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Abstract

This paper gives very general algorithms for the design of optimal experiments involving
two Bernoulli populations in which sampling is carried out in stages. It is assumed that the
outcomes of the previous stage are available before the allocations for the next stage are
decided. At each stage, one must decide how many observations to take and how many to
sample from each of the alternative populations. Of particular interest are 2- and 3-stage
experiments.

To illustrate that the algorithms can be used for experiments of useful sample sizes, they
are applied to estimation and optimization problems. Results indicate that, for problems of
moderate size, published asymptotic analyses do not always represent the true behavior of
the optimal stage sizes, and efficiency may be lost if the analytical results are used instead of
the true optimal allocation. Our results also suggest that one might approach large problems
by extrapolating optimal solutions for moderate sample sizes; and, that approaches of this
sort could give design guidelines that are far more explicit (and hopefully closer to optimal)
than those obtained through asymptotic analyses alone.

The examples also show the ease with which the computational approach can solve problems
that present analytical difficulties. This allows one to use models that more accurately
represent important characteristics of the problem. It is also shown that in various cases the
base algorithms can be modified to incorporate simplifications. In such settings, significant
speedups and space reductions can be obtained, permitting the exact solution of even larger
problems.
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1 Introduction

It is well known that adaptive sampling or alloca-
tion, in which decisions are made based on accruing
data, is more efficient than fixed sample allocation,
in which all decisions are made in advance. Allocat-
ing adaptively can reduce costs or time, or improve
the results for a given sample size. Fully sequential
adaptive designs, in which one adjusts after each
observation, are the most powerful. However, they
are rarely used, due to concerns over their design,
analysis, and implementation. Problems attributed
to fully sequential methods include the following;:

o they are difficult to design and analyze,

e they are complex to carry out, and often re-
quire that one consult computers at each step,

e one needs timely responses, since the 7 + 15¢
allocation cannot be decided until the ith out-
come is known, and

e it is difficult to randomize since the allocations
are determined one at a time.

While advances in computing hardware and algo-
rithms make it easier to optimize and analyze cer-
tain fully sequential designs, and while use of net-
works or portable computers can ameliorate the sec-
ond concern, the remaining points are more prob-
lematic.

One way to address these concerns is to incor-
porate a restricted form of sequential allocation, in
which decisions are made in stages. The most com-
mon of these is a 2-stage experiment, in which an
initial decision is made to observe specified num-
bers from the various populations; and then, once
the results have been obtained, to make a second
and final decision as to how many observations to
take from each population in the last stage. Within
each stage one can use constrained randomization
and work with concurrent observations, thus reduc-
ing the impact of response delay.

Both 2- and 3-stage designs have received exten-
sive analytical treatment, and the results typically
indicate that the designs are first- and second-order
asymptotically optimal respectively. In particular
there is a considerable body of literature on 2- and
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Figure 1: Schematic of a 3-Stage Design

3-stage designs for obtaining fixed precision confi-
dence intervals and for minimizing risk functions
when observational costs are incurred. (See for
example Ghosh (1975) and Ghurye and Robbins
(1954).) A nice review of these types of sequential
few-stage designs is provided in Ghosh, Mukhopad-
hyay and Sen (1997).

Despite the volume of this work, however, there
doesn’t appear to be work in which attempts have
been made to fully optimize few-stage designs. In
particular, two features that we allow to vary freely
in the designs described here are the stage lengths
and the proportions allocated from each population
within each stage. Both sets of design parameters
(lengths and proportions) can be critical to the ef-
ficiency of a design. With regard to selecting stage
lengths as a function of total sample size or total
expected sample size, we have found that published
analyses are quite vague except in limiting cases
which may not be relevant in practice. With regard
to how to allocate within each stage, previously
published few-stage designs are typically character-
ized by having equal allocation in the first stage.
We make no such restriction and provide examples
illustrating that this assumption has the potential
to be arbitrarily damaging.

Figure 1 illustrates the manner is which a 3-stage
design might flow. The two shades within the rect-
angles (the “stages”) represent the different pro-
portions sampled from each population within the
stage. So, in the first stage of Figure 1 we see that

approximately %Td of the observations are from Pop-



ulation 1 and the rest are from Population 2. In the
second stage there are two rectangles which repre-
sent just a couple of the many ways one could sam-
ple in the next stage. Note in particular that one
rectangle is shorter than the other, representing a
shorter stage size.

The goals of this paper, which is an extension of
the work in Hardwick and Stout (1995), are

e to provide efficient algorithms for determining
optimal few-stage designs,

e to motivate the use of such algorithms via a
number of examples,

o to illustrate how easily the base algorithm can
be adjusted to handle new design variations,
and

e to compare the exact computational results
with the analytical results that have appeared
in the literature.

Definitions used in describing the algorithms are
presented in Section 2 and the base algorithms are
introduced in Section 3.

In Section 4 we illustrate the range of our algo-
rithms by applying them to several sample prob-
lems. There are four separate examples for which
we give optimal solutions and compare our results
with the previously best results that we found in
the literature. The examples are

e Section 4.1: a two-stage two-armed bandit
problem (i.e., the goal is to maximize the total
successes),

e Section 4.2: a two-stage two-armed bandit
problem with cost per observation in stage one
and variable total sample size,

e Section 4.3: a two-stage nonlinear estima-
tion problem (estimating the product of two
means), with 1- and 3-stage designs also exam-
ined,

e Section 4.4: a three-stage problem of estimat-
ing the difference of two means with ethical
cost function.

Among results of interest, we found that, for some
of the problems examined, asymptotic results do
not appear to provide useful guidelines in practice.
On the other hand, we found that some ad hoc ap-
proaches performed remarkably well compared to
optimal designs. Perhaps of more interest is the
ease with which one can optimize variations as long
as the new problem fits roughly within the popula-
tion model framework utilized here. For example,
for the types of problems addressed here, a signif-
icant amount of effort has typically been required
before analytical approaches yield approximate op-
timizations for a new variation. One thing we hope
to show, however, is that many such variations —
problems that might be extremely difficult or im-
possible to address analytically — may be simple
to optimize fully with only minor alterations to the
base algorithms described here. This should en-
courage designers to utilize models which more ac-
curately reflect the important factors in the exper-
iment, rather than choosing models which are ana-
lytically tractable.

Many of our examples can be computed by pro-
grams more efficient than one would expect from the
worst-case scenarios used in the base algorithms.
In Section 5, we show how to modify the base al-
gorithms to incorporate various types of simplifi-
cations, and we show the substantial speedup that
ensues. We also show how to incorporate the con-
straint that the stage sizes be fixed.

Finally, in Section 6, we discuss some extensions
of this work and efforts to extrapolate exact op-
timizations for moderate sample sizes to predict
nearly optimal allocations for sample sizes larger
than can be fully optimized. We also discuss rela-
tionships between analysis, computation, and visu-
alization of allocation routines.

2 Definitions

With the exception of Sections 4.2 and 5, we assume
that the total sample size of the experiment, n, is
fixed. This assumption is used merely to simplify
descriptions and comparisons, and, as Section 4.2
shows, one can modify our algorithms to handle
cases where the sample size is random. There are



two independent Bernoulli populations, Population
1 and Population 2. We use a Bayesian approach,
in which the success parameters of the two popu-
lations have independent distributions. (In all of
our examples these distributions are beta, but our
work applies to general distributions.) Thus, at any
given point one can determine the probability that
the next observation on a given population will be
a success. Suppose that at some point in time we
have observed s; successes and f; failures on Popula-
tion ¢. Then the vector (s1, f1, s2, f2) is a sufficient
statistic, and forms a natural index for the state
space describing the experiment. States, denoted
as v, will be treated as vectors so that one can add
observations in a natural manner.

We are interested in k-stage designs in which &
is small. In a 1-stage design, the only decision re-
quired is the number of observations to sample from
Population 1, as all remaining observations are sam-
pled from Population 2. If £ > 1, one determines
how many observations to take from Populations 1
and 2 in stage 1. These are denoted as Lq1 and Lq,
respectively, and the total number of observations
in stage 1 is denoted by L, where L1 = L1 4+ Lq2.
Once the initial observations have been obtained,
one is left with a (k — 1)-stage experiment of size
n — Ly, where the priors have been updated to in-
clude the initial observations. Without loss of gen-
erality, we require that each stage have at least one
observation, so £k < n. Our algorithms are cor-
rect for all such £ and n, but our analyses assume
k < m since that is the case of interest. If, for ex-
ample, £ = n, then the problem is fully sequential
and simpler approaches could be used.

There is an objective function R{(v) that is the
value of each final state v (i.e., states for which
|v| = n), and the goal is to minimize the expected
value of R§. The value of allocation A is the sum,
over all final states v, of R§j(v) times the probability
of A reaching v. An optimal k-stage allocation is a
k-stage allocation that achieves the minimum value
among all k-stage allocations. There no restrictions
on the objective function, other than the require-
ment that it can be determined by knowing only
the final state reached and the prior distributions.

To describe the time and space requirements of

k : number of stages
n : sample size, n > k

iy fi:
1,2

successes and failures on Population 7, ¢ =

s;, T; : vectors denoting 1 success or failure on Pop.
i; hence [s;] = || = 1

|v| : for state v = (s1, f1, 32, f2), |v| is the total
number of observations, i.e., |v| = sy + f1 +

s2+ fa
0; : number of new observations assigned to Pop. ¢

pi(s,0;v) : probability of s successes among o ob-
servations on Pop. ¢, starting at state »

R} (v) : value of starting t-stage experiment,
1 < st < k, at state v and proceeding optimally
(R§(v) is the objective function)

Ri(01,09;v) @ value of starting t-stage experiment
at state v, assigning o; observations to Pop. 1,
and proceeding optimally.

L;; : number of observations on Pop. ¢ in stage j.

L; : number of observations in stage j, i.e.,
Lj = le + LJ‘Q.

Figure 2: Notation

algorithms, we use “generalized O-notation” from
computer science, in which O and o have the same
meanings as in statistical use; and in which we say a
function f(n) = ©(g(n)) if there exist positive con-
stants C', D, N such that Cg(n) < f(n) < Dg(n)
forall n > N.

Notation used in the remainder of the paper are
displayed in Figure 2.

3 Optimal Few-Stage Allocation

The starting point for our algorithm is the simple
version given in Figure 3. It proceeds in a typi-
cal dynamic programming fashion, from the end of
the experiment towards its beginning. In a fully se-



{Evaluate last (kth) stage}

For all states v with £ — 1 < |v| <n -1,

Ri(v)=  min  Ry(01,09;0)
014+o02=n—|v|

{Evaluate middle stages}

Fort=2to k-1
For all states v with k —t < |v| <n — 1,

R min Ri(01,09;v
t( ) 1<01 +0z<n—|v|—t+1 t( o2 )
{Evaluate initial stage}
R3(0) = min Ri(01,09;0)

1<01402<n—k+1

Figure 3: Simple Few-stage Allocation Algorithm

quential allocation, dynamic programming usually
proceeds by analyzing all states with |v| = n, then
all states with |v| = n — 1, and so on until one
reaches state (0,0,0,0).
here, but there is an additional implicit part of the
state space, namely, the number of stages so far.
This is not part of the sufficient statistics, but is a
crucial part of the dynamic programming. It con-
trols the outermost loop level, ranging from the last
stage back towards the initial stage.

The equations being solved in the loops deter-
mine the best continuation at any stage and state
by taking the minimum over all possible options. In
other words,

Ri(v) =

“Legal” values are determined by the constraints
that there are t stages remaining, each of which
must have at least one observation, that |v| obser-

A similar scheme is used

min{ R¢(01,02;v) : 01,02 legal}.

vations have already occurred, and that there will
be a total of n observations. Thus, the legal values
of 01 and oy are those such that

1<o+oy<n—|v]—t+1 ift>1
o1+ 0y =n—|v| ift=1

For each stage, one proceeds through the entire
range of states.
state is more complex than in the fully sequential
case. In fully sequential designs, there are only two
options that need to be evaluated (sample 1 from

However, the evaluation at each

Population 1 or 1 from Population 2), and each of
these involves only two successor states. Thus, one
can evaluate each state in ©(1) time, and complete
the design in ©(n*) time (since there are ©(n*)
states).

For the few-stage problem, however, there are
many options at each stage. In the general case,
one must decide the number of observations allo-
cated to Populations 1 and 2, creating O(n?) op-
tions. Further, to evaluate R(01,02;v) one must
consider O(n?) outcomes:

Z Z pi( 1,017

51=0s},=0

’ R:—l('v + (5/17 01 _5/17 5/27 02_5/2))7
where p;(s,0;v) is the probability of observing s
successes among o observations on Population 2, if
one started at state v. Thus, if straightforward im-
plementations are used, it takes O(n?) time to eval-
uate Ri(01,02;v); O(n*) time to evaluate R;(v) for
each state v; and ©(n®) time to evaluate the entire
stage over all ©(n*) states. Thus the total time for
all stages, using a straightforward implementation
of dynamic programming as in Figure 3, would be
©(kn®). The space required would be ©(n*), since
all of the results of each stage are needed to com-
pute the preceding one.

In these analyses, and throughout the paper,
there is an implicit assumption that one can com-
pute all of the values p;(s}, 0;;v) in time no more
than the number of states involved, using space no
more than the number of states involved. Similar

assumptions are made concerning the terminal cost
H *
function R§(v).

R 017027 p2(827027 )

3.1 Time/Space Reductions

To reduce the time per stage, one needs to reuse
calculations among the states. To do so, note that
at any state v, if 07 > 1 then

Rt(‘)lvo?;v)_ (1717 U) R( -1 02;'U+51)
‘|‘p1(0717v) R (01_1 027v+fl)

and if o9 > 1 then

;v) - Re(01,00—1;v439)
10) - Re(01,00—1;v4+13).



{determine optimal decisions for stage ¢}
for all states v with k — 1+ 1 <|o|<n—t—-1,
initialize R}(v) = o0
forall t.endink—t+1,....n—t+1
for oy =0 to t_end — k + 1
for all states v with |v| = st_end — 0y
if 01 # 0 then
compute R;(01,0;v) using R¢(01—1,0;")
RY(v) = min{ R} (v), Rs(01,0;v)}
else {o; = 0}
Rt(07 0, 'U) = 2‘_1(@)
forog=1totend —k+t— 0
for all states with |v]| = t_end — 0y — 0y
compute R;(01,0q;v) using Ri(01,02—1;")

Ri(v) = min{R;(v), Ri(01,092;v)}

Figure 4: Improved Mid-stage Evaluation Order

Thus, if one computes and stores Ry(01,02;v) for all
01, 02, and v, there is a natural way to reduce the
calculation time to @(n®) per stage. First, compute
the values for all states v with |v| = n, then compute
them for all states with |[v| = n—1, and so on. Since
there are ©(n®) options to be evaluated, this time
is optimal unless one can determine that not all
options need be evaluated.

However, if one proceeds in this way, the space re-
quirements would also be @(n®), and even the com-
mon trick of writing values for |v| = m on top of
the values originally stored for |v| = m + 1 would
only reduce the space to @(n®). To reduce space to
©(n*), the calculation order can be rearranged to
that given in Figure 4. Using this order, one need
only store arrays corresponding to R;(-), R¢(01,0;)
for a fixed value of o1, and Ry(01,02;-) for fixed val-
ues of o7 and 0y. Ry(01,0;-) is written on top of
Ri(01—1,0;-), and Ri(01,02;-) is written on top of
Ri(o01,02—1;-).

Note that one must also keep track of the values
of 0; and o, for which the minimum Rj(v) is ob-
tained. This requires a constant amount of storage
per state, and hence an additional ©(n*) space per
stage.

3.2 Final and Initial Stages

The final stage is simpler than the general case,
since the stage length is fixed and the problem of de-
termining the optimal final allocation from a given
state is the well-known optimal fixed-allocation
problem with a fixed sample size. This can often be
algebraically simplified to take only ©(1) time per
state, or ©(n?) overall, a point which is pursued in
Section 5. For those cases where no algebraic sim-
plification is possible, the ordering in Figure 4 can
be used to keep the time at ©(n®).

The initial stage is also simpler than the mid-
stages since evaluation is required only at state
(0,0,0,0). Thus the straightforward implementa-
tion takes only ©(n*) time. If there is only a single
stage, then there are only ©(n) options, needing
©(n?) total time.

Putting all of the above together gives the follow-
ing:

Theorem 3.1 The optimal k-stage allocation for
an experiment of n observations from 2 Bernoulli
populations can be determined in

e O(n?) time and O(1) space, if k =1,
e O(n®) time and O(n>) space, if k = 2,
e O(knb) time and O(n*) space, if k > 3.

Proof: All of the results follow directly from the
above algorithms and observations, with the possi-
ble exception of the space analysis for £ > 3. In
the preceding comments, it may have seemed that
an array of size @(n*) was needed for each interme-
diate stage. However, since each stage is evaluated
using only the results from the preceding stage, one
never needs more than 2 such arrays at any one
time. Hence one can alternate back and forth be-
tween two arrays, so that the space does not in-
crease with k. O

While the space required to determine the opti-
mal design does not continue to grow for £ > 3, ad-
ditional space may be needed to store the decisions
of the optimal design, so that it can be implemented
or some post analysis can be performed.
common occurrence in dynamic programming that
storing the decisions increases the space, because

It is a



they cannot be written on top of each other. One
may assume that one needs to store only one deci-
sion per state, which would imply that only ©(n*)
space is needed, but for k£ > 4, there is the possibil-
ity that a given state could be reached at the end
of more than one stage, and hence one would need
to know how to optimally proceed for each different
stage. While this does not normally occur, we have
not be able to rule out the possibility, and hence
the space may increase to @(kn*). One can easily
utilize disk storage for the decisions, since they are
not referenced in the algorithm.

The above is the worst case scenario that will
work for any few-stage problem. Often, there are
features of the problem that allow us to design a
more efficient algorithm. In fact, all of the exam-
ples that we consider in Section 4 have character-
istics that allowed for faster algorithms. Section 5
shows how to improve upon this base result in var-
ious scenarios.

4 Examples and Applications

The few-stage optimization algorithm is applica-
ble to a wide range of problems. We have chosen
the particular examples in this section because they
are ones for which prior asymptotic or approximate
analyses provide a framework for comparison.

4.1 2-Stage Bandit

We begin with a 2-stage two-armed bandit example,
a problem with a large legacy of associated litera-
ture. In a bandit problem the goal is to maximize
the total reward obtained when sampling sequen-
tially from among the different available popula-
tions or “arms”. A Bernoulli bandit is one in which
the outcomes from the populations are distributed
as Bernoulli random variables which can be thought
of as having outcomes “success” or “failure”. In this
case, one seeks to determine how to sample from the
different arms so as to maximize the total number
of successes. (Thus the “min” of Section 3 should
be a “max”.) A two-armed Bernoulli bandit can
be a model for a two therapy clinical trial in which
one is strongly motivated to cure as many of the
subjects in the experiment as possible.

A heuristic for optimizing such a problem is to
sample at least some from each population, but to
identify the better of the two as quickly as possi-
ble and then to sample from it exclusively. This
brings us to early conceptualizations of 2-stage de-
signs for clinical trials such as those proposed by
Colton (1965). Colton suggested that observations
be taken in pairs during the first stage and that all
observations in the second stage be sampled from
the population that appeared to be superior at the
end of the first stage. At issue was the length of
the first stage size, L1, which depends not only on
the total sample size, n, but also, in the case of
Bayesian designs, on the prior distributions. Can-
ner (1970) addresses optimal first stage lengths for
the Bayesian case. He analytically determined that,
when uniform priors are assumed, the optimal first
stage size is approximately v/2n + 4 — 2. Compu-
tationally, he ascertained that, for arbitrary beta
priors, the optimal first stage asymptotically grows
as the square root of the sample size. Note that
the scenarios considered in both Colton (1965) and
Canner (1970) are not true bandit set-ups since
equal allocation in the first stage is mandatory. The
restriction to equal allocation greatly simplifies the
analysis and computation, but causes a loss of effi-
ciency.

A staged bandit version of this problem was later
approached by Clayton and Witmer (1988), but
there the authors added the constraint that the suc-
cess rate in one of the two populations was known.
That assumption greatly restricts the applicability
of the result, and reduces the set-up to a one-armed
bandit problem which has a significantly simpler so-
lution. Recently, however, Cheng (1996) reports
on the 2-stage two-armed Bayesian Bernoulli ban-
dit. Cheng offers an upper bound for the number to
sample from each population during the first stage
when a total of n observations are to be taken and
the prior distributions are beta.

Here, we fully optimize the problem examined by
Cheng (1996). Note that it is still true that the
second stage samples only from the population with
the higher posterior mean at the end of the first
stage (or, in case of ties, samples arbitrarily among
the populations). Figure 5 provides a comparison



2-AB: Length of Stage 1 of 2-Stage
Priors: Be(2,1) & Be(1.5,1.5)
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Figure 5: Stage 1 Length using Different Procedures

of first stage sizes determined by
e the upper bound given in Cheng (1996);

o the optimal 2-stage design constrained to using
equal allocation in the first stage, i.e., the case
solved in Canner (1970);

e the fully optimized version computed usipg the
algorithms described in Section 3.

The data in the figure arise from using beta prior
parameters p; ~ Be(2,1) and py ~ Be(1.5,1.5),
which is the configuration used in Section 3 of
Cheng (1996). Figure 5 illustrates that the stage
sizes obtained from the bounds in Cheng (1996)
suggest a first stage size that is considerably larger
than is needed. In fact, it is interesting to note that
Ly, the number used in stage one when sampling
optimally is quite a bit smaller than L1, the num-
ber assigned merely to Population 1 of stage one by
the upper bound rule. The optimal equal allocation
procedure, however, selects first stage sizes that are
very similar to those called for by the optimal rule.
The results in Figure 5 are typical of those obtained
using a variety of different prior parameter config-
urations.

2-AB: Efficiency Compared with Optimal
Priors: Be(2,1) & Be(1.5,1.5)
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Figure 6: Relative Efficiency of Sub-Optimal Pro-
cedures

In Figure 6, the relative efficiency of the value of
the upper bound rule is shown together with that
of the optimal strategy for this problem using equal
allocation. Note that the results are better when
using optimal equal allocation than when using the
upper bound rule. Note also how well the opti-
mal equal allocation procedure performs compared
to the fully optimal strategy for this problem. The
best equal allocation strategy was computationally
determined by Canner in 1970. Thus, for all practi-
cal purposes, an excellent solution to versions of this
problem were given nearly 30 years ago. This may
lead one to question the usefulness of the present
work. However, we would not be able to make a
statement like this regarding the efficiency of a sub-
optimal strategy unless we had located the fully
optimal procedure and could make the appropriate
comparisons. Further, as will be shown, it is not
always the case that previously suggested ad hoc
solutions fare well compared to optimal ones.

An additional point to consider is that carrying
out the calculations to obtain the optimal stage
sizes for the present problem is a trivial task, yet
good analytic solutions for the problem are still be-
ing sought a generation later. In particular, Cheng



(1997) indicates that a bound that improves on the
one in Cheng (1996) may have been located.

4.2 2-Stage Bandit with Cost and Ran-
dom Total Sample Size

In this section, we address extensions of the example
in Section 4.1 in which we allow the total sample
size, n, to be a random variable, and we add a cost
¢ per observation for the first stage. This illustrates
the fact that variations such as optional stopping
are not difficult to incorporate into the basic few-
stage algorithms in Section 3.

When a basic two-stage procedure is applied in a
clinical setting, the first stage is thought to repre-
sent a controlled clinical trial. The end result the
first stage affects the decision as to which of the two
treatments is superior and is to be used in the sec-
ond stage. Whether the second stage is of fixed or
random length, it affects the total length of the trial,
and there are important questions that involve trial
length. In particular, there has been considerable
discussion in the literature addressing the tradeoff
relationship between the length of a clinical trial
and the patient horizon, itself (i.e., all patients who
will need treatment). (See Anscombe (1963), Ar-
mitage (1985), Bather (1985), Colton (1965), Hard-
wick (1990), and Simon (1977).) For example, it has
been pointed out that the total sample size of a trial
could/should incorporate rough estimates of the pa-
tient horizon, the rate of introduction of new thera-
pies, the magnitude of the anticipated improvement
in the ongoing trial and so forth. It is this question
that motivates the simple modeling problem pre-
sented in this section.

Clearly, there are numerous ways to model the
concerns just mentioned. The model chosen here
was selected merely to illustrate that considerations
of this nature can be incorporated into the opti-
mization process, using the few-stage algorithms
discussed in Section 3. First suppose that an in-
vestigator believes the following: if the better of
the two therapies has a low success rate, then new
therapies are likely to be proposed at a faster rate
than they would be if the present therapy is already
quite good. A very simple way to model this is to
assume that the patient horizon is a monotone in-

2-AB with Cost: Length 1 of 2-Stage vs. Cost
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Figure 7: 2-Armed Bandit with Cost per Observa-
tion and Variable Sample Size

creasing function of the success probability of the
superior treatment.

Let the total length of the trial, n, range between
two specified values my < ng, and define the pa-
tient horizon to be n(p*) = ny + p*(n2 — n1), where
p* denotes the posterior estimate of the treatment
declared superior. (Note that this imposes a debat-
able upper bound on the horizon for this problem.)
Then, the reward function to be optimized is

E[pi-Lii+pz-Liz—c-Li+p*-(n(p*)—L1)], (1)

p* = p*(L1) = max{pi(L11),p2(L12)}, and
pi( L1;) denotes the posterior estimate of p;, i = 1,2
based on Lq; observations.
function is quadratic in p*. The expectation in (1)is

where
Note that the reward

taken with respect to the Bayesian model in which
p1 and py are independent random variables and,
conditional on this, the experimental observations
are Bernoulli random variables with success rates p;
or py. Although even this simple model may pose
interesting analytical challenges, it is quite straight-
forward to optimize computationally.

We tested this model for several parameter con-
figurations. In Figure 7, one sees the exponential-
like decay in L1, the length of the first stage, as the



cost per observation in the first stage increases from
0 to 5. Figure 7 provides a comparison of this be-
havior for two prior parameter configurations given
ny = 100 and ny = 500 in each case. Using uniform
priors, we find that L, varies from 4 to 38. There
is a corresponding (unshown) variation in E[n], the
expected total sample size, which varies from 349
to 363. In the second case, we take the priors to
be Be(1,1) and Be(1,4). Here, the range of L; is
larger, 2 < L; < 60, and the range of the sample
size varies from 300 to 310. In both cases, most of
the drop in sample size occurs when the cost per
observation is between 0 and 1.

These results were for a specific model, but many
other models can be optimized with similar ease.
In particular, the program used to determine the
above results is suitable for any model in which the
expected patient horizon is determined by the end-
point of the initial stage. One can also easily add
costs and variable patient horizons to designs with
more stages.

4.3 2-stage Nonlinear Estimation

In Sections 4.1 and 4.2, we discussed a 2-stage
model in which the allocations within the second
stage have a trivial form, i.e., all observations in
the second stage are taken from a single population.
Here we evaluate a 2-stage design that takes better
advantage of the few-stage algorithm in Figure 3
to adjust the allocation proportions in the second
stage as well as in the first.

The problem we consider is that of minimizing
the mean squared error when estimating the prod-
uct of the success probabilities of two indepen-
dent Bernoulli populations. Here again, the suc-
cess probabilities are modeled as independent beta
random variables. This problem has applications in
systems reliability and also in estimating area. Note
that in nonlinear problems of this nature, it is typi-
cally the case that when sampling equally from the
two populations one loses considerable efficiency. If,
however, one samples differentially, using merely an
optimal 1-stage design, then the efficiency can be
substantially increased and will continue to increase
as the number of stages grows. Several good alloca-
tion strategies for versions of the product of means
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problem have been discussed by Page (1985, 1990,
1995). Also, for the more general problem of es-
timating any polynomial function of two means, a
variety of allocation rules, including the best fixed
allocation rule, are compared with the optimal fully
sequential strategy in Hardwick and Stout (1996).

While 2-stage sampling rules are not evaluated
in Hardwick and Stout (1996), asymptotic solutions
for the 2-stage product of means problem have been
proposed in Noble (1990), Rekab (1992) and Zheng,
Seila and Sriram (1996). In this section, we discuss
how the optimal 2-stage procedure relates to the
asymptotics suggested by these different authors.

Rekab (1992) proposes that the length of the first
stage, L1, be such that

lim ﬁ =0and lim L; = co.
n—oo n n—0o0
This suggestion concurs with the literature on 2-
stage designs but is of scant use in determining an
optimal or necessarily good L for any specific n.
Further, it does not predict the order of growth.
More specific asymptotic guidelines were sug-
gested in Noble (1990), and later in Zheng, Seila
and Sriram (1996). In both articles, the authors
take a frequentist approach. Our own formulation is
Bayesian, so exact comparisons are not appropriate.
However, for moderate n, the design in which both
prior distributions are taken to be uniform provides
an acceptable basis for comparison.
Noble indicates that the rate of growth of the first
stage in a 2-stage design for this problem should be
O(y/n) with upper and lower bounds given by

n n
\/ <Ly <y
40’10’2 20’10’2

for o; = pi(1—pi), ¢ = 1,2. Applying these bounds,
we find, for example, that when n = 100,

(2)

.25, then (12 < I, < 16)
if pr=p2=1<.5, then (10< [y <14)
.9, then (16 < I, < 24).

Alternatively, Zheng, Seila and Sriram (1996)
provide an asymptotic approximation that suggest
that Ly = 2n®, for a € (.5,(1 — In(2)/In(n)), i.e.,
for 2y/n < Ly < n.



Length of Stage 1 of Optimal 2-Stage Design
Product of Means; Uniform Priors

Slope = 0.82

log ( Length of Stage 1)

Slope =0.5

0.5 - T T T T T
1.0 15 2.0 25 3.0
log ( Sample Size)

Figure 8: Comparison of Optimal vs. Predicted
Growth of Ly in 2-Stage Experiment

In Figure 8, the optimal size first stage length for
the uniform case is plotted for sample sizes ranging
from 10 through 1000. These stage lengths closely
follow the line

log,o(L1) = —0.016 + 0.817 log,(n).

For this range of sample sizes, then, the optimal
stage size grows like ©(n%817).

This result was first reported in Hardwick and
Stout (1995). However, independently, Zheng, Seila
and Sriram (1996), used simulation to search for a
value of a that minimizes their approximated mean-
squared error. They conclude that a good value for
ais 0.8 — (In2/(2Inn), i.e., that L1 = v/2n"®. For
n = 100, this gives a first stage length of L; = 56.

In the uniform case, we find that the optimal
first stage size is Ly = 42, a value significantly
larger than Noble’s approximations and somewhat
less than that of Zheng, Seila and Sriram. Note,
however, that Noble’s final estimator does not use
information from the first stage, which partially ac-
counts for his suggestion of shorter first stages.

To complete this example, in Figure 9 we have
plotted the efficiency of the optimal 1-, 2- and 3-
stage designs for this problem as a function of the
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Figure 9: Efficiency of Optimal 1-, 2-, & 3-Stage
Procedures Relative to Fully Sequential, Product
of Means with Uniform Priors

total sample size, n. We know of no published
guidelines for the selection of stage sizes for three
stage allocation. In Figure 9, efficiency is measured
relative to the optimal fully sequential design. One
can see that even the optimal 1-stage design (also
known as the best fized design) is not terribly inef-
ficient. It’s also of interest to note how extremely
efficient both the 2- and 3-stage designs are. The
difference in efficiency between the two designs is
minimal provided that one uses reasonable prior pa-
rameter specifications for p; and ps.

As we see in the next section, there do, however,
exist situations in which optimal 2-stage designs
fare much worse than optimal 3-stage designs.

4.4 3-Stage Estimation with Ethical
Cost

As noted, the literature on multi-stage designs is
not rife with detailed examples of 3-stage alloca-
tion procedures. Typically there are critical design
features left unspecified. With the example in this
section, we review the issues most often addressed in
the classical literature on 3-stage designs and relate



them to the capabilities of the algorithms described
in Section 3.

The focus here is on an estimation problem ana-
lyzed in Woodroofe and Hardwick (1991), in which
one seeks to minimize the risk of estimating the dif-
ference in two population means using a weighted
squared error loss plus a cost per failure. The spe-
cific function to be minimized is

n*(p1 — p2 — (p1 — p2))* 4+ na(1 = p1) + n2(1 — pa),

where p; is a consistent estimator of p;, 1 = 1,2,
and n; is the number of observations on Popula-
tion 7. Problems of this nature arise, for example,
in clinical trials with ethical costs or in destruc-
tive industrial testing. In Woodroofe and Hardwick
(1991) the observations in the two populations are
normally distributed. However, the analytic argu-
ments are essentially the same for the binomial case
(considered in Hardwick (1991)).
of interest because it is among the very few that
provide guidelines for the stage sizes of an asymp-
totically optimal 3-stage design. Thus we have a
basis for comparison. Note also that approach to
the estimation problem in Woodroofe and Hardwick
(1991) is quasi-Bayesian. While the sequential de-
signs are generated via a Bayesian decision theoretic
approach, the allocation rules themselves, as well as
the estimators, are independent of the prior distri-
butions used in the analysis of the integrated risk
function as long as the priors fall within a fairly
broad general class.

We next describe the allocation procedures used
in Woodroofe and Hardwick (1991). First let
nj(n;p1,p2) be the sample size from Population 1
that minimizes the risk function when n is to be the
total sample size and p; and py are known. That is,
if p; and py; were known, then the optimal 1-stage
design would be to allocate nj(n;p1,p2) to Popula-
tion 1, and n — nj(n; p1,p2) to Population 2. Next,
let p;(m) be the maximum likelihood estimator for
p; when m observations have been taken from Pop-
ulation 7,7 = 1, 2.

These allocation procedures make use of two pos-
itive integer sequences, Li(n) and Ls(n), n > b,
which specify the lengths of stage 1 and 3, respec-
tively, for a sample size of n. Letting La(n)

This article is
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n— Li(n)— Ls(n) be the length of the second stage,
these sequences can be arbitrary as long as they
satisfy

Ll(n) + Lg(’fb) <n,
Li(n) and L3(n) are even,

LQ(’IZ)

(3)

lim

n—oo

=1, and

VELi(n)Ls(n)

lim
nlogn

n—od

bl

To simplify notation, we write L; = L;(n), i =
1,2,3 and recall that L;; is the number sampled
during Stage ¢ from Population j.

The sampling, then, goes as follows:

Stage 1: Sample L2—1 from each population (so
L= L =14).
Stage 2: Sample Ly more from Population 1 and

L9y more from Population 2, where
(4)

max{L1, ni(L1 + Ls; p?(Ln),@(Lu)}}

Li1 + Ly; = min {n — L1a = La,

and L22 =n-— Ll — Lg — L21.

Stage 3: Sample L3; more from Population 1 and
L3y more from Population 2, where

Lit+ Loy + Lsr =

min {n — L9+ Loo, (5)

max{ Ly + Lo,

ny(n;p1(Li1 + Lo1),pa(La2 + L22)}}

and L32 =n-— Ll — L2 — L31.

We refer to the Bernoulli version of the 3-stage
procedures described in Woodroofe and Hardwick
(1991) as WH procedures. The WH procedures use
a fairly standard technique for determining alloca-
tions. The concept applies to both few-stage and
fully sequential designs in which optimal 1-stage al-
locations can be derived as long as certain parame-
ters are specified. (See for example Melfi and Page
(1998) and Robbins, Simons and Starr (1967).) The



idea is simply to determine the optimal 1-stage allo-
cation using estimators of the unknown parameters,
updating the estimators before each new allocation
decision is made. Given the decision about the best
allocation to be used for the entire experiment, one
subtracts the allocations that have already occurred
to determine the allocation(s) now to be made. If
the estimators are consistent, this sequential pro-
cess is generally good enough to guarantee asymp-
totic optimality.

Of interest here are the performance differences
between WH procedures and fully optimized 3-stage
procedures. Note first of all that WH procedures re-
quire equal allocation in the first stage. This can
substantially reduce the efficiency of a design when
there is a large discrepancy between the population
success rates. Next, note that WH procedures are
actually a class of procedures, and that one must
choose a member of the class by selecting the stage
sizes for the experiment in advance. The only infor-
mation we have to help us do this is provided in (3),
and this means that the efficiency of these proce-
dures can vary from being highly efficient to being
not very good. To gain a better understanding of
how well the designs vary in practice, we developed
an algorithm to optimize the WH procedures and to
evaluate them for arbitrary stage sizes to be input
by the user.

In general, we found that optimal WH procedures
perform very well compared with optimal 3-stage
procedures. Still, without the algorithm that pro-
vides an optimal WH procedure, one may have diffi-
culty determining appropriate stage sizes using only
the information in (3). Furthermore, one would not
be able to assess the efficiency of any WH procedure
if one could not determine the fully optimal 3-stage
procedure for this problem.

As an example, consider a case in which there is
significant disparity between the prior estimates of
the population success probabilities p; and p,. Fig-
ure 10 displays the stage sizes of four different de-
signs for the case in which n = 50 and the beta prior
parameters are p; ~ Be(1,10) and py ~ Be(10,1).
The last column of Figure 10 gives the efficiency,
e, of each design taken relative to an optimal fully
sequential design. As expected, the fully optimal
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Design Type L1 | E(Ly) | E(Ls) | Efficiency
Optimal 3-Stage || 33 4 13 0.9994
Optimal WH 6 40 41 0.9990
Optimal 2-Stage || 38 12 - 0.997
WH using guess || 34 4 12 0.790

Figure 10: Efficiency of Designs Compared to Fully
Sequential Design. p; ~ Be(1,10); p2 ~ Be(10,1)
and n = 50

3-stage procedure is virtually fully efficient with
e 0.9994. The optimal WH procedure, which
specifies very different stage sizes, is also extremely
good with e = 0.9990. Note, however that if we
use a WH procedure guided by, say, the stage sizes
used in the optimal 3-stage procedure, we obtain
an efficiency of only e 0.790. As it happens,
even a good 2-stage procedure outperforms a WH
procedure based on guessing the stage sizes using
only (3). In particular, the optimal 2-stage proce-
dure for this problem is 0.997 efficient.

Despite the results from the previous example,
WH procedures generally seem to be quite robust
with respect to departures from the optimal WH
stage sizes. This suggests that the way the allo-
cations are adapted within the second and third

stages may be more important than the actual stage
lengths themselves. Another point of interest is that
WH procedures don’t depend on information in the
prior distributions. In one sense this is positive be-
cause it allows for the intended frequentist inter-
pretations of the data. It also suggests robustness
if one takes a Bayesian interpretation. Recall, how-
ever, that this type of built-in robustness leads only
to asymptotic optimality. As we saw in the previ-
ous example, where the priors were discrepant, the
lack of inclusion of prior information in the deter-
mination of the sampling strategy had the potential
to seriously reduce design efficiency. On the other
hand, if the priors for p; and py are approximately
the same, then most WH procedures will be highly
efficient since equal allocation itself is close to being
optimal.

To provide some insight as to how big optimal
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Figure 11: Optimal Stage Sizes in 3-Stage Experi-
ment, Uniform Priors

stage sizes for this problem are, Figure 11 gives
Li(n), E[Ly(n)] and E[Ls(n)] for sample sizes
ranging between 10 and 100. Uniform priors are
used. Note that, as was seen in Section 4.3, the op-
timal Stage 1 sizes are generally larger than those
suggested in the literature, whereas for the problem
in Section 4.1, we found that optimal Stage 1 sizes
were far smaller than suggested in the literature.
There doesn’t appear to be a general rule, and this
emphasizes the need to be able to calculate optimal
stage sizes for various different procedures.

Finally, Figure 12 shows the length of the opti-
mal second stage as a result of the outcome of the
first stage, where the total sample size is 100 and
uniform priors are used. Note that the optimal sec-
ond stage does not have a constant length, and has
non-monotonic behavior.

5 Algorithmic Refinements

The base algorithms in Section 3 are quite general,
and assume no special properties of the objective
function nor of the prior distributions. The algo-
rithms also allow for arbitrary allocation within the
k-stage constraint. However, in many situations
significant simplifications are possible, and these
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Figure 12: Estimation Problem with Ethical Cost

may dramatically reduce the time or space required.
Some of these are explored in this section. Then,
in Section 5.3, we give an example of a design re-
striction that complicates rather than simplifies the
algorithms’ complexity.

5.1 Analytical 1-stage Determination

One helpful simplification arises when the optimal
1-stage allocation can be computed more efficiently.
For example, instead of simply trying all possible al-
locations, and then summing all of the outcomes for
each possibility, one may be able to determine the
sum of the outcomes for each allocation analytically.
Even better, it may be that this expression can be
analytically minimized, in which case the optimal
1-stage allocation is analytically determined.

We assume that each of these analytic calcula-
tions can be computed in a fixed amount of time,
independent of n. Such simplifications were utilized
in the calculations for the examples in Sections 4.1,
4.2 and 4.3. In Sections 4.1 and 4.2, the neces-
sary calculations are quite straightforward. For the
problem in Section 4.3, the relevant algebraic ma-
nipulations are in Hardwick and Stout (1996).

Incorporating such simplifications into the final
stage calculations of the base algorithm yields the



following reductions:

Corollary 5.1 The optimal k-stage allocation for
an experiment of n observations of two Bernoulli
populations can be determined in

e O(1) time and O(1) space, if k=1,
e O(n*) time and O(1) space, if k = 2,
o O(kn®) time and ©(n*) space, if k > 3,

if the optimal final stage allocation is given by an
analytic expression.

If the value of any specific final allocation is given
by an analytic expression, then the optimal alloca-
tion can be determined in

e O(n) time and O(1) space, if k =1,
e O(n®) time and O(1) space, if k = 2,
o O(kn®) time and O(n*) space, if k > 3.

Proof: The timing and space changes from Theo-
rem 3.1 are quite straightforward for £ = 1. For
k = 2, in the first case one merely needs to evaluate
all ©(n?) possible allocations for the first stage, tak-
ing O(n?) time per allocation to evaluate all O(n?)
possible outcomes. In the second case it will take an
extra O(n) time per outcome. In all of these cases
no special efforts are needed to reuse calculations,
so no extra space is needed to store intermediate
results. O

5.2 Stages of Bounded Length

Another significant improvement is possible when it
can be proven that not as many alternatives need
to be evaluated because the length of a stage is
bounded. For example, if it is known that the
last stage must start by the m!® observation, with
m & n, then the earlier stages need only be in-
vestigated up through m, rather than up through
n.

An example of this appears in Section 4.1. The
explicit bounds provided in Cheng (1996) show that
the first stage is ©(y/n). Thus there are only O(n)
options for the first stage, each having only O(n)
outcomes. Since the final stage can be determined
analytically, the total time is reduced to only ©(n?).
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The program used for Section 4.1 incorporated
a second technique for reducing the first stage size.
An upper bound By on the per-observation outcome
of the second stage was obtained by integrating the
maximum of p; and py over the joint distribution
of the two populations, and an upper bound B; on
the per-observation outcome of the first stage is the
larger of the two prior means. Note that By > Bj.
First stage options were evaluated for L1 = 1,2,...
Each time a better total value V' was found, it was
used to create a smaller upper bound m for the first
stage. This is based on the observation that m must
satisfy

m-By+(n—m)-By > V.

The larger V is, the smaller m can be. Similar
techniques were used in Section 4.2, dramatically
increasing the range of n for which the problem can
be completely optimized.

5.3 Fixed Stage Sizes

In some situations researchers do not want to per-
mit the full flexibility allowed by the algorithms in
Section 3. For example, it is sometimes deemed de-
sirable to fix the stage sizes in advance, and only
permit adaptation in terms of the relative alloca-
tion within the stages. This occurs, for example,
once a choice of the L; and L3 functions are made
for a WH allocation, as in Section 4.4. There are
two significantly different fixed size scenarios: either
the stage lengths have been fixed, and only the rel-
ative allocations need to be optimized; or the stage
lengths,themselves, also need to be determined.

If the stage lengths have been fixed, then the op-
timization problem is simplified. If a 2-stage alloca-
tion has a specified first stage length Ly, then there
are only O(L;) first-stage options to be evaluated,
and only ©(L?) possible starts for the second stage.
If the last stage can be optimized analytically, then
the total time can be reduced to O(L?).

For a general k-stage allocation with specified
stage sizes, using the techniques of Section 3, each
state can be involved in the computation of at most
n different options. For k& > 3 this reduces the to-
tal time to ©(n’). Comparing this to the values in
Theorem 3.1, one sees that not only has a factor of
n been eliminated, but so has the factor of k.



When the stage sizes are required to be fixed,
but their size is not specified, then the situation
changes dramatically. The fixed stage size restric-
tion does not allow one to determine merely the
optimal choice at each state, since the same deci-
sion must be made for all states. Thus the local
optimality priciples that underly the algorithms in
Section 3 do not apply. It appears that the only
way to determine the optimal stage sizes is to try
all possible sizes, and for each choice determine the
optimal allocation within each stage.

There are (,",) choices of stage sizes, which
would seem to imply that

n

) ((k—l) -n5) =0 (n**/(k - 1)!)

time is required (using the previous result about
fixed stage sizes). This can be reduced to

0 ((kg) -n5) =0 (n"*3/(k - 2)!)

as follows. The main induction step, as in Section 3,
is over the stages, and is again done in reverse order.
Suppose that specific stage lengths have been cho-
sen for stages t4+1...k, and that R} _, ,(v) denotes
the value of starting stage t at state v and proceed-
ing optimally, given these stage lengths. Then one
loops through each possible stage length for stage
t. For each value, one computes R} _,  (v) and re-
cursively repeats the process for stage t — 1. When
the process reaches the second stage, this is now the
standard 2-stage problem, solvable in ©(n®) time.
Note that the 2-stage problem can be viewed as the
same process, where the first stage only evaluates
R}.(0). This algorithm is outlined in Figure 13. It
is presented recursively, but can be converted to a
nonrecursive implementation in a straightforward
manner.

The primary difference between this algorithm
and the one in Section 3 is that here, stage ¢ re-
peatedly calls stage t — 1 within a loop, rather than
calling it only once. This causes the multiplicative
effect of (kﬁQ) in the time analysis. It may appear
that because one must return to stage ¢, R}(v) needs
to be saved, which would mean the space require-
ments would increase to ©@(kn*). However, by loop-
ing through the stage lengths in increasing order,
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{Initialize R’ array}
For all states v with |v| = n,
determine R{(v)

{Evaluate stages}
call eval(1,n)

{determine R(v) for k—t < |v| < t_last}
procedure eval(t, t_last)
ift=k
R} (0) = weighted sum of R} _,(v),
for |v| = t_last
else {t < k}
for all v with k—t < |v| < t_last
determine Rj(v) as in Figure 4,
using R} ,(-) for states of size t_last.

for s_last = k—tton—k+it+1
call eval(t+1, s_last)

Figure 13: Optimal Fixed Stage Allocation

then stage ¢t — 1 can use the initial part of the ar-
ray and not overwrite portions from stage ¢ that are
needed for later iterations. Thus the space require-
ments remain O(n?).

In summary, one has the following;:

Theorem 5.1 The optimal k-stage allocation for
an experiment of n observations from 2 Bernoulli
populations, in which the stage sizes must be fized,
can be determined in

e O(n?) time and ©(1) space, if k =1,
o O(n?) time and O(n?) space, if k = 2,
e O(n®) time and O(n>) space, if k > 3,
if the stage sizes have been fived in advance, and in
e O(n?) time and ©(1) space, if k =1,
e O(n®) time and O(n?®) space, if k = 2,
o O(nf+3/(k—2)!) time and ©(n*) space, if k > 3

if the stage sizes must be determined. O



6 Final Remarks

We have shown that it is possible to fully optimize
certain few-stage allocation designs. Further, re-
sults of such optimizations indicate that asymptotic
guidelines may be quite misleading for reasonable
sample sizes, and may not even predict true growth
rates. These results, which we found unexpectedly,
are not likely to have been uncovered without the
ability to perform exact calculations for sample sizes
of interest.

The few-stage algorithms developed here can be
applied to a wide variety of problems, with flex-
ible optimization goals, stopping rules, etc. Addi-
tional points being pursued include sensitivity anal-
ysis of few-stage rules, handling multiple popula-
tions, modeling censoring, allowing multiple end-
points, allowing additional constraints, and incor-
porating covariates.

As part of an ongoing project, we are using the al-
gorithms given here, combined with various graph-
ical approaches, to visualize aspects of the optimal
rules. We hope to achieve a better understanding of
the structure of few-stage optimal rules; and, more
generally, to gain insight into the structure of good
adaptive rules. There are both psychological and
statistical reasons for this attempt. Psychologically,
people are often uncomfortable utilizing adaptive
allocation schemes for which they have no intuition,
such as the optimal procedures described here which
are fully determined by a computer. Users have a
better understanding of, and hence greater affinity
for, simple fixed allocation schemes. However, if
a user could explore an adaptive design and gain a
better understanding of the decisions it makes, then
the user might gain enough confidence to utilize the
design.

As for the statistical aspects, we believe that ex-
ploring adaptive rules for moderate sample sizes can
help suggest analyses and designs for much larger
sizes. Thus, we hope for a synergistic interplay be-
tween analysis, computation, and visualization. For
example, for the product of means problem, plots
of the efficiency of a 2-stage rule as a function of
the number of first-stage observations on the two
populations show that this is usually, although not
always, a unimodal surface (Beta priors with pa-
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rameters less than 1, for example, can cause it to
be multimodal). In cases where one could prove
a priori that it is unimodal, one could drastically
reduce the number of calculations required to find
the optimal first stage, and hence could optimize
far larger problems.

As another example, the data in Figures 8 and 11
suggest explicit growth rates that are consistent
through a wide range of sample sizes. One might
approach problems with large sample sizes by ex-
trapolating the optimal allocations computed for
(This could also be cou-
pled with hill-climbing approaches, from the pre-
ceding paragraph, to improve the initial allocation
decisions.) This would give explicit constructions,

moderate sample sizes.

rather than vague guidelines, which would hope-
fully produce near-optimal allocation schemes. We
believe that such extrapolation techniques can com-
pliment analytical approaches to give better insight
and guidance for large problems.
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