matching meta rule from Figdre

The Substitutefunction would then substitute, for ab'+a'b (complement substitution is also tried) in bathand
Cout » 9VING:
z = cyy +Cy, (@)

Cout = ab+cys. (8)
Note thatab'+ a'b is not an algebraic disor of ab + ac + bc. Therefore substitution based on weakision alone
would not bring ap changes ta . . TheSubstituteroutine maks substitution irc,,, possible due to the cube reduction
based on the sharp product operation. The M32 system detects thaidiom diecome possible if cub@s andbc are
reduced taa'bc andabc respectiely. This is a alid transformation since the resultad#ab'c andbc#a'bc, which is in
both cases cubabc, is corered by the cubab. It is nav easy to see thatb + ab' divides &pressionab + ab'c + a'bc,

representing the same carry-out functiy, : ab + (ab' + ab)c.

The next step in theSubstituteroutine is to see if gnof the local functions oferticesy, , y, or y; can be used to re-
express eithex or ¢ No further substitutions are possible in this case. This completes the first iteration of the algorithm
in Figure3.

out *

On the ngt iteration of the loop either the unimplementedts for ¢, , or z can be selected, since both of their func-
tions hare same number of literals. Figusedepicts gecution of the algorithm with the assumption thgt; is selected.
Cout 1S completely implemented on this iteration of the algorithm through thevioliosequence of transformations:

Cout=ab+ysc 2y +yscl oy, +ye Loy, 9)

The final implementation of the circuit has BND2 gates and 4 irerters, which is one AND2 fewer than the equéalent
SIS-1.2 implementation.

V. Experimental results

We evaluated the performance of M32 by synthesizing a set of circuits selected from the MCNC benchmarks [31] and
comparing the results aimst SIS-1.2 [13]. The benchmarks were first minimized using ESPRESSO [5] prior tovelultile
synthesis in M32 or SIS-1.2.8\sed thelel ay script in SIS-1.2 which is based on ttiastering scripfproposed in [29]
and is tageted tovards technology-independent minimization of circuit deBgth systems used the minimaitg library
L = {wire, INV, NAND2} , and delay of the implementations obtained by both systemmsstimated using thiérary
delay model of SIS-1.2 and parameters frormtbiec. genl i b library.

Tablel compares the generated circuits in terms of the numbeate$ deels of logic, topological compkéty and esti-
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mated pre-layout delafhe results in this table suggest the folfty obserations:

» Even though minimization of gate count is not a primary objective in the M32 system, it generates implementations with
fewer gates in all but two cases. In some cases the reduction in gate count is almost 50%.

» M32-generated circuits have consistently fewer logic levels, in several cases being almost half as deep as SIS-generated

circuits.

The topological complexity of M32-generated circuits is consistently lower than that of SIS-generated Theuits.

topological compleity however, should not be interpreted as a final judge of circuit quéity experiments in Figuré

were performed on synthetic benchmarks which belong to a restricted class of topologies, andmywisigniticantly

in their topological complety. Typically, the aerage topological wire length of practical circuits does aot &s much

as it does in Figuré.

» The pre-layout circuit delays of M32-generated circuits are consistently lower than those of SIS-generated circuits, the
average improvement in delay being about 30%.

The run times of M32 were comparable to or better than those of SIS-1.2 for all benchmarks suggesting that the use of more
powerful decompositions and substitutions is computationally feasible.

To get a better indication of synthesis qualitye netlists produced from M32 and SIS-1.2 were laid out using the Epoch
standard cell place and route tools [9] from Cascade Design Automation. The layouts were generated using cells in a
0.5um CMOS process with tavlayers of metal, and alldong over-cell routing. I/O pins were distnited around the
perimeter of the standard cell block. Delays were computed using the Epoch static timing aA&lyi2€&x. These results,
shavn in Tablell, indicate a 23% & erage impreement in total area, routing length and post-layout delay for M32-gener-
ated circuits. The layouts generated for a represeateiticuit, thecor di ¢ benchmark, are stwm in Figure6.

Thecor di ¢ benchmark is also used, in Figure 7, to highlight the consteuctiture of M3 synthesis algorithm and
to illustrate its ability to dynamically adjust the implementation topoldg two variants shan in the figure were forced
to diverge after the 28 iteration of the synthesis loop (1/3 of total iterations for the Figaysolution). Theafes markd
with « in both \ariants correspond to the common portion of the implemented schematics. The implementation in part (a) of
the figure corresponds to the resultsvadn Tablel and Tablell, and reflects the incorporation of topological commjile
constraints. The implementation in part (lgsagenerated by relaxing these constraints after tlier28on. This incre-
mental synthesis capability can pearvaluable when the generated netlistsgally fail to meet specifications and must
be fine tuned in the neighborhood of @egi solution.

The last gperiment vas designed to assess thedafof using a richerae library on the quality of the generated circuits.
Since the only library that is currently supported by our prototype implementation of M32 is the SiHNDRMNNYV
library, we had to resort to a less-than-ideakkvaround to generate circuits based on other libraries. Using the SIS-1.2
map command, the AND2/INV circuits produced by M32 were technology-mapped tonttec. genl i b library. The



TABLE I: Pre-layout synthesis results

Circuit SIS12 M 32 Norm.
Name Inp. | Outp.| Cubeg| Gates| Levels | Compl.|| Delay || Gates | Levels | Compl.|| Delay || Delay
z4aml 7 4 59 75 12 1.96 17.6 44 8 1.55 11.6 0.65

vda 17 39 | 793 || 1573 29 2.48 62.3 || 1115 16 1.56 34.3 || 0.55
inc 7 9 42 152 20 2.20 30.2 133 10 1.55 17.2 0.56
count 35 16 184 311 17 2.55 24.1 201 13 2.19 21.1 0.87
Idd 9 19 70 139 13 1.96 18.9 110 10 1.84 154 || 0.81
b9 41 21 141 176 12 1.69 17.8 177 10 1.60 14.8 0.83
ex4 128 28 620 690 20 1.73 28.0 665 15 1.43 19.3 0.68
cordic 23 2 1180 182 18 1.65 234 133 11 1.39 14.6 0.62
cps 24 109 | 654 || 2162 35 2.52 61.9 1625 17 1.93 41.3 0.66

duke2 22 29 120 743 20 2.17 35.0 534 13 1.68 24.8 0.70
vg2 25 6 110 239 16 1.88 21.6 152 11 1.36 15.5 0.71
ape2 39 3 438 564 33 2.92 44.6 484 18 1.83 254 || 0.56
sqrt8 8 4 88 79 14 1.84 18.3 76 12 1.72 17.6 0.96

bw 5 28 | 110 232 16 191 28.9 206 9 1.58 18.3 || 0.63
clip 9 5 167 240 26 2.55 31.3 309 14 1.75 17.5 0.55
TABLE I11: Post-layout synthesis results

_ SIS12 M32 M Ooment

Name Total area| Routing Delay Total area| Routing Delay Total | Routing| Delay
(mil?) length (mil?) length area | length
(Um) (ns) (Lm) (ns)

z4ml 33.59 6592.0 2.66 21.55 4212.2 1.81| 0.64 0.63 0.68
vda 1159.20 326400.4 7.45 715.642| 189921.6 5.87| 0.61 0.58 0.78
inc 77.58 17041.5 4.21 62.24 14039.6 2.52| 0.80 0.82 0.59
count 137.7 28675.4 3.63 81.51 16941.6 3.62| 0.59 0.59 0.99
ldd 60.73 12220.2 2.96 48.09 9123.3 2.18| 0.80 0.74 0.73

b9 74.95 15136.6 2.88 76.93 15519.5 2.10| 1.02 1.02 0.72
ex4 311.72 66272.5 4.16 294.92 60746.6 3.15| 0.94 0.91 0.75

cordic 70.82 13996.6 3.55 54.59 10751.4 1.98| 0.77 0.76 0.55
cps 1414.4 393693 8.19 1032.2 271116 574, 0.72 0.68 0.70
duke2 414.28| 106240.6 4.87 273.10 65001.5 3.80| 0.65 0.61 0.78
vg2 100.47 20847.5 3.20 63.17 12526.6 2.15| 0.63 0.60 0.67
ape2 283.02 68251.2 6.89 237.54 54155.8 4.67| 0.90 0.79 0.67
sqrt8 34.44 7245.9 2.74 32.14 6640.8 241 0.94 0.91 0.87
bw 111.25 24798.6) 3.71 99.46 22616.8 2.46| 0.89 0.91 0.66
clip 116.79 25814.6 5.87 156.59 34502.7 3.71| 1.34 1.33 0.63

Average Impreement:| 0.81 0.79 0.71

same mapping procesawalso applied to theAND2/INV circuits generated by SIS-1.2. The results of thkjseeiment
are shawn in Tablelll. The columns labeledArea” and “Delay” record, respeetly, the actie areas and circuits delays of
each implementation as reported by the mapper

An examination of these results indicates thagrall, the circuits produced from M32 are stibfer and smaller than
those produced from SIS-1.2. Wever, the improement is not as pronounced as &swor the MND2/INV library. This
outcome is hardly surprising since the @mapping process is decidedly antithetical to the consteusynthesis philos-
ophy of M32 and undoes muwrof its gains. Specificallymapping by tree e@ring is ill-suited to a highly optimizedA®s

10



o |
R T e
o D
== ] ireailjiimd >,
RS sehidl B Dﬁgi
= [So o | 5 S A
o e == Djjo
ol e ||
fo L o LR
. o AT | J:DI Den
- ol .
h o> {>o —{ |
D
Df
[SGiiit i ih
W ol o =)ol J:D
o M= IER T =D
= C2—D >
g i e
" ol | R =ty
- SR B0
"e =D
Y= L o

Y

YYYY U VY0
?%
ol
]
U

DUUOYY

7
YY VY

|
|
|
5%
|

a) Synthesis with topological constraint83 gates, 11 Ieels

B i st = .
o] O[]
O
" L] o
®1 9=
Vo —* JE@ » M@[DKDDL
|
il He| J
[ ) S -y
N w§’§@ iy
>
- D
q o {Dd o [
. (®

b) Synthesis with relaxed structural constrairit§: gates, 13 leels

Fig. 7. Two incrementally-different implementations of tfoer di ¢ circuit

and we conjecture thakact DAG covering may hee produced better results. It must be notedieher, that DAG cover-
ing is notoriously dficult and no published algorithms that cafeefively handle lage circuits hae been demonstrated.
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TABLE 111: Results from mapping to a richer technology library

SIS M32
Circuit " B
NAND2/INV mcnc.genlib NAND2/INV mcnc.genlib

Name Area Delay | Area Delay | Area Delay | Area Delay
z4ml 142 17.6 131 12.0 84 11.6 85 11.2
vda 2731 62.3 2188 21.6 1870 34.3 1558 20.1
inc 268 30.2 223 13.8 236 17.2 189 10.8
count 521 241 394 14.4 340 21.1 277 17.2
Idd 237 18.9 198 12.7 194 15.4 167 12.1
b9 280 17.8 224 12.6 297 14.8 261 10.8

ex4 1149 28.0 888 18.5 1078 19.3 843 15.6
cordic 301 23.4 244 17.2 216 14.6 163 111
cps 3641 61.9 2862 29.5 2753 41.3 2368 20.0
duke2 1263 35.0 1039 18.6 898 24.8 779 15.6
vg2 394 21.6 297 12.9 239 15.5 174 14.1
ape2 963 44.6 797 28.9 797 254 649 215
sqrt8 133 18.3 111 12.4 130 17.6 110 115
bw 395 28.9 333 14.3 349 18.3 328 11.3
clip 413 31.3 338 23.9 521 17.5 437 15.7
* Technology mapping &s done using the SIS-1.2 commamg -s -n 1 - AFG -p

We believe that a more natural approach for solving this problem isxteasgion of the M32 algorithm to handle arbitrary
gate libraries directlyThis efort is currently underay.

V1. Conclusions and Future dfik

The M32 synthesis approach outlined in this paper is a promising altertmtiornentional multi-stage logic synthesis
algorithms. Initial results from a prototype implementation are encouraging and suggest that fpitvatien of this
method is wrthwhile. e are currently>amining a number ofgensions andariants including:

» Experimentation with other structural complexity metrics

» Support of arbitrary gate libraries

 Synthesis of partially-specified functions

» Exploration of other functional representations, such as BDDs, to enable more powerful Boolean transformations

Ultimately, we would like to intgrate plysical optimization (placement and routing) with logic synthesis for better man-
agement of interconnectfe€ts on both area and delay
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