Realizing Services for Guaranteed-QoS Communication
on a Microkernel Operating System

Ashish Mehra, Anees Shaikh, Tarek Abdelzaher, Zhiqun Wang, and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122
{ ashish,ashaikh,zaher,zquang,kgshin}Qeecs.umich.edu

ABSTRACT

Provision of end-to-end QoS guarantees on communication necessitates appropriate support in the
end systems (i.e., hosts) and network routers that form the communication fabric. Typically, the
support is in the form of suitable extensions to the communication subsystem and the underlying
operating system for specification and maintenance of QoS guarantees. This paper focuses on the
architectural and implementation challenges involved in realizing QoS-sensitive host communication
subsystems on contemporary microkernel operating systems with limited real-time support. We
motivate and describe the components constituting our integrated service architecture that together
ensure QoS-sensitive handling of network traffic at both sending and receiving hosts. We separate
the policies from mechanisms in each component, demonstrating a communication framework that
can implement alternative QoS models by applying appropriate policies. We also report the results
of a detailed execution profile of the system to characterize communication costs for the purposes
of admission control. An experimental evaluation in a controlled configuration demonstrates the
efficacy with which QoS guarantees are maintained, despite limitations imposed by the underlying
operating system.

1 Introduction

With the continued upsurge in the demand for networked multimedia and real-time appli-
cations, a key issue is to identify and resolve the challenges involved in realizing QoS-sensitive
communication subsystems at end systems (i.e., network clients and servers). Traditional design of
communication subsystems has centered around optimizing average performance without regard to
the performance variability experienced by applications or end users. As such, simple and efficient
schemes have been employed for traffic and resource management, as exemplified by the first-
come-first-serve service policy. Provision of QoS guarantees, however, requires sophisticated traffic
and resource management functions within the communication subsystem, and hence significantly
impacts its structure and performance.

In this paper we explore QoS-sensitive communication subsystem design for contemporary op-
erating systems. We describe the general architecture, implementation, and evaluation of a guar-
anteed QoS communication service for a microkernel operating system. Microkernel operating sys-
tems continue to play an important role in operating system design [1,2], and are being extended

The work reported in this paper was supported in part by the National Science Foundation under grant MIP-9203895
and the Defense Advanced Research Project Agency under grant DOD-C-F30602-95-1-0044. Any opinions, findings,
and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect

the views of NSF or DARPA.

to support real-time and multimedia applications [3]. We describe how to map the architectural
components of a QoS-sensitive communication subsystem onto the support furnished by the oper-
ating system in order to provide appropriate QoS guarantees. We discuss the difficulties in realizing
real-time behavior on such platforms and our approach to providing predictability within platform
limitations. The issues and techniques explored in this paper are also relevant to contemporary
monolithic operating systems such as UNIX and its variants.

To meet the timeliness and predictability requirements of applications, our service architecture
includes three primary components: (i) RTC API, the programming interface exported to applica-
tions that wish to use the service; (ii) RTCOP, a protocol that coordinates end-to-end signaling,
admission control, and QoS-sensitive resource allocation and reclamation; and (iii) CLIPS, a re-
source management library that handles real-time data transfer and implements QoS-sensitive CPU
scheduling for protocol processing and link scheduling of packet transmissions. These components
together ensure QoS-sensitive handling of network traffic at sending and receiving hosts.

When implementing the service architecture, lack of appropriate operating system mechanisms
for scheduling and communication may negatively impact real-time communication performance.
Accordingly, we have developed compensatory mechanisms in the communication subsystem to
reduce the effects of platform unpredictability. For purposes of admission control, we parameterize
the communication subsystem via detailed profiling of the send and receive data paths. Based
on this parameterization, we identify the relevant overheads and constraints and propose run-time
resource management mechanisms that, along with an admission control procedure, bound and
account for these overheads. FExecution profiling can be regarded as the fourth component of our
architecture. An experimental evaluation in a controlled configuration demonstrates the efficacy
with which QoS guarantees are maintained, within limitations of the inherent unpredictability
imposed by the underlying operating system.

We realize this service as a user-level server, even though server-based protocol stacks perform
poorly compared to user-level protocol libraries or in-kernel implementations [4,5], for a number
of reasons. A server configuration considerably eases software development and debugging, par-
ticularly the location and correction of timing-related bugs. Also, since several applications can
establish multiple QoS connections, admission control and run-time resource management of these
connections must be localized within one resource management domain. A protocol library in which
resource management is distributed would preclude this localization. For most contemporary op-
erating systems, this corresponds to a single protection domain and address space, in our case
the server. Once developed and debugged, the server can be placed within the kernel to improve
performance and predictability.

For application-level QoS guarantees, an end system must provide adequate computation as well
as communication resources to one or more applications executing simultaneously. We focus on QoS-
sensitive communication subsystem design while recognizing that real-time performance cannot be
fully guaranteed without additional support from the operating system kernel. Such support could
be in the form of processor capacity reserves for the service [6] or appropriate system partitioning [7].
We envision a system structure with the communication subsystem distinct from the computation
subsystem. The communication subsystem comprises all activities and resources that participate in
transmitting data and processing received data from the network. The computation subsystem, on
the other hand, comprises all application processes and threads that perform activities other than
communication processing. The two subsystems exchange network data through appropriate buffers
and queues in memory. Available CPU resources are then shared between the two subsystems via
appropriate CPU partitioning and multiplexing, details of which are beyond the scope of this paper.

We believe that the communication subsystem presents a resource management domain dis-
tinct from that presented by the computation subsystem, since the QoS requirements and traffic

characteristics of applications might not necessarily be tied to application importance. While we
do not consider integration of QoS-sensitive communication and computation subsystems in this
paper, we argue that the architectural support described in this paper is complementary to the un-
derlying operating system support required for application-level QoS guarantees. We are currently
investigating architectural approaches to integrate the two subsystems in a flexible and extensible
manner.

Our primary contribution lies in realizing and demonstrating a QoS-sensitive communication
subsystem that partially compensates for the unpredictability in a contemporary operating system,
while exploiting the available support for provision of QoS guarantees on communication. This
includes integration of the different architectural components providing QoS guarantees with local
communicaiton resources and management policies, support for dynamic scheduling of all commu-
nication processing, and detailed prameterization of the communication subsystem to incorporate
underlying platform overheads for acccurate admission control. The insights gained from our work
can benefit system designers and practitioners contemplating addition of elaborate QoS support in
existing operating systems.

Our design approach and lessons learned are applicable to communication subsystems realized
as user-level libraries, co-located kernel servers, or integrated kernel implementations. Specifically,
while we have focused on a microkernel operating system, we believe that our design approach and
issues highlighted are equally applicable, although with necessary modifications, to the in-kernel
protocol stacks of monolithic Unix-like operating systems [8,9].

In the next section we note related work in the design of QoS-sensitive communication services.
Section 3 presents the goals and architecture of the real-time (guaranteed-QoS) communication
service. The components comprising the architecture are described in Section 4, with an emphasis
on their internal design, interaction, and support for real-time behavior. Section 5 describes our
prototype implementation and the issues faced in its realization on a platform with limited real-
time support. System profiling and parameterization of the platform and our implementation are
presented in Section 6, followed in Section 7 by results of an experimental evaluation to determine
the efficacy of our implementation in providing QoS guarantees. Finally, Section 8 concludes the
paper with a summary and directions for future work.

2 Related Work

In this section we compare and contrast related work in QoS-sensitive communication and com-
putation with the contributions made by this paper. A number of approaches are being explored
to realize QoS-sensitive communication and computation in the context of distributed multimedia
systems. An extensive survey of QoS architectures is provided in [10], which provides a comprehen-
sive view of the state of the art in the provisioning of end-to-end QoS. In the discussion below, we
highlight a subset of these approaches, focusing on enhancements and the associated implications
for end hosts. We first highlight communication architectures for QoS, followed by related work in
multimedia and real-time operating systems, and then discuss approaches to QoS negotiation and
adaptation.

Network and protocol support for QoS: The Tenet real-time protocol suite [11] is an im-
plementation of real-time communication on wide-area networks (WANs), but it did not consider
incorporation of protocol processing overheads into the network-level resource management policies.
In particular, the above efforts do not address the problem of QoS-sensitive protocol processing
inside hosts. Further, they do not consider the incorporation of implementation constraints and
their associated overheads, or QoS-sensitive processing of traffic at the receiving host.

While we focus on end-host design, support for QoS or preferential service in the network
is being examined for provision of integrated and differentiated services on the Internet [12-15].
Several classes of service are being considered, including guaranteed service (similar to our work)
which provides guaranteed delay bounds, and controlled load service which has more relaxed QoS
requirements. The expected QoS requirements of applications and issues involved in sharing link
bandwidth across multiple classes of traffic are explored in [16]. The signalling required to set up
reservations for application flows can be provided by RSVP [17], which initiates reservation setup
at the receiver, or ST-II [18], which initiates reservation setup at the sender (similar to RTCOP).
We note that the architectural approach, mechanisms, and extensions developed in this paper are
applicable to unicast as well as multicast sessions, for both sender-initiated and receiver-initiated
signalling.

QoS architectures: The OMEGA [19] end point architecture provides support for end-to-end
QoS guarantees. The primary focus of OMEGA is development of an integrated framework for
the specification and translation of application QoS requirements and allocation of the necessary
resources. Application QoS requirements are translated to network QoS requirements by the QoS
Broker [20], which negotiates for the necessary host and network resources. The OMEGA approach
assumes appropriate support from the operating system for QoS-sensitive application execution,
and the network subsystem for provision of transport-to-transport layer guarantees (the subject of
this paper).

QoS-A [21] is a layered architecture focusing on QoS provisioning within the communication
subsystem and the network. It provides features such as end-to-end admission control, resource
reservation, QoS translation between layers, and QoS monitoring and maintenance. QoS-A spec-
ifies a functionally rich and general architecture supporting networked multimedia applications.
Practical realization of QoS-A, however, would necessitate architectural mechanisms and exten-
sions similar in flavor to the ones presented in this paper. A novel RSVP-based QoS architecture
supporting integrated services in TCP /IP protocol stacks, running on legacy (e.g., Token Ring and
Ethernet) and high-speed ATM LAN networks is described in [8]. A native-mode ATM transport
layer has been designed and implemented in [22]. These architectures also provide support for
traffic policing and shaping; however, no support is provided for scheduling protocol processing
and incorporation of implementation overheads and constraints.

Operating system support for QoS-sensitive communication: Real-time upcalls (RTUs) [23]
are a mechanism to schedule protocol processing for networked multimedia applications via event-
based upcalls [24]. Protocol processing activities are scheduled via an extended version of the rate
monotonic (RM) scheduling policy [25]. Similar to our approach, delayed preemption is adopted to
reduce the number of context switches. Our approach differs from RTUs in that we use a thread-
based execution model for protocol processing, schedule threads via a modified earliest-deadline-first
(EDF') policy [25], and extend resource management policies within the communication subsystem
to account for a number of implementation overheads and constraints.

Similar to our approach, rate-based flow control of multimedia streams via kernel-based com-
munication threads is also proposed in [26]. However, in contrast to our notion of per-connection
threads, a coarser notion of per-process kernel threads is adopted. This scheme is clearly not suit-
able for an application with multiple QoS connections, each with different QoS requirements and
traffic characteristics. Mechanisms for scheduling multiple communication threads, and the issues
involved in reception side processing, are not considered. More importantly, the architecture out-
lined in [26] does not consider provision of signalling and resource management services within the
communication subsystem.

Explicit operating system support for communication is a focus of the Scout operating system,
which uses the notion of paths as a fundamental operating system structuring technique [27]. A

path can be viewed as a logical channel through a multilayered system over which I/O data flows.
As we demonstrate, the CORDS path abstraction [28], which is similar to Scout paths, provides
a rich framework for development of real-time communication services, especially communication
resource management, for distributed applications. Paths in [28] are envisioned primarily as a
static, relatively coarse-grain mechanism, while Scout paths are not associated with communication
resources or assigned priorities via admission control. Our architecture generalizes and extends
the path abstraction to provide dynamic allocation and management of communication resources
according to application QoS requirements.

Recently, processor capacity reserves in Real-Time Mach [6] have been combined with user-level
protocol processing [4] for predictable protocol processing inside hosts [29]. However, no support
is provided for traffic enforcement or the ability to control protocol processing priority separate
from application priority. Several QoS-sensitive CPU scheduling policies have also been proposed
recently [30-32]. These schemes can be utilized for network bandwidth allocation, but do not suffice
for managing all available communication resources.

Receive livelock elimination: Recent efforts have also addressed an important problem asso-
ciated with data reception, namely, receive livelock [33]. Receive livelock has been addressed at
length in [34] via a combination of techniques (such as limiting interrupt arrival rates, fair polling,
processing packets to completion, and regulating CPU usage for protocol processing) to avoid re-
ceive livelock and maintain system throughput near the maximum system input capacity under
high load. Lazy receiver processing (LRP) [35], while not completely eliminating it, significantly
reduces the likelihood of receive livelock even under high input load. In LRP, an incoming packet
is classified and enqueued, but not processed, until the application receives the data.

While LRP works well for receive-livelock elimination for best-effort traffic, the architectural
approach presented in this paper accommodates QoS-sensitive traffic. Similar to LRP, our ap-
proach also utilizes early demultiplexing and path or channel-specific queuing of incoming packets.
However, packet processing and message reassembly is performed in a QoS-sensitive fashion via
EDF scheduling of channel handlers, as and when communication capacity is made available. De-
multiplexing incoming packets early and absorbing bursts in distinct per-connection queues is an
attractive way to prevent receive livelock, an observation also made in the context of paths in
Scout [27]. Our architectural approach facilitates provision of QoS guarantees while preventing
receive livelock.

Dynamic QoS negotiation and adaptation: Since a broad class of multimedia applications are
soft real-time in nature, i.e., can tolerate limited fluctuations in the delivered QoS, several research
efforts have explored the issues involved in supporting QoS negotiation and adaptation functions at
end hosts. The AQUA system [36] is one such effort which has developed QoS negotiation and adap-
tation support for allocation of CPU and network resources. Similarly, a QoS-adaptive transport
system is described in [37] that incorporates a QoS-aware API and mechanisms to assist applica-
tions to adapt to fluctuations in the delivered network QoS. A scheme for adaptive rate-controlled
scheduling is presented in [38]. QoS negotiation and adaptation support has also been developed
for real-time applications [39], which provides support for specification of QoS compromises and
supports graceful QoS degradation under overload or failure conditions.

While we do not consider dynamic QoS negotiation and adaptation in this paper, most of
the architectural mechanisms and enhancements provided can be utilized for such scenarios. For
example, our service architecture provides mechanisms to enforce application traffic contracts and
generate notifications which applications can use to adapt. Future incarnations of our guaranteed-
QoS service will include support for dynamic QoS negotiation and adaptation.

3 Real-Time Communication Service Architecture

Our primary goal is to provide applications with a service with which they can request and utilize
guaranteed-QoS unicast connections between two hosts. In this section, we hilight the architectural
components of unicast communication that, together with a set of user-specified policies, can imple-
ment several real-time communication models. The overall service is currently being utilized in the
ARMADA project [40], which aims to implement a set of communication and middleware services that
provide support for end-to-end guarantees and fault-tolerance for embedded real-time distributed
applications.

3.1 Architectural Requirements

Common to QoS-sensitive communication service models are the following three architectural re-
quirements: (i) maintenance of per-connection QoS guarantees, (ii) overload protection via per-
connection traffic enforcement, and (iii) fairness to best-effort traffic [41]. Earlier work in [41]
presented and justified a high-level architectural design in the context of a specific communica-
tion service model. We generalize the architecture to apply to a number of service models, and
focus on techniques and issues that arise in implementing the generic architectural components on
microkernel-based operating systems with limited real-time support.

Figure 1 illustrates the high-level software architecture of our guaranteed-QoS service at end-
hosts. The core functionality of the communication service is realized via three distinct components
that interact to provide guaranteed-QoS communication. Applications use the service via the real-
time communication application programming interface (RTC API); RTCOP coordinates end-to-end
signalling for resource reservation and reclamation during connection set-up or tear-down; and
CLIPS performs run-time management of resources for QoS-sensitive data transfer. Since platform-
specific overheads must be characterized before QoS guarantees can be ensured, an execution profil-
ing component is added to measure and parameterize the overheads incurred by the communication
service on a particular platform, and make these parameters available for admission control deci-
sions. The control path taken through the architecture during connection setup is shown in Figure 1
as dashed lines. Data is then transferred via RTC API and CLIPS as indicated by the solid lines.

Together, these components provide per-connection communication resource management, in-
cluding signalling, admission control and resource reservation, traffic enforcement, buffer manage-
ment, and CPU and link scheduling. We organize these functions into reusable core mechanisms
that can implement alternative QoS communication paradigms given the appropriate policies.

3.2 Architecture Components

Below we provide an overview of the components of the service architecture; Section 4 elaborates
on the details of the core components (RTC API, RTCOP, and CLIPS) involved with actual connec-
tion establishment and communication. Section 6 describes the profiling component that captures
and represents communication subsystem performance when the system is re-targeted on new or
upgraded platforms.

Invocation via RTC API: Applications request establishment and teardown of guaranteed-QoS
connections, and perform data transfer on these connections, by invoking routines exported by the
RTC API. The design of the API has been significantly influenced by the structure of the sockets
APIin BSD Unix [42] and its variants. QoS parameters of real-time connections are translated into
abstract memory, CPU, and network link bandwidth requirements for use in admission control and
resource allocation.

APPLICATIONS
VIDEO RT CONTROL AUDIO

| ‘
QQ:S.[TJP.@?J.... -
QoS model parameters REAL-TIME COMMUNICATION API
translation - .
: signalling A data transfer
: resource: 1. memory buffer !
requlrements 2. pkts per penod

to CLIPS 5 ue‘\j“ep\l 4-‘> CLIPS generic
I resource :

A \«\/ resource — 4 management :
admission control |~ [reservatlon ,’ mechanisms :
pollcy :

______________ execution local :
execution profiling resources
overheads

[LOWER PROTOCOL STACK LAYERS }

POLICIES ! MECHANISMS

[NETWORK }

Figure 1: Real-time communication service architecture: Our implementation consists of
four primary architectural components: an application programming interface (RTC API), a sig-
nalling and resource reservation protocol (RTCOP), support for resource management and run-time
data transfer (CLIPS), and execution profiling support. Dashed lines indicate interactions on the
control path while the data path is denoted by the solid lines.

Signalling via RTCOP: End-to-end signalling is performed by RTCOP to establish and teardown
connections across the communicating hosts, possibly via multiple network hops. RTCOP provides
reliable datagram semantics for signalling requests and replies between nodes, and implements
consistent connection state management mechanisms at each node. RTCOP uses an admission control
policy that depends on the particular service model, and invokes it on each host to verify the
feasibility of QoS guarantees.

Data transfer via CLIPS: CLIPS implements a generic communication resource management
mechanism. Given a set of abstract resource requirements, CLIPS facilitates real-time data trans-
fer on established connections, and manages reserved CPU and link resources to maintain QoS
guarantees.

Execution profiling: The execution profiling component is invoked when the system is deployed
on a new platform, or upon system upgrades. It abstracts the communication overheads and costs
of the host hardware and software platform and makes them available to admission control to
account for protocol processing delay, packet transmission latency, message send delay, etc.

We have approached the architectural component design with the goal of separating mecha-
nisms that provide QoS-sensitive communication from the policies that dictate the nature of QoS
guarantees. A relaxed admission control policy, for example, coupled with these component mech-
anisms could be used to implement a statistical guarantee model. Similarly, changing the policy
for expression of application QoS requirements, along with a suitable admission control policy,
facilitates QoS negotiation and adaptation, as is demonstrated in [39].

Routines Parameters ‘ Invoked By ‘ Function Performed
Miscellaneous
rtcIlnit none both service initialization
rtcGetParameter chan id, param type both query parameter on specified
real-time connection
Signalling
rtcRegisterPort local port, agent function | receiver register local port and
agent for signalling
rtcUnRegisterPort local port receiver unregister local signalling port
rtcCreateConnection | remote host/port, QoS: sender create connection with given
max rate, max burst size parameters to remote
max msg size, max delay endpoint; return connection id
rtcAcceptConnection | local port, chan id, receiver obtain the next connection
remote host/port already established at
specified local port
rtcDestroyConnection | chan id sender destroy specified real-time
connection
Data Transfer
rtcSendMessage chan id, buf ptr sender send message on specified
real-time connection
rtcRecvMessage chand id, buf ptr receiver receive message on specified
real-time connection

Table 1: Routines comprising RTC API: This table shows the utility, signalling, and data trans-
fer functions that constitute the application interface. The table shows each function name, its
parameters, the endpoint that invokes it, and a brief description of the operation performed.

4 Architecture Component Design

Below, we discuss the salient features of each architectural component of the service along with its
interaction with other components to provide QoS guarantees. We also describe how the compo-
nents are used to realize a particular service model.

4.1 RTC Application Interface

The programming interface exported to applications comprises routines for connection establish-
ment and teardown, message transmission and reception during data transfer on established con-
nections, and initialization and support routines. Table 1 lists some of the main routines currently
available in RTC API. The API has two parts: a top half that interfaces to applications and is
responsible for validating application requests and creating internal state, and a bottom half which
interfaces to RTCOP for signalling (i.e., connection setup and teardown), and to CLIPS for QoS-
sensitive data transfer.

The design of RTC API is based in large part on the well-known socket API in BSD Unix. Each
connection endpoint is a pair (IPaddr, port) formed by the IP address of the host (IPaddr) and
an unsigned 16-bit port (port) unique on the host, similar to an INET domain socket endpoint. In
addition to unique endpoints for data transfer, an application may use several endpoints to receive
signalling requests from other applications. Applications willing to be receivers of real-time traffic

register their signalling ports with a name service or use well-known ports. Applications wishing
to create connections must first locate the corresponding receiver endpoints before signalling can
be initiated.

Fach of the signalling and data transfer routines in Table 1 has its counterpart in the socket APL.
For example, the routine rtcRegisterPort corresponds to the invocation of bind and listen in
succession, and rtcAcceptConnection corresponds to accept. Similarly, the routines rtcCreateConnection
and rtcDestroyConnection correspond to connect and close, respectively.

The key aspect which distinguishes RTC API from the socket API is that the receiving appli-
cation ezplicitly approves connection establishment and teardown. When registering its intent to
receive signalling requests, the application specifies an agent function that is invoked in response to
connection requests. This function, implemented by the receiving application, determines whether
sufficient application-level resources are available for the connection and, if so, reserves necessary
resources (e.g., CPU capacity, buffers, etc.) for the new connection. It may also perform authen-
tication checks based on the requesting endpoint specified in the signalling request. This is unlike
the establishment of a TCP connection, for example, which is completely transparent to the peer
applications.

The QoS-parameters passed to rtcCreateConnection for connection establishment are trans-
lated, for generality, into abstract resource requirements. These are, (i) a specified message buffer
size to be reserved for the connection, and (ii) a specified number of packets to be transmitted per
specified period. These parameters are passed to CLIPS so that it can perform resource manage-
ment. In addition, optional (QoS model-specific) parameters can be specified and interpreted by
the admission policy. Typically, such parameters would constitute additional constraints, such as
message deadline for example that affect admission control decisions.

4.2 Signalling and Resource Reservation with RTCOP

Requests to create and destroy connections initiate the Real-Time Connection Ordination Proto-
col (RTCOP), a distributed end-to-end signalling protocol. As illustrated in Figure 2(a), RTCOP is
composed primarily of two relatively independent modules. The request and reply handlers man-
age signalling state and interface to the admission control policy, and the communication module
handles the tasks of reliably forwarding signalling messages. This separation allows simpler replace-
ment of admission control policies or connection state management algorithms without affecting
communication functions. Note that signalling and connection establishment are non-real-time
(but reliable) functions. QoS guarantees apply to the data sent on an established connection but
signalling requests are sent as best-effort traffic.

The request and reply handlers generate and process signalling messages, interface to RTC API
and CLIPS, and reserve and reclaim resources as needed. When processing a new signalling request,
the request handler invokes a multi-step admission control procedure to decide whether or not
sufficient resources are available for the new request. As a new connection request traverses each
node of the route from source to destination, the request handler invokes admission control which
decides if the new connection can be locally admitted. Upon successful admission, the handler
passes the request on to the next hop. When a connection is admitted at all nodes on the route,
the reply handler at the destination node generates a positive acknowledgment on the reverse path
to the source. As the notification is received at each hop, the reply handler commits connection
resources. These resources include packet and message buffers, and a periodic connection handler
thread with a specified execution budget. The reply handler notifies admission control of connection
establishment so that it may account for the corresponding CPU and link bandwidth consumption
in its future decisions. Note that whether these resources are set aside for the connection, or

[REAL-TIME COMMUNICATION API]
T REAL-TIME COMMUNICATION API
connection | message messages
request RTCOP I data o CLIPS
 umication CLIPS Passive resources
request T data transfer fragments Lnoens]sr,r?gltre"beuaféirs
handler | -~ / :

A

reply ‘)
handler admission system
control <- reSource LOWER
module interface PROTOCOL

CPU allocation

system
comm. thread resource
scheduler interface

yield/block

LAYERS _ _
requests/replies } ¢ Link allocation

V packets
[ROUTING ENGINE] T EelneEIery

A

y ¢ transmission/reception
[LOWER PROTOCOL LAYERS] [DEVICE DRIVER

; ! $

v
[NETWORK] NETWORK

(a) RTCOP structure (b) CLIPS structure

Figure 2: Internal structures and interfaces: In this figure we show the internal functional
structure of RTCOP and CLIPS along with their respective interfaces to other components. In (a),
data and control paths are represented with solid and dashed lines, respectively.

multiplexed among several connections, is a policy decision implemented by admission control
independent of RTCOP.

The communication module handles the basic tasks of sending and receiving signalling messages,
as well as forwarding data packets to and from the applications. Most of the protocol processing
performed by the communication module is in the control path during processing of signalling
messages. In the data path it functions as a simple transport protocol, forwarding data packets
on behalf of applications, much like UDP. As noted earlier, signalling messages are transported as
best-effort traffic, but are delivered reliably using source-based retransmissions. Reliable signalling
ensures that a connection is considered established only if connection state is successfully installed
and sufficient resources reserved at all the nodes along the route. The communication module
implements duplicate suppression to ensure that multiple reservations are not installed for the same
connection establishment request. Similar considerations apply to connection teardown where all
nodes along the route must release resources and free connection state. Consistent connection state
management at all nodes is an essential function of RTCOP.

RTCOP exports an interface to RTC API for specification of connection establishment and tear-
down requests and replies, and selection of logical ports for connection endpoints. The RTC API
uses the latter to reserve a signalling port in response to a request from the application, for ex-
ample. RTCOP also interfaces to an underlying routing engine to query an appropriate route before
initiating signalling for a new connection. In general, the routing engine should find a route that
can support the desired QoS requirements. However, for simplicity we use static (fixed) routes for
connections since it suffices to demonstrate the capabilities of our architecture and implementation.

4.3 CLIPS-based Resource Scheduling for Data Transfer

The Communication Library for Implementing Priority Semantics (CLIPS), implements the neces-
sary resource-management mechanisms to realize QoS-sensitive real-time data transfer. It provides
a simple interface that exports the abstraction of a guaranteed-rate communication endpoint, where
the guarantee is in terms of the number of packets sent during a specified period. The endpoint

10

also has an associated configurable buffer to acommodate bursty sources. We call this combination
a clip. To control jitter, CLIPS also accepts a deadline parameter. Within each period packets
will be transmitted (via the clip) by the specified deadline measured from the start of the period.
CLIPS implements a traffic policing mechanism, as well as its own default admission control policy
that can be overridden by a user-specified alternate admission control policy. Note that CLIPS
interface parameters correspond precisely to the abstract resource requirements that are relayed by
the API from the application. The additional deadline parameter is equal to the period by default,
unless its value is set by admission control in accordance with particular QoS model-specific re-
quirements. We use CLIPS to provide connection endpoints with QoS-sensitive allocation of CPU
and link resources. The real-time communication service described in this paper uses a subset of
CLIPS features: the complete library includes support for QoS adaptation and resource monitoring
as detailed in [43].

Internal to CLIPS, each clip is provided with a message queue to buffer messages generated or
received on the corresponding endpoint, a communication handler thread to process these messages,
and a packet queue to stage packets waiting to be transmitted or received. Once a pair of clips are
created for a connection, messages can be transferred in a prioritized fashion using the CLIPS API.
The CLIPS library implements the key functional components illustrated in Figure 2(b).

QoS-sensitive CPU allocation: The communication handler thread of a clip executes in a con-
tinuous loop either dequeuing outgoing messages from the clip’s message queue and fragmenting
them (at the source host), or dequeuing incoming packets from the clip’s packet queue and reassem-
bling messages (at the destination host). Each message must be sent within a given local delay
bound (deadline) that is specified to the clip as a QoS parameter. To achieve the best schedu-
lable utilization, communication handlers are scheduled based on an earliest-deadline-first (EDF)
policy. Since most operating systems do not provide EDF scheduling, CLIPS implements it with
a user-level scheduler layered on top of the operating system scheduler. The user-level scheduler
runs at a static kernel priority and maintains a list of all kernel threads registered with it, sorted
by increasing deadline. At any given time, the CLIPS scheduler blocks all of the registered threads
using kernel semaphores except the one with the earliest deadline, which it considers in the running
state. The running thread will be allowed to execute until it explicitly terminates or yields using
a primitive exported by CLIPS. The scheduler then blocks the thread on a kernel semaphore and
signals the thread with the next earliest deadline. This arrangement implements non-preemptive
EDF scheduling within a single protection domain.

Communication handlers (implemented by CLIPS) execute a user-defined protocol stack, then
return to CLIPS code after processing each message or packet. Ideally, each clip should be assigned
a CPU budget to prevent a communication client from monopolizing the CPU. Since processor
capacity reserves are not available on most operating systems, the budget is indirectly expressed in
terms of a maximum number of packets to be processed within a given period. The handler blocks
itself after processing the maximum number of packets allowed within its stated time period.

Policing and communication thread scheduling: As mentioned above, communication threads
eligible for CPU allocation are multiplexed on the CPU by a communication thread scheduler which
supports dynamic handler priorities. To police non-conformant sources, the handler is blocked when
its budget expires and there are pending messages. Thus, associating a budget with each connection
handler facilitates traffic enforcement. This is because a handler is scheduled for execution only
when the budget is non-zero, and the budget is not replenished until the next (periodic) invocation
of the handler. These mechanisms together ensure that high-priority misbehaving connections do
not consume excessive system resources at the expense of lower priority connections. We do not
assume that the underlying operating system kernel supports fully preemptive scheduling. Instead,
we implement a “cooperative preemption” mechanism that prevents handlers with large periods
and budgets from inflicting unacceptable jitters on the execution of handlers with smaller periods.

11

Each handler participates in cooperative preemption by voluntarily yielding the CPU after pro-
cessing a certain (small) number of packets. If no handler of higher priority is ready for execution
at that time, CLIPS returns control to the yielding handler immediately. Otherwise, the higher
priority handler is executed. Thus, a handler may be rescheduled by the communication thread
scheduler when the it blocks due to expiration of its CPU budget, or when it yields the CPU.

QoS-sensitive link bandwidth allocation: Modern operating systems typically implement
FIFO packet transmission over the communication link. While we cannot avoid FIFO queuing
in the kernel’s network device, CLIPS implements a dynamic priority-based link scheduler at the
bottom of the user-level protocol stack to schedule outgoing packets in a prioritized fashion. The
link scheduler implements the EDF scheduling policy using a priority heap for outgoing packets.
To prevent a FIFO accumulation of outgoing packets in the kernel (e.g., while the link is busy),
the CLIPS link scheduler does not release a new packet until it is notified of the completion of
previous packet transmission. Best-effort packets are maintained in a separate packet heap within
the user-level link scheduler and serviced at a lower priority than those on real-time clips.

4.4 Service Model Instantiation

Our real-time communication architecture may be used to realize a family of service models that dif-
fer in the choice of QoS-parameters and admission control policy, as long as QoS parameters can be
converted into a rate constraint (maximum number of packets sent per period), a storage constraint
(maximum packet buffer size), and a deadline on each node. We have implemented a communication
paradigm amenable to such an abstraction, namely the real-time channels model [44,45]. A real-
time channel is a unicast virtual connection between a source and destination host with associated
performance guarantees on message delay and available bandwidth. In requesting a new channel,
the application specifies its message generation process to allow the communication subsystem to
compute resource requirements and decide whether it can guarantee the desired quality-of-service.
The generation process is expressed in terms of the maximum message size (M,,q,), maximum
message rate (R,q.), and maximum message burst size (B.4z). The burst parameter serves to
bound the short-term variability in the message rate and partially determines the necessary buffer
size (i.e. in time ¢, the number of messages generated must be no more than Bup + - Rypas)-
The QoS requirement is expressed as an upper bound on end-to-end communication delay from
the sending application to the receiving application. This deadline parameter influences admission
control decisions at all nodes in the route during signalling.

The admission control policy for real-time channels implements the D_order algorithm to per-
form schedulability analysis for CPU and link bandwidth allocation. The algorithm determines
relative connection priority so that QoS requirements for all admitted connections are satisfied.
Details on D_order and subsequent extensions to account for CPU preemption costs and the rela-
tionship between CPU and link bandwidth are available in [45] and [46], respectively.

5 Service Implementation

In this section we describe how the architectural components described in the preceding sections can
be implemented on a realistic platform. Our experimental testbed and implementation environment
is based on the MK 7.2 microkernel operating system from the Open Group Research Institute.
The hardware platform consists of several 133 MHz Pentium-based PCs connected by a Cisco 2900
Ethernet switch operating at 10MB/s.

While not a full-fledged real-time OS, MK 7.2 includes several features that facilitate provision

12

CORDS Server
A

connection

! \
Application | . i | Application
librtc } | librtc 8
MIG stubs | l MIG stubs g
\ 1’ : l\ 4 E
user $ \\ / | $ | \ // $ 2
xmit path | $: recv\/ath
p * | p _ETHDRV
device driver
MK kernel SORos
NET FILTER 1 RTC server
3 T A‘ [MK KERNEL }
network ‘ $ |
* ! Ethernet
(a) Server configuration (b) CORDS protocol stack

Figure 3: Service implementation as CORDS server: The left figure shows the communication
path used by applications wishing to use guaranteed-QoS service. The right figures illustrates the
configurable protocol stack implemented in the server which handles admission control, run-time
resource management, and connection state maintenance in a single protection domain.

of QoS guarantees. Specifically, though it provides only preemptive fixed-priority scheduling, the 7.2
release includes the CORDS (Communication Object for Real-time Dependable Systems) protocol en-
vironment [28] in which our implementation resides. CORDS is based on the z-kernel object-oriented
networking framework originally developed at the University of Arizona [47], with some significant
extensions for controlled allocation of system resources. CORDS is also available for Windows NT
and, as such, serves as a justifiable vehicle for exploring the realization of communication services
on modern microkernels with limited real-time support.

We focus on our experiences with the utilization of available kernel-level features to realize
real-time communication. We identify limitations common to contemporary microkernel systems,
and describe our solutions to mitigate their effect on our ability to provide real-time guarantees.
In addition, we note features that aided in realization of the service along with how they were used
in the implementation.

5.1 Service Configuration

Figure 3(a) shows the software configuration for the guaranteed-QoS communication service. While
the CORDS framework can be used at user-level as well as in the kernel, we have developed the pro-
totype implementation as a user-level CORDS server. There are several reasons for this choice as
discussed in Section 5.2 below, the most obvious of which is the ease of development and debug-
ging, resulting in a shorter development cycle. Applications link with the librtc library and
communicate real-time connection requests and data via [PC with the user-level CORDS server.

The service protocol stack is configured within the server as shown in Figure 3(b). RTC API
interfaces with applications via Mach Interface Generator (MIG) stubs, translating application
requests to specific invocations of operations on RTCOP (for signalling) or CLIPS (for data trans-
fer). RTCOP serves as a transport protocol residing above a two-part network layer composed of
RTROUTER and IP. Though the we currently use default IP routing, we provide RTROUTER as a go-
between protocol to keep the routing interface independent of IP. RTROUTER is intended to allow

13

RTCOP to eventually work with more sophisticated routing protocols that support QoS- or policy-
based routing. The IP, ETH, and ETHDRV protocols are standard implementations distributed with
the CORDS framework. ETH is a generic hardware-independent protocol that provides an interface
between higher level protocols and the actual Ethernet driver. ETHDRV is specific to the user-level
implementation of the CORDS server. It is an out-of-kernel device driver that interacts with the
network device driver in the Mach kernel through system calls to a Mach device control port. Note
that CLIPS spans the protocol stack, providing scheduling and resource management services at
both the message and packet levels.

When an application sends a message to the CORDS server for transmission on an established
real-time connection, an API thread waiting on the corresponding Mach port first deposits it
into a connection-specific message queue. CLIPS then schedules the connection’s handler thread to
perform protocol processing and fragment the message into packets. These packets are labeled with
their local deadline and staged in the CLIPS packet heap. From this point the CLIPS link scheduler
thread retrieves packets and transmits them according to their dealines. A packet arriving at the
receiving host is demultiplexed into its connection-specific packet buffer when it enters the CORDS
server from the kernel. The connection handler thread, scheduled by CLIPS, retrieves the packet and
shepherds it up the protocol stack performing protocol processing and message reassembly. Once
reassembled, the message is deposited in the connection message queue and the corresponding API
thread is notified of the message arrival (if it is waiting). Finally, the API thread constructs a MIG
message containing the data and delivers it to the application task.

5.2 Implementation Issues and Platform Support

Below we highlight several issues and challenges in implementing the communication service. We
discuss the effects of deficiencies in the underlying platform that lead to unpredictable behavior
and the compensatory mechanisms that we used to circumvent them. We also describe platform
features that are useful in realizing a real-time communication service and their application in our
implementation.

Server-based implementation: While a server-based implementation is natural for a microkernel
operating system, it may perform poorly compared to user-level protocol libraries due to excessive
data copying and context switching [4,5]. Implementing the service as a protocol library, however,
distributes the functions of admission control and run-time resource management among several
address spaces. Since applications may each compete for communication resources, controlling
system-wide resources is more effectively done when these functions are localized in a single domain.
Moreover, in the worst case, compared to user-level protocol libraries a server configuration only
suffers from additional context switches. While this has significant implications for small messages,
the relative degradation in performance is not as significant for the large data transfers performed
via the guaranteed-QoS communication service, although it may affect connection admissibility.

Network device interface: A server-based implementation presents a number of significant
problems for data input and output in our architecture. The bottom layer of the protocol stack
interfaces with the kernel device driver via the kernel’s IPC mechanism. Device output is initiated
by a link scheduler implemented by CLIPS as close as possible to the device driver without being
in the kernel. However, being in user space, the link scheduler cannot be invoked directly by the
kernel device driver in response to transmission completion interrupts unless the underlying OS
supports mapped device drivers or user-level upcalls. In the absence of such support user-level link
scheduling cannot be done in interrupt context. Instead, we utilize user-level threads to perform
synchronous device transfers and link scheduling is realized in the context of a high priority thread.

Resource reservation with Paths: Resource reservation must be coordinated in an end-to-end

14

fashion along the route of each connection during connection establishment. CORDS provides two
abstractions, paths and allocators, for reservation and allocation of system resources within the
CORDS framework. Resources associated with paths include dynamically allocated memory, input
packet buffers, and input threads that shepherd messages up the protocol stack [28]. Paths, coupled
with allocators, provide a capability for reserving and allocating resources at any protocol stack
layer on behalf of a particular connection, or class of messages. With packet demultiplexing at the
lowest level at the receiver (i.e., performed in the device driver), it is possible to isolate packets
on different paths from each other early in the protocol stack. Incoming packets are stored in
buffers explicitly tied to the appropriate path and serviced by threads previously allocated to that
path. Moreover, threads reserved for a path may be assigned one of several scheduling policies and
priority levels. We use paths to facilitate per-connection resource reservation during connection
setup.

Packet classification: Proper handling of prioritized real-time data at the receiving host requires
that packet priority be identified as early as possible in the protocol stack, and that packets be
served accordingly. CORDS associates outgoing packets with paths and demultiplexes incoming
traffic into per-path buffers as early as possible, essentially acting as a specialized packet filter.
The data link device driver examines outgoing packets and adds an appropriate path identifier
to allow early path-based demultiplexing at the receiver. This allows packet handling to be done
in path-dependent order and facilitates imposing relative priorities among paths (e.g., packets of
one path can be served before those of another). While this technique is natural for networks
supporting a notion of virtual circuit identifiers (VCI) such at ATM, it is not so for traditional
data link technologies such as Fthernet. In the case of Ethernet, the CORDS driver adds a new path
identifier to the data link header. This creates a non-standard Ethernet header that would not be
understood by hosts not running the CORDS framework.

Packet Queuing: While packet classification, as discussed above, occurs in the QoS-sensitive com-
munication server, we cannot assume that the underlying kernel has support for prioritized packet
processing. The in-kernel network device driver simply relays received packets to the communica-
tion server in FIFO order via the available IPC mechanism, in our case Mach ports. This FIFO
ordering has two main disadvantages. First, it does not respect connection QoS requirements, since
urgent packets can suffer unbounded priority inversion when preceded by an arbitrary number of
less urgent packets in the queue. Second, since the same queue is used for real-time and non-real-
time traffic, depending on packet arrival-time patterns, real-time data maybe dropped when the
queue is filled by non-real-time packets. These two problems cannot be solved without modifying
the kernel device driver. To ameliorate this unpredictability a high priority thread waits on the
communication server’s input port and dequeues incoming packets as soon as they arrive, deposit-
ing them in their appropriate path-specific queues. This prevents FIFO packet accumulation in the
kernel and allows the server to service packets in priority order according to the connection path.

Application-Server IPC: A problem similar to the above arises when applications use kernel-level
IPC mechanisms to send messages via the QoS-sensitive communication server. Unless synchronous
communication (e.g., RPC) is used to send messages to the server, successive application messages
will accumulate in the kernel buffers for delivery to the server. In a QoS-sensitive system the length
of such a queue should be derived from the application traffic specification, for example based on
message rate, size, and burst. If the queue is too small, application messages may be dropped or
require retransmission from the application. If the queue is overly long, application messages may
reside in it longer than anticipated and result in deadline violations. We do not assume that we
can control allocation of kernel-level IPC queues (Mach port queues in our implementation); our
strategy is to drain them as fast as possible, transferring messages to connection-specific queues
in the communication server. These queues are sized in accordance with the connection’s traffic
specification. We dedicate an API thread per connection within the server whose function is

15

to consume messages from the corresponding Mach port queue. Once an application sends a
message to the server, the corresponding API thread reads it from the Mach port and queues it
for the corresponding communication handler. The thread, whose execution time is charged to the
handler’s budget, runs at handler priority, and is allowed to continue running at background priority
when the handler’s budget expires. Like the handler, the API thread adheres to the cooperative
preemption model by yielding to waiting, higher priority messages after processing a fixed amount
of message data.

Global path name space: Since our real-time communication service aims to provide QoS
guarantees on a per-connection basis, it is natural to assign a distinct path to each connection.
In order to realize our end-to-end service architecture, however, traffic on a particular path must
be serviced according its QoS by the communication subsystem on all hosts and routers. This
in turn requires that the path name space be global across all hosts participating in the real-
time communication service. To realize a global path name space, we concatenate the unique
host name and a sender-based connection identifier to construct unique path identifiers for real-
time connections. Note that though there is a one-to-one mapping of path identfier to connection
identifier, applications have no knowledge of paths; they use only connection identifiers in their
operations.

Dynamic path creation/deletion: Real-time connections may be created and deleted repeatedly
over an application’s lifetime requiring that paths be dynamic entities with appropriate teardown
and resource reclamation mechanisms. The CORDS framework envisions a relatively static use of
paths, with a single path for best-effort traffic and a few paths for different classes of traffic. That
is, there are never more than perhaps ten active paths, all of these long-lived and preconfigured.
Accordingly, the CORDS path library does not support path teardown or resource reclamation op-
erations. To facilitate a one-to-one association between real-time connections and paths, we have
extended CORDS to support path destruction and reclamation of resources associated with a path.
These mechanisms are invoked by RTCOP during hop-by-hop signalling of teardown messages from
connection source to destination.

6 System Profiling and Parameterization

To provide predictable QoS guarantees on a given platform, the system costs and overheads (param-
eters) must be determined accurately for effective admission control. In this section we describe
the detailed profiling of our service implementation to obtain system parameters. Our profiling
methodology is to conduct all measurements on two hosts connected by an isolated Ethernet seg-
ment. The service library 1librtc and the CORDS protocol stack are instrumented appropriately to
perform the desired measurements. Only one set of measurements are performed at a time in order
to minimize the perturbation induced by the profiling code.

Given our primary focus on run-time resource management, we concentrate on the data transfer
performance of our prototype implementation, for both incoming and outgoing data. As mentioned
in Section 4.4, we use real-time channels as the service model. For all the results reported here, a
single real-time channel is created from a sending client on one host to a receiving client on another
host. Figure 4 shows various costs incurred during data transfer on the sending host as well as
on the receiving host. These overheads can be categorized into three components as illustrated in
the figure. We first present profiling results for RTC API, followed by the results of profiling the
remaining protocol stack layers, and finally show results for link input and output overhead. The
results are averaged over 500 samples.

16

Sender Receiver

API Processing API Processing
API cost
channel
msg queue API cost R

(API thread)
(API thread) channel || protocol proc. cost
[msg queue (chan. handler thread)

Msg Frag. &
Pkt Processing Pkt Processing &
i Msg Reassembly

pkt queue protocol proc. cost e T U
(chan. handler thread) channel [linkinput cost
pkt queue (device input thread)
Link ___
Transmission Pkt Classification
link output cost
by link scheduler
thread
I
network link from device

control port

Figure 4: Processing overheads source and destination hosts: As shown in this figure, the
costs at both sender and receiver is divided into three components, (i) API cost, (ii) fragmentation
or reassembly and associated protocol processing, and (iii) link access overhead.

6.1 Profiling the RTC API

In this set of measurements, we profile routines in RTC API that handle message sending and
receiving. The overheads of these routines constitute API cost in Figure 4. RTC API routines
are invoked either in response to application send/receive requests, or in response to message
arrival. Since the application invokes the receive primitive asynchronously with message arrival we
distinguish between the case where some message is already waiting at the time the application
calls the receive primitive, and the case where the message queue is empty.

Table 2 lists the data transfer overheads of these anchor routines for several messages sizes and
defines symbols to refer to each cost component. Note that C"" only includes the time from entry
into RTC APT till the time that the application thread is blocked waiting for a message to arrive.
When a message arrives later, the channel handler thread will invoke the receive message callback
function. This overhead is denoted by C7:°.

For each routine, the measurements for a message size of 1 byte essentially correspond to the
fixed overhead introduced by the routine. Beyond the fixed overhead, the time spent in this routine
increases with message size. RTC API copies application data into path-specific message buffers
in order to preserve application data integrity in the worst case. For our platform, Imbench [48]
reports a memory copy bandwidth of & 40 MB/second; The increase in C, can be largely attributed
to the time to copy in application data.

An anomalous trend is observed for C'"*. If the message is already waiting, it is dequeued and
copied into path-specific message buffers before returning it to the application. Once again, the
overhead increases with message size. For message sizes of 10K bytes and 30K bytes, the overhead
cannot be attributed only to the cost of copying the message. We believe this is partially due to
the overhead introduced by the memory allocation primitive provided in CORDS.

17

Anchor Message Size

Parameter Anchor Routine 1 byte | 1k bytes | 10k bytes | 30k bytes
‘ Cq ‘ Send message ‘ 301 ‘ 331 ‘ 606 ‘ 1191 ‘
‘ crw ‘ Receive message (msg waiting) ‘ 335 ‘ 350 ‘ 1097 ‘ 2653 ‘
R | Receive message (none waiting) | 54 | 54 | 53 | 54 ‘
‘ Creb ‘ Receive message callback ‘ 95 ‘ 92 ‘ 96 ‘ 96 ‘

Table 2: Data transfer overheads in RTC API anchor (in us).

Consistent behavior is observed for C7"™". As expected, C7'"" is independent of message size,
since RTC API effectively blocks the application if no message is waiting. For C7*® the overhead
measurements are also independent of message size. This is completely consistent since the re-
ceive message callback function simply signals the blocked API thread, if there is one. Note that
the reported measurements correspond to the case where the application is blocked waiting for a
message, which is the worst-case scenario for 7.

We also measure application-level latencies for the rtcSendMessage and rtcRecvMessage rou-
tines. These latencies include the cost of an IPC call to the server and executing the corre-
sponding anchor routine discussed above. As shown in Table 3, the application-level latency for
rtcSendMessage follows a pattern similar to that of C,, except that the fixed overhead is signif-
icantly higher. This extra overhead is the cost of a send IPC to the CORDS server. Comparing
rtcSendMessage latency to 'y, the average extra overhead is = 875 us.

A similar observation can be made for the rtcRecvMessage latency, which follows a pattern
similar to that of C'*’. We observe that the latency for rtcRecvMessage reveals an average extra
overhead of =~ 563 us, which accounts for the cost of a receive IPC from the application to the
CORDS server across the MIG interface.

While the RTC API overheads are relatively high, these measurements are for an unoptimized
implementation and can be improved substantially with careful performance optimizations. With
appropriate buffer management and API buffering semantics [49,50] it may even be possible to
completely eliminate the copying of data within RTC API. However, more immediately we are
concerned with ensuring that the overheads incurred in RTC API do not result in QoS-insensitive
handling of data. We address this concern by accounting for the costs with appropriate admission
control. While the application-level latencies are also high, this is primarily due to significant IPC
overhead, which may be reduced with a colocated in-kernel CORDS server.

6.2 Protocol Processing Costs

For the other layers (RTCOP, RTROUTER, IP, ETH, ETHDRV) we only measure the aggregate overhead.
Table 4 lists the profiling results for all layers other than data link-level transmission and reception,
which is profiled separately in Section 6.3 below. The overheads of these layers correspond to the
protocol processing cost in Figure 4.

Messages are enqueued (dequeued) at the top of the protocol stack for (by) a communica-
tion handler thread. The thread then executes the protocol stack. The average message en-
queue/dequeue cost is & 5 pus. For the send path, we distinguish the measured overhead for the
first packet of a message from that for the other packets. Note that the aggregate protocol process-
ing cost for the first packet is significantly higher than that for the other packets. This difference
can be partly attributed to cache effects, which have been shown to affect protocol stack execution

18

Message Size

Service Library Routine 1 byte | 1k bytes | 10k bytes | 30k bytes
‘ rtcSend Message ‘ 1170 ‘ 1210 ‘ 1480 ‘ 2070 ‘
‘ rtcRecvMessage (msg waiting) ‘ 870 ‘ 894 ‘ 1660 ‘ 3210 ‘

Table 3: Application-level send and receive latencies (in ps).

latency significantly [51,52].

In the receive path, the message reassembly cost is only incurred during the processing of the last
packet of a message. The average reassembly cost increases roughly linearly with message size, from
17 ps for message size of 1.4K to 239 ps for message size of 28K. The receive path overhead listed
in Table 4 shows the aggregate per-packet protocol processing cost, excluding message reassembly,
which is the same for all packets of the message.

6.3 Link Input/Output Overhead

For a complete parameterization of the communication subsystem, we also profile packet transmis-
sions by the link scheduler at the sending host, and packet reception by the CORDS server at the
receiving host. These overheads are shown in Figure 4 as link output/input cost.

Table 5 lists the packet transmission latencies measured in the link scheduler as a function of
the packet size. Once again, the latency measurement for 1-byte packets roughly corresponds to
the fixed overhead. This overhead includes the cost of a user-kernel context switch, invocation of
the device driver transmit routine, handling of the transmission-complete interrupt, delivering of
an I/O-complete notification to the Mach device control port (which in turn wakes up the waiting
link scheduler), and another context switch to resume execution of the link scheduler thread. Since
the measured latency includes the time to transmit the entire packet on the wire, larger packets
incur higher latencies.

Table 6 lists the overhead incurred by the CORDS device input thread to receive an incoming
packet from the device control port, classify it to determine its path, locate the corresponding buffer
pools, enqueue the packet in the path input packet queue, and signal the CLIPS CPU scheduler to
wake up the input communication handler associated with this path. Note that the input overhead
for the first packet is significantly higher than that for the subsequent packets. We have verified
that this is primarily due to the high overhead to signal the handler on the arrival of the first
packet.

The CORDS device input thread overhead does not include the in-kernel cost of fielding the packet
arrival interrupt, accepting the arrived packet, applying the generic net filter and dispatching the
packet to the appropriate device control port. Preliminary in-kernel measurements reveal this
overhead to be = 650 us for an Ethernet MTU-sized packet.

7 Experimental Evaluation

We conducted several experiments to evaluate the efficacy of our prototype implementation. The
experiments demonstrate two key aspects of the QoS support provided: traffic enforcement (i.e.,
policing and shaping) on a single connection, and traffic isolation between multiple real-time and
best-effort connections. We show that reasonably good QoS-guarantees can be achieved despite the

19

Packets in Message
Data Path Protocol Stack Layer First | Other
fragmentation 53 30
Send RTCOP + RTROUTER + IP 4 ETH + ETHDRV | 128 47
| Receive | RTCOP + RTROUTER + IP + ETH + ETHDRYV | 260 |

Table 4: Protocol stack latencies for send and receive paths (in us).

lack of real-time scheduling and communication support in the kernel.

The experimental setup consists of two hosts communicating on a private segment through
the Ethernet switch. To avoid interference from the Unix server, we suppress extraneous network
traffic (e.g., ARP requests and replies) and configure the CORDS server to receive all incoming
network traffic. This allows us to limit the background CPU load on each host and accurately
control network traffic between them. For each experiment reported below, connections are created
between MK client tasks running at the two hosts. Connection parameters are specified according
to the real-time channel model, namely as maximum message size (M4), maximum message burst
(Bmaz), message rate (R,,q4z), and message deadline. Message traffic is generated by threads running
within the MK client task at the source and consumed by threads running within the destination
client. Our evaluation metric is the per-connection application-level throughput delivered to the
receiving task at the destination host.

7.1 Traflic enforcement

For this experiment, we establish a real-time channel with a specified rate of 200 KB/s and a 200
ms deadline. The actual offered load on the channel is varied, however, by changing the interval
between generation of successive messages, ranging from 500 ms to 0 ms (i.e., continuous traffic
generation).

As shown in Figure 5, the delivered throughput increases linearly with the offered load until
the offered load equals the specified channel rate. For example, at an offered load of 100 KB/s
(corresponding to a message generation interval of 400 ms), the delivered throughput is 100 KB/s.
Similarly, at an offered load of 200 KB/s, the delivered throughput is 200 KB/s. For offered loads
beyond the specified channel rate, however, the delivered throughput equals the specified channel
rate. This continues to be the case even under continuous message generation (message generation
interval of 0 ms). These measurements show that the traffic enforcement mechanisms effectively
prevent a real-time connection from violating its specified rate.

7.2 Traffic isolation

In addition to proper traffic enforcement, recall that one of the architectural goals of the guaranteed-
QoS communication service is to ensure isolation between different QoS and best-effort connections.
We first consider traffic isolation between multiple real-time channels subject to traffic violation by
a real-time channel. Two real-time channels are established between the hosts, one representing
a high-rate channel (channel 1) and the other representing a low-rate channel (channel 2). The
high-rate channel has the same traffic and deadline specification as before, i.e. a specified rate of
200 KB/s. The low-rate channel has a specified channel rate of 30 KB/s. Message generation on
channel 2 is continuous, so that it sends at a persistent 30 KB/s. Channel 1 is controlled in order
to vary the offered load.

20

Packet Size
ETHDRV Layer 1 byte | 500 bytes | 1416 bytes

‘ Packet transmission by link scheduler ‘ 673 ‘ 1510 ‘ 1775 ‘

Table 5: Link scheduler packet transmission latencies (in pws).

Packets in Message
ETHDRV Layer First | Other

‘ Packet input by CORDS device input thread ‘ 120 ‘ 20 ‘

Table 6: CORDS device input thread overhead (in us).

Figure 6(a) shows the delivered throughput on channels 1 and 2 as a function of the offered load
on channel 1. Once again, the delivered throughput on channel 1 increases linearly with the offered
load until the offered load equals the specified channel rate (200 KB/s). Subsequent increase in
offered load has no effect on the delivered throughput which stays constant at the specified channel
rate. The delivered throughput on channel 2, on the other hand, remains constant at approximately
30 KB/s (its specified channel rate) regardless of the offered load on channel 2. That is, traffic
violations on one connection (even continuous message generation) do not affect the delivered QoS
for another connection.

We also consider traffic isolation between real-time and best-effort traffic under increasing best-
effort load. For this experiment we create an additional best-effort channel in addition to two
real-time channels. As before, one real-time channel (channel 1) represents a high-rate channel
with a specified rate of 200 KB/s. The other real-time channel (channel 2) is a low-rate channel
with rate 25 KB/s. Message generation on channels 1 and 2 is continuous, i.e., with a message
generation interval of 0 ms. The offered load on the best-effort channel (channel 3) is varied from
50 KB/s to 350 KB/s by controlling the message generation interval.

Figure 6(b) plots the delivered throughput on each channel as a function of the offered best-
effort load. A number of observations can be made from these measurements. First, the delivered
throughput on channels 1 and 2 are roughly independent of the offered best-effort load. That is,
real-time traffic is effectively isolated from best-effort traffic, except under very high best-effort
loads as explained below. Second, best-effort traffic utilizes any excess capacity not consumed by
real-time traffic, as evidenced by the roughly linear increase in delivered throughput on channel 3
as a function of the offered load. Once the system reaches saturation (beyond a best-effort offered
load of approximately 250 KB/s), however, best-effort throughput declines sharply due to buffer
overflows and the resulting packet loss at the receiver.

Under very high best-effort loads, the delivered throughput on channel 1 declines slightly. We
believe that this is due to the overheads of receiving and discarding best-effort packets, which have
not been accounted for in the admission control procedure. These overheads impact the delivered
throughput on high-rate connections more than low-rate connections, as evidenced by the constant
throughput delivered to channel 2 even under very high best-effort load.

7.3 TFairness to best-effort traffic

While the load offered by real-time connections in the previous experiments was persistent (always
greater than the reserved capacity), this experiment focuses on utilization of any reserved capacity
not utilized by a real-time connection. It is desirable that this unused capacity be utilized by
best-effort traffic, as per our goal of fairness. Other real-time connections should not be allowed to
consume this excess capacity at the expense of best-effort traffic. We create two real-time channels

21

250

O—-O measured throughput
205 | O —DOspecified throughput

2000 —O———f=——————=—=—=—= == =0

175 -

150 -

125

Delivered throughput (KB/s)

100

75 F

50

.
80 180 280 380 480 580
Offered Load (KB/s)

Figure 5: Traffic enforcement on a single real-time channel: The enforcement mechanism
prevents the delivered throughput from exceeding the specified rate, even as inter-message gener-
ation time goes to 0 ms. The channel has a traffic specification of M,,,, = 40 KB, B4 = 10,
R,uqr = 5 messages/second, and deadline of 200 ms.

and a best-effort channel as before. While the offered load on channel 2 is continuous, channel 1
only offers a load of 100 KB/s even though it is allocated a capacity of 200 KB/s. We consider two
cases of message generation on channel 1, as explained below. In case 1, channel 1 carries 20 KB
messages at 5 messages/second (half the specified rate). In case 2, it generates 10 KB messages at
10 messages/second.

Figure 7 plots the delivered throughput on all the channels as a function of the offered load on the
best-effort channel (channel 3). Channel 1 receives a constant 100 KB/s throughput independent of
the offered best-effort load. Similarly, channel 2 receives its allocated capacity of 25 KB/s. In case
1, Channel 3’s delivered throughput increases linearly with the offered load until an offered load of
250 KB/s. Beyond this load, the delivered best-effort throughput falls as before, but continues to
be higher than that obtained in Figure 6(b) when real-time channels were using their full reserved
capacity.

We found, though, that best-effort traffic is unable to fully utilize the unused capacity left by
channel 1. We suspect that this effect is primarily due to packet losses caused by buffer overflow
at the receiver, either in the adapter or in the kernel device port queue used by the CORDS server
to receive incoming packets. To validate this, we ran additional experiments with case 2, in which
channel 1 generates smaller messages (10 KB) at a higher rate to offer the same average load of
100 KB/s. As can be seen in Figure 7, the delivered best-effort throughput in this case continues
to increase linearly beyond 250 KB/s and shows no decline even for a best-effort load of 350 KB/s.
These results suggest that best-effort traffic is able to fully utilize unused capacity when real-time
traffic is less bursty (i.e., has fewer packets in each message).

7.4 Further Observations

With the user-level CORDS server configuration, the receiving task is able to receive packets at an
aggregate rate of 450-500 KB/s (depending on the number of packets in a message), even though
the sender can send at a maximum rate of approximately 750 KB/s. This discrepancy is most
likely due to CPU contention between the receiving application task and the CORDS server and

22

300

300

©®—® measured throughput (ch 1)
B—M measured throughput (ch 2)
250 - 4 —ZAspecified throughput (ch 1) i
V- — ¥ specified throughput (ch 2) 250

T
O—-ORT channel 1

O—{RT channel 2
A~—ABE channel 3

20055 —f———M=—————————— N _n

150 -

Delivered throughput (KB/s)
Delivered throughput (KB/s)

T—u—u—ﬂ - T o o o O
0 ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘

80 180 280 380 480 580 50 100 150 200 250 300 350
Offered load on channel 1 (KB/s) Offered load on best-effort channel (KB/s)
(a) Isolation between real-time channels (b) Isolation between best-effort and real-time traffic

Figure 6: Traffic isolation: The left graph shows that traffic specification violation on real-time
channel 1 does not affect the QoS for the other real-time channel 2. Channel 1 has the same traffic
specification as in Figure 5 and channel 2 has a traffic specification of B4 = 10, My = 15
KB, R, = 2 messages/second, and deadline of 100 ms. The right graph shows that increasing
best-effort load does not interfere with real-time channel throughput. In this graph channel 1 has
a specification of B4, = 10, M. = 20 KB, R, = 10 messages/second and deadline of 200 ms
and channel 2 has B, = 10, M0, = 5 KB, R, = 5 messages/second and deadline of 100 ms.

the resulting context switching overheads, and the high cost of [PC across the client and server.
Another reason could be the unnecessary copy performed by the lowest layer (ETHDRV) of the CORDS
protocol stack whenever packets from multiple paths arrive in an interleaved fashion. Since this
occurs frequently with multiple channels and under high traffic load, it is likely that this extra copy
is slowing down the receiver significantly; this extra copy can only be eliminated by redesigning
path buffer management in the CORDS framework. More importantly, none of these effects are
accounted for in the admission control procedure, and must be addressed when the communication
subsystem is integrated more closely within the host operating system. We expect to see significant
improvements in the base performance for an in-kernel realization of our prototype implementation.

8 Summary and Future Work

In this paper we have described our experiences with the design, implementation, and evaluation
of a guaranteed-QoS communication service implemented on a contemporary microkernel oper-
ating system with limited real-time supprt. In realizing this service, we designed three primary
components that provide general mechanisms for real-time communication, including support for
signalling and resource reservation, traffic enforcement, buffer management, and CPU and link
scheduling. A fourth execution profiling component is responsible for the essential task of char-
acterizing platform-specific communication overheads. When combined with with specific policies
for admission control and interpretation of QoS parameters, these components can be used to
implement several QoS-sensitive communication models.

Though we implemented the service architecture on a specific platform, many of the meth-
ods employed to circumvent kernel limitations are applicable to other microkernel and traditional
monolithic operating systems. Our experimental results demonstrate that the architectural features
provided in the service are effective in providing QoS guarantees to individual real-time connections

23

400

O—-ORT channel 1
350 - O— RT channel 2
AN— BE channel 3: case 1

V—V BE channel 3: case 2

Delivered throughput (KB/s)

0
50 100 150 200 250 300 350
Offered load on best-effort channel (KB/s)

Figure 7: Traffic isolation and unused capacity utilization: When real-time connections do
not used their specified capacity, best-effort traffic should utilize the excess bandwidth. Channels
1 and 2 have the same parameters as in Figure 6(b) but channel 1 underutilizes its reservation. In
case 1, channel 1 generates 20 KB messages at 5 msg/s; in case 2, it generates 10 KB messages at
10 msg/s. When traffic is very bursty (case 1), packet loss at the receiver prevents full utilization
of unused capacity. We see in case 2, though, that best-effort traffic is able to fully utilize unused
bandwidth with reduced real-time traffic burstiness.

while maintaining fairness to best-effort traffic. These results also reveal deficiencies of a server-
based implementation, especially at the receiving host, that could be largely resolved by migrating
the service to the kernel.

We have tested our prototype with transmission of stored compressed video and playout using
mpeg_play. We plan to conduct further experiments with a number of stored video traces. We are
also currently extending the communication architecture to allow for QoS-adaptation to available
host and network resources. We have implemented an end-host architecture for adaptive-QoS com-
munication services [43] and plan to use components of the architecture presented in this paper to
implement an end-to-end adaptive QoS communication scheme. In Section 6 we described the com-
plex process of parameterizing the overheads of the communication subsystem and target platform.
The efforts involved in detailed manual profiling on each target platform illustrate the need for an
automated approach to profiling and system parameterization. We have, therefore, also begun to
explore self-parameterizing protocol stacks for QoS-sensitive communication subsystems [53].

References

[1] H. Custer, Inside Windows NT, Microsoft Press, One Microsoft Way, Redmond, Washington 98052-
6399, 1993.

[2] D. G. Korn, “Porting UNIX to windows NT,” in Proc. USENIX Winter Conference, January 1997.

2

[3] S. Sommer and J. Potter, “Operating system extensions for dynamic real-time applications,” in Proc.

17th Real-Time Systems Symposium, pp. 45-50, December 1996.

[4] C. Maeda and B. N. Bershad, “Protocol service decomposition for high-performance networking,” in
Proc. ACM Symp. on Operating Systems Principles, pp. 244-255, December 1993.

[5] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. Lazowska, “Implementing network protocols at user
level,” IEEE/ACM Trans. Networking, vol. 1, no. 5, pp. 554565, October 1993.

24

[6]

[10]

[11]

[17]

[18]

[19]

C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves for multimedia operating sys-
tems,” in Proceedings of the IEEFE International Conference on Multimedia Computing and Systems,
May 1994.

)

G. Bollella and K. Jeffay, “Supporting co-resident operating systems,” in Proc. Real-Time Technology

and Applications Symposium, pp. 4-14, June 1995.

T. Barzilai, D. Kandlur, A. Mehra, D. Saha, and S. Wise, “Design and implementation of an RSVP-
based quality of service architecture for integrated services Internet,” in Proc. Int’l Conf. on Distributed
Computing Systems, May 1997.

R. Engel, D. Kandlur, A. Mehra, and D. Saha, “Exploring the performance impact of QoS support in
TCP/IP protocol stacks,” in Proc. IEEE INFOCOM, San Francisco, CA, March 1998.

A. T. Campbell, C. Aurrecoechea, and L. Hauw, “A review of QoS architectures,” Multimedia Systems
Journal, 1996.

A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. C. Verma, and H. Zhang, “The Tenet real-time protocol
suite: Design, implementation, and experiences,” IEEE/ACM Trans. Networking, vol. 4, no. 1, pp.
1-11, February 1996.

D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time applications in an integrated services
packet network: Architecture and mechanism,” in Proc. of ACM SIGCOMM, pp. 14-26, August 1992.

R. Braden, D. Clark, and S. Shenker, “Integrated services in the Internet architecture: An overview,”

Request for Comments RFC 1633, July 1994. Xerox PARC.

J. Wroclawski, “Specification of the controlled-load network element service,” Request for Comments

(RFC 2211), September 1997.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for Differentiated
Services. Internet Draft (draft-ietf-diffserv-arch-01.txt), August 1998.

S. Floyd and V. Jacobson, “Link-sharing and resource management models for packet networks,”

IEFE/ACM Trans. Networking, vol. 3, no. 4, pp. 365-386, August 1995.

L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A new resource ReSerVation
Protocol,” IFEE Network, pp. 8-18, September 1993.

L. Delgrossi and L. Berger, “Internet stream protocol version 2 (ST-2) protocol specification - version

ST2+4,” Request for Comments RFC 1819, August 1995. ST2 Working Group.

K. Nahrstedt and J. M. Smith, “Design, implementation and experiences of the OMEGA end-point
architecture,” IEEFE Journal on Selected Areas in Communications, vol. 14, no. 7, pp. 1263-1279,
September 1996.

K. Nahrstedt and J. M. Smith, “The QoS broker,” IEEE Multimedia, vol. 2, no. 1, pp. 53-67, Spring
1995.

A. T. Campbell, G. Coulson, and D. Hutchison, “A quality of service architecture,” Computer Com-
munication Review, April 1994.

R. Ahuja, S. Keshav, and H. Saran, “Design, implementation, and performance of a native mode ATM
transport layer,” in Proc. IEEE INFOCOM, pp. 206-214, March 1996.

R. Gopalakrishnan and G. M. Parulkar, “A real-time upcall facility for protocol processing with QoS
guarantees,” in Proc. ACM Symp. on Operating Systems Principles, p. 231, December 1995.

D. D. Clark, “The structuring of systems using upcalls,” in Proc. ACM Symp. on Operating Systems
Principles, pp. 171-180, 1985.

C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in hard real-time environment,”

Journal of the ACM, vol. 1, no. 20, pp. 46-61, January 1973.

D. K. Y. Yau and S. S. Lam, “An architecture towards efficient OS support for distributed multimedia,”
in Proc. Multimedia Computing and Networking (MMCN °96), January 1996.

25

[27]

[28]

[43]

[44]

[45]

[46]

D. Mosberger and L. L. Peterson, “Making paths explicit in the Scout operating system,” in Proc.
USENIX Symp. on Operating Systems Design and Implementation, pp. 153-168, October 1996.

F.Travostino, E.Menze, and F.Reynolds, “Paths: Programming with system resources in support of
real-time distributed applications,” in Proc. IEEE Workshop on Object-Oriented Real-Time Dependable
Systems, February 1996.

C. Lee, K. Yoshida, C. Mercer, and R. Rajkumar, “Predictable communication protocol processing in
Real-Time Mach,” in Proc. of 2nd Real-Time Technology and Applications Symposium, June 1996.

C. Waldspurger, Lottery and Stride Scheduling: Flexible Proportional-Share Resource Management,
PhD thesis, Technical Report, MIT/LCS/TR-667, Laboratory for CS, MIT, September 1995.

I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E. Gehrke, and C. G. Plaxton, “A proportional
share resource allocation algorithm for real-time time-shared systems,” in Proc. 17th Real-Time Systems
Symposium, pp. 288-299, December 1996.

P. Goyal, X. Guo, and H. M. Vin, “A hierarchical CPU scheduler for multimedia operating systems,”
in Proc. 2nd OSDI Symposium, pp. 107-121, October 1996.

K. K. Ramakrishnan, “Performance considerations in designing network interfaces,” IEEFE Journal on
Selected Areas in Communications, vol. 11, no. 2, pp. 203-219, February 1993.

J. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven kernel,” in

Winter USENIX Conference, January 1996.

P. Druschel and G. Banga, “Lazy receiver processing (LRP): A network subsystem architecture for
server systems,” in Proc. 2nd OSDI Symposium, pp. 261-275, October 1996.

L. Krishnamurthy, AQUA: An Adaptive Quality of Service Architecture for Distributed Multimedia
Applications, PhD thesis, University of Kentucky, 1997.

A. T. Campbell and G. Coulson, “QoS adaptive transports: Delivering scalable media to the desktop,”
IEEFE Network Magazine, pp. 18-27, March/April 1997.

D. K. Y. Yau and S. S. Lam, “Adaptive rate-controlled scheduling for multimedia applications,” in
Proc. of ACM Multimedia, November 1996.

T. Abdelzaher, E. Atkins, and K. Shin, “QoS negotiation in real-time systems and its application to
automated flight control,” in Proc. Real-Time Technology and Applications Symposium, pp. 228-238,
June 1997.

T. Abdelzaher, S. Dawson, W. chang Feng, S. Ghosh, F. Jahanian, S. Johnson, A. Mehra, T. Mitton,
J. Norton, A. Shaikh, K. Shin, V. Vaidyan, Z. Wang, and H. Zou, “ARMADA middleware suite,” in
Proc. of IEEE Workshop on Middleware for Distributed Real-Time Systems and Services, pp. 11-18,
San Francisco, CA, December 1997.

A. Mehra, A. Indiresan, and K. Shin, “Structuring communication software for quality of service guar-
antees,” in Proc. 17th Real-Time Systems Symposium, pp. 144-154, December 1996.

S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and Implementation of
the 4.3BSD Uniz Operating System, Addison Wesley, May 1989.

T. Abdelzaher and K. Shin, “End-host architecture for QoS-adaptive communication,” in fo appear in
Proc. Real-Time Technology and Applications Symposium, Denver, Colorado, June 1998.

D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in wide-area networks,”
IEFEE Journal on Selected Areas in Communications, vol. 8, no. 3, pp. 368-379, April 1990.

D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-time communication in multi-hop networks,” IEFFE
Trans. on Parallel and Distributed Systems, vol. 5, no. 10, pp. 1044-1056, October 1994.

A. Mehra, A. Indiresan, and K. Shin, “Resource management for real-time communication: Making
theory meet practice,” in Proc. 2nd Real-Time Technology and Applications Symposium, pp. 130-138,
June 1996.

26

[47]

[48]

[49]

[50]

[51]

[52]

[53]

N. C. Hutchinson and L. L. Peterson, “The z-Kernel: An architecture for implementing network proto-
cols,” IEEF Trans. Software Engineering, vol. 17, no. 1, pp. 1-13, January 1991.

L. McVoy and C. Staelin, “Imbench: Portable tools for performance analysis,” in Proc. USENIX Winter
Conference, pp. 279-295, January 1996.

J. C. Brustoloni and P. Steenkiste, “Effects of buffering semantics on 1/O performance,” in Proc.
USENIX Symp. on Operating Systems Design and Implementation, pp. 277-291, October 1996.

B. Murphy, S. Zeadally, and C. J. Adams, “An analysis of process and memory models to support
high-speed networking in a UNIX environment,” in Proc. USENIX Winter Conference, January 1996.

T. Blackwell, “Speeding up protocols for small messages,” in Proc. of ACM SIGCOMM, pp. 85-95,
October 1996.

E. Nahum, D. Yates, J. Kurose, and D. Towsley, “Cache behavior of network protocols,” in Proc. of
ACM SIGMETRICS, pp. 169-180, June 1997.

A. Mehra, Z. Wang, and K. Shin, “Self-parameterizing protocol stacks for guaranteed quality of service,”
available at ftp://rtcl.eecs.umich.edu/outgoing/ashish/selfparam.ps, June 1997.

27

