can better handle the reference pattestsb&ed by the
target workloads. (5]

8. Conclusion

micade is a fleible, multi-lateral cache simulator
developed to help designers in the middle of the desigtf]
cycle male cache configuration decisions thatuhd best
aid in attaining the desired performance goals of thyetar
processar micacde is an eent-driven, timing-sensitie
simulator based on the LatgndEffects cache timing
model. It can be easily configured to modalious multi-
lateral cache configurations by using its library of cachgg)
state and data mement routines. The simulator can be
easily joined to a wide range ofent-driven processor
simulators such aRCM_bris¢ Talisman SimICS and [9]
SimpleScalarFor this study we intgratedmlcade into
the SimpleScalar sim-outder processor simulator

We shaved implementations of fiv different cache [10]
configurations and their resulting performance when run-
ning nine of the SPEC95 benchmarks. These configura;

[7]

S ,) 1]
tions included a direct-mapped single structure cache a
four multi-lateral caches: an Assist cache,i@iw cache,

an NTS cache, and a PCS cache. Eaaheasily modeled [12]

in micade using the library routines prmed and a fe
useradded status routines.

micache provides mag statistics which can help
explain the performance of the potential cache configurail3]
tions when running tget workloads. Information gard-
ing hit, miss, and delayed hit ratios tells of the progsam’
memory access characteristics, while block tour and reuds™
information tells of the actual data usage within each pro-
gram. These statistics can all be usedfman the perfor- [15]
mance of each cache configuration as well as helpwue dri
the deelopment of future cache designs that better handle
the reference streams presented by thgetamrkloads.

9. Acknowledgments

This research as supported in part by a gift from IBM.
The simulation dcility was proided through an Intel
Technology for Education 2000 grant.

References

[1] E. Rashid et al,A CMOS RISC CPU with On-Chipdp-
allel Caché,ISSCC Digst of Rpers, February 1994, pp.
210-211.

[2] N. P Jouppi, “Impreing direct-mapped cache perfor-
mance by the addition of a small fully-assoeittache
and prefetch bffers; Proceedings of ISCA-1Tos Alam-
itos, CA, May 1990, pp. 364-373.

[83] J. A Rvers and E. S. Dadson, “Reducing Conflicts in
Direct-Mapped Caches with a efporality-Based
Design’; Proceedings of the 1996 ICP#ol. I., Bloom-
ingdale, IL, August 12-16, 1996, pp. 151 - 160.

[4] J. A. Rvers, E. S. @am, and E. S. Dadson, “On Efective
Data Supply for Multi-Issue ProcessbdrBroceedings of

10

the 1997 ICCDOctober 1997, pp. 519-528".

E. S. Bm, J.A. Riers, and E. S. vdson, “Flible Tim-
ing Simulation of Multiple Cache Configuratich3ed-
nical Report CSE-TR-348-9Mniversity of Michigan,
November 1997.

E. S. Bm and E. S. Dedson, “Early Design Cycleifn-
ing Simulation of Cachés,Technical Report CSE-TR-
317-96,University of Michigan, November 1996.

J-D Wellman and E. S. Dadson, “The Resource Conflict
Methodology for Early-Stage Design Space Exploration
of Superscalar RISC ProcessbRoceedings of the 1995
ICCD, Austin, Texas, October 2-4, 1995. pp. 110-115.
R. C. Bedicheck, “@lisman: fast and Accurate Multi-
computer Simulatioh, Proceedings of the 1995CM
SIGMETRICS Confence 1995, pp. 14-24.

P. Magnusson and B. &her “Efficient Memory Simula-
tion in SimICS;, Proceedings of the 28th Annual Simula-
tion SymposiumApril, 1995, pp. 62-73.

D. Bumger and T M. Austin, “Evaluating Future Micro-
processors: the SimpleScalarol Set, Technical Report
#1342 University of Wisconsin, June 1997.

J. A. Rivers, E. S. am, G. S. ¥son, E. S. Dadson, and
M. Farrens, “Utilizing Reuse Information in Data Cache
Managemernit,Proceedings of the 1998 IC3yly; 1998.

G. Kurpanchek et al, /®7200: A FA-RISC Processor
with Integrated High Performance MP Bus Inseré!
COMPCON Digst of Rpers, February 1994, pp. 375-
382.

M. D. Hill, Dinerolll Documentation, Unpublished
UNIX-style Man Rage, Unversity of California, Ber&ley,
October 1985.

J-L. Baer and WH. Wang, “On the Inclusion Properties
for Multi-Level Cache Hierarchié€s, Proceedings of
ISCA-15 May 1988, pp. 73-80.

M. J. Charng and T R. Puzak, “Prefetching and Memory
System Behaor of the SPEC95 Benchmark suitéBM
Journal of Reseah and D&elopmentVol. 41 Number 3,
May 1997, pp. 265-286.

and PCS caches) the number of block tours correspondg 0 Total % of References
the miss ratio — a block tour starts when a block i§ |RCR| Total | Swaps|Saes| L1 | toeach Tour Group
fetched from memory and ends when the blockiisted. Tours tours N\ TNSINTSITNS] TS
However, for configurations that alMe data meement
between the caches déikhe Assist and igtim caches, the
total number of tours also counts the number of times
block is mwed between the A and B caches.

Tp more'a(.:curatelyxela.ln the performance of the Total % of Referonces
Assist and tim caches with mgard to block tours, we RCR | Total | Swaps| Saes| L1 | toeach Tur Group
must also account for the number of tours caused by data Tours tours [NTNSINTSITNS TS
movement between the caches. These tours are caused B o R TIN R TYAR A TEN,
efforts to imprave data reuse and are not as costly as | — : - - : i T :
accesses to the xtdevel of memory We can subtract the |N| 097 |27.4M| - - |274M| 0.03 | 28.8] 4.9 |66.2
number of tours due to a aw of two blocks between the |V| 0.96|56.3M| 1.4M |27.4M| 27.5M| 10.2 | 26.3| 6.1 |57.3
caches and migrations (&) of a block.from one Ca‘?he to Table 6: Block tour information for three cache
the other from the total tours to obtain L1 tours (i.e. theconfigurations running go (top) and hydro2d (bottom). D

number of fetches from the xtdevel of memory). is the 8K direct-mapped single structure cache, N is the
Table6 shavs the tour information for tavbenchmarks NTS cache, and V is the Victim cache.
with differing performance using multi-lateral cachegs,

andhydro2d, on three cache configurgtions, an 8K single(NTS)' 3) temporal nonspatial (TNS), and 4) temporal
structure 'cache, an NTS cache, ancjaﬂM cache. Brgo, spatial (TS). Good cache configurations should result in
Fhe multi-lateral designs result in dar pgrformance fewer tours and a higher percentage of data references to
|mprw¢ments ver the base 8K cache, with RCRS’_ of blocks making TS tours. NTNS and NTS tours are prob-
approximately half the cachefedt of the base cache, i.e. lematic; thg may cause xzessie cache pollution, and
each multi-lateral design requires only about half the toUrShould be minimized if possible.

incurred by the base cache through the L1 cache. The We see in @ble6 that the NTS cache does ery good
number of L1 tours is calculated by subtracting the numj—ob of managing the cache state, resulting in a high per-
ber of svaps and sas performed from the total number of centage of TS tours igo. Furthermore, the NTS cache

block tours reported F’m'ca‘h?— for the direct-mapped reduces the percentage of references to NTNS and NTS
and NTS caches, since thencur no data mement data relatre to the base cache, also conttiibg to its per-
between the caches, the number of L1 tours equals tr?’c;)‘rmance. The Mtim caches reuse information is less
total number of tours . , indicative of its performance. Blocks in aicim cache
Note that though theistim cache incurs the feest L1 may &perience mandifferent tours while still remaining

tours of the three configurations runnigg, its RCR IS the | 1 structure. Thus, thoughctim has a laver per-
higher than that of NTS. This is due to.th'e addexidyele centage of TS tours and a higher percentage of NTNS
latengy for each swp — though the igtim cache has {)

D| 1.00 | 16.1M - - [16.1M| 3.91 | 1.95|24.0|70.1
N[0.49| 8.1M - - 8.1M | 1.41 |1.05|17.8|79.8
V| 0.51|23.9M| 9.9M | 7.0M | 7.0M | 9.14 | 1.84|22.7/66.3

ours compared to the base cache, its performance is still

1.1M fewer L1 block tours than the NTS cache, each o etter than that of the base cachewd@r the Mctim
the 9'9M svaps adds t g/cles to the access Iateyrnaqd cache manages its state paslsi so block reuse informa-
potentially to they:cle count..lf the latencof the svap is tion is more of a statistic than an aid to cache management,
reduced or eliminated, theid¥im caches performance as in the NTS scheme.
will improve. , The lack of performance imprement of the multi-lat-
) For' hydrozd, the p'erformance of th? three conflgura-eral designs runninigydro2d can also bexplained by the
tions is .much closewith the'R(.:Rs. diering by less than high percentage of nontemporal (NTNS + NTS) accesses
5%. This performance similarity is also reflected in thethat each configurationperiences. Data in these e
number of L1 toursxperienced by each. configuration — fies often pollute the cache, asythere not reused with
appr.OX|mater 2,8M each. The resulting RCRs of thenigh frequeng and often eict more useful, temporal data.
m'ult|-lateral designs are close; though the NTS cache haﬁﬁis information can be used to design cache configura-
sl!ghtly fewer L1 tours, the RCR of theidfim cache is tions and management schemes than can help attain higher
slightly lower. performance when running benchmarke lidro2d.
7.4. Block reuse inbrmation Thus, block tour and reuse information can be used to

mlcade also preides reuse information for each block evaluate andxlain the performance of @&t caches run-
tour. Block usage can be brek into four catgories: 1) ning taget applications. Furthermore, the statistics pro-
nontemporal nonspatial (NTNS), 2) nontemporal spatialided by micate can help dsie nev cache designs that

accesses: 1) hits to the cache, 2) misses to the cache, and n 1 M M e
3) delayed hits. Hits and misses to the cache are defined m
simply as accesses to data that is resident/not resident in

the cache at the time of access. The thirdycayedelayed _°® T - r i
hits, is a refinement of cafery 2. Delayed hits are typi- ém | i
cally catgorized as hits in bekiral cache simulators, as : BoveK
they do not cause gradditional trafic between cache and °° opes
memory However, delayed hits typically >@erience a = . mVicin
lateny that is greater than the nominal hit latemnite to
lateny adding eflects. o4 | |
mlcade makes a distinction between these three access,,
categgories and reports the ratio of the number of accesses @™ oe o ! perl Tdrozd - suzcor - swim - waveS

BENCHMARK

in each catgory. Figure 4 shas the miss and delayed hit
ratios for three benchmarks that shahe impact of
delayed hits: ipompress ii) go, and iii) hydro2d. We see
that the breakden of references that do not hit in the mence).
cache canary greatly; delayed hits are most prominentin - e RCR for each of the cache configurations, using the
go, misses irhydro2d, andcompressis in between these gjrect-mapped 8K single structure cache as the base, is
two. Since misses generallyvessignificantly lager laten- shaun in Figure 5. While performancenes among the
cies than delayed hits, taconfigurations with similar hit \5rious configurations, geral trends emge. First, multi-
ratios may result in dras.tically tefent werall run times |ateral designs can greatly impeocache performance by
due to the breakaim of misses and delayed hitarhese reqycing the verall number of ycles required to access
Q(perlments, thewerage delayed read 'and write hit Iaten-memory For go andperl, multi-lateral designs can cut the
cies were 9.89 and 11.1yabes, respeotely, compared t0 ot finite cache penalty to less than half of the base 8K
the nominal miss lategcof 18 gcleS’. Furthermore, in direct-mapped cache. Furthethe multi-lateral designs
aggressie out-of-order pipelines, the latgnof delayed fien approach, orven eceed, the performance of a
hits may be more easily maskby performing other use- larger, 16K direct-mapped cache — the 16K cache per-
ful work. forms best only ircompress gcc go, andli, where the
7.2. Relative Cache Effect Ratio (RCR) added capacity of the p&r cache is more beneficial than
Hit/miss ratios, or een delayed hits, are not the bestthe impraved cache management pided by the multi-
metric by which to ealuate a cache configuratisrperfor- lateral schemes.
mance when latencies are accounted for in simulation. A The Assist cache used in the HRF200 made use of a
better metric for highlighting performancaigs is the compilersupplied hint. Though the hint ag not

Relatve Cache Héct Ratio, as defined in [4], which is: accounted for in this studyhe Assist, NTS, and PCS
caches could all benefit from compiler hintgarling

Cycle Coung, —Cycle Counbg tect Cache proper management for particular cache blocker F
RCRy = &yeie Count, .~ Cydle Conbe e instance, the NTS and PCS caches could use compiler
ase eriect ~ache hints to place data for which no DU entiists into the B
This ratio prwides the finite cache penalty of avegm cache, instead of into the A cache byaddf— if the com-
cache configuration (X) relag to the penalty of a speci- piler knaev that the accessed datasvnontemporal, this
fied base cache. The base cache has an RCR of 1, caché@s could reduce pollution of the A cache with nontempo-
that perform better than the based&CR between zero ral data. Thus, it is liddy that with compiler assistance, the
and one, and caches that perfororse hae RCR > 1. performance of the Assist, NTS, and PCS cachasldv
The RCR thus more accurately reflects a cache configuraach impree over what thesexperiments hee shovn.
tion’s actual contribtion to total system performance 7.3 Block tour information

when running a tget application. able4 shavs the num- .
- . In general, reducing the number of tours through the
ber of g/cles required toxecute the code on our SimpleS- . o
ﬁache for a gien benchmark results in immed overall

calar processor configuration with a perfect cache (i.e. a o :
P performance — feer tours indicate that data is used more
memory accesses are satisfied in tydecafter thg com- . N
often during each touresulting in fever fetches to the

next level of memorymicade provides statistics for block

6.1n micathe read lateng ends when the data is at the processor: tours to each cacheofconfigurations that do not transfer

write lateny when the data is written in cache, freeing that block for data directly between the A and B cache (i.e. single, NTS,
later accesses.

Figure 5: Relative Cache Effect Ratio comparison for the
two direct-mapped and four multi-lateral configurations.

N
A
Q
>

cache size number of read port§ CPU-to-cache s s
width é 25%
block size number of write portg cache-to-memoryus % 20% _ _
width g oo
(NN}
word size number of read/write| return poliy § 10%
ports (requested ward first/ % 5%
first subblock first) E 0%
associatiity replacement polic | NOA dmsk ass_')St pes nts vietim
- - - - i) compress
read miss lateryc| write miss lateng hit latengy

18%
16%

14% m miss ratio
mdelayed hit rati

12%
10%

8%
6%
4%
general. 2%
0%

Since our study focuses on théeefiveness of a gen dmak assist pes nts victim
data cache configuration in reducing memory access time, ii) go
we designed a near perfect instruction supply mechanism
for our processor simulatoin addition, we praided
ample resources for the instruction processing phase in
order to maximize the f&fct of data cache performance.
Table3 details our chosen parameters and architectural
assumptions. Since 16aw superscalar processors are
likely in the near future, this processor configuration will
shed light on the benefits of using multi-lateral caches in

Table 5: A listing of parameters for each cache modeled
in micache. The parameters are read in from an input file
and can be changed for each simulation run without
recompiling the simulator.

MEMORY ACCESS BREAKDOWN

60%

50%
40%
30% _- miss ratio
20% mdelayed hit rati
10%

0%

MEMORY ACCESS BREAKDOWN

dm8k assist pcs nts victim
processor designs of coming generations. iii) hydro2d
6.1. Benchmarks Figure 4: Memory access breakdown for the different

. . cache configurations for three benchmarks. i) is the
~ Table4 shavs the nine programs (S iger and 4 float- compress benchmark, where delayed hits contribute
ing point) selected from the SPEC95 benchmark suite fomoderately to the number of accesses that miss in the

this study Each program, using the training data sets w cache. ii) is go, where delayed hits are prominent, and iii) is
. ! . N hydro2d, where misses are dominant.

run to completion or through the first 1.5 billion instruc-

tions.

(the management of data in the direct-mapped single

6.2. Experiments structure cache is glous). e chose to d&ep the latencies
The micade tool is capable of valuating a lage to memory constantver all configurations, as we are sim-

expanse of cache designs based upofferdifit cache ply evaluating the déct of using each cache design in the

parameters; a listing of thevailable parameters is shn ~ same processorhe latencies of nwing data between the

in Table5. In order to present a directed cache configuraA and B caches is dependent upon the cache design, as

tion evaluation usingnicache we chose toéep some of listed in Table2.

these parameters constant. The multi-lateral caches are allTo get a feel for each configuratismerformance, we

of the same size: the A cache is 8K and the B cache is 1kested each using a direct-mapped A cache and a fully-

While these caches may be small by todastandards, associatie B cache. This is also the configuration used in

they are comenient for illustratre purposes. Pvous pro- previous ealuations of the arious cache designs, so this

posed/galuated multi-lateral cache designs were small, asxperiment helpsauge the correctness of the performance

their performance &s found to wal the performance of reported bymicade The folloving section discusses the

direct-mapped caches of twice the size. Fuythieese results preided bymicahe

cache sizes are g&n by our use of the SPEC benchmarks7 Results

— lager caches can hold the entirerking set of these

benchmarks, reducing the benefit of multi-lateral designg.1. Miss ratio

[15]. Miss ratio is a first-order performance metric typically
The management of the data within the caches is diaised to describe cache performanceweler, incorpora-

tated by the four multi-lateral designs we chosesédumte tion of latencies introduces three ggiges of memory

Fetch fetches up to 16 instructions in program order Memory

Mechanism | per g/cle References Perfect Cache
Instruction perfect cache, lycle lateny Instruction (millions) Performance
Cache Program (nc1:i|(|)itcj)rr]1ts) Cycle
Branch perfect branch prediction Loads | Stores Qqunt IPC
Predictor (millions)
Issue out-ororder issue of up to 16 operations per| SPECSS Integer Benchmarks
Mechanism | cycle, 256 entry re-ordeniffer (RUU), 128 Compress 35.68| 7.37| 5.99 5.35| 6.6644
entry load/store _queue (LSQ); loads mag-e GCC 263.85 6115 36.24 43.50| 6.0648
cute when all prior store addresses areAtno
- - - Go 548.13| 115.79| 41.40 91.33| 6.0049
Functional 16 integer ALUs, 16 FP ALUSs, 8 intger i
Units MULT/DIV, 8 FP MULT/DIV, varying # of L/S Li 956.49 286.38 168.79| 151.32| 6.3210
units Perl 1,500.00 396.82| 269.83 232.89| 6.4408
Functional integer ALU:1/1, intger MULT:3/1, inteyer SPEC95 Floating Rint Benchmarks
Unit Latency | DIV:12/12, FP adder:2/1, FP MU4/1, FP drozd
(totallissue) | DIV:12/12. load/store:1/1 Hydr o2 974.50/ 196.11) 60.90) 127.63| 7.6353
Data Cache | write-back, write-allocate, 32B lines, 4 read/ Su2cor 1,054.09 262.20 84.74 152.34) 6.9192
write ports, non-blocking Swim 849.92| 205.18| 58.44 113.02| 7.5201
Table 3: Processor and memory subsystem Waves 1,500.00 321.87 133.26/ 318.69) 4.7067

characteristics. Table 4. The nine benchmarks and their memory

characteristics. IPC is Instructions Completed Per Cycle.

4.4, PCS cache
The PCS cache [11] decides on data placement basedGiven the similarity of the NTS and PCS cache struc-
on the program counterlue of the memory instruction tures, we implemented the PCS cache using the routines

causing the current miss, rather than on thHectfe that we created for the NTS cachat bimply indeed the
address of the block as in the NTS cache. Using the merdU by the PC instead of by thefedtive address of its

ory accessing instruction to direct placement of data in thdata. As with the NTS cache, we use a 32-entry DU for
L1 cache structure is useful when the data accessed by ther experiments.

instruction ehibits similar usage characteristics. This . .
approach can perform better than the NTS scheme Whé‘l Implementation and testing ofmicache

the ratio of blocks accessed to the number of memory We implemented fio different cache configurations
instructions Becuted is high and the data used by eachsing themicacesimulator: a direct-mapped single struc-
instruction &hibits similar usage characteristics (e.g. ature cache, an Assist cache,iatvh cache, an NTS cache,
single instruction striding through an array typically and a PCS cache. The latencies used for the timing simula-
results in nontemporal reuse of the data requested). Thu#n of these caches are shoin Table2

the pe_rformance of invjii(_jual memory accessing_ instruc- g Simulation ervironment

tions is used to determine placement of data in the PCS

scheme, as opposed to the performance ofithal data A timing simulation of caches is of limited use without
blocks ir'1 the NTS scheme considering the lategemasking efects of processorxe-

The PCS cache structure modeled is as similar as pos l_(t)lon_. Thu?, ;\Ie m_@altetdmlk():ad‘le|Tto_the_S|m|pI§SclaI:r
ble to the NTS cache (Figure 2ii)). The DU is indé by ¢ t] S'm'ﬁ“ © e(; Sl'm“_t?mcl" dz’ reNp ?Cl?ﬂmr € (hcaa
the memory accessing instructisrprogram countetut ata cache module witimicate. vote thatmicahe can

be combined with gncurrently aailable instruction-teel

i dated i imil to the NTS sch . Wh . . ! . i
IS Updated In a simrar manner to /e scheme ensa|lmulator includingTalisman([8], SimICS[9], RCM_brisc

block is replaced, the temporality bit of its entry is se . L T _
according to the block’ reuse characteristics during itstm’ and o_ther_s. This fieoility is pOSS|bI_e because
micade maintains the state of the caches itself and does

last tour of the cache. Thus, if that instruction subse- t tale int ¢ virtual TLBfeéts. It
guently misses, the loaded block will be placed in the glot taie into account virtual memory or ects.

cache if the instructior’PC hits in the DU and the predic- models up to tw cache structures and assumes a perfect

tion (T/NT) bit indicates NiTotherwise the block is placed merrr]]ory the:je?gte;n%arc:]less tc;:‘ t_he nutmdber ofviel of
in the A cache. If the instruction misses in the DU & ne caches bgon at. chose th&im-outoder processor

DU entry is created for this instruction and the data id" oddelbeclal:_se I per;orr_?_s ouft-t;)]f—ol\r/ﬁgrsﬁsutmec?tlon, ¢
placed in the A cache. and completion on a destive of the instruction se

architecture, and is a wellgarded processor simulator in

each memory access. DO_SA/E_EVICTED is performed, so the weblock is
placed in the A cache and thdated block is placed in the

B cache (after the specified access latencies). On a B cache
where the B cache is used as a “staging area” for da t, a DO_SWAP is done to place the referenced data in

entering the A (main) cache. On a hit, the data is returne e A cache, and the block itiets from the A cache into

to the processor the xtecycle, hut remains in the cache in the B cache.

which it is found. On a miss, the block entering the L14.3. NTS cache

cache structure is placed into the B caclganaiess of its The NTS cache, using the model in [11], whichsw

reuse characteristics. Blocks in the B cache are managedapted from the scheme proposed in [3]vabtiplaces

in a FIFO ashion, where blocks/eted from the B cache data within the multi-lateral L1 cache structure based on

are placed in the A cache. A blockicted from the A each blocks usage characteristics. In particulblocks

cache due to a promotion returns to thet tevel of mem- that hae been found toxhibit temporal reuse are placed

ory. in the A cache, while nontemporal data are sent to the B
In the Assist implementation in the HR200 [11], a cache. This is done in the hope of aflog temporal data

compiler hint is used to aid inekping spatial-onR/data to remain in the lgrer A cache for longer periods of time,

from polluting the A cache. Blocks thatvgathe spatial- while less frequently used (nontemporal) data can for a

locality hint bit set are returned to thexhé&vel of mem- short while be quickly accessed from the smat foilly

ory upon giction from the B cache. Heever, we do not associatie B cache.

model these compiler hints in this pap&s a result, the On a memory access, if the desired data is found in

placement of data within the Assist cache is determinedither of the caches, the data is returned to the processor

only by the reference programpattern. This omission with a 0 added lategchbut the block remains in the cache

will be addressed when we discuss the resulting perfoin which it is found. On a miss, the block entering the L1

4.1. Assist cache
The Assist cache [1] (Figure 2i) is a multi-lateral desig

mance of the Assist cache implementation. cache is chedd to see if it has an entry in a Detection
As shavn in Figure 3, the Assist cache can be imple-Unit. The Detection Unit (DU) contains temporality infor-
mented using the library routines pided. mation about recentlyvected blocks from the L1 cache

structure. Onwction, a block is chedd to see if it xhib-

ed temporal reuse during its most recent tour in the L1
ache structure and is mark accordingly in the DU. If
the nev block address matches an entry in the DU, the

memory access, desired data found in the A cache EIOCk IS pla_ced_ir_1 the A cache if the tag (.)f th_at entry indi-

returned to the processor thexneycle. If the desired data cate§ that |t>eh|b|ted_ te_:mporal reuse durlng_lts last _i;our_

is found in the B cache, the desired block must first b nd m_the B_cache_n‘ it did not. The reuse mformatlon_ IS

“swapped” into the A cache — the block from the B cachgeIOt via a single b'_t’ the T/NT_ bit. If no DU match IS

is placed in the A cache and the resultiagted block is ound, a nw eniry Is created n the DU, _the blockis

placed in the B cache. Depending upon the amount cﬁssumed to be temporal, and it IS placed_ n trgetad

hardvare dedicated to handling theseags, a hit to the B cache. The DU thus <_:aches entries consisting of a block

cache may requireawvying amounts of time. In this stuydy address and a T/NT b'ti : .

we assume an additional gote lateng for B cache hits. micahe does not pm:_de foutines for managing a DU.
On a miss, the block entering the L1 cache structur he user can add routines that manage the DU and per-

from the net level of memory is placed in the A cache. A orm placement decisiqns based on t_he results of those
block avicted from A as the result of the wmeblock's routines. Vé added routines that maintain the DU as a sep-
arrival is placed in the B cache; blocksated from the B arate, finite-sized fully-assocredl cache indeed by an
cache return to the relevel of memory Like the Assist address. Each entry_ n '_[he_ DU contz_suns afectie
cache, the Mtim cache manages the cache state yaigsi address an_d a T/NT bit which is set to_ 1 |f_the block at that
— recently wicted blocks are mlays s@ed in the auxil- address »hibited temporal reuse during its most recent

iary cache fordster access; no aei placement decision ;?qu tourapd 0 flftr?Ot. T?'S T/ ’f\l;l;]_b'tb'ls ukse_(rjhto predict
is made based on reuse information. e temporality of the ne tour of this block. These rou-

The Mctim cache can also be implemented using théin_es are called within theonfig.c . file when a cache
library routines proided. On a cache miss, a MiSSIS handled and used_to de<_:|d_e whether to p_Iace the
y P data in the A or B cache. Since this is a «fted routine,

we can specify separate parameters for this modole. F

5 Data is tagged spatial-only if it is predicted to be use-once or too larg@Ur &xperiments, we use a DU size of 32 entries.
to be effectively cached.

4.2. Victim cache .

The Mctim cache (Figure 2ii), based on the schemé!
proposed in [2], is a multi-lateral design where the B cach
is managed in aakhion akin to the victimusfer. On a

[* this is the standard handler for each access. it
checks in the A cache to see if the data is there
first. if it isn't, it checks in the B cache. if
it's presentinacache, ithandles the appropriate
cache hit. if the access misses in both caches, a
miss is processed.
other designs may not need both caches checked

(e.g. MLCOs that partition the memory access stream
based on some criteria like address (odd/even),
functionality (integer/floating point), etc.). */

long |1 ong handl e_access(long | ong cycl e_count,
Updat eEntry *Entry) {
/* check for hit in A cache “first” */
if(lcheck_for_cache_hit(cycle_count,Entry))
/* miss in A cache-check in B cache */
if(lcheck_for_cache_hit(cycle_count,Entry))
/* miss in both - handle the miss */
access_time = handle_miss(cycle_count, Entry,
Conflict_Entry);
else /* hit in B cache (after miss in A cache) -
handle the B cache hit */
access_time = handle_B_cache_hit(cycle_count,
Entry);
else /* hitin A cache - handle the A cache hit */
access_time = handle_A_cache_hit(cycle_count,
Entry);
return access_time; }

long | ong handl e_A cache_hit(long | ong cycle_count,
Updat eEntry *Entry) {
/* hit in A cache, so just update stack, etc.
for acache */
Entry->on_completion = DO_UPDATE;
Entry->access_latency = (long long)cache_latency;
Entry->which_cache = ACACHE;
return(handle_hit_timing(cycle_count,Entry,
&(Entry->A))); }

long |1 ong handl e_B cache_hit(long |ong cycle_count,
Updat eEntry *Entry) {
/* hit in B cache, so just update stack, etc.
for bcache */
Entry->on_completion = DO_UPDATE;
Entry->access_latency = (long long)cache_latency;
Entry->which_cache = BCACHE;
return(handle_hit_timing(cycle_count,Entry,
&(Entry->B))); }

long |1 ong handl e_m ss(long | ong cycl e_count,
Updat eEntry *Entry,
Updat eEntry *Conflict_Entry) {
/* for assist cache, if something falls out of the
B cache on the update, it is placed in the A
cache in a FIFO fashion */
if(Entry->B.dap.accesstype == 0)
Entry->access_latency =
(long long)main_mem_latency_r;
else
Entry->access_latency =
(long long)main_mem_latency_w;
Entry->which_cache = BCACHE;
Entry->on_completion = DO_SAVE_EVICT;
Entry->move_direction = B_TO_A,
return(handle_miss_timing(cycle_count, Entry,
&(Entry->B))); }

Figure 3: Part of the config.c file used to implement the
Assist Cache. Setting on_completion to DO_SAVE_EVICT
causes the item evicted from the B cache on a miss to be
moved to the A cache (dictated by move_direction being
setto B_TO_A), as required.

cated losses, there are dedicated ports for accesset-tra

Single| Assist | Victim NTS PCS
Cache A (Al B |A|BJ|A|B|A| B
Size 8/16K|8K| 1K [8K| 1K [8K| 1K |8K| 1K
Associatvity | 2/1 | 1 | full | 1 | full | 1| full | 1 | full
Replacement| —/— | — |FIFO| — |LRU| — |LRU| — |LRU
Policy
move time - 1 2 - -
latency to 18 |- | 18 [18| — |18| 18 |18| 18
next level

Table 2: Characteristics of the five configurations
studied. Times/latencies are in cycles.

well-designed machineauld likely satisfy these assump-
tions.

Different latencies can also be assigned to a path
depending upon the operation that is being performed. The
lateng assigned for thenove _time can difer among
the cache configurations, as simoin Table2. For an
Assist cache (Figure 2i), mes between the caches are
always in the direction from B (ffer) to A (main cache).
Thus, in our gperiments, a me in the Assist cache con-
figuration requires a singleyde, meaning that an access
that hits a block being promoted from the B cache to the A
cache is satisfied with a oagycle lateng (one gcle for
the mare and oneyxle to return the data to the processor).
Accesses that hit in the A cache are returned in tRe ne
cycle, as are accesses that hit in the B cache.

For a Mctim cache (Figure 2ii), promotions from the B
cache to the A cache require aapanto be performed: the
block from the B cache is med into the A cache and the
block it evicts from the A cache is placed in the B cache.
Normally, this operation cannot complete in a singlele,
as there is only a single, albeit dedicatads between the
caches, and twelements need to be waal using the com-
mon tus. Thus, we can assign a latgif two cycles for a
move between the caches for thitim configuration or
assign a oneycle lateng and assume a 2 block widesh
we assigned lategc2 in our eperiments. If there is an
access to a block that is ming between caches, the trail-
ing-edge dkct seen by this latter access is properly
accounted for by the LE cache model.

Each of the multi-lateral configurations is discussed in
more detail in Section 4. From these briegdmples, hao-
ever, it is easy to see that this moduldibrary-based
approach to defining a cache configuratiorvadla signif-
icant range of configurations to beaenined early in the
design gcle.

ing between the caches (e.g. this permits a processor re4d Cache configurations

from the A cache while a dirent element is being med

In each of the follewing multi-lateral cache configura-

to A from B). Implementations of these caches in a realions, both the A and B caches are cleecln parallel on

miss ratios can va drastically difierent program xecu-
tion times depending upon the actual laterf each
access. Thus. we use the La'geEdi'fects (LE) cache tim- ched_for_cabe_hit() check to see if an accessed block is
. ’ ' . resent in the cache
ing model [6] to account for the latencies seen by each P .

. ._ |update() place an accessed block into the cache
memory access. The LE cache model is a paramaterize-

Support Routine Description

able model that determines the latefar each access by move_orer() T)Zﬁoigefccessw block from one cat!

considering 'Ieading and trailing. edgdeefs, lus width do_swap() move an accessed biock from cached 1

and contention &cts, port conflicts, and the number of cache? and me the sicted block to

accesses (N@) that the cache alles before blocking. &r cachel

single structure caches, the LE model is used to determin@o_swap_with_inclusion(] place an accessed block into both cadh

the lateny of hits, misses, and delayed Rits the cache. and cache2 and me the gicted block

For multiple-cache configurations, more latencies must b from cache2 to cachel

considered. do_save_wcted() move the block eicted from cachel to
A lateng is assigned to each of the nelat paths inthe | cache2

figure for each type of operation to be performedr F find_and_emae(remove a b_|°°k from a_c"_"Che

_ched<_for_reuse() determine if a blockxhibits temporal

instance, if an access is made to a block during its promg
tion from B to A, the promotion time must be included in : : : :
the access latepcThe lateng of an access can be deter- Table 1: The basic support routines provided with the
mined by summing the time to werse each link of the micache simulator. The user can call these routines from a
paths from where the block resides at the time of theicn(igg(;irszgn file to control the cache state and
request to its final destination in the proces$or the i

Assist cache configuration, the nominal miss latetrail- .)

ing-edge d&cts, and bs width and contention consider- are'already stitient to model may multi-lateral cache

ations are incorporated in the memory-to-cache pattfl€Signs.

while the lateng between caches and trailing-edgieets While micadie models may of the efects seen by a
are included in the cache-to-cache pathyaRdless of the Memory access in a multi-lateral configuration, some k
cache configuration, each access is subject to the addéfiects are still not accounted fdvulti-lateral configura-

behaior (word reuse)

latencies, if ay, due to port conflicts and MO tions that incorporate prefetching, e.g. with a streaming
. . buffer [2], cannot be dealt with because haaids

3. micache —an easily configurable tool prefetching has not been included in the current imple-

3.1. High-level parameterization mentation. Also, some configurations, e.g. a smaller or

To male micade easily retagetable, we chose to pro- |€SS associate cache “backing” a Iger or more associa-
vide a library of routines that a user could choose frontive (possibly multi-lateral) cache can potentially violate

when deciding what actions ®lplace in the cache at a thg multi—l_e/el'inclusion pr'inciple. [14]; the potential for
given time. The routines are accessed from a single C fiféiS violation is common in multi-lateral caches and has

namedconfig.c . The user simply modifiesonfig.c not been addressed in our current studies.
to describe all of the desired interactionsvahan Figure Figure 3 shws portions of theconfig.c file that

1 between the caches, processord memoryThe user models an Assist cache configuratiqn usjng tha’idetm
also controls when the actions occur via the delayefPutines. As can be seen, the operations irandg.c

update mechanisrulit into the cache simulatbrTable1 ~ file are all \ery high leel and easily understandable,
shaws the routines praded for the user to choose from thereby rellemg the user from Iearnmg the _|ntr|caC|es of
and a brief description of each. If more interactions ardh® cache simulata” lov-level operations in order to
needed than those pided, thg can then be coded into Model a ne cache.

the simulator by hand —xamples of such usadded 3.2. Assessing latencieof multiple caches

routines are presented belavith the multi-lateral cache Accounting for latencies between caches is a simple
implementations. Hoever, the routines that are pided extension of the LE cache model —ve that we kno
what operation is occurring, we can add the corresponding
3.Delayed hits are accesses to data currently returning to the cache on haf€ng onto the access time and then adjust foy an
half of earlier misses to the same block. lateng/-adding efects. For this papgrwe assume that ded-

4 Delayed update is used to allow a behavioral cache simulator such #ated lusses (as wide as the smaller cacb#cksize) are
Dinerolll [13] to account for latency-adding effects. The use of delayedpresent between the caches so that we may ignee b

update causes the effects of an access, i.e. an access’ placement into the

cache, the removal of the replaced block, etc. to occur only after the caYyIdth considerations between the caches forveso

culated latency of the access has passed. between A and B. ¥also assume thatyvgn these dedi-

PROCESSOR PROCESSOR PROCESSOR PROCESSOR PROCESSOR PROCESSOR

P]] I I b4

A B A A B A B A B A B

: : : }] t ! ! } }

MEMORY MEMORY MEMORY MEMORY MEMORY MEMORY
i) ii) iii) i) i) iii)

Figure 1: Schematic views of processor-memory systems Figure 2: Representations of some multi-lateral cache
with two caches: i) fully-connected, ii) a single structure configurations.: i) Assist cache, ii) Victim cache, and iii)
cache, and iii) a two-level cache. NTS and PCS caches.

figurations that we consider include the Assist cache, V removing particular arcs and elements from Figure 11, dif-
tim cache, NTS cache, and PCS cache [1H.sWWov hov ferent cache configurations can be represented, e.g. a tradi-
each of these can be easily realized usingrlcachetool, tional single structure cache back by main memory
and epose the performance of each scheme for a set ¢Figure lii) or a 2-leel cache, where the L2 cache is B
cache parameters. Thougticade is designed for multi- and the L1 cache is A (Figure 1iii). The A and B caches
lateral cache configurations, it can also easily handle sirean hae different sizes, associdties, replacement poli-
gle structure caches.8\tompare the performance of the cies, etc., which are specified separately by assigning
multi-lateral caches with single structure caches oparameter alues.
increased size. Figure 2 shws representations of\ssral multi-lateral
The paper is ganized as follevs: Section 2 discusses cache configurations. Figure 2i sf® the Assist cache
the modeling and simulation of multiple caches. Section 8onfiguration, used in the HRAF 200 [1][12]. All blocks
introduces thenlcadetool itself. Section 4 discusses eachthat enter the cache from memory must enter through the
of the cache configurations weatuate, while Section 5 Assist luffer (the B cache). Note that there is no direct
presents the implementation and testingntdadie Sec- memory-to-A cache transfer path in Figure 2i. The B
tion 6 discusses our simulationvéenment, benchmarks, cache uses a FIFO replacement — blowicted from the
and eperiments. Section 7 presents the results of th& cache are ma&d (“promoted”) into the A cache unless
experiments we conducted, and we conclude in Section 8they are tagged with a compitsupplied spatial-only hint.
2. Modeling and simulating multi-lateral Thus, the B cache s@y as a "staging area” for accesses,
potentially reducing the number of conflict misses that a
caches program vould experience if it were run on a system with
In order to model and compare multi-lateral cache cona single, direct-mapped L1 cache. Once a block has been
figurations, it is helpful to hee a figure from which each promoted to the A cache, it resides there until it is replaced
of the configurations can be dexd. Figure 1i shes a under an LR policy. In the basic Assist implementation,
“fully-connected” processememory system with t& dirty blocks that are replaced in A are written back to main

cache structures in L1 baatk by a main memoryepend- memory; thus, there is no direct path from the A cache to
ing upon the specific configuration beingakiated, some the B cache.

of the paths will be deleted. The direct path between mem- |n the \ictim cache (Figure 2ii), blocks replaced in A
ory and processor is not included in the figure, as it isnove to B; blocks that hit in B nve back to A. In the
assumed thatven cache-bypass data that returns to theyTS or PCS cache (Figure 2iii), blocks deemed to be tem-
processor directly from memory must still go through theporaf are allocated to A, nontemporal blocks to B.
cache unit. The &cts of a memory to processor transfer |n the middle of the desigrycle, it is helpful to incor-
can be obtained by assigning it appropriate paramater v porate lateng effiects when considering memory accesses,
ues for traersing the corresponding memory-to-cache ancs miss ratios alone are not afisigntly accurate perfor-
cache-to-processor paths. mance metric of a tget cache design. Wheyate-level

This figure can thus represent, at a higrellepracti- simulation is performed, wcache designs with similar
cally ary system consisting of tvwcaches, a processand
memory (Note that the “memory” in this figure can actu- 2'A block is considered temporal if any word in it is accessed more

ally represent a secondvéd cache. In xplaining this than once during a tour. A block is considered spatial if more than one

model, havever, we will assume that theviel of memory word is accessed during a tour. A block tour refers to one of the time
! ' . . intervals that the block spends in the cache (between an allocation and
backing the tw caches is the systesmhain memory By its subsequent eviction). A given block can have many tours through

the cache.

micache: A Flexible Multi-Lateral Cache Simulator

Edward S. Tam, Jude A. Rivers, Gary S. Tyson, and Edward S. Davidson
Advanced Computer Architecture Laboratory
Electrical Engineering and Computer Science Department
The University of Michigan
Ann Arbor, MI. 48105
{estam,jrivers,tyson,davidson}@eecs.umich.edu

Abstract Cache [1], ¥etim Cache [2], and NTS Cache [3]Jea
As the gap between processor and memory speeds incre&een shan to perform as well as or better thargky sin-
es, cache performance becomes more critical to overafjle structure caches while requiring less die area [4][5].
system performance. To address this, processor designdfer a given die size, reducing the die requirements to
typically design for the largest possible caches that camttain a gien rate of data supply can allether resources
still remain on the ever growing processor die. Howeverfo use the seed space — forxample, more space dedi-
alternate, multi-lateral cache designs such as the Assistcated to branch prediction, data fanding, instruction
Cache, Victim Cache, and NTS Cache have been showngopply and increasing the size of the reordeffdr can
perform as well as or better than larger, single structuresene to imprae performance more than simply impro
caches while requiring less die area. For a given die sizeing cache performance.
reducing the requirements to attain a given rate of data The micade multi-lateral cache simulatoras deel-
supply can allow more space dedicated for branch prediceped to help designers in the middle of the desigiec
tion, data forwarding, increasing the size of the reorderdecide which cache configuratioromd help attain the
buffer, etc. Current cache simulators are not able to studperformance goals of the ¢gt processorEarly in the
a wide variety of multi-lateral cache configurations. Thus,design gcle, metrics such as miss ratio and bandwidth
the mlcache multi-lateral cache simulator was developedequirements can be used to nertbe spectrum of caches
to help designers in the middle of the design cycle decideonsidered for a processor design. Before detaietéc
which cache configuration would best aid in attaining theby-cycle simulators are constructed for final candidate
desired performance goals of the target processor. mldesigns, it is oftenery helpful to use highdevel, mid-
cache is an event-driven, timing-sensitive simulator basedycle timing simulators to obtain a more detailedlea-
on the Latency Effects cache timing model. It can be easiljon of cache and processor performanoécade is an
configured to model various multi-lateral cache configura-event-driven, timing-sensitie cache simulator based on
tions using its library of cache state and data movemerthe Lateng Effects cache timing model [6]. It can be eas-
routines. The simulator can be easily joined to a widdly configured to modelarious multi-lateral cache config-
range of event-driven processor simulators such asirations by using its library of cache state and data
RCM_ brisc, Talisman, SimICS, and SimpleScalar. We ugaovement routines. ¢t interactions not modeled in the
the SPEC95 benchmarks to illustrate how micache can bérary routines, users can write thewm management
used to compare the performance of several different datautines and call them from this simulatetich is struc-
cache configurations. tured for easyxensibility. The tool can be easily joined
to a wide range ofvent-driven processor simulators such
Keywords: multi-lateral cache, timing simulation, perfor- asRCM_brisc[7], Talisman[8], SimICS[9], andSimpleS-
mance evaluation calar [10]. Together a combined processand-cache
. simulator such asSimpleScalar+micate can preide
1. Intr oduction detailed galuations of multiple cache designs running tar-
As the @p between processor and memory speedget workloads on proposed processor/cache configura-

increases, cache performance becomes more critical {@)ns.

overall system performance.oTaddress this, processor |n this paper we present thécachetool and she how

designers typically design for the dest possible caches it can be used to compare the performance \@raé dif-

that can still remain on thever graving processor die. ferent L1 data cache configurations when running the

However, multi-lateral cache designs such as the Assis§pEC9s benchmarks. While multi-lateral designs can also
be used for instruction caches, thevdo predictability of
references to data is more suitedxtpasing the benefit of

1. We use the term multi-lateral to refer to a level of cache that containﬁ,]u|ti_|atera| cache designs The multi-lateral cache con-
two or more data stores that have disjoint contents and operate in parallel. '

