Ensuring Reasoning Consistency

in Hierarchical Architectures

by

Robert E. Wray, 111

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
1998

Doctoral Committee:

Associate Professor John E. Laird, Chair
Associate Professor Edmund H. Durfee
Assistant Research Scientist Randolph M. Jones
Associate Professor Robert K. Lindsay



ABSTRACT

ENSURING REASONING CONSISTENCY
IN HIERARCHICAL ARCHITECTURES

by
Robert E. Wray, 111

Chair: John E. Laird

Agents often dynamically decompose a task into a hierarchy of subtasks. Hierarchical
task decomposition reduces the cost of knowledge design in comparison to non-hierarchical
knowledge because knowledge is simplified and can be shared across multiple tasks. How-
ever, hierarchical decomposition does have limitations. In particular, hierarchical decom-
position can lead to inconsistency in agent processing, resulting potentially in irrational
behavior. Further, an agent must generate the decomposition hierarchy before reacting
to an external stimulus. Thus, decomposition can also reduce agent responsiveness.

This thesis describes ways in which the limitations of hierarchical decomposition can
be circumvented while maintaining inexpensive knowledge design and efficient agent pro-
cessing. We introduce Goal-Oriented Heuristic Hierarchical Consistency (GOHHC), which
eliminates across-level inconsistency. GOHHC computes logical dependencies in asserted
knowledge between goals rather than individual assertions, thus avoiding the computa-
tional expense of maintaining dependencies for all assertions. Although this goal-oriented
heuristic ensures consistency, it does sometime lead to unnecessary repetition in reasoning
and delay in task execution. We show empirically that these drawbacks are inconsequen-
tial in execution domains. Thus, GOHHC provides an efficient guarantee of processing
consistency in hierarchical architectures. Ensuring consistency also provides an architec-
tural framework for unproblematic knowledge compilation in dynamic domains. Knowl-
edge compilation can be used to cache hierarchical reasoning and thus avoid the delay
in reaction necessitated by decomposition. An empirical investigation of compilation
in hierarchical agents shows that compilation can lead to improvement in both overall
performance and responsiveness, while maintaining the low design cost of hierarchical
knowledge.
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Chapter 1

Introduction

Managers are not confronted with problems that are independent of each
other, but with dynamic situations that consist of changing problems
that interact with each other. I call such situations messes... Managers

do not solve problems; they manage messes.
— R. Ackoff “The Future of Operations Research is Past,”
Journal of the Operations Research Society, 1979.

Henry has a problem. Worse, he doesn’t even know he has a problem. Henry
is a middle-manager at the ACME corporation. Profits are up and last week
Henry’s boss told him he could spend an extra $100K this fiscal year on com-
puter upgrades. The deadline for fiscal year purchases is tomorrow so Henry
has been working almost constantly since his boss told him about the windfall.
Henry distributed some of the work to his own subordinates, indicating to each
what they should spend of the allotment. Unbeknown to Henry, his boss has
already decided to spend half of the $100K on another project. Henry’s boss
forgot to tell him that the amount of money he could spend had been halved.
Henry is working hard on the task he was given, but the real task has changed.
If tomorrow, he executes the purchase order, Henry will be in big trouble — or,
at the very least, $50K over-budget.

Like human organizations, artificially intelligent computer agents are often organized
via hierarchies. The complexity of running a big corporation is distributed among man-
agers and workers with circumscribed responsibilities and specific expertise. Similarly,
agents, autonomous computational artifacts that interact with external systems, can dis-
tribute their work among different processes or subtasks. An office robot might divide its
tasks into processes concerned with physically moving in the environment and sensing the
environment. Little interaction between the two processes is necessary except in partic-
ular circumstances, like obstacle avoidance. Importantly, this division of labor simplifies
the design of agents, thus reducing their cost.

This thesis describes the ways in which communication between different subtasks in
an agent hierarchy can breakdown, similar to the dilemma faced by Henry. Is it Henry’s
responsibility to ask his boss if the money is still available, or the boss’s responsibility
to keep track of what he has told Henry and inform him of any change? A failure to
realize a change in circumstance results in inconsistency in the agent’s — or organization’s
— knowledge. For instance, if we viewed the information content of the ACME corporation



as the sum of the knowledge of all its workers, we would discover an inconsistency: Henry’s
boss believes Henry’s division has $50K to spend, while Henry believes he has $100K.
Inconsistency causes problems when an agent — or organization — acts on inconsistent
knowledge. Henry spends $50K he actually does not have.

We increasingly use agents to perform tasks for us. Robots build cars and explore the
Martian landscape. Software agents filter email and search the world-wide web. Virtual
agents fly aircraft and fight forest fires in real-time simulations. However, in order to give
real responsibility to agents, agents must be able to perform their tasks reliably. Incon-
sistency in agent processing is one source of unreliability in agents. This thesis identifies
problems in consistency that can arise in hierarchically organized agents, proposes some
possible solutions to those problems that provide guarantees of consistency in processing,
and empirically evaluates the most promising solutions. A guarantee of consistency makes
agents more reliable, even in situations for which they were not specifically designed. Be-
cause design costs should be minimized, we prefer solutions that reduce development
expense. Similarly, because agents face time pressure just like Henry, we prefer solutions
that can guarantee consistency efficiently. In the following sections, we introduce the
motivations and goals of this research in more detail.

1.1 Motivation: Limitations of Hierarchical Decomposition

The process of executing a task by dividing it into a series of different subtasks is called
hierarchical task decomposition. Hierarchical task decomposition helps control environ-
mental complexity. For example, an agent may consider high-level tasks such as “find a
power source” or “fly to Miami” independent of low-level subtasks such as “go east 10
meters” or “turn to heading 135.” The low-level tasks are chosen dynamically based on
the currently chosen high level tasks and the current situation; thus the high-level task
is progressively decomposed into smaller subtasks. Hierarchical decomposition can make
it much easier to build agents for execution tasks because the current, active hierarchy
provides a context that identifies important, relevant features of the external situation
for subtasks in lower levels of the hierarchy.! However, hierarchical decomposition also
has two important limitations: 1) an agent needs to ensure consistency in its hierarchical
processing and 2) an agent must execute its tasks efficiently.

1.1.1 Inconsistency in Hierarchical Reasoning

Without careful design, it can be difficult to ensure consistent and efficient reasoning in
agents employing hierarchical task decompositions. Inconsistency in the reasoning process
can lead to irrationality in the agent’s behavior. For example, imagine an exploration
robot that makes a decision to travel to some distant destination based, in part, on its
power reserves. Suppose in some different level of the hierarchy, the agent notices that its
power reserves have failed. If this change is not communicated to the place in the hierarchy
where the travel decision is made, the agent will continue to act as if its full power reserves
were still available. Thus, the agent would be acting irrationally, in direct analogy with

!Throughout this thesis, we assume that the hierarchy grows from top to bottom; thus low-level tasks
are in the lower levels of the hierarchy.



the introductory vignette of the ACME corporation. We have identified two specific
sources of inconsistency that arise when hierarchical context changes as decomposition
progresses: 1) failing to react to changes in the hierarchical context and 2) reacting overly
aggressively; that is, reacting before a change in the hierarchy is fully communicated to
all levels of the hierarchy.

Failure to React to Context Changes due to Persistence

An agent can fail to react to a change in the hierarchical context, leaving a local level
“unsituated” with respect to the higher context. This failure may happen when the agent
retains some previously derived assertion that depended upon assertions of knowledge
no longer in the context. For example, as we described above, an agent might generate
an assumption about a future state in a subtask (future power: high) that depends
indirectly upon conditions in the current context (battery: normal). If the dependent
assertion changes (battery: failure), then the agent must recognize that its assump-
tion of future power depended on this value. Otherwise, its reasoning can become incon-
sistent. In the example, the agent might decide that its planned future state is achievable.
However, it may make this decision based on the assumption that its power supply will
be high at some later time, even though that assumption is no longer supported in the
current state due to the battery failure.

Failure to react to a context change arises when the agent asserts knowledge in a
local state that is persistent. A persistent assertion is one that is maintained in memory
independent of the conditions that led to its creation (its justification). Persistence is nec-
essary because it provides an agent with the ability to maintain internal state independent
of an agent’s perception of the current external situation. Thus, hierarchical architectures
need to ensure reasoning consistency while also allowing persistent, internal state.

Overly Aggressive Reaction to Context Changes due to Multiple,
Simultaneous Threads of Reasoning

An agent can also be too reactive, taking an external act or making an internal derivation
before the context higher in the hierarchy is fully elaborated. For example, an agent might
generate an irreversible motor command (launch-rocket) in a subtask while knowledge
in the higher context was being applied that terminated the subtask (abort-launch). In
this situation, the agent’s assertions of knowledge in the local level can be inconsistent with
the larger context, potentially leading to irrational behavior. An agent is overly reactive
to a context change when the agent responds before all the ramifications of context change
have been determined.

Overly aggressive reaction to a context change arises when the agent can pursue dif-
ferent threads of reasoning in different levels of the hierarchy simultaneously, without
enforcing an ordering on the knowledge. This capability is important because it gives an
agent the ability to bring all knowledge relevant to a given situation to bear simultane-
ously. When only a single thread of reasoning is supported, the results of applying an
initial assertion may deactivate other applicable knowledge, and the agent is prevented
from considering those additional choices. The agent must then depend upon arbitrary
conflict resolution mechanisms for choosing one piece of knowledge over another. Multi-
ple threads of reasoning allows flexibility in making a decision among mutually exclusive



choices. The challenge for hierarchical architectures is to support multiple threads of
reasoning while also ensuring reasoning consistency.

Previous Solutions

Previous methods for maintaining consistency across the hierarchy generally require ad-
ditional agent knowledge. This knowledge is not necessarily required by the task but is
necessary to manage consistency. For example, the example robot agent we mentioned
above would need specific knowledge that told it to remove persistent assumptions about
power when the battery failed. A knowledge designer must identify and formulate this
consistency knowledge for all situations in which inconsistency could arise. This knowledge
is specific to interactions between the information asserted in different subtasks, rather
than simply concerned with executing the task. Thus, consistency knowledge can be very
difficult to create, increasing the expense of agent development. Further, without a guar-
antee of consistency, these knowledge-based solutions can be brittle. In novel situations,
unanticipated by the designer, or when using new architectural capabilities for which
the agent knowledge was not specifically developed, incompleteness in knowledge-based
solutions can lead to irrational behavior and agent failure.

1.1.2 Performance Degradation in Hierarchical Reasoning

The second important limitation of hierarchical decomposition is that the decomposition
itself takes time to compute, potentially making the agent less efficient and responsive.
Agents should be efficient, able to bring knowledge to bear on a complex problem using
tractable processes, and responsive, able to react quickly to changes in the environment.
However, in hierarchical task decomposition, the knowledge for performing a task has
been distributed over the hierarchy. This expansion makes knowledge design easier and
less costly, but may also lead to slower reaction times. If we compare an agent using a
hierarchical decomposition to a hypothetical agent that performed the same task using a
non-hierarchical or “flat” representation, the flat agent would most likely react faster to
the environment because its knowledge is more specific to the external environment and
avoids the overhead necessary for decomposition.? While it may be possible to re-engineer
the hierarchical agent’s knowledge to improve its performance, this re-design takes more
effort, resulting in increased cost.

1.2 Goals and Organization of the Thesis

The overall goal of this thesis is to understand the possible limitations of hierarchical
decomposition and to explore and evaluate some potential alternatives to these limita-
tions while preserving the advantages of hierarchical knowledge. As introduced above,
agents can use specific domain knowledge to avoid inconsistency. We hypothesize that

2This supposition assumes the cost of matching individual pieces of knowledge is the same in both
systems. We assume that the procedure for matching automatically organizes flat knowledge for efficient
matching, even if the flat agent requires considerably more knowledge (e.g., as measured in rules) than
the hierarchical agent. We will explore this assumption in more detail in Chapter 6.



this knowledge can be replaced by procedures in the agent’s processing substrate, its
architecture. Wholly architectural solutions preserve inexpensive knowledge design and
guarantee consistency even in situations not anticipated by the knowledge designer. Thus,
a more specific goal of this research is to solve the consistency problems architecturally,
guaranteeing appropriate reactivity within a level of the hierarchy and thus ensuring rea-
soning consistency.

In Chapter 2, we examine the advantages of hierarchical decomposition for execution
environments. We first introduce an agent framework, then describe how hierarchical
decomposition makes agent design less costly along some dimensions than the design of
a non-hierarchical representation. We also provide specific examples of the limitations of
hierarchical task decomposition outlined above. Chapter 2 emphasizes the assumptions
underlying the research and problems motivating it.

Chapter 3 describes our approach to inconsistency due to persistence. We argue that
previous approaches all fail along at least one of the key dimensions we have outlined
here: knowledge design cost, efficiency, and responsiveness. Qur approach extends truth
maintenance techniques (Doyle, 1979) to capture the logical dependencies between local
knowledge and the higher level context. However, efficiency concerns lead us to con-
sider heuristic solutions to the determination of dependencies. Our heuristic guarantees
reasoning consistency but may retract some assertions unnecessarily.

Chapter 4 focuses on our solution to inconsistency arising from multiple, simultaneous
threads of reasoning. Our solution recognizes that a potential logical dependence exists
between local threads of reasoning and threads of reasoning higher in the hierarchy. Our
solutions prohibits local reasoning when the hierarchical context is changing. Again, we
adopt a heuristic solution to simplify the computation of dependencies between reason-
ing in different levels of the hierarchy. Again, too, the solution ensures consistency but
sometimes sequences reasoning unnecessarily.

In Chapter 5, we evaluate Goal-Oriented Heuristic Hierarchical Consistency (GO-
HHC), our total solution to the inconsistency problems. Having added this solution to
the Soar architecture (Laird et al., 1987), we evaluate our solution along two critical
dimensions. First, we compare the knowledge requirements for GOHHC agents to the
knowledge requirements for agents using knowledge-based solutions for consistency. We
expect that the knowledge representation requirements will be reduced in the new system,
because the consistency knowledge has been incorporated in the architecture’s processing.
Second, because our particular architectural solution is heuristic in nature, and is poten-
tially inefficient (in comparison to more domain-specific approaches), we compare the
performance of GOHHC agents to agents using knowledge-based solutions. Results show
that knowledge requirements are reduced using the architectural approach. Further, over-
all performance often improves under Goal-Oriented Heuristic Hierarchical Consistency
because embedding general consistency knowledge in the architecture is less expensive
than applying task-specific consistency knowledge.

We also hypothesize that agent performance can improve with experience by using
knowledge compilation (Goel, 1991). Knowledge compilation has been used successfully
in static domains and in dynamic domains in which the learning occurs “off-line” from
the execution. For example, STRIPS (Fikes et al., 1972) compiled macro-operators over
a static planning space even though these operators were then used to direct a robot
in the external world. A few systems with on-line, analytic learning have been devel-
oped; however, these have been dependent upon specific representation schemes to avoid
problems resulting from using knowledge compilation in a dynamic environment. These



problems include generating rules that include features that never co-occur (the non-
contemporaneous constraints problem (Wray et al., 1996)) and conflicts between compiled
and original task knowledge (the knowledge contention problem). In Chapter 6, we show
that Goal-Oriented Heuristic Hierarchical Consistency provides solutions to these learning
problems, leading to agents whose performance improves with domain experience. Also,
and as importantly, little or no modification to the agent’s knowledge base is necessary
with the addition of the compilation capability. Thus, knowledge engineering cost does
not increase with the addition of compilation.

Finally, Chapter 7 summarizes the results of this work and outlines some potential
directions for future research. Because the Soar architecture has also been used as a
model of human cognition (Newell, 1990), we also briefly survey the impact Goal-Oriented
Heuristic Hierarchical Consistency may have on this aspect of Soar.



1.3 Contributions
The primary contributions of this thesis are to:

e Provide an understanding of how inconsistency can arise due to persistence in hi-
erarchical architectures. We introduce two new solutions, Assumption Justification
and Dynamic Hierarchical Justification to avoid across-subtask inconsistency arising
from persistence.

e Provide an understanding of how inconsistency can arise due to multiple threads
of reasoning in a hierarchical architecture. We describe a solution, Subtask-limited
Reasoning, that avoids inconsistency arising from multiple threads of reasoning in
different levels of the hierarchy.

e Provide an empirical analysis of Goal-Oriented Heuristic Hierarchical Consistency, a
combination of Dynamic Hierarchical Justification and Subtask-limited Reasoning.

e Introduce a new methodology allowing comparison of a new architecture to a base-
line architecture by comparing relative behavior of agents implemented in the ar-
chitectures.

e Provide an understanding of how inconsistency in an agent’s processing can lead to
specific problems in compilation. We show that Goal-Oriented Heuristic Hierarchical
Consistency provides a guarantee of consistency sufficient for on-line compilation of
subtask processing in the hierarchy.



Chapter 2

Hierarchical Decomposition for Execution Tasks

... thus is the poor agent despised.
— William Shakespeare

In the previous chapter, we outlined some of the advantages and limitations of hier-
archical task decomposition for use in agent-based systems. In this chapter, we examine
these advantages and limitations in greater detail. We focus in particular on the assump-
tions driving our approach to addressing the limitations of hierarchical task decomposi-
tion in execution domains.

2.1 A Framework for Agent Architecture

In this section, we introduce an initial framework for discussing agent architectures. There
are currently many different implemented agent architectures and certainly more unex-
plored ways of building them. The 3T architecture is one instance of these many archi-
tectures, having been used primarily in mobile robot domains (Bonasso et al., 1997). The
3T architecture consists of three layers or “tiers,” with a specific planner (Elsaesser and
Slack, 1994), scheduler (Firby, 1987), and controller (Yu et al., 1994) comprising each tier.
However, the tiers of the 3T architecture have also been discussed as a general functional
decomposition of the capabilities necessary for building interactive agents, independent
of the specific choice of implementation in each tier (Pryor, 1996). Throughout the dis-
sertation, we adopt this abstract notion of an agent with three layers of processing as a
general framework and explore the specific 3T agent framework below.

2.1.1 Three-tiered Agents

Figure 2.1 illustrates the three levels of processing in the 3T agent framework. In the
lowest tier, the agent uses reactive skills to act in the external environment. In a physical
system, such as a mobile robot, the reactive skills may be implemented as a collection
of controllers for specific skills. These skills need not be decomposed into finer-grained
skills nor composed with others at that level. For example, for a robot working in a
business office environment, these skills might include obstacle avoidance, recognizing
objects, and grasping some subset of those objects (e.g., recyclable cans) with a robotic
arm. In a simulated system, the reactive layer simply executes a procedure that simulates
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Figure 2.1: A basic, three-tiered, agent architecture. Adapted from (Bonasso et al., 1997).

the execution of the skill with an appropriate degree of fidelity.

The execution layer executes routine tasks by composing the skills in the reactive layer.
We will call these routine tasks “behaviors.”! For example, for a can collecting behavior,
a robot will use many different reactive skills: recognizing a can, reaching and grasping,
etc. Determining which of the reactive skills should be active (i.e., are salient to the
current task) is the responsibility of the execution layer. The execution layer sequences
the execution of the reactive skills by determining which should be active at any point in
time. Rather than reason about the specific details of a skill like grasping, it can simply
treat grasping as a discrete step, and then activate the appropriate skills, parameterized
with task-relevant features (e.g., “grasp the can at (z,y)”).

The execution layer simplifies the design of the control layer because interactions
between the skills can be minimized. If we assume that the robot is always stationary
when grasping a can, then the obstacle avoidance skill and grasping skills need never be
active simultaneously. Therefore, any potential interaction between these skills in the
design of the respective controllers for each skill can be ignored.

When some part of a task is no longer routine, perhaps due to a resource constraint
(“collect all cans in the conference room before the executive board meeting at 2 P.M.”),
the deliberation or planning layer can be invoked to determine how to achieve the task.
Just as the execution layer abstracted from the specifics of the control procedures to
abstract steps like “grasping,” the planning layer can reason abstractly about behaviors
implemented in the execution layer. Rather than reason about the specifics of grasping

We provide no formal distinction between a skill and behavior and there is none specified in the
literature. In general, we use “skill” to represent procedures that lack agent goal context. For instance,
balancing a bicycle is a skill because the activity can be performed with no reference to the agent’s goal
context. On the other hand, we would call an activity like “ride the bicycle to work” a behavior because
it makes explicit reference to a goal context (“get to work”).



cans or moving between rooms, the deliberative layer can regard collect-cans? as an

atomic action which can be achieved by the execution layer. It can then develop a plan
that ensures that the can collecting task for the conference room is completed by 2 P.M.
This abstraction greatly simplifies the planning process (Sacerdoti, 1974; Knoblock, 1991).

2.2 Skill Activation in the Execution Level:
Hierarchical Task Decomposition

Consider again our robot, on its task of collecting cans in the conference room. Assume
that the robot has received an appropriately parameterized plan in which collect-cans is
an implementable directive from the planning layer. The reactive skills that the agent will
activate include grasping, reaching, obstacle avoidance, etc. How should the agent execute
the can-collecting task in terms of these “primitives?” A great deal of reasoning must
still be accomplished in the execution level, even if no deliberate planning is necessary.
How will the robot go about searching the room for cans? Will it search while moving?
Will it build a map of the room as it finds cans, to determine an optimal collection route,
or simply opportunistically collect each individual can when it finds one? In this section,
we introduce dynamic hierarchical task decomposition, which helps both a knowledge
engineer and an agent manage the complexity of execution tasks.

Hierarchical task decomposition simplifies agent design by breaking a task down into
smaller abstract tasks. The execution layer dynamically decomposes a high-level task like
collect-cans into progressively smaller abstract tasks until a it can initiate a primitive
action, such as “grasp” can be initiated. Because the agent decomposes the task dynam-
ically, the specific decomposition can be tailored to the specific external situation. For
example, rather than relying on a pre-encoded procedure for collecting cans, the dynamic
decomposition allows the robot to pursue a variety of different “search” and “collect”
strategies, determining which is most appropriate as execution progresses. Hierarchical
task decomposition has been used in a great number of execution systems, including the
Adaptive Intelligent Systems architecture (Hayes-Roth, 1990), ATLANTIS (Gat, 1991),
Cypress (Wilkins et al., 1995), the Entropy Reduction Engine (Bresina et al., 1993),
the New Millennium Remote Agent (Pell et al., 1996), the Procedural Reasoning System
(Georgeff and Lansky, 1987; Lee et al., 1994), RAPS (Firby, 1987), Soar (Laird et al., 1987;
Laird and Rosenbloom, 1990), and Theo (Mitchell, 1990; Mitchell et al., 1991), among
others. We will examine some of the advantages of hierarchical task decomposition and a
more concrete example in the following section.

As we discussed in Chapter 1, the goal in this research is to address the limitations
of hierarchical task decomposition for the execution layer. However, two methodological
problems immediately present themselves when considering how to approach an explo-
ration of hierarchical decomposition for execution systems. First, although many archi-
tectures use hierarchical decomposition for plan execution, it may be difficult to develop
a characterization that applies to all architectures. Each architecture supports decom-
position in different ways. What is important in one architecture’s implementation may
be a trivial or even absent part of another. Second, agent design remains largely an
engineering process, with significant effort involved not only in constructing theoretically-

2 Appendix A provides an overview of the typographical conventions used throughout the dissertation.
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motivated components but also solving technical problems in interfaces and control. We
take these problems as constraints on the scope of our exploration and adopt the following
methodological assumptions:3

Assumption 1: Experiment in simulation domains. The difficulty inherent in
building physical agents has the potential to distract from the goal of addressing
the limitations of hierarchical decomposition for plan execution systems. Further,
the complexity of both domains and tasks make complete formalization of the char-
acteristics of hierarchical decomposition intractable. Therefore, we will pursue an
empirical characterization of hierarchical decomposition and limit these investiga-
tions to simulation domains where the engineering effort for the interface is more
easily controlled. Support for this assumption includes (Hanks et al., 1993), which
suggests that simulated “test beds” are a good choice for empirical studies because
the experimenter has control over the underlying domain. As a further control, we
will use simulation tasks designed independently of this research.*

Assumption 2: Focus on the execution level. The complexity of agent design for
interactive, real domains makes simplification necessary. For our empirical investi-
gations, we assume that agents have all the execution knowledge necessary for their
tasks, and thus no planning layer is necessary. A number of successful execution sys-
tems have been built without a planning component (Bonasso et al., 1997; Georgeff
and Lansky, 1987; Pearson et al., 1993; Tambe et al., 1995). We also assume that
our agents can treat reactive skills as primitives by making them directly executable
in simulation. Thus, no control layer will be used. We will be careful to point out
when the specifics of some technique impacts processing in either the planning or
the control layer but we will ignore these layers for the most part in our analysis
and experiments.

Assumption 3: Focus on a particular implementation. Although we are interest-
ed in the general characteristics of hierarchical task decomposition, we will focus
our empirical experimentation in one plan execution system: the Soar architecture
(Laird et al., 1987). We originally became interested in the characteristics and
problems of hierarchical task decomposition through the use of Soar in a number
of different plan execution environments constrained by Assumption 2 (Laird and
Rosenbloom, 1990; Pearson et al., 1993; Tambe et al., 1995)). Given the com-
plexity inherent in both domain and architecture, we decided to limit our actual
implementations to this single architecture. Where possible, we will point out how
some particular analysis applies to other architectures but we will not attempt to
implement our approaches in different architectures.

We will consider further assumptions in later sections of this chapter. However, now
we introduce a specific example of hierarchical decomposition.

3We will introduce additional assumptions later in this chapter. Appendix B provides a summary of
the assumptions underlying this research.

4The specific methodology used in the thesis is discussed in Chapter 5.
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Figure 2.2: Building a tower in the Blocks World.

2.2.1 A Blocks World Example

We now turn to a specific example to illustrate hierarchical task decomposition. This
example is based on the Blocks World domain familiar from planning (Chapman, 1987).5
Rather than form a plan about how blocks should be moved, in this example an agent
must actually move blocks in a simulated world to build towers, walls, etc. Figure 2.2
shows the agent’s input as perceptual features of the world (position of blocks, relations
between blocks, etc.). Also shown are the agent’s task goals. In this case, the task goal is
to build a particular tower (i.e., block-1 on block-2 on block-3 on the table). Primitive
actions are moving the gripper unit steps, and opening or closing the gripper.

Figure 2.3 shows the hierarchical decomposition we will use to illustrate the tower
building task.® The agent decomposes the task of building a tower into two operators,
one for putting blocks on the table, the other for stacking blocks. Each of these operators
is further decomposed into operators for picking up and putting down a block. Both
operators are generally necessary for either put-on-table or stack so lines extend from
both of these highest level operators to each operator in the second level.

The operators pick-up and put-down both involve moving the gripper. Therefore, in
the third level, the primitive operators for moving blocks are connected to both operators

5Throughou‘c this dissertation, we will use the Blocks World for illustrative purposes, both because of
its simplicity and the frequency of its use in illustration in artificial intelligence. We will also empirically
test our solutions in a simulated Blocks World domain slightly more complex than the one presented in
this chapter. However, because we are ultimately interested in more complex domains, we emphasize
that the Blocks World is used primarily for illustration and simple, test bed comparisons. The primary
empirical validation of our approaches will be made in a more dynamic and complex domain.

6Note that this is one of many possible ways in which this knowledge could have been formulated.
It may be a worthwhile research question to develop criteria for developing good or “best” formulations
of some task decomposition. While not a goal of this work, our approach to improving hierarchical
decomposition in Chapter 3 will lead us to consider some decompositions as “better” than others.
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Figure 2.3: A simple hierarchical decomposition of the Blocks World domain. Primitive
operators are shaded. Problem spaces are identified to the right.

in the second level. However, pick-up requires that the gripper actually grab the block; its
decomposition thus includes the primitive operator close-gripper. On the other hand,
putting down a block requires opening the gripper so put-down includes this primitive in
its decomposition.

Figure 2.3 illustrates all the relationships between all the operators in the hierarchy.
However, the actual decomposition at run-time is dynamic. Each subtask is chosen based
on the current situation. As the external situation changes, either through the action
of the agent (endogenous change) or through actions not directly caused by the agent
(exogenous change), the choices of the current operators can be revised and updated. For
example, when the agent is attempting to put a block on the table and the gripper does
not currently hold the block, the pick-up operator will be activated. Once the gripper
holds the block, pick-up is achieved. Put-down will then be activated to initiate the next
step in the task.

Table 2.1 provides a few examples that illustrate how the external situation drives the
choice of the current operators in the decomposition. We use abstract rules to illustrate
the knowledge because it is easy to understand and similar to the actual implemented rep-
resentation that we will use in later experiments. However, other representations, such as
LISP procedures or PROLOG Horn clauses could be used as well. Rule 1 simply recog-
nizes that the first step in building a tower is placing the bottom-most block so it creates
put-on-table. In Rule 2, pick-up is created as an implementation of put-on-table if
the block to move is clear. Finally, Rule 3 executes the step-right primitive for pick-up
when the gripper is already higher than and to the left of the block to be moved. In
the situation in Figure 2.2, Rule 1 would fire with block-3 bound to z. Then, Rule 2
would fire, instantiating an operator to pick up block-3. Rule 3 would fire to step the
gripper to the right. After the move terminated, Rule 3 would then fire again, because
the conditions of this rule would be satisfied again. At this point, other rules would fire
to close the gripper over the block and execution of the task would continue.

Each level of the decomposition in a hierarchical system corresponds to a problem
space (Newell, 1980). A problem space is simply a space that the agent creates to search
for a solution. Three different problem spaces are represented in this example. Each
problem space represents a body of knowledge insulated from the others. For example,
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1. IF Task-Goal(Tower(x,y,z))
Not (On-Table(x))
THEN CreateGoal(Put-On-Table(x))

2. IF Goal (Put-0On-Table(x))
Clear(x)
THEN CreateGoal(Pick-Up(x))

3. IF Goal (Pick-Up(x))
Left-0f (Gripper, x)
Higher (Gripper, x)
THEN Execute(Step(right, Gripper))

Table 2.1: Hierarchical Knowledge for Executing the Task in Figure 2.2

the possible operations in the STRUCTURE problem space are put-on-table and stack.
Intelligent applications of these two operators will lead to the accomplishment of the task
goal. However, how the agent should accomplish these tasks is left for other levels in the
hierarchy. Similarly, the GRIPPER problem space concerns only the actions of the gripper
— moving, opening and closing. Knowledge in the hierarchy above influences which action
is chosen but the knowledge within the gripper space is largely independent of the goals
higher in the hierarchy. At the level of maneuvering the gripper, the agent generally need
not be concerned if it’s working with blocks, balls, or an assembly line.

2.2.2 Hierarchical Architectures

In the simple rules in Table 2.1, the agent creates new subtask operators just like other
facts in the knowledge base except that the subtask inferences are “goals.” Some hierarchi-
cal systems treat goals as a distinct memory, and have special processing for the creation
of goals (selection of operators), as opposed to just simple inference. One of the reasons
for this special memory is that inferences can be associated with a goal. For example, if an
agent were in the process of putting down a block on the table, it might need to remember
the empty space on the table, where it plans to place the block.” The calculation of the
empty space is part of the implementation of the put-down operator. Therefore, the agent
stores this inference with the put-down goal. Conceptually, the agent’s memory can be
divided into a number of distinct pieces, each representing a currently active operator in
the hierarchy, as illustrated in Figure 2.4. Thus, in the rules of Table 2.1, the CreateGoal
action in the rules does not simply create a new symbol in memory, but rather a distinct
memory.

One of the advantages of this memory structure is that the inferences are localized
to dependent goals explicitly. In Figure 2.4, we assume the agent’s architecture includes
a set of processes for managing this hierarchical memory. When a goal is achieved (or
abandoned), this hierarchy management module can efficiently remove all the inferences
specific to the removed goal. Thus, if the put-down operator were interrupted, the empty

"We consider this computation in more detail in Section 2.2.4 and in Figure 2.6, page 19.
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Agent Memories

Figure 2.4: Hierarchical architectures provide special processes to manage hierarchical
memories.

calculation could be automatically removed as well, without the overhead of a dependency
calculation such as those used in truth maintenance systems (Doyle, 1979). We will have
more to say about the capabilities and limitations of these processes in later chapters.
However, for now, we define an hierarchical architecture as an agent architecture that
divides the agent’s memory into hierarchically-organized units and includes processes for
managing the creation, revision, and removal of the individual memories.

2.2.3 Advantages of Hierarchical Task Decomposition for Execution

Our Blocks World example is simple enough that hierarchical decomposition, and special
agent processes to manage the hierarchy, may seem unnecessary. Indeed, it would be
relatively easy to design an agent for the Blocks World that used a non-hierarchical
representation. For example, we could design an agent that simply mapped external
world states to actions, in the spirit of a number of reflerive architectures (Agre and
Chapman, 1987; Brooks, 1986; Schoppers, 1986). While later in this research we will
consider tasks that would be difficult or impossible to implement in a reflexive agent
architecture, we will use these non-hierarchical or “flat” agents for comparison purposes
for two important reasons. First, flat agents will not experience the same problems in
reasoning consistency that hierarchical agents do. The inconsistencies in hierarchical
agents arise due to incongruities between the hierarchical memories, as we will explore
below. Because the flat agents lack these hierarchical memories, they will not suffer from
these sources of inconsistency. Second, a flat agent is generally able to respond more
quickly to the external situation than a hierarchical agent, thus providing (potentially)
better performance. Based on these characteristics, we will use these non-hierarchical
agents as a potential alternative to hierarchical agents.

Hierarchical decomposition reduces the complexity of planning from exponential to

15



linear in the size of the problem (Korf, 1987). This advantage has made hierarchical
decomposition a well-researched and frequently-used technique in classical planning (Sac-
erdoti, 1974; Tate, 1976; Erol et al., 1994). We argue in this section that hierarchical
task decomposition simplifies knowledge design in execution domains, in comparison to a
flat representation. For both planning and execution, the gains provided by hierarchical
decomposition are based on the following assumption.

Assumption 4: Focus on tasks that are (nearly) decomposable. Hierarchical
task decomposition is based on the premise that tasks can be broken down into
discrete units that have little interaction with other units. Simon (1969) argues
that hierarchic structure is a natural consequence of evolutionary processes; a hi-
erarchy simply provides stable, intermediate structure during the design process,
offsetting increasing complexity. This intermediate structure gives hierarchical de-
composition the advantages for execution we describe below. In this research, we
assume that the tasks we will be addressing are nearly decomposable. A fully de-
composable system has no interaction with other units in the system while a “nearly
decomposable” system has limited interaction among different units. For example,
in the Blocks World, the tasks of picking up a block and putting a block down
have little interaction; each can be executed with no reference to the other. On
the other hand, the put-down operator will need to know where to place the block,
leading potentially to some interaction with an operator that determines the right
space. The prevalence of planning and execution systems suggests this assumption
is a reasonable one, although it does suggest that our methods and results will not
apply to non-decomposable tasks.

For execution, rather than planning, the agent already has the knowledge needed to
execute its tasks. It need not search through hypothetical states in search of the right
sequence of actions as in planning. Instead, its chief responsibility is responding to the
current situation by activating the knowledge most appropriate to the current situation.
In other words, the execution system attempts to optimize knowledge search rather than
problem search (Newell, 1990, pp. 98). Thus, the motivations for using hierarchical task
decomposition in the execution layer are different than for using it in the planning layer.
We outline some of these motivations below.

Natural Representation

A hierarchical decomposition of knowledge is a very natural way to represent the task.
Even though the robot in the Blocks World cannot directly implement operators like
stack, we can think of this goal/operator as a natural subtask in a tower-building task.
Obviously, when the representation is strongly matched to the task, then the knowledge
design will be easier than compared to a non-natural representation. In this latter case,
representation requires a non-trivial transformation from the task.

Knowledge Sharing

With hierarchical decomposition, the same knowledge can be used for many different tasks.
For example, consider the Blocks World we introduced in Figure 2.3. The knowledge
specific to picking up and putting down blocks can be used for many different goals.
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In this specific task, these operators are used for both the stack and put-on-table
operators. However, the operators in the BLOCK problem space can be shared among
any higher level operators in STRUCTURE or something else, as long as the task concerns
moving blocks. Because the BLOCK operators are largely independent of these higher
level tasks, the same knowledge for moving the block can be used for the different goals.
Thus, sharing makes knowledge design easier because lower-level knowledge needs to be
designed only once, rather than re-implemented for each higher-level goal.

Simplification of Knowledge

Hierarchical decomposition can also simplify the representation of individual pieces of
knowledge. The currently active operators provide a local context for determining which
knowledge to apply. For example, Rule 3 in Table 2.1 does not need to test that the
block it is moving toward is clear. That test is implicit in its test of pick-up. Therefore,
for an appropriately constructed decomposition, the knowledge specific to a subtask like
“moving” need not examine the entire state space to determine what action should be
taken.

Modularity

As we mentioned previously, decomposition provides a way of insulating different aspects
of knowledge from each other. In the Blocks World, knowledge in the STRUCTURE problem
space can be designed and implemented with little consideration as to how the operators
in the lower levels would be realized. This modularity provides an advantage in knowledge
design because if some aspect of the task changes, the change may affect only a small part
of the task knowledge. For instance, suppose a new technology allowed grippers to move
directly to an (x,y) coordinate rather than simply stepping in a single direction. In this
case, every rule that generates a movement command (e.g., Rule 3 in Table 2.1) must be
replaced. However, because movement is confined to the GRIPPER problem space, only
knowledge in this problem space needs to be modified. A flat representation for the same
task could require significantly more modification.

Another advantage of modularity is that the knowledge in different problem spaces
can be developed independently. Because the knowledge is localized, many developers can
be working on different parts of an agent’s knowledge base simultaneously. Further, mod-
ularity facilitates re-use in different systems and replacement. Modularity is an important
aspect of object-oriented methodologies for these reasons (Cox, 1986; Martin, 1993).

However, the modularity of the task knowledge is not complete. A dependence exists
between different levels of the hierarchy. In particular, the higher levels of the hierarchy
provide a context for lower-level problem-solving. If pick-up is chosen as the operator in
the BLOCK problem space, then the implementation of pick-up in GRIPPER is impacted.
The number of relevant operators in GRIPPER is reduced and the information associated
with the instantiated pick-up operator provides parameterization to the operators in
GRIPPER. The lack of complete modularity will be critical to our later work because the
dependencies between levels will lead to potential inconsistency in the agent’s knowledge
base.

The result of these advantages is that hierarchical decomposition makes it much eas-
ier to build agents in comparison to agents with flat representations, especially as task
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Engineering Effort

Task Complexity

Figure 2.5: Hypothetical relationship between task complexity and engineering effort for
hierarchically-decomposed tasks.

complexity increases. We use “task complexity” as a shorthand for a number of factors
including the steps required to complete a task (number of primitive actions), the dynamic
nature of a task, uncertainty in executing the task, resource bounds, and the capabilities
necessary for a task (coordination, communication, fault-tolerance and meta-reasoning,
etc.), among others. The Blocks World task we presented above can be considered rel-
atively simple because it requires few steps, has no exogenous components, includes no
explicit resources bounds, etc. However, we could also argue that the three-block Blocks
World was more complex than a two-block world because it requires more steps, on av-
erage, to build the larger tower and all the other properties are the same between the
two domains. The formal characterization of domain properties for software systems is
a nascent and growing field of research in computer science (Prieto-Diaz and Arango,
1991). However, currently there is no method to quantitatively describe the complexity
of domain and task; we therefore rely on relative, qualitative comparisons.

We hypothesize that the effort to build an hierarchical agent is bounded by a linear
function of task complexity, as illustrated in Figure 2.5. This curve is based solely on
intuitions provided by the advantages we outlined above and we will not try to empir-
ically validate this hypothesis in the dissertation. In general, metrics used in software
engineering provide only rough approximations of engineering effort, (e.g., person hours,
source lines of code (Brooks, 1995)) and the complexity of tasks usually varies along many
dimensions, as we described above. However, the important point from this diagram is
that as the complexity of a task increases, so does the engineering effort necessary to
implement a task. Further, because effort is closely correlated to cost, we assume that
a driving motivation in agent design is to minimize effort and thus keep costs low. This
observation leads us to another assumption:

Assumption 5: Engineering effort should be minimized. Animportant evaluation
criterion in our work will be to ask how an approach or solution impacts the knowl-
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Figure 2.6: Knowledge-based methods can be brittle when the dynamics of the environ-
ment change.

edge design or engineering effort associated with building an agent for a particular
task. Solutions that minimize effort with acceptable task performance will be pre-
ferred over solutions that require more engineering effort. Because engineering effort
is difficult to measure precisely, our experimental methodology will rely on relative
measures of engineering effort rather than absolute ones. For instance, we will mea-
sure the number of rules required for particular tasks and compare this measure of
effort to those of other approaches for the same task. However, we will not compare
the number of rules for one task versus another because rules may not be a good
measure of effort across different tasks.

2.2.4 Limitations of Hierarchical Task Decomposition

Hierarchical decomposition also exhibits some disadvantages. Our perspective is to view
these disadvantages as limitations, and then develop approaches that will allow us to
minimize the impact of the limitations. In this section, we elaborate the two limitations
outlined in Chapter 1. In the following section, we then present our approach to addressing
the limitations.

Agents Require Knowledge to Maintain Consistency

A hierarchical decomposition provides a context for local decision-making that makes
knowledge design simpler because the knowledge at a specific point in the hierarchy can
ignore many of the specific details of the higher level hierarchy. However, this simplifi-
cation also means that with respect to any level in the hierarchy, there are two contexts:
the one represented by the external state, and the one represented internally that includes
all previous knowledge in different levels of the hierarchy (active assertions). Because the
agent relies on the internal context to simplify its knowledge, the internal and external
states must be kept consistent or the agent can behave irrationally.

Consider, for example, the Blocks World situation shown in Figure 2.6. As we men-
tioned previously, in each hierarchical level, knowledge for the local goal can be asserted.
In the diagram, the agent is placing block-2 on the table, in order to later put block-3
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on the table and begin the goal tower. The put-on-table(2) operator does not concern
itself with where block-2 is placed on the table. However, put-down, which is currently
implementing part of the put-on-table process, does need to make sure the space in
which it is putting the block is actually empty. We assume it has computed that the
space underneath the gripper is empty. This computation may not be directly observ-
able — it may need to be derived from a number of other facts in the domain and stored
in memory. Now, assume that some other agent suddenly places block-3 underneath
block-2, as shown in the figure. If the put-down operator has already determined that
the space below is empty, then there is an inconsistency between the hierarchical context
(which says that (z,y) = (2,1) is a good place to put a block) and the external world
(which has changed such that (2,1) is no longer a valid place to place the block).

If the agent fails to recognize that block-3 has moved, it will behave irrationally,
attempting to put block-2 into the same location occupied by block-3. This behavior
is irrational, or not consistent with the agent’s goals and knowledge, because we assume
the agent has knowledge that indicates that blocks should not be placed in positions
already occupied by other blocks. The inconsistency arises because the agent has failed
to recognize the previously-derived assertion (empty) is no longer supported in the current
situation. Failure to react to a context change arises when the agent makes assertions
in a local state that are necessarily ungrounded. Such persistence is necessary because it
provides the agent the ability to maintain internal state independent of an agent’s current
external situation (e.g., to maintain a sensor reading when the sensor is temporarily
occluded) and to modify that internal representation non-monotonically.

Other sources of inconsistency include multiple, simultaneous threads of reasoning,
or the ability to pursue many different directions of reasoning simultaneously. Suppose
in our example that block-3 is moved into its new position while the agent prepares to
execute the command to move block-2 into that space. Suppose also that the agent
knows to remove the empty assertion from memory. In this example, the agent will be
pursuing one thread of reasoning in the put-down subtask that will lead eventually to
the recognition that the desired location is not empty while another thread of reasoning
in a lower level of the hierarchy uses the existing empty assumption to initiate an action
that will lead to failure. The inconsistency arises because the second (lower) thread of
reasoning is actually dependent on the results of the first (higher) thread of reasoning.

In both of these examples, the inconsistency can be avoided by adding additional
knowledge to the agent. For instance, to avoid inconsistency due to persistence, knowl-
edge such as “when a block moves, recalculate the empty space and remove assertions
that depend on the current empty space” would avoid the problem. Similarly, to avoid
inconsistency from multiple threads of reasoning, knowledge could be added that recog-
nized the dependence between two seemingly independent threads of reasoning (“only
move a block into an empty space when certain that the empty calculation is not being
updated.”). In these examples, inconsistency is avoided by adding agent knowledge that
manages the interactions between changes in the context.

However, this additional knowledge can be difficult (and thus expensive) to develop.
First, this knowledge is not a natural part of the task representation. For example, this
knowledge is motivated by the frame problem (McCarthy and Hayes, 1969). That is,
it describes how to change previous assumptions as the world changes. In general, this
knowledge is necessary in both flat and hierarchical systems. However, in the hierarchical
system, this consistency knowledge is not limited to a single level of the hierarchy; instead,
it must examine multiple levels of the hierarchy and determine what types of potential
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Figure 2.7: Relationship between task complexity and engineering effort.

interactions are present.

Knowledge that crosses levels of the hierarchy can defeat the advantages we presented
earlier for hierarchical decomposition. Most importantly, this knowledge is not confined
to a single level of the hierarchy and is thus not modular. Instead, the knowledge must
consider the currently asserted knowledge in multiple levels of the hierarchy. Consistency
knowledge makes the knowledge base less hierarchical and more “flat” because the agent
has to know and reason about the interactions between different levels in the hierarchy.
A lack of modularity makes the maintainability of software more difficult (McGregor and
Sykes, 1992). Indeed, a number of presentations at a recent meeting of researchers using
the Soar architecture (Schwamb, 1998) stressed that, for large systems, maintainability
and re-use were difficult to achieve, even though Soar systems are organized around modu-
lar problem spaces. One source of this lack of maintainability is the consistency knowledge
necessary in current version of the architecture.

Figure 2.7 represents the hypothesized effect this knowledge has on the engineering
effort associated with employing an agent in increasingly complex domains. While we
expect the knowledge effort to always be greater than that of an agent that did not
need this knowledge, if the interactions between the different levels are combinatorial, the
effort could increase substantially, perhaps even exponentially. Thus, one of the primary
advantages of the hierarchical task decomposition is potentially defeated by the necessity
of consistency knowledge.

Another disadvantage of representing consistency knowledge explicitly in the agent is
that it provides no guarantees. An agent can fail if it does not have consistency knowl-
edge for some situation. For instance, in the Blocks World example, it is reasonable to
assume that blocks do not spontaneously move. Under this assumption, the knowledge
designer probably would not have included consistency knowledge to handle this specific
circumstance. This lack of a guarantee is a drawback because knowledge is often created
with certain characteristics of the domain in mind. If these characteristics change, or turn
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out to be different than expected, the knowledge can easily fail. If blocks can move in
the blocks domain, the agent with the knowledge presented here can no longer perform
its task without error. Thus, an agent’s robustness in a new situation is limited by the
situations the knowledge designer explicitly anticipated.

Hierarchical Task Decomposition Incurs A Performance Cost

Another potential limitation of hierarchical execution is that the decomposition from the
original task to primitive actions requires time. For example, the reflexive, flat agent we
introduced earlier can generate a primitive action every reasoning cycle. However, in the
hierarchical approach, each action is generated only after the decomposition is completed.
In the worst case, an action at depth n in the hierarchy is generated only after n cycles,
or O(1) in the reflexive system vs. O(n) in the hierarchical system. For time-critical
behavior in complex environments, where the depth of the hierarchy could be arbitrarily
large, such decomposition may not be feasible, especially as the speed with which the
environment demands action approaches the cycle time of the underlying system.

2.3 Addressing the Limitations of Hierarchical
Architectures

Can these limitations of hierarchical decomposition be circumvented? This dissertation
describes efficient, general mechanisms that obviate the need for explicit, across-level,
consistency knowledge in the agent. Our solution to the consistency problems, in turn,
makes unproblematic compilation over the decomposition possible. We use compilation
to improve performance when an agent encounters similar execution tasks in the future.
The following sections outline these hypotheses in more detail. Chapter 3 describes our
approach to the inconsistency due to persistence. Chapter 4 focuses on our solution to
inconsistency arising from multiple threads of reasoning. Chapter 6 then explores the use
of compilation to improve performance with experience.

2.3.1 Ensuring Consistency

We hypothesize that the “consistency knowledge” we described above can be embedded in
an agent’s underlying processes, rather than having to be included in the agent’s domain
knowledge. The resulting knowledge engineering costs will decrease for agent development
in a specific domain, providing a much closer approximation to ideal engineering costs we
described in Figure 2.5. The challenge in developing these solutions will be to find domain-
independent approaches that are also efficient and thus do not degrade performance. We
provide details of the specific methodological approaches in Chapters 3 and 4. Chapter 5
summarizes our empirical evaluation of these solutions.

Assumption 6: Development cost can be amortized over many applications.
An architectural solution presents a dilemma because it is generally easier to de-
velop a knowledge-based solution for a specific task than it is to develop a general
solution applicable to all tasks. Thus, this approach appears to be in conflict with
Assumption 5. However, we assume that there will be many agents developed
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using the architectural solution. Thus, the effort necessary for developing a gen-
eral solution can be amortized over the development of all the agents using the
architectural solution.

2.3.2 Improving Performance Through Compilation

We hypothesize that compilation can be used to improve agents that use hierarchical
decomposition. Compilation is a speed-up learning mechanism that caches the results
of reasoning (Anderson, 1987; Goel, 1991; Laird et al., 1986b). In an execution system,
when a primitive skill is activated, the reasoning that led to the activation of the primitive
may be compiled, resulting in a new piece of knowledge in the agent’s knowledge base. In
future similar situations, the newly compiled, more reactive knowledge recognizes the task
situation as the one that previously led to the generation of a specific primitive and gen-
erates the primitive immediately, making further decomposition unnecessary. Thus, the
agent pays the time-price for the decomposition to a primitive in a specific circumstance
only one time.

Assumption 7: The world has regularities that make learning useful. We
assume that the world has goal-relevant regularities (Laird et al., 1996). A block
stacking robot regularly encounters situations in which it must stack blocks. The
can-collecting robot regularly encounters situations in which it must move, search,
and grasp cans. Regularities in the task domain provide the impetus to learn from
experience because it is reasonable to assume similar situations will be encountered
again.

The knowledge base remains manageable in this approach as well. The agent begins
with a hierarchy of problem spaces, as introduced in the previous section. As the agent
acts in its world, new rules are added to the knowledge base incrementally, based on the
problem situation and the primitive action that was generated. Thus, actual experience
guides which of a possibly combinatorial number of rules is compiled. Furthermore, when
the agent lacks a reactive rule for a particular situation, it can always fall back to the
hierarchical knowledge, generate a primitive, and then compile that experience to generate
another new, reactive rule.

There are a number of issues that must be solved before compilation can be used in
dynamic domains. We show in Chapter 6 that the solutions to the consistency problems
we develop in Chapters 3 & 4 lead also to solutions to the non-contemporaneous con-
straints and knowledge contention problems for compilation. With these solutions, we
provide empirical evidence in a number of task domains that shows compilation improves
performance when an agent repeats a (similar) task following compilation. Significantly,
this compilation occurs in a completely dynamic domain, and requires little additional
knowledge engineering effort to enable the learning.

23



Chapter 3

Failing to React to Context Changes
Due to Persistence

Do I contradict myself?
Very well then I contradict myself. — Walt Whitman

In previous chapters, we introduced two ways in which inconsistency could arise in a
hierarchical system. In this chapter, we explore the first of these problems: what happens
when an agent fails to respond to a change in its hierarchical context. Because our goal is
to embed consistency knowledge in the agent’s processing, we begin by discussing truth
maintenance systems (TMS), which are used to maintain consistency in non-hierarchical
architectures. We then introduce several examples to illustrate the limitations of standard
truth maintenance techniques in hierarchical systems.

These limitations lead us to propose two new approaches.! Assumption Justification is
the more conservative approach, ensuring minimal backtracking in execution, but is com-
putationally expensive. On the other hand, Dynamic Hierarchical Justification is much
less expensive to implement, but sometimes has to regenerate reasoning unnecessarily. In
other words, Assumption Justification can lead to inefficiency in the architectural process-
ing, while Dynamic Hierarchical Justification can cause inefficiency in the execution of a
task. We examine these costs in detail and argue that Dynamic Hierarchical Justification
is potentially a more efficient solution in execution domains, provided the implemented
decompositions are nearly decomposable. Chapter 5 provides empirical evidence that
shows dynamic hierarchical justification contributes to a reduction in engineering effort
and improvements in performance in comparison to knowledge-based techniques.

!These solutions are also described in (Wray and Laird, 1998).
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Inference Rules Prior Assertions New Assertion(s)

ANB — D A,B D no contradiction (consistent)

A,C —D no contradiction (consistent)

C —-D B,C =D o contradiction (consistent)
A,B,C -D,D contradiction (inconsistent)

Table 3.1: A simple example of how inconsistency can arise in a knowledge base

3.1 Reasoning Consistency in Non-hierarchical Systems:
Truth Maintenance

Suppose an agent has in its knowledge base the two simple inference rules represented
in the left column of Table 3.1. The result of an inference is an assertion: a new fact
that the agent can treat a being true in the world. Based on the contents of memory, the
prior assertions, the agent can infer D, =D, both, or neither. As long as only two of the
prior assertions are in memory, the resulting assertion added to the knowledge base does
not contain a contradiction and the knowledge base remains consistent. However, if all
three of the prior assertions are expressed simultaneously, both inference rules will apply,
and the resulting knowledge base will contain a contradiction, as shown in the last row of
Table 3.1. However, these rules are not necessarily inconsistent. For example, A and C
may never occur simultaneously in the domain.

Inconsistency need not arise directly from inconsistencies in the asserted knowledge.
Consider an agent that never asserts A, B, C simultaneously. Inconsistency in this agent’s
knowledge base can still arise through the agent’s processing. For example, bringing
knowledge to bear for execution (or problem solving, in general) takes time. What is true
at one point in time may not be true in another. Suppose at some time ti, the prior
assertions are A, B. The first rule in Table 3.1 then applies, resulting in the data base of
assertions: A, B, D. Now, suppose that at some later time, #2, the world changes so that
the A is retracted and C is asserted. The prior assertions are now B,C. The second rule
in the table asserts, =D. The data base of assertions should now include only B, C,-D.
The problem for the agent is to recognize that the conditions for assertion D are no longer
supported, and withdraw that assertion from the data base.

Truth maintenance systems (TMS) (Doyle, 1979; McDermott, 1991; Forbus and deK-
leer, 1993) were developed to solve this problem in non-hierarchical systems. A simple
representation of an agent utilizing a truth maintenance system is illustrated in Figure 3.1.
Domain knowledge is used to create assumptions. An assumption is simply a fact that
the inference engine wants to treat as being true in the world, even though such a belief
is not necessarily entailed by the current state. For example, inputs are assumptions be-
cause the agent cannot usually determine their basis. Another example of an assumption
is a hypothetical assertion. In the Blocks World, suppose that the agent’s perception
is limited to the column over which the gripper currently resides. When attempting to
put a block into an empty space on the table, the agent might assume that a particular
space, unsensed at the moment, was empty. Because it cannot derive this property in the
current situation, it assumes it and acts as if it were true. The agent enables assumptions
by informing the TMS that it should treat the assumption as held belief.

Importantly, in order to maintain reasoning counsistency, domain knowledge must be
formulated such that no enabled assumptions are contradictory. This requirement is the
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Figure 3.1: A non-hierarchical agent employing a truth maintenance system.

same one we reviewed in the previous chapter. If some assumption in the knowledge
base can become inconsistent with the current input, then knowledge must recognize that
situation and remove the assumption. The difference in a non-hierarchical agent is that
there is only a single data base of assertions; the knowledge is not divided among different
hierarchical memories. Thus, a flat agent requires no across-level consistency knowledge
because there are no hierarchical levels for knowledge to cross.

The problem we introduced above is solved through a second class of assertions, en-
tailments. The inference engine also uses its domain knowledge and assumptions to make
these additional inferences. Entailments differ from assumptions because they can be
justified by prior assertions (assumptions and entailments). In the Table 3.1 example,
when D is added to the data base at ¢, it can be justified by A, B. The inference engine
communicates justifications to the TMS. The agent continues making inferences and may
non-monotonically change its assumptions. For instance, the world can change (now C
is true) or an assumption can be disabled (e.g., if the gripper moved to a hypothetical
empty space and discovered a block there). The TMS recognizes when an entailment is
no longer justified, and the entailment is removed from the set of currently believed facts.
Because D is justified by A, B, when A is removed, the TMS also removes D.? Or, when
the agent removes the assumption that the Blocks World space was empty, entailments
that suggested that space would be a good candidate location for a block are retracted.
Thus, the agent relies on its processing via the TMS to maintain the consistency of en-
tailments while the agent uses explicit domain knowledge to ensure consistency among
the unjustified assumptions.

2Conceptually, D is removed. In many TMS implementations, a removed assertion is retained in
memory but labeled as “OUT.” Assertions labeled “IN” are currently justified, while those labeled “OUT”
are not justified by the current assumptions.
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3.1.1 The Necessity of Persistence

Naively, it may seem the consistency limitations we previously introduced can be solved
solely through entailment and justification using a TMS. Indeed, Theo (Mitchell et al.,
1991), a hierarchical plan execution system, does not experience the problem we describe
in this chapter. However, Theo can only reason and act about what it can directly sense.
The persistence of its internal inferences is limited by its sensors. If Theo needed to put
out a fire in the kitchen and went into the basement to get a fire extinguisher, it would
forget about the fire because it no longer sensed the fire.

Although there has been some research in structuring the external environment to
provide persistent memory (Agre and Horswill, 1997), internal, persistent memory is
necessary for many agent domains. Consider three reasons. First, as we saw above,
agents sometimes need to “remember” an external situation or stimulus, even when that
perception is no longer available. Second, some assertions may need to reflect hypothetical
states. Such assertions are assumptions because a hypothetical inference cannot always be
grounded in the current context. We saw an example of such an assertion in the previous
section, when the agent assumed an empty space when unable to sense one directly.
Third, sometimes the result of an inference changes one of the inputs to the inference
(i-e., as in non-monotonic reasoning). As an example, consider the task of counting. Each
newly counted item replaces the old value of the count. In many cases, entailment is
sufficient for counting. However, as we will see in an example in the next section, when
the determination of which items to count is itself a complex procedure involving many
steps, persistence is necessary for this task.

Assumptions are the persistent features in an agent utilizing truth maintenance meth-
ods for consistency. Although most often assumptions reflect hypothetical reasoning about
the world (hence “assumptions”), assumptions can also be utilized for all the functions
we described above. We will see further use of assumptions as persistent memory in
the following section, where we begin to explore the problems arising in reasoning when
persistent assumptions are utilized in a hierarchical system.

3.2 Failing to Respond to Changes in Context

In the Blocks World example we presented in Chapter 2, we described inconsistency arising
when a block moved into a space the agent has formerly calculated to be empty. In this
case, if the relation empty needed to be calculated as an assumption, then the system would
experience the problem as we described. However, one could also potentially design an
agent such that the calculation of empty relation could be made an entailment. Truth
maintenance systems are sufficient for maintaining the consistency of all entailments, and
thus making this change would solve the problem in the Blocks World. However, as we
discussed above, many inferences cannot be fully justified. In this section, we describe the
role of truth maintenance in hierarchical agents. Problems occur in these agents when the
agent fails to respond to a change in the hierarchical context that leaves a local, persistent
assumption inconsistent with the hierarchical context. In order to illustrate the problem
more concretely, we also consider an example from a more complex domain.

27



tm

EntaJIments D A

Inference /1 Entallments F

_ N T L___, T™MS
Engine | |, @
/ ————————— L___
I Entailments F>
L \/ // ;‘"’ “““ Co-
!\ N (/ e Entallments \,j>
N "——--, ————— "
AN \ \\ / / //*, Entallments

\ - ! /

/

Figure 3.2: A hierarchical agent. Assumptions and entailments are localized to subtasks in
the hierarchy. The hierarchy maintenance module determines when new subtasks should
be created and when old subtasks should be retracted/deleted.

3.2.1 Assumptions in Hierarchical Agents

The basic agent framework we introduced in Figure 3.1 can be extended to hierarchical
architectures, as shown in Figure 3.2. In such an agent, the inference engine and TMS
are chiefly identical to the non-hierarchical agent. For convenience, the specific actions of
the inference engine and TMS are not represented, although the functions are the same
as in Figure 3.1.

When the agent initiates a new subtask, it creates a new level that will contain as-
sumptions and entailments local to the subtask, just as we described in Figure 2.4 in
Chapter 2. Figure 3.2 includes a new component, “hierarchy maintenance,” which is
responsible for creating and retracting levels when subtasks begin and terminate. The
diagram represents hierarchy maintenance by the fan of dotted, arrowed lines. Implemen-
tations differ as to whether the maintenance is mediated by domain knowledge, TMS-like
mechanisms, or other agent processes.

Within a specific level, reason maintenance can go on as before. The agent makes and
deletes assumptions using domain knowledge. The TMS asserts and retracts entailments,
based on the current assumptions. However, the hierarchical structure adds a significant
complication to the creation of assumptions. Assumptions in a flat system are not usually
dependent on other assertions. However, in a hierarchical system, the assumptions at
one level can be dependent on the entailments and assumptions in higher levels of the
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Figure 3.3: Intercepting an enemy plane in the TacAir-Soar simulator. The two planes to
the left (Condor 1 and Condor 2) are intercepting the enemy plane on the right (Vulture).
The line extending from Condor 1 to Vulture represents the path of a missile launched
against the enemy aircraft. The circle around Vulture shows a successful missile hit. After
completing this intercept, the Condor agents will return to a patrol anchored on the point
labeled Wheel in the diagram.

hierarchy. The higher levels of the hierarchy form a “context” for problem solving in
the local subtask and the subtask can rely on previous computations in this context
rather than re-deriving the computations locally. For instance, when searching for an
empty space in the Blocks World, the agent can use the current position of the gripper
(computed in a higher level of the hierarchy) as a starting point for the search. The
information dependence is illustrated in Figure 3.2 by the solid, arrowed lines extending
from one level to the assumptions of the next level.

Changes in higher levels of the hierarchy may invalidate the assumptions of lower levels.
Further, for execution agents embedded in dynamic, exogenous domains, the context will
potentially change almost continuously. The changing context is not problematic for
entailments because TMS will retract any entailment not justified in the new context.
However, the assumptions of one level must be managed to ensure that they are consistent
with the current situation as defined by the assumptions, entailments, and sensor data
of higher levels. If they are allowed to persist independently of context changes, the
reasoning in a subtask can become irrelevant to the actual tasks being pursued, leading
to potentially irrational behavior. When an agent retains a local assumption even though
the assertions in the levels above the local level (including perceptual input) are no longer
consistent with that assumption, we say that an the agent has failed to respond to changes
in its context.
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Figure 3.4: Decomposition of behavior into subtasks.

3.2.2 Example: TacAir-Soar

In order to understand how inconsistency arises due to persistence in hierarchical architec-
tures, we now introduce TacAir-Soar (Tambe et al., 1995), an execution system that pilots
virtual military aircraft in a real-time computer simulation of tactical combat. TacAir-
Soar is a complex system, using over 450 operators in a hierarchical task decomposition
that sometimes reaches a depth of greater than 10. In TacAir-Soar, each agent can have
one of several different mission roles, among them attacking a ground target, flying a
patrol mission, and acting as a partner or “wing” to some other agent’s “lead.”

We will concentrate on a pair of planes on patrol, which have been given specific
directions to engage enemy aircraft entering their patrol area. Figure 3.3 shows an example
from a simulation in which two agents (Condor 1 and Condor 2) have successfully attacked
an enemy agent (Vulture). The line extending from Condor 1 to Vulture represents a
missile launched by Condor 1. Having destroyed the enemy agent, the agents will return
to their patrol around the point labeled “Wheel” in the diagram.

When enemy aircraft enter the patrol area, the lead agent decides to initiate an
intercept of the enemy aircraft. The agent makes a number of calculations to determine
the best course to take in attacking the enemy agent(s). For example, the simplified de-
composition shown in Figure 3.4 shows that the complex task of task of intercepting the
enemy aircraft has been decomposed into a relatively simple decision to turn the agent’s
aircraft to a specific heading. The agent is turning to this heading in order to get close
enough to the enemy agent (achieve-proximity) to launch an attack.

In this example, we assume that there are three different kinds of attack that can be
chosen for an intercept. The first tactic (scare) is to engage and attempt to scare away
the enemy planes without using deadly force. This tactic is selected independently of the
number of planes when the rules of engagement specify that deadly force should not be
used. The second tactic (offensive attack) can be used when deadly force is allowed. It
is appropriate when friendly planes outnumber or equal enemy planes. The third tactic
(defensive attack) is used when enemy planes outnumber friendly planes and deadly force
is permitted.

The determination of which tactic to pursue requires counting the current aircraft in
the area when deadly force is permitted. Figure 3.5 shows the subtasks necessary for this
count.> The agent must count the relevant enemy and friendly planes. We assume that
determining a plane’s “side” and its relevance to the count is sufficiently complex that
entailment of the count is not possible. Thus, counting is necessarily non-monotonic, as
we described above. The agent determines that enemy planes outnumber friendly ones

3This task could be decomposed many different ways. We chose this specific decomposition to illustrate
issues in reasoning maintenance.
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Figure 3.5: Trace of behavior leading to intercept tactic in TacAir-Soar.

A)B)(C) (D)
i

Figure 3.6: Inconsistency due to persistence. Assumptions are represented as squares, en-

tailments as circles. The horizontal line represents a hierarchical task /subtask relationship
between the assertions above the line and the ones below.
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and the agent then selects defensive-attack, leading to further decomposition.

Given this scenario, what happens if an enemy plane suddenly turns to flee, thus
reducing the actual count of relevant enemy planes by one? The count maintained by the
agent is now invalid. Standard TMS reasoning is insufficient to retract the count, because
the count assertion is an assumption, not an entailment. If the actual number of enemy
and friendly planes is now equal, then the agent should switch its tactic to offensive
attack. Continuing the defensive attack is not consistent with the agent’s knowledge.
Additionally, other “friendly” agents participating in the attack may base their behavior
on the expectation that the agent is pursuing an offensive attack. Thus the agent needs
to recognize the inconsistency and remove the existing count.

We can now present an abstract definition of the problem, as shown in Figure 3.6.
In the diagram, assumptions are represented as squares, entailments as circles. The
horizontal line represents a hierarchical relationship between the assertions above the line
and the ones below. Thus, in the diagram, A, B, C, D, and E; represent the hierarchical
context for processing in the lower subtask. The arrowed lines represent logical dependence
in the creation of an assertion or entailment. Thus, in this diagram, assumption 1 was
created from entailments A, B, C, D, and E;.

Now, suppose the world changes so that E; is retracted from memory and Es is
asserted. 1 remains in memory because it is an unjustified assumption, as we described
above. If Eo would not also lead to 1 (e.g., it could lead to some new assumption 2,
as shown by the dotted line and box), then the subtask in which 1 exists is no longer
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consistent with the higher level context. Whether or not this memory inconsistency results
in a behavior inconsistency is dependent on the use of assumption 1 in later reasoning.

3.3 Potential Solutions

How can an agent utilize persistent assumptions and simultaneously avoid inconsisten-
cies that lead to irrational behavior? In this section, we review a number of potential
approaches. This review is not intended to represent all possible approaches but rather a
survey of different points in the space of all solutions.

How should we compare and evaluate different approaches? For now, we consider
four qualitative evaluation criteria. In later experiments, some of these criteria will be
expanded to allow us to make quantitative comparisons among different approaches.

Removes “cross-level” consistency knowledge. Assumption 5, in Chapter 2, de-
scribed our desire to reduce engineering cost in knowledge design by eliminating
the need for consistency knowledge that “crossed” hierarchical levels. Therefore,
solutions that eliminate the need for this class of agent knowledge are preferred in
order to reduce the overall cost of building agents.

Solves problem efficiently. Performance is a critical dimension of agent behavior. As
we consider new additions to the agent’s architectural processing, we will evaluate
the impact these new processes have on the agent’s performance.

Remains responsive to the external world. In addition to overall efficiency, an
agent’s performance is also impacted by how responsive it is to the external envi-
ronment.

Retains nonmonotonic reasoning in subtasks. As we saw above, nonmonotonic rea-
soning is an important capability for agents acting in dynamic domains. Nonmono-
tonic reasoning should occur throughout the hierarchy, in subtasks appropriate to
the reasoning.

3.3.1 Knowledge-based Assumption Consistency

An agent with a flat representation requires domain knowledge to ensure that its assump-
tions remain consistent. The same approach can be used to ensure reasoning consistency
in a hierarchical agent by formulating explicit domain knowledge that recognizes po-
tential inconsistencies and responds by removing assumptions. We call this approach
knowledge-based assumption consistency (KBAC). For example, the Entropy Reduction
Engine (ERE) (Bresina et al., 1993) relies on knowledge-based assumption consistency.
ERE requires domain constraints, or knowledge that describes the physics of the task
domain. Domain constraints identify impossible conditions. For instance, a domain
constraint could indicate that an agent cannot occupy two different physical locations
simultaneously.

In ERE, domain constraints are specifically used “to maintain consistency in the cur-
rent world model state during execution” (Bresina et al., 1993, pp. 166). However, we
believe that many other architectures use KBAC as well (either solely, or in conjunction
with other methods we describe below). The use of KBAC explains why this problem
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has not been previously examined. In one sense, the knowledge is simply knowledge that
must be added to the system to achieve behavior. Except in cases in which the knowledge
itself was the focus of the research, researchers have generally ignored the specifics of their
agent’s knowledge (ERE being a notable exception).

KBAC will always be necessary to maintain consistency among the assumptions within
a level of the hierarchy. However, as we suggested in the previous chapter, the requirement
to represent explicitly the interactions leading to inconsistency throughout the hierarchy
can add significant cost to agent development. With KBAC, a knowledge engineer must
not only specify the conditions under which an assumption is asserted but also all the
conditions under which it must be removed. In the TacAir-Soar interception example,
the agent requires knowledge that disables all assumptions that depend upon the number
of enemy airplanes when the enemy plane flees. To be a complete solution, an agent
must have knowledge of the potential dependencies between assumptions in a local level
and any higher levels in the hierarchy. Similarly, in the Blocks World example from
the previous chapter (Figure 2.6), the agent must have knowledge that recognizes any
condition, in any goal, that should cause the local removal of the empty assertion. Thus,
this knowledge must “cross” levels. As we saw in Chapter 2, knowledge that crosses
levels can greatly lessen the advantages of hierarchical task decompositions by making
knowledge less modular and maintainable.

3.3.2 Disallowing Context Change

The problem we have described only arises when the hierarchical context changes. We
assume that most change occurs in the context due to changes in the outside world. The
block is knocked over; an enemy plane retreats. The agent responds to these changes by
updating assertions in the hierarchy. If these new assertions conflict with unchanged as-
sumptions, the inconsistency problem results. Therefore, one way to avoid the problem is
to disallow changes in the context. In effect, while problem solving, the agent metaphor-
ically “closes its eyes” while reasoning progresses in lower levels of the hierarchy. The
perception of the world is not changing, and thus the agent has no reason to update its
assumptions in lower levels. Each time the agent “opens its eyes” and perceives a new
world state, it regenerates its subtasks again, thus guaranteeing the new hierarchy is con-
sistent with the new input state. In the Figure 2.6 example, regardless of the actual world
state, the agent will not “see” that a block has moved. Further, each time it perceives
the world, it will regenerate the put-on-table task hierarchy.

Although this approach ensures that the agent will update its reasoning with the
new world state, it makes the agent both less responsive and less efficient. The world
will be changing even when the agent is not sensing these changes (assuming exogenous
domains). Thus, the agent can be internally consistent in its reasoning, yet be working
on a problem no longer relevant to the world state. Inefficiency is caused by the need
to regenerate reasoning. For instance, in the Blocks World, moving a block onto the
table requires executing a series of steps in the GRIPPER problem space, all as part of
the implementation of a single put-down operator. Assume the world is sensed after each
primitive step in the Blocks World. After each step, the agent completely regenerates
the hierarchy, as we described above. Thus, the knowledge to activate the put-down
operator must be activated for each step in the solution of the problem, even though that
knowledge really only needs to be activated once. These drawbacks make this solution less
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desirable in highly dynamic, exogenous domains, although the solution may be acceptable
in primarily endogenous domains or ones in with slow time constants of change, relative
to the rate of the generation of a primitive operator.

3.3.3 Aggressive Response to Context Change

In contrast to the previous solution, another solution would be allow the input to the
world to occur with regular frequency, but to respond to changes in the world by auto-
matically retracting the hierarchy. In this solution, the agent responds very aggressively,
by restarting any reasoning that is potentially inconsistent. This approach is inexpen-
sive (i.e., it requires no KBAC) while retaining full responsiveness to the external world.
However, this approach will oftentimes be overly aggressive and retract the hierarchy in
response to a change not relevant to the the agent’s reasoning. For example, if block
color was an input to the agent’s state, and the color of some block changed, the agent’s
hierarchy of assertions would be retracted, even though color is not relevant to the tasks
we have been considering.

This approach, like the previous one, is appropriate primarily for endogenous domains
or exogenous domains with a slow time constant relative to the rate of the generation
of primitive operators. For instance, this approach can be readily applied to agents for
the Blocks World. However, unlike the previous approach, this approach may also be
appropriate even for fast time constant domains, if changes can be filtered to limit the
changes the agent perceives to only goal-relevant changes. For example, if the agent
used a pre-processor that determined that “color” was not relevant to the current task
in the previous example, then the agent could avoid unnecessary regeneration. The AIS
architecture (Hayes-Roth et al., 1995), for example, uses a sophisticated mechanism for
input pre-processing to the cognitive architecture that is equivalent to another instanti-
ation of the architecture, but one with knowledge and processing specific for perception.
This “input architecture” filters, integrates, and modulates the data passed to the task
architecture. Such a scheme makes this alternative viable in many domains.

3.3.4 Limited Assumptions

Another way to avoid inconsistency is to limit the use of assumptions such that only
monotonic assertions are created in subtasks. In this case, regular truth maintenance
can provide reasoning consistency in the hierarchy because assumptions are restricted or
limited. There are a number of different ways the assumptions could be limited. We
examine a couple below.

Theo, as we described previously, is an extreme example of this approach. The only
assumptions in Theo are the inputs. All reasoning is derived from the entailments of these
sensors. Thus, Theo cannot reason nonmonotonically about any particular world state;
only the world can change nonmonotonically.

Another restriction would limit assumptions to a single, separate memory, or, equiva-
lently, allow assumptions only in the top level of the hierarchy. This solution ensures that
the hierarchical context is always consistent because the assertions in any subtask are
simply entailed from the assumptions and the higher context. Nonmonotonic reasoning
in a single world state is possible. However, this approach is equivalent to the KBAC
approach. Knowledge does not cross levels but only because all assumptions are grouped
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together in one level or a separate memory. All the knowledge necessary to maintain
consistency among all assumptions in KBAC is still necessary in this approach. In the
Figure 2.6 example, the agent records the assumption that the space above the gripper
is empty in the top goal, rather than within the put-down subtask. However, the agent
obviously still requires knowledge that recognizes when the empty assumption should be
removed.

In addition to the drawbacks of KBAC, moreover, this approach also removes the
explicit relationship between assumptions and the subtasks for which they were created.
The “hierarchy management” module we illustrated in Figure 3.2 can remove assumptions
for a subtask when that subtask is no longer active. For example, if the agent decided
that putting down a block was no longer a relevant task, the empty assumption could be
removed along with the put-down goal. In most architectures, this removal is automatic,
and thus requires no additional task knowledge. This new approach, however, requires
explicit “clean up” knowledge, because the assumptions are divorced from their subtask.
If put-down is interrupted, the agent needs knowledge to remove the empty assumption.

3.3.5 Fixed Hierarchical Justification

Another alternative concentrates on ensuring that the reasons for initiating a level are
still valid throughout the execution of the subtask, as illustrated in Figure 3.7. When
each new level of the hierarchy is created, the architecture identifies assertions at each
of the higher levels in the hierarchy that led to the creation of the new level. These
assertions together form what we will call a “subtask support set” (or just “support set”).
In Figure 3.7, assertions a14, a15, €14, and e1g are the support set for Levels while a2, ago,
ego “support” Levels. These support sets, in effect, form justifications for levels in the
hierarchy. When an assertion in a support set is removed (e.g., age), the agent responds
by removing the level (Levels).

Architectures such as the Procedural Reasoning System (PRS) (Georgeff and Lansky,
1987) and Soar (Laird et al., 1987) use architectural mechanisms to retract complete
levels of the hierarchy when the support set no longer holds. PRS checks the continuing
applicability of each active subtask (“knowledge area”) prior to continuing reasoning in
that level. Soar, on the other hand, determines if any architecture-generated subgoals
have been resolved before installing a new level in the hierarchy. Although the details are
different, in both cases, the architectures ensure that some initial, activation conditions
still hold before further processing. Conceptually, those activating conditions make up
the “support set” for each subtask.

A significant disadvantage of the support set is that it is fized. The support set is
computed for the initiation of the subtask but is not updated to reflect reasoning that
occurs within the subtask. For example, in Figure 3.7, suppose that assumption asq
depends upon assumptions age and ag; (represented in the figure by the dotted, arrowed
lines). The support set does not include az; (a2; may not have even been present when
Levels was created.). When a local assumption depends upon an assertion not in the
support set, then a change in that assertion will not directly lead to the retraction of the
assumption or the level. Thus, approaches using fized hierarchical justification (FHJ) may
require knowledge-based assumption consistency for assumptions in the subtask.

Another way to ensure consistency using Fixed Hierarchical Justification would be to
limit the reasoning in the subtask so that it tested only those features in memory that
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Figure 3.7: Fixed Hierarchical Justification. Assumptions are labeled with an “a,” entail-
ments with an “e.” The first subscript denotes the level and the second an identification
number within the level. Support sets for each level (see text) are represented as a list of
assertions associated with the hierarchy maintenance for each level.
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Knowledge-based Assumption Consistency || Yes No No No
Disallowing Context Change | No No Yes No
Aggressive Response | No Yes No No
Limited Assumptions || Yes No No Yes
Fixed Hierarchical Justification || Yes No No No

Table 3.2: Summary of potential approaches, based on the evaluation criteria described
in Section 3.3.

were also members of the support set for the local subtask. In Figure 3.7, a2 would be
included in the support set of Levels because the calculation as4 will depend on ag;.* This
approach is the one used by PRS and provides an assurance of consistency. If we applied
this solution to the TacAir-Soar example, intercept would now require the number of
enemy planes as a precondition of the subtasks because the reasoning for the subtask
will depend on this number. Similarly, in Figure 2.6, the support set for the put-down
subtask would include the empty space. Thus, although this solution does not require the
explicit knowledge we described for KBAC, it does require that the knowledge designer
identify all the potentially relevant features that may used in the processing of the subtask.
Additionally, the resulting system may be overly sensitive to the features in the support
set if those features only rarely impact reasoning.

Fixed Hierarchical Justification does require less explicit reasoning consistency knowl-
edge than the previous solutions but still requires it if access to the whole task hierarchy
is possible (as it is in Soar). Thus, an agent’s ability to make subtask-specific reactions
to unexpected changes in the environment is limited by the knowledge designer’s ability
to anticipate and explicitly encode the consequences of those changes.

3.3.6 Summary of Potential Approaches

Table 3.2 presents a summary of the approaches we have considered thus far, evaluated
along the dimensions we introduced earlier. Knowledge-based assumption consistency,
assumptions limited to a single memory, and fixed hierarchical justification all require
some form of consistency knowledge represented in the agent’s domain knowledge, thus
increasing the cost of building agents using these solutions. In addition, the limited
assumptions approach also does not allow nonmonotonic reasoning within the subtask.
On the other hand, additional knowledge is not required in the approach that disallows
changes to the context nor in the aggressive response solution. However, each of these

4 Alternatively, ass could also computed in a separate subtask, with as; a member of that subtask’s
support set.
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approaches is limited in other ways. Responsiveness is potentially poor when using the
first approach, while the efficiency is potentially compromised due to regeneration in the
second. The table shows that no approach we have examined thus far does not impact one
of the indicated evaluation criteria. In the following section, we will search for approaches
that do not impact these factors.

3.4 Extensions to Truth Maintenance

All the previous solutions failed along at least one dimension of our evaluation. We now
present two new solutions for reasoning maintenance in hierarchical systems that will re-
quire no additional cross-level assumption consistency knowledge, allow locally unjustified,
non-monotonic assumptions, and architecturally resolve potential inconsistencies. We will
also examine the efficiency of each solution. Both of these new solutions are based on the
idea that the local processing can be justified with respect to the higher level context; in
this sense, they are both extensions to the non-hierarchical truth maintenance approaches
we reviewed earlier. Our extensions assume that an agent can compute the higher level
dependencies of every assumption in a subtask, similar to the the non-hierarchical agent’s
computation of direct dependencies for entailments. The new computations require that
the inference engine record every variable test made during the course of processing. In
Soar, these calculations are available from its production rule matcher. However, these
calculations may not be supported in other architectures, requiring modifications to the
underlying inference engine.

Although we will explore these solutions in some depth, they represent only two points
in the space of all possible solutions. Other approaches (including combinations of the
new approaches) could be investigated as well. We were led to the first approach, As-
sumption Justification, by a desire for fine-grain reasoning maintenance where each as-
sumption could be individually maintained or retracted as appropriate. We were led to
the second approach when we discovered that fine-grain maintenance came at a signifi-
cant computational overhead, and when we observed the structure of problem solving for
well-decomposed tasks.

3.4.1 Assumption Justification

The first new approach is based on the idea that a local assumption can be justified with
respect to assertions in higher levels of the hierarchy. Assumption Justification treats
each assumption in the hierarchy as if it were an entailment with respect to assertions
higher in the hierarchy. Locally, an assumption is handled exactly like an assumption in a
non-hierarchical system. However, each assumption is justified with respect to dependent
assertions in higher levels. When this justification is no longer supported, the architec-
ture retracts the assumption. Assumption justification thus requires only local consistency
knowledge for assumptions, which was true in the non-hierarchical truth maintenance ap-
proaches as well, while no additional knowledge is needed to reason about the interaction
between the local assumptions and other goals.

For an example of how Assumption Justification works, refer again to Figure 3.7.
Assumption azs depends on agy and as1. We assume that age remains a member of the
fixed support set of Levels. Thus, if the architecture retracts ago, it also removes Levelg
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C := Set of assertions used to create assumption A
make_assumption_justification_for_assertion(C, A)

PROC make_assumption_justification_for_assertion(dependencies C, assumption A)
FOR c; := Each assertion in C
D IF ¢, — level higher A — level
add_c;_to_assumption_justification(cy, A)
2 ELSE IF (¢, — level == A — level)

just., = assumption justification of ¢,
add_just., to_assumption_justification(cy, A)
END(IF)
END(FOR)
END(PROC)

Table 3.3: A procedure for building assumption justifications.

(and thus as4), as in Fixed Hierarchical Justification. However, now when the agent
asserts asyq, the architecture builds a justification for the assumption that includes aoo
and ag1. Now if the agent retracts ao1, the justification for ass is no longer supported
and the architecture also retracts asq. In the Figure 2.6 example, when the agent creates
the empty assumption, the architecture computes the assertions on which it depends,
including any input assertions. When the world changes, these higher level assertions
change and the agent retracts the empty assumption. The architecture ensures reasoning
consistency across hierarchy levels because the assumption never persists any longer than
the higher level assertions used in its creation.

Assumption Justification is another type of limitation on assumptions (i.e., as we
described in Section 3.3.4). In this approach, the hierarchical context limits the persistence
of local assumptions: when the context changes dependently, the architecture removes the
assumption. However, because the assumptions are unjustified in the local subtask, the
architecture still supports local nonmonotonic reasoning. Thus, assumption justification
appears to meet all our functional criteria. However, in order to assess its impact on the
efficiency of the system, we must consider some implementation details.

Implementing Assumption Justification

Creating assumption justifications requires computing dependencies for each assumption.
The justification procedure must examine all the local assertions that contributed to the
situation that created the assumption because assumption dependencies can be indirect.
For example, the count in the TacAir-Soar example depends on the previous count, so
the dependencies of the new count must include the dependencies of the prior count.

We consider two ways in which to compute the assumption justification. The first is
simply to compute the justification “on demand”; when the agent creates an assumption,
the architecture computes the dependencies in the higher context by tracing back through
the reasoning in the local goal. The second approach computes assumption justifications
for every assertion in the local goal, even the local assertions. In effect, the architecture
caches the higher level dependencies for each local assertion when the assertion is created.
The advantage of this caching is that the architecture can create a justification for any
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Figure 3.8: An assumption can replace another assumption nonmonotonically.

particular assumption by simply (but uniquely) concatenating the justifications of the
assertions directly contributing to the creation of the assumption. We chose this second
option for computing assumption justifications because the dependencies for any assertion
need to be computed only once, even if the assertion contributes to the creation of many
local assumptions.

Table 3.3 shows a pseudocode procedure for computing the assumption justification.
The procedure builds an assumption justification for some assumption A by collecting
any non-local assertions that contributed to the creation of A (Condition #1) and the
assumption justifications of any local assertions (Condition #2). It is necessary to add the
justification of the local assertion ¢, rather than the individual assertion itself, because the
architecture can retract a local assertion for reasons other than a change in the hierarchical
context.

Unlike the addition of a non-local assertion (which can be accomplished with a sin-
gle pointer check), add_just., to_assumption_justification(cy, A) may be non-trivial be-
cause the procedure must uniquely add each dependent assertion to the assumption jus-
tification of A. This procedure call determines the complexity of the overall procedure.
Assume that each assertion is created by a unique instantiation of knowledge (true in
the worst case). In this case, there are at most (n — 1) local instantiations whenever
the nth assertion is created. Thus, the assumption justification procedure needs to call
add_just., to_assumption_justification(cz, A) no more than n times for any call to the
assumption justification procedure. This limit provides an upper bound of O(n) on the
complexity of the assumption justification procedure. Thus, the cost of building an in-
dividual assumption justification is linear in the number of assertions, n, in the level.
However, the architecture executes the assumption justification procedure for every asser-
tion in the level. Thus, the worst case cost for building all the justifications in a particular
level is O(n?).

A complication arises when an assumption non-monotonically replaces another as-
sumption. The architecture must disable the initial assumption, rather than permanently
delete it from memory, because the architecture must restore the initial assumption if the
second assumption is retracted. In Soar, this requires that an assumption be removed
from the agent’s primary or “working” memory but retained in a secondary memory. For
example, in Figure 3.8, when the agent asserts E, the agent also asserts 2 in the local
level, replacing 1. If the agent removes E, assumption justification will retract 2, as de-
sired, but it must also re-enable 1, adding it back to the agent’s working memory. Thus
assumption 1 must remain in memory, although disabled. More concretely, consider again
the TacAir-Soar example. When the enemy plane departs, the agent removes the current
count. However, the agent must also re-enable the previous count, because each iteration
of the count non-monotonically replaced the previous one. For the prior count to be im-
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Figure 3.9: Multiple assumption justifications for the same assumption.

mediately available, the agent must store this prior assumption in memory. Assumption
justification thus requires the storage of every subtask assumption while the subtask is
active, even when the assumptions have been nonmonotonically replaced. Thus, the n
we discussed above is bound not by the number of “active” assertions but by the total
number of assertions the agent makes while the subtask is instantiated. As a result, the
longer a subtask is active, the more likely Assumption Justification will begin to impact
overall performance severely due its polynomial complexity.

Figure 3.9 illustrates a second difficult problem. An assumption can have multiple
assumption justifications and these justifications can change as problem solving progresses.
Assumption 1 initially depends on assertions A, B, and C in higher levels. Now assume
that later in the processing, the agent removes A, which normally would result in the
retraction of 1. However, in the meantime, the context has changed such that 1 is now
also justified by {C, D, E}. Now when the agent removes A, the architecture cannot
immediately retract 1 but must determine if 1 is justified from other sources. Thus, as
problem solving progresses within a level, the architecture must recognize and create new
justifications of the local assumptions as they occur.

This work provides a theoretical explanation for the costs associated with Assumption
Justification. An actual implementation of assumption support in Soar was completed
by members of the Soar research group at the University of Michigan other than the
author (Laird, 1998). Experiments using assumption justification in Soar, using Air-Soar,
a flight simulator domain (Pearson et al., 1993), showed the overhead of maintaining all
prior assumptions in a level negatively impacted agent performance, a result not surprising
given the analysis presented here. In this domain, assumption justification had significant
computational cost, requiring 50% more time than the Fixed Hierarchical Justification
version of Soar for the same task. In addition, the number of assumption justifications
maintained within a level continued to grow during execution, for the reasons we explained
above. In Air-Soar, some levels could persist for many minutes as the plane performed
a maneuver, leading to a continual increase in the amount of memory required. Thus,
assumption justification fails to meet the efficiency criteria we described above on both
theoretical and empirical grounds. These results were strong enough that we decided
not to explore assumption justification empirically in this research. For the remainder
of the dissertation, we will use assumption justification only for theoretical analysis and
comparison.

3.4.2 Dynamic Hierarchical Justification

Our second solution provides a coarser-grain maintenance of assumptions in a level, fi-
nessing some of the complexities of Assumption Justification. Instead of maintaining
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C := Set of assertions used to create assumption A
add_dependencies_to_support_set(C, A)

PROC add_dependencies_to_support_set(dependencies C, assumption A)
FOR ¢, := Each assertion in C
©) IF {c; — level higher A — level}
add_cg to_assumption_justification(cg, A)
@ ELSEIF {(c; — level == A — level) and
(¢ is an assumption)}
break
€) ELSEIF {(c; — level == A — level) and
(cz is not an assumption) and

(czinspected)
break
@ ELSEIF {(c; — level == A — level) and
(cz is not an assumption) and

(nOt Cwinspected ) }

Cy := Set of assertions supporting entailment X
add_dependencies_to_support_set(Cy, X)
Cainspected *— TRUE
END(IF)
END(FOR)
END(PROC)

Table 3.4: A procedure for dynamic hierarchical justification.

support information for each individual assumption, our second solution maintains sup-
port information for the complete subtask, similar to Fixed Hierarchical Justification.
This simplification decreases the complexity and memory requirements for the support
calculations, but means that the complete level retracts when the architecture retracts
any dependent assertion. We call this solution Dynamic Hierarchical Justification (DHJ),
because the support set grows dynamically as the agent makes assumptions for a subtask.
When a DHJ agent asserts as4 in Figure 3.7, the architecture updates the support set for
Levels to include ao1. Assumption agg is already a member of the support set and does
not need to be added again. When any member of the support set for Levels changes, the
architecture will retract the entire subtask. In the Figure 2.6 example, the architecture
adds the assertions that led to the creation of the empty assumption to support set of the
put-down subtask. When the world changes such that the space is no longer empty, the
agent retracts the put-down subtask, where Assumption Justification would retract only
the empty space assumption. Thus Dynamic Hierarchical Justification enforces reasoning
consistency across the hierarchy because a subtask in the hierarchy persists only as long
as all higher-level dependent assertions.
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Implementing Dynamic Hierarchical Justification

Whenever a new assumption is created, the architecture must determine the dependencies
as for Assumption Justification but the dependencies are added now to the support set
for the local subtask. Unlike Assumption Justification, in Dynamic Hierarchical Justifi-
cation we use the “on-demand” model for computing justifications rather than the cache
model. The on-demand computation is more appropriate than the cache model for DHJ
because any individual assertion needs to be examined only once over the duration of
the subtask. Thus, DHJ will not need to re-compute dependencies, which motivated the
cached approach in assumption justification.

Table 3.4 shows the procedure for computing the support set in DHJ. As in Assumption
Justification, the architecture can simply add dependencies in any higher level directly
to the support set (Condition #1). When the architecture computes the dependencies
for a local assertion (Condition #4), the assertion is flagged as having been inspected,
as shown. In future calls to the DHJ procedure, these assertions can simply be ignored
(Condition #3) because the architecture has already computed those dependencies. The
architecture can also ignore dependent, local assumptions because the architecture has
already added that assumption’s dependencies to the support set (Condition #2).

The recursive call to add_dependencies_to_support_set (Condition #4) is the only non-
trivial computation in the DHJ procedure. However, as in assumption justification, this
procedure needs to be called only once for any assertion. Thus, the worst case complexity
to compute the dependencies is linear in the number of assertions in the level, as in
Assumption Justification. However, unlike Assumption Justification, DHJ requires at
most one inspection of any individual assertion, rather than repeated inspections for each
new assumption. Thus the architecture needs to call add_dependencies_to_support_set
at most n times for any subtask consisting of n assertions and the worst case cost of
computing the dependencies over all the assumptions in a level with DHJ remains O(n).
This reduction in the complexity of the consistency calculation potentially makes Dynamic
Hierarchical Justification a much more efficient solution than Assumption Justification,
especially as the number of local assertions grows.

Additionally, the two technical problems we outlined for assumption justification do
not impact DHJ. DHJ never needs to restore a previous assumption. When a depen-
dency changes, the architecture retracts the entire level. Thus, DHJ can immediately
delete from memory non-monotonically replaced assumptions. Secondly, DHJ collects all
dependencies for assumptions, so there is no need to switch from one justification to an-
other. In Figure 3.9, dependencies A, B, C, D, and E are all added to the support set.
These simplifications can make the support set overly specific but reduce the memory and
computation overhead incurred by Assumption Justification.

However, DHJ will sometimes cause the “unnecessary” removal of prior reasoning,
which may need to be regenerated. In the TacAir-Soar agent, for example, if the enemy
plane fled as we described, DHJ would retract the entire level associated with the counting
subtask. The count would then need to be re-started from the beginning. Assumption
Justification, on the other hand, would retract only those assumptions that depended
upon the presence of the departed plane. In the best case, if this plane was counted
last, the architecture would need to retract only the the final count, and no new counting
would be necessary. The cost incurred through the regeneration of previously-derived
assertions is the primary drawback of Dynamic Hierarchical Justification. However, unlike
the regeneration we discussed for previous approaches (Sections 3.3.2 and 3.3.3), DHJ
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Figure 3.10: Examples of (a) disjoint dependencies and (b) intersecting assumption de-
pendencies.

retracts a subtask only when continued reasoning in that subtask would be inconsistent
with the higher context. Thus, regeneration should be less costly in this approach than
in the previous ones.

In addition to implementing the Dynamic Hierarchical Justification procedure, we also
made one change to Soar’s procedure for firing rules. In Soar, as we will examine in more
detail in the next chapter, all matching rules are fired in (simulated) parallel, includ-
ing those that assert entailments and those that assert assumptions. In some cases, this
parallelism leads to inconsistency because an assumption can be created while previous
assumptions or inputs are still being entailed. With DHJ, this parallelism can be espe-
cially problematic because an assumption that is created “too fast” can lead to removal
of the entire subtask. In order to address this problem, we separated the rule firings into
distinct “entailment” and “assumption” phases. Assumptions are only created when all
possible entailments have been applied. When a new assumption is asserted, additional
entailments may be triggered, etc. Although this change did not require significant ad-
ditional computation (the architecture already classifies each rule according to the type
of computation it makes), it does decrease potential parallelism in architecture process-
ing. We will explore further limitations on parallelism and discuss the impact of these
limitations on execution in the next chapter.

3.5 The Influence of the Task Decomposition on
Assumption Justification and Dynamic Hierarchical
Justification

We were led to Dynamic Hierarchical Justification by our experience with Fixed Hierarchi-
cal Justification, in which entire sub-hierarchies of reasoning are automatically retracted
as we outlined above. However, retracting subtasks, rather than individual assertions, is a
heuristic simplification. Because DHJ can lead to the regeneration of retracted subtasks,
we now briefly examine why this heuristic is useful for execution domains and what it can
tell us about this potential limitation of DHJ. We will explore the actual empirical costs
of Dynamic Hierarchical Justification in Chapter 5.
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For agent execution domains, we have assumed that the agent has the knowledge
necessary to execute its task (Assumption 2). Under this assumption, little deliberate
search is necessary for execution. However, the inconsistency problem we have been
examining in this chapter can be viewed as a failure to backtrack in the search for a
primitive operator. The world changes, leading to changes in the agent hierarchy and the
agent must retract some of the knowledge it has previously asserted; it backtracks to a
knowledge state consistent with the world state. All the solutions we have examined can
be described as different ways to achieve (or avoid) backtracking. For instance, KBAC is
a knowledge-based backtracking scheme.

Assumption Justification is a realization of dependency-directed backtracking (Stall-
man and Sussman, 1977). In dependency-directed backtracking, regardless of the chrono-
logical order in which the architecture made assertions, the architecture can identify and
retract only those assertions that are directly dependent on a failure in the search, and
retain non-dependent assertions. Similarly, in Assumption Justification, the architecture
retracts only those assumptions that are directly affected by a change in the context.
Assumptions made later in the processing, not dependent on the change, are unaffected.
Consider the examples in Figure 3.10. In (a), assumptions 1 and 2 each depend upon
disjoint sets of assertions. With Assumption Justification, removal of any assertion in
1’s justification will result in the retraction of 1; 2 is unchanged, even if the architecture
created 2 after 1.

With Dynamic Hierarchical Justification, the agent retracts all reasoning in the de-
pendent subtask (and all lower levels in the hierarchy). Therefore, some assertions not
dependent on the change in the context will be withdrawn. DHJ is thus similar to back-
jumping (Gaschnig, 1979). Backjumping uses heuristics to determine to where in a search
space a current search should backtrack or “backjump.” The heuristics used by backjump-
ing are based on syntactic features of the problem. For instance, in constraint satisfaction
problems, the backjumping algorithm identifies which variable assignments are related to
other variable assignments via the constraints specified in the problem definition. When
a violation is discovered, the algorithm backtracks to the most recent, related variable
(Dechter, 1990). Intervening variable assignments are discarded. In DHJ, when an asser-
tion in the hierarchy changes, the system “backjumps” to the highest level in the hierarchy
for which the changed assertion is not dependent. In Figure 3.10 (a), all the dependent
assertions are collected in the support set for the subtask. Thus, the entire subtask is
removed if any of the higher level assertions change. Further, assume the removal of the
subtask was due to a change in A. If the same subtask is reinstated, assumption 2 may
need to be regenerated. This regeneration is unnecessary because 2 did not need to be
retracted to avoid inconsistency.

To further examine the nature of the heuristic used in DHJ, consider now the situation
in in Figure 3.10 (b). The dependencies of assumptions 1 and 2 have a large intersection.
If assertions B, C, or D change, then all the local assertions will be retracted, if we assume
that everything in the local level is derived from 1 or 2. In this situation, assumption
justification pays a high overhead cost to track individual assumptions, when (most)
everything in the local subtask is removed simultaneously. Because DHJ incurs no such
overhead, DHJ is a better choice when the intersection between assumption dependencies
is high. If we could expect tasks structured more like the situation in (b), rather than
(a), we could expect that DHJ would infrequently regenerate reasoning unnecessarily
retracted.

In arbitrary domains, of course, we expect both intersecting and disjoint dependencies
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Knowledge-based Assumption Consistency || Yes No No No
Disallowing Context Change | No No Yes No

Aggressive Response | No Yes No No

Limited Assumptions || Yes No No Yes

Fixed Hierarchical Justification || Yes No No No
Assumption Justification || No | Yes | No No

Dynamic Hierarchical Justification || No 777 No No

Table 3.5: Qualitative evaluation of potential approaches including Assumption Justifica-
tion and Dynamic Hierarchical Justification.

among different assumptions. However, in Chapter 2, we assumed that hierarchical de-
composition was useful for tasks that were nearly decomposable (Assumption 4). Thus,
the goal of a hierarchical decomposition is to separate independent subtasks from one
another. A consequence of this separation is that the specific dependencies in the higher
levels are more tightly coupled. We can argue that (b) represents a more nearly decom-
posed problem than (a). In (a), two independent assumptions are being pursued. These
assumptions could potentially be computed by separate subtasks in the decomposition.
In (b), on the other hand, the assumptions in the subtask are closely tied together in
terms of their dependencies and represent problem solving more reasonably computed by
the same subtask. In (b), the total number of dependent assertions does not necessarily
grow as a function of the assumptions in the local level, while in (a) it does.

Assumption justification thus excels when there are many orthogonal dependencies
in a subtask, which we could say represents a task that has been poorly decomposed.
DHJ, on the other hand, excels when the dependencies for the assumptions in any indi-
vidual subtasks are shared, resulting in a “good” decomposition. In this situation, DHJ
suffers from few unnecessary regenerations while avoiding the overhead costs of assump-
tion justification. As will will see Chapter 5, another benefit of DHJ is that it can point
out problem areas in the decomposition, acting as an aid for the development of better
decompositions.

3.6 Summary

In this chapter, we have shown that inconsistency arising from a failure of the agent to
respond to context changes can be solved in a number of different ways. Our emphasis
in exploring this problem was to find efficient, process-based solutions that would reduce
the cost of knowledge design while retaining the agent’s ability to make local, persistent,
nonmonotonic assumptions. Table 3.5 summarizes the results of our analysis thus far.
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Both of the new approaches we have introduced, Assumption Justification and Dynamic
Hierarchical Justification, solve this inconsistency problem through architectural means.
They require no cross-level consistency knowledge and do not compromise responsiveness
or the agent’s ability to make local, nonmonotonic assumptions. However, Assumption
Justification proved to be prohibitively inefficient, and thus fails to meet our qualitative
evaluation criteria. We argued that Dynamic Hierarchical Justification would not suf-
fer from unnecessary regeneration and thus avoid some inefficiency. However, necessary
retractions may also lead to regeneration as well. For instance, in the Blocks World ex-
ample of inconsistency, when the put-down operator is retracted due to the change in
the support set, the agent will still need to put the block onto the table, and reinitiate
the put-down subtask. Thus, even if our argument in the previous section is correct, we
still cannot know with certainty if Dynamic Hierarchical Justification will be acceptably
efficient. In Chapter 5, we will empirically evaluate the efficiency of our architectural so-
lutions to the inconsistency problems, after addressing inconsistency arising from overly
aggressive response to context changes, the subject of the next chapter.
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Chapter 4

Overly Aggressive Reaction to Context Changes
Due to Multiple, Simultaneous Threads of Reason-
ing

A foolish consistency is the hobgoblin of little minds....
— Ralph Waldo Emerson

Inconsistency can arise in an agent’s hierarchical context when an agent responds
too quickly to change in the context. A response is too quick if it occurs before asser-
tions higher in the hierarchy have had an opportunity to apply and those new assertions
would have made the lower-level knowledge inapplicable. This inconsistency results from
the agent’s simultaneous pursuit of different threads of reasoning. Supporting multiple
threads of reasoning is important because the different threads allow an agent to pursue
independent lines of reasoning simultaneously. Across-level inconsistency arises when one
thread of reasoning turns out to be dependent on another, on-going thread of reasoning
higher in the hierarchy.

We introduce several potential solutions to inconsistency arising from multiple threads
of reasoning, including Subtask-limited Reasoning (SLR). Like Dynamic Hierarchical Jus-
tification from the previous chapter, Subtask-limited Reasoning is a heuristic solution
that guarantees consistency across the levels of the hierarchy, requires no additional agent
knowledge, and can be computed efficiently. Rather than attempting to compute depen-
dencies between assertions applied in different threads of reasoning, SLR simply delays
reasoning in a subtask until threads of reasoning in higher levels of the hierarchy have
been fully elaborated. Thus, although the Subtask-limited Reasoning computations can
be computed efficiently, SLR can delay some reasoning in hierarchical agents. We argue
that the delay introduced by SLR is not significant because most activity in the hierarchy
is usually concentrated in the lowest levels of the hierarchy at any particular time. In
Chapter 5, we provide empirical evidence that shows not only that the cost of SLR is in-
significant, but that SLR contributes to an improvement in overall performance because
it eliminates some unnecessary reasoning, which would have occurred in a system that
allows all threads to be pursued simultaneously.
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4.1 Overly Aggressive Reaction to Changes in Context

In the Blocks World example we presented in Chapter 2, we showed how inconsistency
could arise if an agent was simultaneously pursuing one thread of reasoning while also
following another line of reasoning in a lower level of the hierarchy. These different
threads of reasoning are not different paths in an exponential search but rather different
elaborations of the current situation using execution knowledge. Different threads of
reasoning could potentially be executed independently of one another. For example, an
agent with multiple processors might be able to commit one processor to one thread of
reasoning and a different processor to another thread. As a shorthand, in this chapter, we
call the simultaneous pursuit of different threads of reasoning parallelism. We will describe
more concretely what we mean by parallelism in the following section. For now, we simply
assume that an agent applies any knowledge that it can as soon as that knowledge becomes
applicable, and it can apply multiple pieces of knowledge simultaneously, thus following
different threads of reasoning simultaneously.

In the Blocks World example, Dynamic Hierarchical Justification, the solution we
introduced in the previous chapter, would avoid inconsistency due to overly aggressive
response in this specific instance. When the position of block-3 changed, the architecture
would remove the put-down subtask (the subtask containing the empty assertion), and
the thread of reasoning leading to the initiation of the move-down operator would thus
be interrupted. In general, however, inconsistency resulting from multiple threads of
reasoning can arise from sources other than assumptions, and thus Dynamic Hierarchical
Justification does not provide a complete solution to the problem. In order to illustrate
the problem more completely, we now consider a specific example that is not solved by
Dynamic Hierarchical Justification.

4.1.1 Example: TacAir-Soar

Suppose a TacAir-Soar agent has determined an enemy plane is hostile. In TacAir-Soar,
the identification of hostile aircraft may be determined via an IFF sensor.! For the
purposes of this discussion, we make a simplifying assumption that an agent must either
receive a friendly IFF signal or radio confirmation of an aircraft’s friendliness; otherwise,
it assumes the enemy is hostile. In actuality, this classification is considerably more
complicated.

The agent begins an intercept of the plane it has classified as hostile. The intercept
continues until the agent comes within missile range. Suppose now that at the same time
the agent achieves missile range, it also receives an incoming radio message, indicating
that the hostile plane it is targeting is actually friendly. The agent can now pursue two
different threads of reasoning: parsing the incoming radio message and firing the missile.
There is no necessary dependence between these two tasks and we assume that the agent
pursues them simultaneously. Although the transitive closure of the agent’s knowledge
would specify that the target is friendly and it should not fire the missile, it takes time to
come to this conclusion in the reasoning thread related to the radio message. During this
computation, at the lower levels of the hierarchy, the agent might still believe the agent
is hostile and launch the missile.

'FF: identify: friend-or-foe
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Figure 4.1: Inconsistency due to multiple threads of reasoning. Assumptions are repre-
sented as squares, entailments as circles. The horizontal line represents a hierarchical
task/subtask relationship between the assertions above the line and the ones below.

In this example, the agent is responding too aggressively to a change in the hierarchical
context that is known to be relevant (i.e., in missile range), before determining if other
changes, like the radio message, impact the current reasoning as well. Inconsistency
results because the agent has enough information to determine that the plane is friendly,
but, because it takes time to compute this inference, the agent also acts as if the plane
is hostile. Because an output action is generally nonmonotonic, the agent cannot readily
“retract” the action it has initiated. Further, as is especially evident in this example, the
inconsistency resulting from over-reaction can lead to irrational behavior on the part of
an agent. In this case, the agent launches a missile against a plane known to be friendly.

Figure 4.1 provides an abstract illustration of inconsistency arising from multiple
threads of reasoning. The conventions used in this figure are the same as those used
in Figure 3.6. Entailments 1, 2, 3 and 4 are created before time t5. At to, the archi-
tecture retracts entailment D, in the higher subtask, as part of an on-going thread of
reasoning not explicitly shown in the figure. In most circumstances, D will have been an
elaboration of input, and the architecture retracts it because the current input no longer
supports this inference. Concurrent with the retraction of D, the architecture asserts
5 in one of the threads of reasoning in the local subtasks. 5 depends upon entailment
D. The figure illustrates both a direct dependence (the direct line D to 5) and indirect
dependence (through 3 and also 1). Although the architecture may be able to detect
direct dependencies, indirect dependencies are much more difficult to recognize (and thus
avoid).

Any resulting problem is dependent on the type of assertion 5 and the underlying
architecture. If 5 is an entailment, then an agent with a truth maintenance component
can recognize that 5 is no longer justified and withdraw it, as it will also do for 3 and
1. If 5 is an assumption (as shown in the figure) and we are using Dynamic Hierarchi-
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Table 4.1: An example of the importance of parallelism in agent architectures.

cal Justification, then the entire subtask will be removed. This removal may cause the
unnecessary regeneration of 2, 4 and 6 because their dependencies have not changed. In
both these cases, the problem leads to inefficiency — some knowledge is asserted and then
almost immediately retracted — but not necessarily inconsistency. However, if 5 gener-
ates an output action, then the system is acting as if D is still believed, thus leading to
potentially irrational behavior.

4.1.2 Supporting Multiple, Simultaneous Threads of Reasoning

In this section, we examine the way in which Soar supports multiple threads of reasoning
using (simulated) parallelism. As we will see, Soar’s current implementation may be overly
parallel, which, in turn, allows inconsistency between multiple threads of reasoning.

Parallelism is used in Soar to allow an agent to pursue competing or mutually exclusive
reasoning without committing to one of those courses arbitrarily. We call reasoning leading
to a particular conclusion (such as an assumption or an output action) a thread. In order
to illustrate how parallelism supports multiple threads of reasoning, consider the rules
shown in Table 4.1. Both rules match in the same context, when memory contains A,
B, C; and D. However, the rules specify mutually exclusive actions. Rule 1 changes the
value of Cy to Cy and Rule 2 changes it to C3. Without parallelism, when these rules
match simultaneously, the agent will have to choose one of the two rules to apply. The
process of deciding which one of many rules that can apply is known as conflict resolution
(McDermott and Forgy, 1978). For example, in the OPS5 production system (Forgy,
1981), conflict resolution strategies include choosing the production that is most specific
to the current situation, or choosing a production that matches against more recently
instantiated elements, etc. In the example, if the most specific strategy had been chosen,
Rule 2 would be selected and applied.

Conflict resolution is limited because the knowledge embedded in the process is local
and fixed, what Newell (1990) calls a trap-state mechanism. Trap-state mechanisms are
problematic because they do not allow an agent to bring all its knowledge to bear on a
problem. For instance, for the rules in Table 4.1, assume another rule which indicates that
Cs should be preferred over Cj3 in some specific circumstance. In an agent using fixed
conflict resolution, Rule 1 may never get to fire. The result of Rule 2 leads to the removal
of the Rule 1 instantiation because Rule 1 does not match once Cj is added to memory.
Thus, the preference knowledge never applies either. In this example, the agent’s choice
of two mutually exclusive choices (Cy and Cj3) is made using a process that can only be
indirectly influenced by the agent’s knowledge.

In order to avoid using such a fixed procedure for conflict resolution, Soar uses sim-
ulated parallelism to allow all applicable knowledge to fire. In the example, both Rule 1
and Rule 2 to apply simultaneously. The agent must decide what to do about the two
different choices represented by the different actions of the rules. In Soar, the agent repre-
sents the available choices explicitly in memory, thus allowing the agent to reason directly
about the available choices using its knowledge. If the agent had knowledge to prefer Co,
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as we described above, then the agent could then apply this knowledge and finally choose
Cs,. Parallelism in Soar thus allows the agent to avoid commitment to one of potentially
many threads of reasoning until it has used all its available knowledge to consider to which
choice it should actually commit. The agent, of course, does make a commitment to some
particular choice sooner or later. The important capability is that the agent can use its
knowledge to make these choices, rather than rely on a fixed, local procedure. Knowledge
can be extended and customized for particular domains, whereas a fixed procedure that
determines behavior is not readily extensible to new domains and tasks.

Soar thus uses parallelism to achieve knowledge-mediated conflict resolution. Impor-
tantly, the motivation for parallelization as a means to avoid arbitrary conflict resolution
is local. A decision among several different choices is made within an individual sub-
task. However, Soar currently allows parallelism throughout the hierarchy. One benefit
of such “unlimited parallelism” is that some performance improvement could be achieved
on a parallel architecture. For example, an agent could elaborate one thread of reasoning
in one subtask simultaneously with a separate line of reasoning in a different subtask.
When these computations are independent, a truly parallel architecture will decrease the
total time necessary for these computations by parallelizing them. However, as we fur-
ther describe in Section 4.2.4, unlimited parallelism allows inconsistency because there
is a potential logical dependence between threads of reasoning at different levels of the
hierarchy. In particular, a higher level thread may lead to the conclusion that the lower
subtask (which the lower thread is serving) is no longer a proper subtask to pursue.
This distinction between local and unlimited parallelism will be important as we consider
approaches to solving inconsistency arising from multiple threads of reasoning in the fol-
lowing sections because Soar uses a less restricted parallelism than is necessary to support
knowledge-mediated conflict resolution.

4.2 Potential Solutions

How can an agent support multiple threads of reasoning and also avoid inconsistencies that
lead to irrational behavior? In this section, we review a number of potential approaches,
including a number of approaches from the previous chapter that also provide a solution
to inconsistency resulting from multiple threads of reasoning. Again, as we suggested in
the previous chapter, this review is not intended to represent all possible approaches but
rather a survey of different points in the solution space.

Before reviewing the approaches, we again consider how to evaluate different ap-
proaches. The criteria are basically the same as those in the last chapter. Solutions
should avoid the addition of new knowledge, maintain performance and responsiveness,
and preserve the ability to pursue multiple threads of reasoning. We now consider each
of these criteria in more detail.

Avoids additional “meta-level” consistency knowledge. Knowledge necessary to
avoid inconsistency due to multiple threads of reasoning may have to reason about
the interactions between different threads. We call this knowledge “meta-know-
ledge” because it is concerned with how the agent reasons, rather than how the
agent should execute its task. We prefer solutions that eliminate the need for this
meta-knowledge and thus reduce the overall cost of building agents.
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Solves problem efficiently. New processes in the agent’s architecture should not sig-
nificantly impact the overall speed of the agent’s processing. We prefer solutions
that minimally impact the overall speed of an agent’s execution of its task.

Remains responsive to the external world. We prefer solutions that do not com-
promise an agent’s ability to respond quickly to new stimuli. This criterion is
especially important for this particular problem because some solutions may slow
response to ensure consistency.

Allows multiple threads of reasoning within a subtask. As we described above,
the important advantage of multiple threads of reasoning is local to a subtask,
providing a way of pursuing different lines of reasoning. Thus, we require multi-
ple threads of reasoning within a subtask be maintained, in order to achieve this
functional capability.

4.2.1 Meta-level Consistency Knowledge

As we described for inconsistency due to persistence, explicit domain knowledge that rec-
ognizes and resolves potential inconsistencies can be developed for the agent. The function
of this knowledge is to recognize and interrupt reasoning that would lead to inconsistency.
In the case of persistence, we assumed that the agent could recognize inconsistency post
hoc, and then immediately act to remove the persistent assumption no longer consistent
with the hierarchical context. Such a solution is sufficient for inconsistency arising from
multiple threads of reasoning only for non-output actions. In order to prevent irrational
behavior, the agent must interrupt reasoning leading to an output before it occurs. In
order to do so, it needs knowledge to anticipate interactions between different threads of
reasoning. Because the additional required knowledge concerns agent processing, rather
than the domain, we describe this solution as the “Meta-Level Consistency Knowledge”
(MLCK) solution.

MLCK requires that an agent be able to reason about its own processes. Many
architectures do not support this requirement. An exception is MAX (Kuokka, 1991),
an extension of Prodigy research for execution domains. The reasoning language used
by MAX, Iframes, is both executable and declarative, allowing the agent to reason about
its processing. Although reasoning about threads of reasoning is not a specific capability
of MAX, the Iframe approach provides an agent with the ability to reason about its
knowledge. For instance, MAX could examine its currently matching knowledge before
applying it, to determine if any inconsistencies would arise.

Similar to our observations concerning knowledge-based assumption consistency, the
literature is devoid of any discussion of inconsistency arising from multiple threads of
reasoning or or knowledge-based solutions to this problem. Again, we believe that the
problem has been ignored because the knowledge-based solution is simply regarded as
part of the domain knowledge. For example, in Soar, which does not have the ability
to reason about its processing as easily as MAX, the solution to some problems due to
multiple threads of reasoning has been to extend a thread of reasoning artificially by
breaking it into many small pieces. This process has the effect of delaying reasoning in a
subtask until changes higher in the hierarchy have had an opportunity to be elaborated.
Such additional knowledge requirements can add significant cost to agent development,
especially identifying when the knowledge is necessary, which usually happens following
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the observation of errors in behavior.

4.2.2 Disallowing Context Change

This approach is the same approach we described in Section 3.3.2. The agent does not
accept new input while generating the decomposition and regenerates the entire hierarchy
following each poll of input. This approach solves inconsistency due to multiple threads
of reasoning because, without input, context change in the hierarchy is minimized dur-
ing decomposition. As before, the primary drawback of this solution is that the agent’s
responsiveness is compromised. In highly dynamic domains, the agent’s internal process-
ing will be consistent, but that processing may be inconsistent with the actual external
environment.

4.2.3 Aggressive Response to Context Change

Again, this approach is the same as the one we described in the previous chapter, in
Section 3.3.3. The agent reacts to input immediately by removing the current hierarchy.
In the TacAir-Soar example, the new radio message would cause the removal of the subtask
hierarchy, including the push-fire-button operator, and thus the missile would not be
launched. Unlike the previous solution, the agent’s internal processing is always consistent
with the (known) external environment. However, this solution introduces inefficiency in
the execution of a task because the agent responds aggressively to any input change, even
if not relevant to the current task, and thus may need to regenerate its reasoning many
times before it issues a motor action.

4.2.4 Unlimited Parallelism

In our discussion of Figure 4.1, we alluded to a potential solution for inconsistency arising
from overly aggressive response to context change through the use of truth maintenance.
In a truth-maintenance approach, the agent can simply keep track of dependencies and
retract assertions when no longer justified. Knowledge can be asserted in a low level of
the hierarchy before the hierarchical context is fully elaborated. The TMS determines if
when particular assertions in a thread of reasoning are no longer supported due to changes
occurring in a possibly different thread of reasoning. At first glance, such processes
appear to offer low-cost parallelism throughout the architecture, allowing the agent to
simply apply all matching knowledge simultaneously. We call this solution “Unlimited
Parallelism” because knowledge is applied in parallel throughout the hierarchy, without
any consideration of the dependencies between different threads of reasoning. The agent
relies on the TMS to monitor the logical dependencies between the assertions and resolve
inconsistencies between them. As we mentioned previously, Unlimited Parallelism is the
solution used in the current Soar architecture.

Unlimited Parallelism fails in some cases. For instance, assume we are using Soar
without any of the modifications we described in the previous chapter (i.e., using Fixed
Hierarchical Justification as a solution to inconsistency arising from persistence). If an
assumption is created that depends on an element that is changing in the higher context,
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the assumption will persist even after the change.? As we described in the previous chap-
ter, nonmonotonic assumptions are necessary for many agent domains. Thus, Unlimited
Parallelism is not sufficient for guaranteeing the consistency of unjustified assumptions
with respect to changes in the hierarchical context.

As we described in the previous chapter, assumptions can be partially justified with
respect to higher levels of the hierarchy. However, consider the use of Dynamic Hier-
archical Justification and Unlimited Parallelism together. Unlimited Parallelism allows
all applicable knowledge to be asserted simultaneously and relies on the TMS to resolve
any resulting inconsistency after the application of the individual assertions. For an en-
tailment, this can lead to a some inefficiency because the prior assertion is retracted.
However, Dynamic Hierarchical Justification reacts to inconsistency by withdrawing not
only the inconsistent assumption but all the assertions in the subtask. Therefore, Dy-
namic Hierarchical Justification used in conjunction with Unlimited Parallelism may lead
to significant inefficiencies.

Unlimited Parallelism will also fail to circumvent inconsistency when output com-
mands are issued. Output represents another source of nonmonotonic change, albeit in-
direct, in the agent’s state. Regardless of whether an output action is generated through
entailment or assumption, the agent generally cannot simply retract an output action
(e.g., launch missile). Further, even when a command can be undone (e.g., opening the
gripper), the agent requires knowledge to “undo” the action (close gripper) rather than
simple retraction.> Even using Dynamic Hierarchical Justification, the output command
can be issued before the inconsistency is apparent and the subtask retracted, thus leading
potentially to irrational behavior.

Unlimited Parallelism is thus only a partial solution to inconsistency arising from mul-
tiple threads of reasoning. Like Fixed Hierarchical Justification, it prevents the occurrence
of many inconsistencies and relies on additional knowledge to avoid inconsistency in the
cases not resolved by architectural means. However, also like Fixed Hierarchical Justifica-
tion, the agent’s ability to maintain consistency in situations is limited by the knowledge
design. When the knowledge fails to recognize inconsistency, irrational behavior can re-
sult.

4.2.5 Summary of Potential Approaches

Table 4.2 summarizes the approaches we have considered thus far, evaluating them by
the criteria we introduced earlier. Knowledge-based consistency and Unlimited Paral-
lelism depend on the agent’s knowledge to avoid inconsistency, thus increasing the cost
of building agents using these solutions and compromising their reliability. On the other
hand, additional knowledge is not required in the approach that disallows changes to the

%More correctly, the assumption will persist unless the assertion that was retracted is a member of the
fixed support set of the subtask.

3In this discussion, we assume an output system through which the agent directly initiates motor com-
mands. However, some of the problems in behavior resulting from inconsistency due to overly aggressive
response could potentially be solved by increasing the sophistication of the output system. For example,
consider an output system that buffered all output commands for some delay. It might assume that the
retraction of an assertion representing the command indicated an interruption of the activity and remove
the motor command from the buffer. The motor command would thus be interrupted before irrational
behavior was generated externally.
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Table 4.2: Summary of potential approaches arising from overly aggressive response to
context change, based on the evaluation criteria described in Section 4.2.

context nor in the aggressive response solution. However, both of these approaches lead
to excessive performance costs. Thus, no approach we have examined meets all of our
evaluation criteria.
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4.3 Subtask-limited Reasoning:
Limiting Reasoning to a Single Subtask

As we saw in the description of Unlimited Parallelism, full parallelism leads to incon-
sistency. However, one potential solution to inconsistency arising from overly aggressive
response to context changes might be to limit parallelism, but less extremely than elimi-
nating it altogether. The key issue is determining how to limit parallelism efficiently.

In this section, we describe Subtask-limited Reasoning, a solution that limits reasoning
to individual subtasks. Inconsistency arises when a local thread of reasoning is pursued
within a subtask while the hierarchical context is being elaborated simultaneously in a
different thread of reasoning. Subtask-limited Reasoning avoids expensive computation
of dependencies between assertions by sequencing the reasoning between subtasks. This
process is similar to the “washing” mechanism used in PRS (Durfee, 1998). Reasoning
across subtasks is serialized, progressing from the top of the hierarchy to the lowest
level of the hierarchy. Thus, Subtask-limited Reasoning solves across-level inconsistency
arising from multiple threads of reasoning by ensuring that the threads of reasoning in
the hierarchical context have been fully elaborated before local threads of reasoning can
progress. We further explore Subtask-limited Reasoning and discuss the implementation
below. In the next section, we consider the role the task decomposition itself has on the
costs and benefits of Subtask-limited Reasoning,.

Consider the TacAir-Soar example we introduced above. Assume the processing of
radio messages occurs as part of the patrol subtask (thus in the highest level of the
hierarchy), as we saw in the example decomposition in Figure 3.4. As before, consider
what happens if the radio message indicating the target is friendly occurs simultaneously
with the act of launching a missile. Under Subtask-limited Reasoning, because the thread
of reasoning that processes the radio message occurs higher in the hierarchy, it is computed
first. The thread that actually fires the missile occurs in a lower level and is thus arrested.
The radio message is parsed, leading to the classification of the current target as a friendly
aircraft. The intercept subtask depends on a hostile target. Thus, the radio message
leads to the removal of the intercept subtask and the thread that would have launched
the missile is interrupted.

Subtask-limited Reasoning is a heuristic solution. Another way to limit parallelism
while still supporting multiple threads of reasoning would be to determine the dependen-
cies between different pieces of knowledge and fire in parallel any non-dependent asser-
tions, regardless of where they appeared in the hierarchy. However, the determination of
the dependencies between threads of computation is a hard problem (Almasi and Gottlieb,
1989; Kuhn and Padua, 1981). Subtask-limited Reasoning eliminates this computation
by delaying all assertions in lower levels of the hierarchy, regardless of whether or not
they are dependent on the reasoning causing the delay. For example, in the TacAir-Soar
example, the radio message could be a confirmation that the target was hostile, or even
a message wholly unrelated to the current tactical situation. Regardless, under Subtask-
limited Reasoning and the decomposition we have described, the agent will delay firing
the missile while elaborating the message.
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4.3.1 Implementing Subtask-limited Reasoning

The implementation of Subtask-limited Reasoning was simple and inexpensive. In Soar,
the creation of each new assertion includes a “match goal.” Match goals correspond to
subtask goals in our discussion; therefore, the identification of the subtask to which an
assertion is attributed can be computed by simply inspecting the match goal of the asser-
tion. As new assertions are instantiated, the architecture simply sorts the instantiations
according to their match goals. Sorting the instantiations allows the architecture to de-
termine the highest level of activity by examining the first assertion in the list. Any
assertions matching in this first level are allowed to fire, the rest are left on the list of
assertions for another pass of rule firings.* Of course, changes made by the initial round of
rule firings will change the members on the instantiation list, adding some and removing
others. The only non-constant time process in Subtask-limited Reasoning is thus sorting
the assertions. However, the sort requires simply identifying each assertion’s match goal,
which is bound by O(n), where n is the number of assertions (assuming a count sort).
Additionally, the number of new assertions ready to fire at any one time is usually small.
Thus, Subtask-limited Reasoning adds little additional computational cost to the agent’s
processing.

4.4 Influence of the Task Decomposition on
Subtask-limited Reasoning

As we discussed above, Subtask-limited Reasoning can cause delays in reasoning even
when the delays are unnecessary. A delay is unnecessary when the changes in the con-
text are independent of the local thread of reasoning. In this section, we consider how
problematic these delays may be. Again, as we observed in the last chapter, the task de-
composition itself suggests that Subtask-limited Reasoning will cause few delays in actual
reasoning except when delays are truly necessary.

As we described in Chapter 2, each step in the decomposition identifies important
features of the external state necessary for the execution of a task. In the Blocks World,
for example, the observation that the bottom block of a tower that needs to be constructed
is not already on the table is represented by the put-on-table subtask. The subtask acts
as a shorthand representation of potentially complex state features. Other subtasks, such
as pick-up and put-down, can refer directly to put-on-table and ignore the specific
features in the external state represented by put-on-table.

As long as the features supporting the individual subtasks are not changing, the sub-
tasks themselves need not make further local computations. For instance, the put-on-ta-
ble subtask, once created, simply leads to further decomposition. Little local computation
is necessary as long as the bottom block of the tower is not on the table. No new local rea-
soning is necessary when the block is initially moved by the gripper, for example. Because
local computations are not often necessary once a subtask is created, most of the activity
in the agent is concentrated in the lowest level of the hierarchy. There, the current de-

“Soar does not immediately retract entailments but uses a “lazy retraction,” a process in which entail-
ments are retracted in parallel with new assertions. Lazy retraction affected the implementation slightly.
The architecture also sorts a retraction list according to the match goal and makes retractions only in the
current “active” level of the hierarchy.
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Knowledge-based Consistency || Yes No No No
Disallowing Context Change || No No | Yes No
Aggressive Response to Context Change || No Yes No No
Unlimited Parallelism | Yes No No No
Subtask-limited Reasoning | No No | 7?7 No

Table 4.3: Qualitative evaluation of potential approaches, based on the evaluation criteria
described in Section 4.2.

composition of the task serves to reduce the search for the next step in the decomposition
(or a primitive action). Thus, because activity is already focused primarily on a single
subtask, Subtask-limited Reasoning introduces little delay.

Now consider what happens in the situation we described in Figure 2.6. In this
example, block-3 suddenly moves. The agent observes that block-3 is now on the table
at the same time it is prepared to initiate a move-down command that will attempt to
put block-2 in the same space on the table. In the agent, the change in the external
world leads to change in the highest level of the hierarchy and the eventual removal of
the put-on-table subtask because the subtask is no longer consistent with the external
situation. Subtask-limited Reasoning delays the application of the assertions in lower
levels of the hierarchy while these computations are being made. In this situation, the
delay was necessary because the change in the context led eventually to the removal of
all the subtasks in the hierarchy.

These examples suggest that delays introduced by Subtask-limited Reasoning will
occur primarily when the external state has changed enough that new reasoning is needed
to determine if some subtask is still the right choice in the current decomposition. When
such computations are necessary, all reasoning in lower levels of the hierarchy will be
arrested until the local computations are made. In this situation, however, not delaying
reasoning lower in the hierarchy is the exact circumstance in which inconsistency can
result. If the subtask is still relevant, the subtasks will renew the local reasoning after
the context is elaborated. If the subtask is no longer relevant, then the subtask will
be interrupted, thus avoiding the potential inconsistency. Thus, again, we expect the
structure of the decomposition itself will allow us to use the heuristic simplification of the
dependency computation represented by Subtask-limited Reasoning with little additional
delay in the actual execution of hierarchically-decomposed tasks.
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4.5 Summary

In this chapter, we have shown that inconsistency arising from an agent’s overly aggressive
response within a subtask to context change can be avoided in a number of different ways.
Our emphasis in exploring this problem was to find efficient, process-based solutions that
would reduce the cost of knowledge design while retaining the agent’s ability to pursue
multiple threads of reasoning within a level of the hierarchy. Table 4.3 summarizes the
results of our analysis thus far. The new approach we have introduced, Subtask-limited
Reasoning, solves the inconsistency problem through architectural means. It does not
require additional knowledge, is not expensive to compute, and supports multiple threads
of reasoning within a subtask. Importantly, as we saw in the previous section, the sequen-
tial processing imposed by Subtask-limited Reasoning is not arbitrary. A subtask (and
thus the reasoning within that subtask) is logically dependent on the hierarchical context.
When assertions in the hierarchy are changing, the agent must wait to assert any depen-
dent reasoning to avoid inconsistency, although it may be difficult to determine a priori
if some context change is dependent. Subtask-limited Reasoning makes the heuristic sim-
plification that all local reasoning is dependent on the changing context. This assumption
simplifies the dependency computation but does potentially impact responsiveness by se-
rializing the application of new knowledge across subtasks. We argued that the structure
of hierarchically-decomposed tasks should cause little actual delay except when such delay
is truly necessary to avoid inconsistency. However, in the next chapter, we will empir-
ically evaluate the efficiency of our architectural solution to the inconsistency problems
to determine if both Subtask-limited Reasoning and Dynamic Hierarchical Justification
together allow efficient, responsive execution of agent tasks.
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Chapter 5

Goal-Oriented Heuristic Hierarchical Consistency:
An Empirical Evaluation using Soar

Supposing is good, but finding out is better.
— Mark Twain

In Chapters 3 and 4, we presented heuristic solutions to inconsistency arising from
persistence and multiple threads of reasoning respectively. We also argued that the struc-
ture of hierarchically decomposed tasks gave us reason to expect these heuristic solutions
would provide complete solutions to the inconsistency problems (i.e., require no cross-
level consistency knowledge), conserve the agent’s general capabilities, be efficient, and
be responsive to the outside world.

In this chapter, we offer some empirical results supporting these expectations. We
have added the Goal-Oriented Heuristic Hierarchical Consistency solution (GOHHC) to
the Soar architecture. We call this version “Soar 8,” to distinguish it from the current,
unmodified version of the architecture, Soar 7. To evaluate Soar 8, we use quantitative
measures of the qualitative evaluation criteria we have used in previous chapters: knowl-
edge cost, performance efficiency, and responsiveness. Because the absolute values of
these quantities are strongly influenced by both the task and the knowledge encoded in
the agent, we make relative comparisons to agents implemented in the pre-existing Soar
architecture (i.e., Soar 7). We consider agents in the two domains we have used for illus-
tration in the previous discussion: the Blocks World and TacAir-Soar.! Our results show
that overall efficiency and knowledge cost improve under Soar 8, while responsiveness
sometimes declines. In the next chapter, we show that the decrease in responsiveness can
be reversed through learning, in addition to further improving overall efficiency.

5.1 Methodological Overview

How should we evaluate Goal-Oriented Heuristic Hierarchical Consistency as embedded
in Soar 87 Before discussing what we expect to learn from these evaluations, we discuss
how we will address three methodological issues related to making empirical evaluations:
relative vs. absolute evaluation, degrees of freedom in agent design, and the choice of

”»

!We use a reduced-knowledge version of TacAir-Soar, “Micro-TacAir-Soar.” See Section 5.4 for more

details.
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representative tasks.

5.1.1 Relative vs. Absolute Evaluation

The first choice we must make in evaluating Soar 8 is to determine what constitutes
“good” and “poor” cost and performance evaluations. In general, an absolute evaluation
of performance and cost is difficult because the task itself, in addition to the agent’s
knowledge and architecture, determines the overall cost and performance results.

Our methodological approach focuses on relative comparisons, rather than absolute
comparisons. We will compare the cost and performance of Soar 8 agents to agents
using the current implementation of Soar, which uses Fixed Hierarchical Justification and
Unlimited Parallelism. We call these agents “Soar 7 agents,” to distinguish them from
Soar 8 agents also implemented in Soar. This relativistic comparison solves the problem
of absolute evaluation because we can use the Soar 7 agents for cost and performance
benchmarks. In other words, we can assess Soar 8 by determining if cost and performance
improve or degrade relative to Soar 7 agents.

The relativistic focus of evaluation reduces the generality of the results only if our
Soar 7 benchmarks are not representative of agent applications in general. Both of the
following methodological commitments attempt to ensure representative benchmarks.

5.1.2 Addressing Multiple Degrees of Freedom in Agent Design

The relativistic approach we adopted above immediately raises an important issue: how
can we know if our comparative results are valid and general if we have control over both
the benchmark agents and new Soar 8 agents? There are many degrees of freedom in the
design of an agent, even when both the architecture and task are fixed. Thus, we want to
ensure that we are comparing Soar 8 results to well-designed, independent benchmarks.

We assume this methodological problem can be avoided (or at least diminished) by
using systems already implemented by other researchers.? Such systems will be useful
because they have been developed independently from this research, thus minimizing bias
in the benchmark, and have been optimized for performance within Soar 7, providing a
good baseline for comparison.

We used the Soar 7 systems as fixed benchmarks, and did not modify the base systems
in any substantial way (although we did correct a few small errors in the agents’ knowledge
bases that were discovered in the course of this research). We also further constrained the
Soar 8 agents by requiring them to use the identical task decompositions employed by the
Soar 7 agents, and the same initial knowledge base. There were some clear opportunities
to improve performance in the Soar 8 agents by modifying either the task decomposition
or re-designing significant portions of the agent knowledge base. However, we chose the
most conservative path possible, in order to ensure that the two agent classes remained
tightly constrained, allowing fewer degrees of freedom in the course of our comparisons.

2The author actually participated in the development of both the Blocks World and, much less sub-
stantively, TacAir-Soar. However, his participation in these projects pre-dates the development of Soar 8.
Thus, the general approach we outline should not be compromised by his earlier participation.
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5.1.3 The Choice of Representative Tasks

Finally, because our resources are limited, we must choose only a few tasks to make
empirical comparisons. The choice of only a few tasks or domains is a considerable
drawback of benchmarks, in both Artificial Intelligence (Hanks et al., 1993) and, more
generally, in Computer Science (Hennessey and Patterson, 1990). Further, based on
the commitments we described above, the domains we will investigate must also have
independently-developed Soar 7 agents.

We chose to examine agents in the Blocks World and in a reduced-knowledge version
of TacAir-Soar (“micro-TacAir-Soar”). Although our choices were motivated primarily
by the availability of domains with pre-existing Soar 7 agents, there are also additional
experimental justifications for using these domains. We used the Blocks World as a
test bed for quick assessment. We expected any inherent inefficiencies in Soar 8 to be
immediately apparent in such a simple domain. Micro-TacAir-Soar, on the other hand,
was selected as a more representative agent domain, requiring real-time response in a
highly dynamic environment. Micro-TacAir-Soar is also a subset of fielded Al system,
using real domain knowledge rather than the hypothetical domain knowledge for the
Blocks World synthetic task. Thus, our choices reflect two extremes in a continuum of
domain characteristics. We detail these justifications more specifically when we discuss
the experimental methodology in each domain.

5.2 Evaluation Hypotheses

Before presenting experimental results from each domain, we now focus on the general
expectations we will have in pursuing these empirical evaluations. In previous chapters, we
have stressed the importance of three evaluation criteria for agents: cost, efficiency, and
responsiveness. In this chapter, we explore these dimensions quantitatively. Although
we will have specific expectations in different domains, can we say, in general, what
differences in these dimensions can be anticipated when comparing Soar 8 agents to other
agents? If these general expectations are confirmed, then we can argue that the specific
results we present below should apply to additional domains as well. In the following, we
consider each dimension separately, explaining the general expectation and introducing
the metric(s) we will use to assess the expectation.

5.2.1 Knowledge Engineering Cost

We expect knowledge engineering effort in Goal-Oriented Heuristic Hierarchical Consis-
tency agents to decrease in comparison to previously developed agents. Our goal in
developing GOHHC was to remove the necessity of cross-level consistency knowledge in
execution agents. Therefore, the removal of consistency knowledge in the Soar 8 agents
should cause a reduction in the overall knowledge cost.

We will measure knowledge cost by counting the number of productions necessary for
behavior in each type of agent. Each production represents a single, independent piece
of knowledge; therefore, we assume that the addition of more productions represents an
addition in cost. However, productions provide only a coarse metric of cost. Individual
productions can vary significantly in complexity, some having many conditions and ac-
tions, others having only a few. However, as we described previously, the knowledge of
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each Soar 8 agent was initially developed from the previously-existing Soar 7 agent. Be-
cause the resulting changes impacted only a fraction of the total knowledge base (results
below), the production metric will provide a reasonable measure of cost and avoid the
complexity of making other cost estimates (e.g., person-hours might be a better metric,
but much more difficult to measure reliably).

5.2.2 Performance: Efficiency and Responsiveness

In general, we expect performance to improve in Soar 8 agents, as compared to their
Soar 7 counterparts. The consistency knowledge that was represented explicitly in the
Soar 7 agents has now been embedded in the architecture. This architecture knowledge,
as we described in the previous two chapters, uses heuristics to circumvent the expensive
calculations required for a minimal complete solution. Therefore, because the consistency
knowledge is efficiently embedded in the architecture, we generally expect Soar 8 agents
to outperform Soar 7 agents.

There are three specific exceptions to this expectation. First, in domains where consis-
tency knowledge is (mostly) unnecessary for task performance, Soar 7 agents may perform
better than Soar 8 agents. In the Blocks World, little consistency knowledge is necessary.
The world is endogenous and thus the context changes little, and only in ways the agent
dictates. The Soar 8 agent, however, employs the GOHHC algorithms even though they
are unnecessary in this domain. We expect relatively inefficient performance may result
when the dependency calculations are not used. However, we assume the reduction in
cost and performance improvement in more dynamic (complex) domains is more impor-
tant than performance degradation in less complex domains.

Second, in Chapter 3, we described inefficiency resulting from regeneration. We ar-
gued that unnecessary regeneration, or the removal and regeneration of reasoning that
was not logically dependent on a context change, could be avoided by using well-formed
decompositions. However, in Soar 8, whenever the dependent context changes, a subtask
will be retracted. If the change does not lead to a different choice of subtask, the subtask
will be necessarily regenerated. This regeneration may be costly because the retraction
and regeneration is potentially less specific than a knowledge-based approach. For exam-
ple, a knowledge-based approach may be able to remove only the empty assumption when
the context changes as we described in Figure 2.6. In Soar 8, the entire put—-down subtask
is removed. Thus, under Soar 8, we expect some subtask regeneration and, if the expense
of regeneration grows costly in the execution of the task, a degradation in performance.

Third, in Chapter 4, we argued our solution to inconsistency arising from multiple
threads of reasoning would not impact the actual efficiency of agents using simulated
parallelism. However, Soar 8 agents will generate primitive operators less quickly than
comparable agents using full parallelism on a parallel hardware architecture, leading to a
potential decrease in responsiveness.

The expectations we described above are based a simple, single dimension of perfor-
mance. We use the agent’s CPU time to assess this gross measure of performance. We
report the total CPU time used by the agent while executing its tasks, excluding inter-
actions with the agent simulation and the cost of executing the simulation itself. Thus,
the CPU time we report in individual experiments reflects the time the agent spends
reasoning and initiating actions rather than the time it takes to carry out those actions
in the environment.
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We can also examine a number of architecture-specific performance measures and
develop a more detailed assessment of the costs and benefits of Soar 8. Below, we describe
these metrics and our individual expectations for each.

Decisions

In Soar, the selection of an operator is called a decision. When Soar selects an operator,
it tries to apply the operator, as if it could be immediately applied (e.g., a primitive
operator). Soar reaches an impasse when it cannot apply a newly selected operator. These
non-primitive operators lead to the generation of a subgoal in the subsequent decision.
For example, Soar selects the put-down operator in one decision and creates a subgoal to
implement put-down in the subsequent decision.

We use the number of decisions as a relative approximation of the number of subtasks
initiated for a task. We expect decisions to increase in Soar 8 agents because subtasks will
be interrupted whenever a dependent change occurs. In Soar 7, a subtask was generally
never interrupted until it terminated (either successfully or unsuccessfully). In Soar 8,
interruptions will lead to an increase in total decisions. Further, if decisions increase
substantially (meaning a large number of regenerations), overall performance will degrade.

Elaboration Cycles

Knowledge is retrieved and applied in individual elaboration cycles in Soar. In each
elaboration cycle, any retrieved knowledge is applied in (simulated) parallel. Our solution
to inconsistency arising from multiple threads of reasoning limits parallelism to the highest
subtask in which knowledge can apply. Thus, we expect elaboration cycles to increase in
Soar 8. The increase in elaboration cycles provides an approximation of the loss of real
parallelism in Soar 8.

Production Firings

As we mentioned previously, Soar agents use productions to represent their task and
domain knowledge. In general, we expect production firings to decrease in Soar 8, although
in some cases production firings may increase. Production firings will decrease for two
reasons. First, any inconsistency knowledge that was previously used in Soar 7 agents will
no longer be necessary (or represented), so this knowledge will not be used in the execution
of the task. Second, any reasoning that occurred after inconsistency arose in Soar 7 agents
will be interrupted and eliminated, as we described in Chapter 4. Production firings may
increase when regeneration is required as the task is executed. The change in production
firings will thus be task-specific, dependent on the the combination of these factors for a
particular task.

5.3 Empirical Evaluation in the Blocks World

We begin our empirical evaluation of Soar 8 in the blocks world. A snapshot from the
execution of an actual Blocks World task in shown in Figure 5.1. This situation is the
same one we saw in Figure 2.6. We begin by detailing our experimental methodology, and
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Figure 5.1: Execution of the tower building task in the Blocks World simulation. The
Soar 7 and Soar 8 agents can build a three-block tower from any initial configuration of
three blocks without using lookahead planning.

then present a summary of our results.

5.3.1 Methodology

The Blocks World is a relatively simple and wholly endogenous domain. The actual
simulation we use was developed to explore issues in architecture design, although its
design and implementation pre-dates the design of the Soar 8 architecture by several years.
Agents in this domain have execution knowledge to transform any initial configuration of
blocks into an ordered tower.

The Blocks World is a good testbed domain because any expected benefit of Soar 8 will
be minimal in such a domain. An agent pays a potentially high price in performance for
putting the GOHHC processes in the architecture, even though we have made an attempt
to make the implementations efficient. In domains that use a lot of consistency knowledge,
the cost of the new processing may be offset by the cost of the retrieving and applying the
agent’s explicit consistency knowledge, as we suggested above. However, the Blocks World
requires little consistency knowledge. The architecture will still compute the dependen-
cies for Dynamic Hierarchical Justification (Section 3.4.2) and sequence reasoning across
subtasks (Section 4.3), even though we expect few (if any) inconsistency-causing context
changes to arise due to the endogenous nature of the domain. Thus, the Blocks World
should provide a lower bound on the value of the relative cost differences (because the
domain requires little consistency knowledge) while also revealing any inherent efficiencies
in performance.

Our Blocks World consists of three blocks, a gripper and a table the width of nine
blocks. Assuming the goal is always to build the 1-on-2-on-3 tower, there are 981 unique,
non-goal, initial configurations of blocks. Figure 5.2 illustrates the derivation of the
individual cases. In our experiments, each agent solved each of the 981 distinct tasks.
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Case 1: Flat Case 2: 2+ 1 Case 3: Non-goal Tower

Block/space permutations: ~ 9!/6! = 504 9/t =72 9!/8! =9
x Block permutations: x1 X 6 X b
Permutations per case: 504 432 45
Total permutations: 504 4 432 + 45 = 981

Figure 5.2: Permutations of unique, initial, non-goal configurations in the Blocks World.
The derivation assumes the table is nine blocks wide and the goal is to build a 1-on-2-on-3
tower.

The order of the tasks were chosen randomly, although each agent executed the tasks in
the same order. Because there is no interaction between tasks, the random order was
not significant for these runs (although it will be in the next chapter when we consider
learning).

The initial configuration of blocks can be described in terms of two measures of “task
complexity:” the number of total blocks that must be moved during the task and the
number of primitive operators executed (number of output operations). We introduce
these measures of complexity because the aggregate statistics from the Blocks World
runs will show a wide variation in performance statistics. However, the variation drops
substantially when these complexity measures are held constant.

The number of blocks to move corresponds to the minimum number of put-on-table
and stack operations necessary to execute the task. Case 1 in Figure 5.2 always requires
two blocks be moved, Case 2 requires from 1 to 3 total moves, while Case 4 requires
either three or four moves. In Cases 2 and 3, the same block block may need to be moved
twice. For instance, in the Case 2 example in Figure 5.2, block-1 will need to moved onto
the table from its initial position, then again, when stacked on block-2. The number of
blocks to move is determined completely by the initial situation and the agent’s knowledge
guarantees that the minimum number of block moves are executed.

The spatial distribution of blocks in the initial configuration and the number of blocks
to move together determine the number of primitive operations or outputs necessary for
solving a particular Blocks World problem. Figure 5.3 diagrams the distribution of the
outputs over the initial configurations, sorted in increasing order. Recall from Figure 2.3
that the outputs in the Blocks World execution task include moving the gripper and
opening and closing the gripper. Figure 5.4 shows the relationship between outputs and
blocks to move. The minimum outputs necessary to complete a task increase with more
blocks to move. However, the maximum outputs do not show this same relationship. In
general, as the task gets more complex in the number of blocks to move, the blocks appear
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Blocks World.
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Soar 7 Soar 8

T s.d. z s.d.
Rules 188 175
Decision Avg. 87.1 20.9 | 141.1  38.7
Avg. Outputs 22.3 6.1 | 223 6.1

Avg. CPU Time (ms) 413.1 121.6 | 391.6 114.0
Avg. Elaboration Cycles || 274.3  65.8 | 562.9 155.7
Avg. Rule Firings 720.3 153.5 | 855.6 199.6

Table 5.1: Summary of knowledge and performance data from the Blocks World. The
agents performed the tower-building task for each of the 981 cases configurations derived
in Figure 5.2. The task order was randomly determined.

closer together (e.g., in non-goal towers and two-block “mini-towers”). Thus, the most
complex tasks in terms of the number of blocks to move actually require fewer outputs,
on average, than cases with fewer blocks to move.

5.3.2 Results

Table 5.1 shows average data from the blocks world over the 981 cases we described
above. As expected, the total knowledge necessary decreased, while overall performance
improved. Decisions and elaborations increased, as expected, but the number of rule
firings increased as well, the opposite result we had anticipated. In the following sections,
we examine these results in greater detail to understand the impact Soar 8 has on the
Blocks World agent.

Knowledge Differences

The total knowledge decreased about 7%, from 188 productions in the Soar 7 agent
to 175 productions in the Soar 8 agents. This small reduction is consistent with our
expectations. However, the aggregate comparison is misleading. For the Soar 8 agents,
we actually both added and deleted knowledge. We deleted a total of 29 productions,
representing knowledge no longer necessary under Soar 8. However, we also added 16
productions. We describe the deletions and additions below.
Removing Consistency Knowledge: Given our expectation that the blocks world
would use little consistency knowledge, why were we able to delete 29 productions, about
one-sixth of the original knowledge? The answer is somewhat specific to Soar. In Soar,
the addition of a subtask goal is separate from the initiation of a subtask itself, as we
explained when describing Soar’s decision procedure (Section 5.2.2). The subtask and
subtask goal are also removed separately. Recall from Chapter 3 that Soar’s implementa-
tion of fixed hierarchical justification monitors impasse-causing assertions to determine if
a subgoal (such as the subtask goal) should be removed. On the other hand, the removal
of a subtask operator always requires knowledge (or the removal of a subtask goal higher
in the hierarchy). Thus, in effect, Soar 7 treats the initiation of a subtask as a persis-
tent assumption and requires knowledge to recognize when a selected subtask should be
interrupted or terminated.

In Soar 8, we restricted assumptions to only the effects (applications) of operators.
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The initiation of a subtask is now treated as an entailment and a subtask remains selected
only as long as the initiation conditions for the subtask hold. This change removes the
need for any consistency knowledge to terminate the subtask: when the subtask initiation
conditions are no longer true, the subtask is automatically retracted. Thus, we were able
to remove the termination conditions for all the subtask operators in the decomposition.
Knowledge Additions: Gaps in Domain Knowledge: The persistence of subtasks,
as we described above, allows Soar 7 agents to ignore large parts of the state space in their
domain knowledge. For example, the knowledge that initiates stack and put-on-table
assumes that the gripper is currently not holding a block. As these tasks are executed,
the gripper, of course, does grasp individual blocks. Because the subtask selection is
persistent, the conditions under which a stack or put-on-table operation should be
initiated when holding a block were ignored and not included in the domain knowledge.
However, the assertion that initiates the subtasks obviously becomes inconsistent with
the external situation as task execution progresses. In Soar 8, when the gripper grabs the
block, the architecture recognizes the inconsistency between the perceived state (holding
block) and its subtasks (pursue this task when not holding a block) and retracts the sub-
task. The agent now needs knowledge to determine which subtasks it should choose when
holding blocks. We added 16 productions, primarily for the stack and put-on-table
operators, to allow the agent to recognize these states in the domain. Importantly, this
knowledge is necessary domain knowledge. In the Soar 7 system, the agent could not solve
any problem in which it began a task holding a block, because the domain knowledge did
not cover these states. We simply added that knowledge to the Soar 8 agents. The need
for these additions are thus a positive consequence of Soar 8 because the architecture’s
enforcement of consistency can reveal gaps in the domain knowledge during development.

Performance Differences

Somewhat surprisingly, the overall performance of Soar 8 agents (as measured in CPU
time), improves slightly in comparison to the Soar 7 agents, even through each of the
other performance metrics we described in Section 5.2.2 all increase. In the following, we
consider each of the Soar-specific performance metrics individually, and then explain how
overall performance improves.

Decisions: In Table 5.1, we saw that Soar 7 agents made, on average, considerably
fewer decisions than Soar 8. Figure 5.5 plots the distribution of decisions over each
individual task and shows that the increase in the number of decisions was not due to
outlier differences but is consistent across all the tasks we examined. The additional
decisions are due to the removal and regeneration of subtasks, which occurs when the
(tested) conditions under which a subtask was selected change, as we described in the
previous section. We could have modified the knowledge in the Soar 8 agents to avoid
unnecessarily testing specific configurations of blocks and thus avoid the large number
of subtask regenerations. Instead, however, we chose to let the architecture perform the
removals and simply added knowledge to re-initiate the subtask.

As we described in Section 3.3.2, unnecessary regeneration is a potential source of
inefficiency. Figure 5.6 provides a justification for not having re-designed the knowledge
in the Blocks World. In the figure, we plot the number of decisions for both Soar 8 and
Soar 7 as a function of the number of outputs necessary to solve individual tasks. This
figure shows the structure of the task is preserved in the architectural decision processing
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Figure 5.6: Outputs vs. decisions for Soar 7 and Soar 8 agents in the Blocks World.
The shade and size of each datum signifies the the number of blocks moved for the run:
(smallest, black) — 1 block; (larger, dark gray) — 2 blocks; (larger, medium gray) — 3
blocks; (largest, light gray) — 4 blocks.

71



1400¢

1200+ .Soar 7 Soar 8

[EEN
o
o
o

800+

Rule Firings

600+

400! Jf”

200¢

50 100 150 200 250 300

Decisions

Figure 5.7: Decisions vs. production firings for the Blocks World agents.

in Soar 8. Although the slope of the Soar 8 lines have increased due to the regeneration, the
external task complexity (outputs, blocks to move) still strongly determine the number of
decisions. In a regeneration approach like we described in Section 3.3.2, we would expect
the processing would not reflect the structure of the task because regeneration occurs
regardless of its necessity. The preservation of the general structure of the task in the
decision processing convinced us that the subtask regenerations we observed in the Soar 8
Blocks World agent were actually necessary regenerations of the subtask.

Elaboration Cycles: The average number of elaboration cycles more than doubled in
the Soar 8 agents. The reason for this increase is simply the Subtask-limited Reasoning
we described in Chapter 4. Although a relatively large increase, the loss of parallelism
is much smaller than possible. As we argued in the previous chapter, at any point in
time, we expect most problem solving activity to be focused on the lower levels of the
task hierarchy, and thus the delays introduced by our solution are not as significant as
they might otherwise appear. For instance, the hierarchy of subtasks in the Blocks World
is as deep as five. Thus, the loss of parallelism in Soar 8 could easily be twice what
we observed. The smaller number we actually measured confirms that the solution we
introduced in Chapter 4 is much less limiting than it might initially appear.
Production Firings: The number of production firings also increased in the Blocks
World. The increase in production firings can be attributed to the knowledge we added
to the system and the resulting regeneration of the subtasks that made it necessary.
However, the increase in number of production firings relative to decisions was much
smaller. Decisions increased by a factor about 62% while production firings increased only
by about 19%. This smaller relative increase is due to the productions that were removed
(and thus did not fire) and Subtask-limited Reasoning. Figure 5.7 shows the relationship
between decisions and productions firings for both Soar 7 and Soar 8. Significantly,
production firings are closely correlated to the decisions. The correlation implies that
production firings also are closely tied to the structure of the task (as were decisions in
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Figure 5.7).3 Thus, while our original expectation regarding production firings was not
confirmed, the surprising results are explained by the addition of new knowledge, rather
than any unforeseen effect of Soar 8, such as unnecessary regenerations.

CPU Time: When production firings increase in Soar, we generally expect an increase
in CPU time. However, as we saw in Table 5.1, CPU time in Soar 8 decreased slightly in
comparison to Soar 7 even through production firings increased. To explain this result,
we have to consider some additional aspects of Soar’s processing.

Different productions take different amounts of time to match and fire in Soar; pro-
duction matching, especially, is not a constant time operation. In general, the match cost
of a production grows linearly with the number of partial instantiations of the produc-
tion (Tambe, 1991). These partial instantiations are called tokens. Each token indicates
what conditions in the production have matched and the variable bindings for those con-
ditions. In effect, each token represents a node in a search over the agent’s memory for
matching instantiation(s) of the production. The more specific a production’s conditions
are, the more constrained the search through memory, thus it costs less to generate the
instantiation.

In the Soar 8 Blocks World agent, the productions we added were more specific to the
agent’s memory (i.e., its external and internal state) than the productions we removed.
Further, simply having fewer total productions also reduces the amount of total search
in memory (assuming the average number of condition elements is constant in the two
systems).* An informal inspection of the match time and tokens for several Soar 7 and
Soar 8 runs showed that the number of tokens consistently decreased in Soar 8 by 10-15%.
This reduction in token activity is the primary source of improvement in CPU time Soar 8.

This improvement, of course, is not a general result and provides no guarantee that

in some other task or domain the cost of matching will not increase rather than decrease.
However, as we saw above, Soar 8 does force an agent’s knowledge to be more specific to
individual situations (because an assertion no longer persists over situations inconsistent
with the assertion’s instantiation conditions). Thus, we expect the constraint imposed by
Soar 8’s consistency processing will force production knowledge to be more specific, and
thus usually improve overall match cost. Exploring this hypothesis is a potential direction
of future work.
Responsiveness: We ignore responsiveness in the Blocks World because the domain is
endogenous. The only situations to react to are the agent’s own actions, which are known
and and can be anticipated. However, we do offer the following observation. Soar agents
poll the world for input once per decision. In the results we have discussed, the number of
decisions increased in Soar 8 agents, while the total CPU time decreased. These changes
reduce the decision cycle tome from 4.75 milliseconds/decision in the Soar 7 agent to 2.77
ms/decision in Soar 8. Thus, Soar 8 agents in this domain do have more opportunities to
poll the world state in any given span of time, and thus are potentially more responsive
than their Soar 7 counterparts.

3Figure 6.3, in the following chapter, shows the relationship explicitly.

“This statement is an over-simplification. The RETE algorithm (Forgy, 1979) shares condition elements
across different productions. Thus, the removal of productions only decreases the total search if the
removed productions contain condition elements not appearing in the retained productions. We did not
perform an exhaustive analysis of the condition elements to determine if the removed productions reduce
the number of unique condition elements in the RETE network, although that expectation is consistent
with our results.
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Figure 5.8: Blocks World Summary: Mean CPU Time in milliseconds vs. knowledge in
productions for Soar 7 (diamond) and Soar 8 (star) agents. The error bars show the
variation in the mean over two standard deviations.

5.3.3 Blocks World Summary

Figure 5.8 summarizes the results from the blocks world along the knowledge and perfor-
mance dimensions central to our evaluation. In the figure, we see that Soar 8 improves
slightly in both performance (a smaller average CPU time) and knowledge (fewer total
productions). Although the gains are not large, the relatively small magnitudes of the
differences were anticipated. Importantly however, Goal-Oriented Heuristic Hierarchical
Consistency in the Blocks World results in these benefits to the agents:

e Provides a guarantee of consistency in processing across subtasks
e Decreases total knowledge, suggesting a decrease in total cost

o Identifies gaps in the domain knowledge

e Improves performance

Thus, Soar 8 did not degrade overall performance or increase overall knowledge costs, even
in a domain where we would expect little or no gains in these dimensions. Given these
positive results, we now move the empirical evaluation to a more dynamic and complex
domain.

5.4 Empirical Evaluation in yTacAir-Soar

In this section, we describe our evaluation of Soar 8 agents in Micro-TacAir-Soar (uTAS
for short). In the following, we describe the characteristics of yTAS that make it a
good domain for assessing Soar 8, discuss some of the complications that arose when first
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applying Soar 8 to the domain, and then present our empirical evaluation of Soar 8 agents
in the pTAS domain.

5.4.1 Methodology

TacAir-Soar would be an ideal domain for assessing the impact of Soar 8. Unlike the
Blocks World, it is complex, exogenous, and requires rapid agent response to the external
situation. Further, TacAir-Soar agents operate at the edge of the performance capabilities
of the architecture. Our expectation is that Soar 8 will advance the “state of the art”
in Soar agent design, currently represented by Soar 7 TacAir-Soar agents. However,
because TacAir-Soar agents are already pushing the architecture’s performance envelope,
any degradation in performance under Soar 8 will not only be observable, but may also
lead to qualitative degradation in the execution of the task.

TacAir-Soar is a very large system, consisting of over 5000 productions, and took many
person-years to develop. The conversion from Soar 7 to Soar 8 agents would potentially
require many months of effort. Therefore, we decided to evaluate Soar 8 in a research
version of TacAir-Soar, “Micro-TacAir-Soar.” pTAS agents use the TacAir-Soar simula-
tion environment (ModSAF) and interface but cannot fly the complete range of missions
available in the full system. However, yTAS uses the same tactics and doctrine as TacAir-
Soar for its specific missions. In the restricted domain, a team of two agents (“lead” and
“wing”) fly a patrol mission and engage any hostile aircraft that meet their commit crite-
ria (are headed toward them, and are within a specific range), as we described previously
(Figure 3.3). The lead agent’s primary role in the mission is to fly the patrol route and
intercept enemy planes. The wing’s primary responsibility is to fly in formation with the
lead. pTAS agents require an order of magnitude fewer productions than TacAir-Soar
agents. Because the total knowledge is significantly reduced but the domain retains the
complexity and dynamics of the TacAir-Soar domain, converting 4 TAS agents should be
relatively inexpensive, while our results should be representative of results in TacAir-Soar
as well.

A patrol mission has no clearly-defined task termination condition, like having built a
tower in the Blocks World. Therefore, we run each agent in the simulation for ten minutes
of simulator time. During this time, each agent has the opportunity to take off, fly in
formation with its partner on patrol, intercept one enemy agent, and return to patrol
after the intercept. In an actual TacAir-Soar scenario, these activities would normally be
separated by much larger time scales. However, an agent spends much of its time on a
patrol mission simply monitoring the situation (waiting), rather than taking new actions.
We experimentally determined that ten minutes of simulated time is a short enough time
period that overall behavior is not dominated by wait-states, while long enough that
individual scenarios retain a natural flow of events.?

When running for a fixed amount of time, an increase in the number of decisions
can be attributed to either regeneration or simply an improvement in decision cycle time
(which we expect, given our Blocks Worlds results). In the Blocks World, an increase in

5For example, in the ten minute scenarios, the agents were not forced to reason about enemy planes
while taking off. In shorter scenarios, the enemy planes began very close to the agent’s take off point and
sometimes the agents would simultaneously be taking off and determining if the agent should intercept
enemy aircraft. The ten minute scenario allowed the agents to complete one patrol pass before encountering
any enemy agents, which was more consistent with the scenarios for which they were originally designed.
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the number of decisions was indicative of regeneration because the task always progressed
until the tower goal was accomplished. In pTAS, the simulator interpolates changes in
the world according to a real-time clock, updating the world once per agent decision. The
frequency of update in the simulation is dependent on the time required for all agents in
the simulation to execute a decision. Thus, agents that execute decisions faster will have
more decision opportunities in a fixed amount of time, and thus decisions may increase
without regeneration. We obviate the conflation of these effects in our yTAS results by
running y'TAS in a fixed-time mode. In fixed-time mode, each simulator update represents
67 milliseconds of simulated time. Because we run each scenario for a fixed amount of
simulated time, now we will also observe a fixed number of decisions for the Soar 7 and
Soar 8 agents. We assume that any problems due to regeneration will be apparent in the
number of rule firings and degradation in responsiveness. Further, we have confirmed that
the general results from these scenarios do not change significantly if we run the scenarios
in the variable time mode used normally for TacAir-Soar agents. The fixed-time mode
simply eliminates some variability in the results, making them easier to analyze.

5.4.2 Initial Results

Our first attempt at creating Soar 8 agents was simply to use the Soar 8 architecture with
the original Soar 7 agent knowledge base. Unlike the agents in the Blocks World, the
Soar 7 uTAS agents use a knowledge-based convention for terminating selected subtasks
when their initiation conditions no longer hold. Thus, we anticipated that we would not
need to add the type of knowledge that we added to Blocks World. We expected that
the original knowledge base could be improved (by identifying and removing consistency
knowledge no longer necessary) but that Soar 8 agents could perform using this knowledge.

However, these initial agents suffered from severe regeneration when performing the
scenario we described above. This regeneration resulted in significant increases in the
number of rule firings and similar increases in total CPU time. For instance, the lead
agent’s rule firings and CPU time increased by factors of 3.8 and 4.5 respectively, in
comparison to the Soar 7 lead agent. Additionally, the extra cost negatively impacted
qualitative behavior when run with variable-time cycles: Soar 8 agents more frequently
missed their missile shots, took longer to perform the intercept, and thus exposed them-
selves to more risk than the Soar 7 agents.

5.4.3 Creating Better Decompositions

These results prompted us to examine closely the Soar 7 knowledge base, in order to
understand the source of the debilitating regeneration in the Soar 8 agents. One obvious
limitation we discovered was that the convention for terminating subtasks, which we
mentioned above, was used for only one-third of the subtasks in the yTAS decomposition.
Thus, in a few cases, we added knowledge similar to the knowledge added in the Blocks
World, to fills gaps in the existing domain knowledge. Although this problem again
pointed out one of the problems with knowledge-based solutions for consistency (i.e.,
incompleteness), it did not cause large problems in the overall behavior.

The biggest deficits in performance arose because the Soar 7 agent takes advantage of
inconsistency in asserted knowledge. In other words, the Soar 7 agent not only allowed
inconsistency in the assertions but actually depended on those inconsistencies to apply
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new knowledge. In the following sections, we examine three different ways in which this
“inconsistency knowledge” was used in Soar 7 and what we had to do to change it in
Soar 8. In Section 5.4.4, we summarize the changes in terms of the productions added,
deleted, and changed from the original knowledge base.

Within-level Consistency Knowledge

Recall that our solutions to consistency across different levels of the hierarchy still require
consistency knowledge within an individual subtask. This knowledge is necessary in both
Soar 7 and Soar 8, and serves primarily to “clean up” the subtask goal. That is, when
terminating a subtask, the agent deliberately removes local assertions that contribute to
the execution of the terminating subtask, to avoid the (mis)use of these assertions in later
execution.

As an example, consider the achieve-proximity subtask. This operator is used in a
number of different problem spaces when an agent needs to get closer to another agent. For
instance, if the wing strays too far from the lead, it may invoke achieve-proximity to get
back into formation with the lead. The lead, on the other hand, uses achieve-proximity
to get close enough to an enemy aircraft to launch a missile. The operator makes many
local computations. For example, the agent reasons about what heading it should take
to get closer. The computation depends on what information is available about the other
aircraft. When the wing is pursuing the lead, it may know the lead’s heading and thus
pursue a collision course to maximize the rate of convergence. Sometimes the other agent’s
heading is not available; in this case, the agent simply heads toward the current location
of the other agent. These local computations are stored in the local subtask. When
the achieve-proximity operator is terminated, the agent removes the local structure.
Removing the structure is important both because it interrupts entailments of the local
structure no longer necessary (e.g., calculation of the current collision course) and guar-
antees that if the agent decides to achieve-proximity with respect to a different aircraft,
that supporting data structures are properly initialized. This knowledge thus maintains
consistency in the local goal by removing the local structure when the achieve-proximity
subtask is no longer selected.

We initially assumed this within-level consistency knowledge would need no modi-
fication. However, when using the convention-based approach, the Soar 7 agent could
recognize when it was going to remove a subtask. Subtask removals do not occur imme-
diately but rather at the end of the decision in which the termination knowledge applies.
In the meantime, the termination condition could act as a signal to the within-level
consistency knowledge. For instance, the knowledge that removes the local structure
for achieve-proximity can be summarized as follows: “if the achieve-proximity op-
erator is selected, but its initiation conditions no longer hold, then remove the local
achieve-proximity data structure.” Thus, the Soar 7 agent uses a recognition of incon-
sistency in the assertions to trigger the activation of the within-level consistency knowl-
edge.

In Soar 8, of course, when the subtask’s initiating conditions are no longer supported,
the selected subtask is removed immediately. Thus, the unmodified within-level consis-
tency knowledge in the Soar 7 agent never has an opportunity to apply. The failure to
apply this knowledge, however, led to local inconsistencies. If any of these inconsistent
assertions were shared across subtasks, the architecture would respond by retracting the
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subtask. Thus, the architecture was regenerating subtasks for both local and across-goal
inconsistency, resulting in many more regenerations than we expected.

We were able to solve this problem very generally by making the creation of the local
structure an entailment of the initiation conditions of the subtask itself. Thus, when the
subtask initiation conditions were no longer true, both the subtask selection and the local
structure would be removed immediately and architecturally. This change thus also ob-
viated the need for some within-level consistency knowledge. The cost of this solution is
that the local data structure may need to be regenerated if the achieve-proximity oper-
ator is temporarily displaced. For instance, the Soar 7 within-level consistency knowledge
could determine under what conditions the local structure should be removed. The Soar 8
solution has lost that flexibility.

Subtasks with Complex Actions

Soar 7 allows the agent to execute a number of actions in rapid succession, regardless
of any inconsistency in the local assertions. For example, a single subtask operator can
be initiated in a situation representing the conditions under which to apply the first
step in the sequence, and terminated when the last step in the sequence has applied. If
some intermediate step invalidates the initiation conditions, the subtask can still progress
through its sequence. Worse still, the individual steps may not even be logically dependent
on similar subsets of the hierarchical context, thus contradicting the assumption we made
in Chapter 3 about the near decomposability of subtasks in the hierarchy. The failure
of the architecture to enforce consistency allows arbitrarily complex procedures to be
executed by a single subtask operator.

As a concrete example, consider the process of launching a missile. The actual missile
launch requires only the push of a button, assuming that previous steps such as selecting
the target and an appropriate missile have been accomplished beforehand. After pushing
the fire button, the pilot must fly straight and level for a few seconds while the missile
rockets ignite and push the missile into flight. Once the missile has cleared the aircraft, the
agent “supports” the missile by keeping radar contact with the enemy plane. In Soar 7,
the push-fire-button subtask includes both the act of pushing the fire button, and the
act of counting while the missile clears the aircraft. However, these tasks have different
and mutually exclusive dependencies. The initiation condition for the push-fire-button
operator requires that no missile is already in the air. However, the subsequent waiting
requires counting while the newly launched missile is in the air.

Soar 8 always removes the push-fire-button subtask as soon as the missile is per-
ceived to be in the air. Regeneration occurs because the agent never waits for the missile
to clear and thus never realizes that the missile just launched needs to be supported. In
the initial scenarios we ran, the Soar 8 agent would fire all the available missiles at the
enemy plane, one after another.

We viewed this problem as a failure in the original decomposition to identify different
subtasks. Pushing the fire button and waiting for the missile to clear are independent
tasks, which happen to arise in serial order in the domain. We enforced this independence
by creating a new subtask, wait-for-missile-to-clear, which depends only on having
a newly launched missile in the air. The Soar 8 agent now pushes the fire button, selects
wait-for-missile-to-clear to count a few seconds before taking any other actions, and
then correctly supports the missile if it clears successfully.
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This solution reduces regeneration and improves behavior quality but it does have a
non-trivial cost. Whenever we split an operator, the effects of the operators no longer
occur in rapid succession within a decision. Instead, the effect of the first operator occurs
in one decision, the effect of the second operator in the second decision, etc. Thus, this
solution can negatively impacts responsiveness. We will see concrete evidence of this cost
in Section 5.4.4.

Global vs. Local Assumptions

In Figure 3.4, we showed the agent computing a new heading as a subtask of the achieve-
proximity operator. This calculation usually depends upon the current heading. How-
ever, when the agent generates the command to turn, the heading changes soon thereafter.
In Soar 7, this change is not problematic. In Soar 8 because the desired heading depends
upon the current heading, the subtask that generated the command will be retracted
when the heading changes, leading to many (unnecessary) regenerations of the same mo-
tor command. In our initial experiments, most regeneration resulted because individual
motor commands were stored locally, in a subtask, and whenever the world changed, the
subtask would be retracted and regenerated.

The agent’s knowledge is treating a global value (the motor command) as a local
value. The motor command is really not local to the subtask because it can (and often
will) lead to changes throughout the context. For instance, the wing agent, whose job is
to follow the lead agent in a particular formation, may initiate a turn when it realizes
that the lead has begun to turn. Once the wing begins to turn, it will want to use the
motor command (desired heading) to determine if further course changes are necessary.
If the course correction is local, however, the wing cannot utilize this knowledge at higher
levels.

The highest level of the hierarchy serves as a global state because assertions in it can
be inspected by subtasks in any level. Additionally, assumptions in the highest level of
the hierarchy are unjustified (there can be no assertions in higher levels on which they
depend). Therefore, the global level also represents a level in which all assumptions
are maintained wholly by within-level consistency knowledge. The Soar 8 agents were
changed such that they now issue motor commands at the global level, rather than lo-
cally. The agent now has access to motor commands throughout the hierarchy and can
make use of them in specific subtasks without impacting local dependency calculations.
No unnecessary regeneration occurs because the agent always has access to the current
motor command and thus generates a new one only when the motor command would
be different. The solution, of course, requires consistency knowledge because the motor
commands are unjustified and thus must be explicitly removed. However, in this specific
case, the agents always replaced old motor commands when generating new ones, so no
additional consistency knowledge was necessary. In general, however, making a value
global necessitates consistency knowledge to manage it.

5.4.4 Results

We made modifications to the Soar 8 agents’ knowledge base as described in the previous
section and then ran the scenario in order to compare Soar 7 and Soar 8 agents. In the
Blocks World, there was virtually no variation in the statistics when a particular task
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Lead Agent Wing Agent

Soar 7 Soar 8 Soar 7 Soar 8
Rules 591 539 591 539
Decisions (Z, s.d.) 8974 | 0.0 | 8974 | 0.0 8958 | 0.0 | 8958 | 0.0
Outputs (z, s.d.) 109.1 | 6.71 | 142.8 | 7.03 1704 | 42.7 | 869 | 12.8

ms of CPU Time (z, s.d.) 1683 | 301 | 1030 | 242 || 12576 | 861 | 2175 | 389
Elaboration Cycles (z, s.d.) || 1590 | 96.9 | 1991 | 109 | 11820 | 296 | 7246 | 130
Rule Firings (z, s.d.) 2438 | 122 | 2064 | 81.1 || 16540 | 398 | 6321 | 104
Number of runs (n) 43 53 56 46

Table 5.2: Summary of gTAS run data for a scenario in which a lead and wing fly a
patrol mission, intercept an enemy plane, and return to patrol following the intercept.
Each scenario ran 10 minutes. The data in each column was averaged over the number of
runs in the bottom row, about fifty runs.

was repeated. Although we controlled for as much indeterminism as possible, the yTAS
simulator is inherently stochastic. To control for variation due to this indeterminism,
we ran each scenario about fifty times. Table 5.2 lists average data for the Soar 7 and
Soar 8 lead and wing agents for the patrol/intercept scenario. The results in this domain
are consistent with all our expectations: total knowledge decreases, elaboration cycles
increase, and rule firings decrease, substantially so in the Soar 8 wing. In the following
sections, we examine each of these results in greater detail.

Knowledge Differences

Table 5.3 quantifies, by category, the changes to the Soar production rules we described in
Section 5.4.3. Modifications include deletions, additions and changes. We regarded a rule
changed only if its conditions changed slightly, but it made the same type of computation
(entailment or assumption) for the same subtask or in the same problem space. For ex-
ample, most of the within-level consistency knowledge requiring modification (rather than
deletion) is categorized as “changed.” The knowledge now refers to a different structure
but that structure is located in the same problem space. This somewhat restrictive defini-
tion of a change inflates the addition and deletion accounting. In many cases a production
was “deleted” and then immediately “added” to a different problem space. For example,
the productions that manipulate motor commands all were moved from local subtasks to
the highest subtask level. Almost all the additions and deletions in the “Globalization”
category can be attributed to this type of change, which, in reality, required no synthesis
of new production knowledge.

The total overall knowledge required for the Soar 8 agents decreased, as it did in
the Blocks World. This reduction of about 9% was achieved by making some type of
modification to about 40% of the Soar 7 rules, and may seem like a very modest gain,

This table also includes the changes that were made for learning. As we describe in Section 6.3.3, these
changes were not necessary for correct learning, but made newly learned productions more general. The
Soar 8 performance data we present in this chapter were generated with a knowledge base that included
the learning changes. Therefore, we include the learning changes here for completeness. However, the
presence of these rules in the knowledge base has no impact on the non-learning performance data we
report in this chapter.
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g 3 ol 3 g
@ |E0 |Ohx| O| . |2 TOTALS
Soar 7 Agent: 591
Deletions: | 44 10136 | 4 8 -111
Additions: 5 21132 01 +59
Changes: 0 8 0(33|124]0 (65)
Soar 8 Agent: 539

Table 5.3: Quantitative summary of changes to production rules in the Soar 7 agent knowl-
edge base for Soar 8 agents. The modification categories are described in Section 5.4.3
(changes specific to learning are described in Section 6.3.3).

given the conversion cost. However, this conversion cost is an artifact of the methodology
we have chosen. Had we built the Soar 8 agents in this domain without having Soar 7
agents to which to compare them, we would expect a 9% decrease in the total knowledge,
thus reflecting our goal: a reduction in the cost of the agent design. We detailed the
Soar 8 modifications in the thesis because they highlight how the Soar 7 agent failed to
maintain consistency among its assertions, even though the overall behavior of the system
was not compromised. This failure to ensure consistency will be important in the next
chapter, when we consider how to further improve performance when using hierarchical
task decomposition. The conversion cost does suggest that converting a much larger
system, like TacAir-Soar, may indeed be costly. In this case, however, it is significant
that the modifications we describe were all pointed out by identifiable regenerations in
the architecture. Thus, on a relative scale, the 235 total changes we made to the Soar 7
knowledge base were much easier to make than constructing a similar number of rules in
a new agent.

Performance Differences

As the performance results in Table 5.2 show, Soar 8 agents improved in performance
relative to their Soar 7 peers. However, the difference in performance improvements
between the lead and wing agent was substantial. In the following, we explain the task
differences in the leads and wings that led to the difference in relative improvements. We
then individually evaluate the Soar 8 agents’ performance along the elaboration cycles,
production firings and CPU time metrics.

Lead and Wing Agents: The lead and wing agent share the same knowledge base but
perform different tasks in the uTAS scenario, which leads to differences in their absolute
performance. Recall that the lead’s primary responsibility is to fly the patrol route and
lead the intercept. Thus, high-level subtasks for the lead include fly-patrol-route,
intercept, etc. On the other hand, the wing’s primary mission role is to follow the
lead. The wing spends most of the scenario executing a follow-leader subtask. These
different tasks require different responses in the agent. We assume that an agent’s overall
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Figure 5.9: Cumulative outputs over the course of one ten minute scenario for Soar 8 lead
(black) and wing (gray) agents. The lead’s output activity is mostly concentrated at a
few places over the course of the scenario (take-off, intercept, launch-missile, and
resume patrol). The wing’s most concentrated output activity occurs when the lead turns
to a new leg of the patrol and the wing must follow the lead through a 180 degree turn.

reasoning activity is correlated by its output activity.” Figure 5.9 summarizes the output
activity of one pair of lead and wing agents over the course of a ten-minute scenario. We
will now examine the behavior of the lead and wing agents more closely to explain the
differences in output activity, which, in turns, suggests an explanation of the difference in
other performance metrics.

As Figure 5.9 suggests, the lead actually spends most of the scenario waiting, with
short bursts of reasoning and output activity occurring at tactically important junctures
in the scenario. On patrol, the lead flies straight and makes a decision to turn when
it reaches the end of a patrol leg. While flying, the lead simply has to monitor the
environment and search for enemy planes. This search is (mostly) passive; the agent’s
radar simply notifies the agent if any new entities have been detected. After detecting and
classifying an enemy plane as a potential threat, the lead commits to an intercept. At this
point, the lead immediately makes a number of course, speed, and altitude adjustments,
based on the tactical situation. These actions are evident in the figure by the pulse labeled
“intercept.” The lead spends most of the time in the intercept simply closing the distance
between the aircraft to get within weapon range, again having to maneuver very little and
thus requiring few actions in the environment (thus the relatively flat slope of following
the intercept). When the agent gets within missile range of the enemy plane, the agent
executes a number of actions very quickly. The lead steers the plane into a launch window
for the missile, pushes the fire button, waits for the missile to clear, and then determines
a course to maintain radar contact as the missile flies to its target, all in a very short

"We provide a more concrete justification of this assumption in the section on production firings, below.
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period of time, as indicated by the pulse of activity at launch-missile in the figure.
Once the intercept has been completed, the lead resumes its patrol task. Again, it issues
a large number of output commands in a short period of time, as shown in the figure.
These examples show that the lead’s reasoning focuses primarily on reacting to discrete
changes in the tactical situation (patrol leg ended, enemy in range, etc.) and the response
generally requires little continuous adjustment.

The execution of the wing’s follow-leader task requires reaction to continuous
change in the lead’s position in order to maintain the formation. Position corrections
require observing the lead’s position, realizing an undesired separation in the formation,
and then responding appropriately to the separation by adjusting speed, course, altitude,
etc. Because the wing is following the lead throughout the scenario, it is executing this
position maintenance knowledge almost constantly. When the lead is flying straight and
level, as on a patrol leg, the wing’s task does not require the generation of many outputs.
In Figure 5.9, these periods of little activity are evident in the periodic flat segments in
the wing’s cumulative outputs. When the lead begins a maneuver (e.g., a turn), the wing
must follow the lead to maintain the formation throughout the turn. During the turn the
wing must generate many motor commands as it follows the lead. Because the turn takes
a few seconds to complete, the outputs increase gradually over the course of the turn,
as can be seen in the figure. Thus, the wing periodically encounters a dynamic situation
that requires a large amount of reasoning and (motor) responses. Further, the response
to this change is not discrete, as in the lead, but occurs continuously over the course of
the lead’s maneuver.

These differences in the tasks for the two agents account for the relatively large ab-
solute differences in the performance metrics between the lead and wing agents. Because
the wings are adjusting their positions relative to the leads, they issue many more output
commands than the leads. This, in turn, leads to more individual elaboration cycles and
rule firings as the agent asserts the knowledge it needs to issue the best motor command
in the current situation. We will now look at the individual performance statistics more
closely to compare the behaviors of the Soar 8 lead and wing agents in comparison to
their Soar 7 counterparts.

Decisions: In fixed-time mode, we expect the number of decisions to be constant, which
we observed for both lead and wings. We actually ran each scenario for 600 seconds,
rather than running for a fixed number of decisions. However, because we ran in the
fixed-time mode we described previously, there was no variation in the observed decisions,
as expected. The differences between decisions in the lead and wing is due simply to an
artifact of the data collection. The lead agents run for an extra second after the wings
halt to initiate the data collection activities for batch runs.

Elaboration Cycles: In the Soar 8 lead agent, the number of elaboration cycles increased
even as the rule firings decreased. As we described for the Blocks World, the increase in
elaboration cycles is due to Subtask-limited Reasoning, as we described in Chapter 4.
In the Soar 8 wing, the number of elaboration cycles actually decreases. However, this
decrease is due to the large drop in the number of rule firings in the wings. Rule firings
per elaboration cycle dropped from 1.4 in Soar 7 to .87 in Soar 8.8 Thus, the overall result
is as we expected: fewer rules are firing in parallel over the course of the task.
Production Firings: In both the lead and wing agents, production firings decrease.

80ne might expect this ratio always to be greater than or equal to 1. However, in Soar, both assertions
and retractions occur in individual elaboration cycles. Thus, the lower limit of the ratio is actually 0.5.
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Figure 5.10: Outputs vs. production firings for Soar 7 (black) and Soar 8 (gray) agents.
The lead agents are the leftmost pair of data, the wings are to the right. As in the Blocks
World, as the number of output commands increase, the production firings increase as
well.

However, the wing’s production firings decrease by 62%, while in the lead, the decrease
is only 15%. In order to explain these differences in the relative improvement, we look
once again at the differences in the tasks of the lead and wing agents. Figure 5.10 shows
that as the number of outputs generated by an agent increases, production firings increase
as well. This figure thus confirms the assumption we made previously: rule firings are
correlated with output activity (albeit not as strongly as the correlation we observed for
agents in the Blocks World). We explain the differences in production firing improvements
by further examining the changes in the number of outputs issued by the wing and lead.

The Soar 7 wing sometimes issues the same motor command more than once. The
reason for this duplication is that the specific motor command is computed locally, and
is thus not available to other subtasks. As we described in Section 5.4.3, we changed
the Soar 8 agents so that this computation is now global. The Soar 8 wing never issues
a redundant motor command because the command is availability globally, and can be
inspected by all subtasks. Thus, the large relative decrease in outputs in the wing can
be attributed to this change in the knowledge. Production firings thus also decrease with
the decrease in output activity.

In contrast to the wing agent, the average number of outputs issued by the lead during
the scenario actually increases. Regeneration is the source of these additional outputs.
In a few cases under Soar 8, a subtask for adjusting heading, speed or altitude can get
updated repeatedly in a highly dynamic situation (e.g., a hard turn). The Soar 7 agent
uses subtask knowledge to decide if the current output command needs to be updated.
However, in Soar 8, the subtask may be retracted due to a dependence on a changing
value (e.g., some subtasks for turning depend on the current heading). In this case, when
the subtask is regenerated following a retraction, the lead may generate a slightly different
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Figure 5.11: Production firings vs. CPU time for the Soar 7 (black) and Soar 8 (gray)
agents. The lead agents are the leftmost pair of data, the wings are to the right.

motor command. For example, the lead might decide to turn to heading 90.1 instead of
90.2. This decision causes the generation of a new output command that would not have
been re-issued in Soar 7 and accounts for the increase in outputs. It also suggests that the
knowledge base could be further modified to avoid this regeneration and further decrease
production firings.

Together, these results show that the decrease in production firings is not solely due to

the global availability of the current motor commands in Soar 8. Instead, the reductions
are also due to the use of less consistency knowledge and the interruption of rule firings
in terminating subtasks. Although the large magnitude of the improvement in the wing
is due to the globalization of the motor commands, overall rule firings decrease due to the
architectural solutions to consistency as well. Significantly, the agents perform the same
tasks using less knowledge.
CPU Time: In both the lead and wing agents, CPU time decreases in Soar 8. Similar to
the results we observed for production firings, the improvement in the lead is about half
(40%) the improvement in the wing (81%). However, Figure 5.11 shows that CPU time
is poorly correlated with production firings in this domain. The poor correlation is due
to the presence of wait states, which were not needed in the Blocks World. In these waits
states, generally no productions fire. Thus, the agent’s CPU time increases and becomes
less correlated with individual production firings.

As we observed in the Blocks World, improved match time also contributes to the
overall performance improvement in yTAS. In comparison to their Soar 7 counterparts,
the match time of the Soar 8 wing improved by almost an order of magnitude improve-
ment while the match time in the Soar 8 lead agent improved by 5-t0-10%.° The main

9As in the Blocks World, these trends are based on a few observations of the data, rather than a
significant analysis. In particular, in yTAS, we did not collect data for the number of tokens generated;
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Avg. In-Range Time | Avg. Launch Time | Reaction Time | n
Soar 7 161.816 162.084 268 | 95
Soar 8 162.048 162.993 945 | 99

Table 5.4: A comparison of average reaction times for launching a missile in 4 TAS. The
“in-range” columns shows the time, on average, at which an enemy plane came into missile
range during the course of the ten-minute scenario. “Launch time” presents averages of
the actual times the missile was launched. The “reaction time” is the difference between
the in-range time and the launch time. The reaction time is averaged over n runs.

component of these differences is attributable to the decrease in production firings. There
are fewer production firings and thus fewer instantiations to generate. Additionally, the
decrease in total productions may also contribute to the decrease in match time, as we
described for the Blocks World results. Again, these results offer no guarantee that match
time will always decrease in Soar 8. Importantly, however, we have observed in two dif-
ferent domains that Soar 8 reduces total knowledge and further constrains the remaining
knowledge while the architecture leverages these small reductions or improvements in the
knowledge design into better performance in terms of CPU time.

Differences in Responsiveness

CPU time decreases in the Soar 8 yTAS scenario in comparison to the Soar 7 agents.
Thus, as we described for the Blocks World, we expect responsiveness to generally improve
in Soar 8 because the architecture is processing individual decision cycles more quickly.
However, in Section 5.4.3, we described changes to the Soar 8 agent’s knowledge that
split a complex series of actions in a single subtask into a series of subtasks. This change
negatively impacts responsiveness.

Table 5.4 provides an example of the decrease in responsiveness. When a enemy plane
comes in range, the agent executes a series of actions, leading to the firing of a missile.
We call the time it takes from when the enemy agent comes in range to when the agent
actually launches the missile the reaction time. Reaction time is thus a measure of the
agent’s responsiveness. The Soar 7 agent is able to launch the missile in just over a quarter
of a second. However, the the Soar 8 agent is about three-and-a-half times slower than
the Soar 7 agent in launching the missile, taking almost a full second, on average.

Split subtasks, regeneration, and subtask selection all contribute to the increase in
reaction time. When we split subtasks, we recognized that tasks that previously took one
decision to initiate might take many more. For example, a task with n steps, all executed
serially in a single decision, might now take n decisions. However, the reaction time cannot
be explained wholly by this increase. There are only a few actions that are necessary
for launching a missile; therefore, we would expect only an increase of, at most, a few
hundred milliseconds. However, by dividing subtasks into separate steps, the sequential
series of actions can be interrupted. In particular, a number of regenerations occur in
the LAUNCH-MISSILE problem space as the agent prepares to fire the missile in a highly
dynamic situation. The agent sometimes chooses to undertake a prior action because the

thus, we were unable to compare the number of tokens generated, as we did for the Blocks World. The
results we report here are consistent with the expectation that the token activity falls in Soar 8, as it did
in Soar 7.
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Figure 5.12: pTacAir-Soar Summary: Mean CPU Time in milliseconds vs. knowledge in
productions for Soar 7 (diamond) and Soar 8 (star) agents. The individual points show
the actual distribution of CPU time for each agent. The points for agents flying lead
aircraft are shown in black, wing aircraft in gray.

situation has changed enough that a slightly different action might be necessary.'® The
combination of the split subtasks, regeneration, and the selection knowledge for individual
subtasks all lead to the degradation in reaction time.

Some additional re-engineering of the knowledge could probably reduce this response
time. However, this result will not be an easy one to avoid, in general. Dynamic hier-
archical justification requires that subtasks with different dependencies be initiated and
terminated separately, or else risk unnecessary regeneration. However, by splitting com-
plex tasks into separate subtasks, individual actions are delayed both because the subtasks
are split, and because the selection for a particular subtask in the series can be postponed
when better subtask choices are available. In the next chapter, we show that learning can
resolve this dilemma by compiling the results of subtask reasoning into new knowledge
that can mimic the effect of a complex subtask, but at a higher level of the hierarchy.

5.4.5 pTacAir-Soar Summary

Figure 5.12 illustrates the pu'TAS results with respect to the knowledge and performance
dimensions central to our evaluation. In the figure, we see that Soar 8 lead agents improve
slightly in both performance (a smaller average CPU time) and knowledge (fewer total
productions). The Soar 8 wing agent shows the identical improvement in the knowledge
dimension, but a much greater improvement in overall performance. As we discussed in
the preceding sections, this improvement in the performance was due both to changes

'0This regeneration of the motor commands is one of the sources of the increase in outputs in the lead
agent, as we described in Section 5.4.4.
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Figure 5.13: GOHHC is more robust when the dynamics of the environment change.
Reproduced from Figure 2.6.

in the way some calculations were made, and to the expected performance improvement
using Soar 8. These results demonstrate that Soar 8 can be expected to reduce engineering
effort and improve performance in complex domains. One cost of these improvements is
that responsiveness in specific situations may degrade.

5.5 Summary of Empirical Evaluation

Our results from the Blocks World and yTAS domains were consistent with our expec-
tations: both knowledge engineering cost and overall performance in Soar 8 improved in
comparison to independently-developed Soar 7 agents. However, the evaluation did reveal
some surprises. In particular, we observed that ensuring consistency sometimes requires
additions to domain knowledge and reorganization of that knowledge. The additions were
necessary when domain knowledge had been overlooked in the Soar 7 agent that proved
necessary in Soar 8. The reorganizations were necessary when multiple, independent tasks
were grouped into a single, complex subtask, leading to unnecessary regenerations. Inter-
estingly, these changes to the domain knowledge provide new constraints in agent design.
Architectural regeneration identifies violations of the constraints, which, in turn, allows
quick repair. Based on these results and our experience using Soar 8, we hypothesize that
these design constraints can potentially improve the design of agent knowledge bases,
while regeneration, used as a debugging aid, can greatly reduce design cost. That is, in
addition to reducing the number of productions necessary for designing an agent for some
task, Soar 8 may also reduce the time/dollar cost of writing individual productions.
Significantly, the improvements in behavior coincided with an architectural guarantee
of consistency in the agents’ processing across hierarchical levels. For example, as a
simple experiment, we applied the Soar 7 and Soar 8 blocks world agents to the situation
we described in Figure 2.6, reproduced here as Figure 5.13. The Soar 7 agent fails when
the block moves because it lacks knowledge to recognize the inconsistency between its
previous empty assertion and the new situation. On the other hand, Soar 8 handles this
problem gracefully, because the architecture recognizes the relationship between local
processing and dependencies higher in the subtask hierarchy. In the specific situation
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in Figure 2.6, the Soar 8 agent actually retracts the put-on-table(3) subtask, because
block-3 is on the table, and thus the selection of that subtask is no longer consistent with
the current situation. In the next decision, the agent chooses stack(2,3) and decomposes
this subtask into actions to put block-2 on block-3. If we introduce a new block (e.g.,
block-4) and place it in the empty space below block-2, the architecture responds by
retracting the subtask goal for put-down(2) (i.e., the subtask that contains the empty
assumption). In the subsequent decision, it begins to recalculate empty spaces in order
to continue its attempt to put block-2 on the table. Thus, although our evaluation did
not stress this aspect of Soar 8, Soar 8 agents can be expected to behave more robustly in
situations for which they were not specifically designed, because the architecture, rather
than agent knowledge, ensures consistency in the asserted knowledge.

These improvements were not achieved without cost. In particular, regeneration led
to potential inefficiency in both the Blocks World and pyTAS agents. Although overall
efficiency improved, some of the improvement was due to improvements in the average
match cost of productions, which cannot, in general, be guaranteed in all domains. Fur-
ther, Goal-Oriented Heuristic Hierarchical Consistency requires that complex subtasks be
split into independent subtasks that simplify knowledge design and reduce regeneration.
However, this simplification also reduces responsiveness. In the following chapter, we ex-
plore ways in which to use learning to offset these potential performance costs as an agent
gains experience in its domain.
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Chapter 6

Improving Performance through Compilation

We see those of experience succeeding more than those who have theory
without experience. The reason for this is that experience is knowledge of
the particulars ... and actions, and the effects produced, are all concerned
with the particular. — Aristotle

In Chapters 3 and 4, we presented solutions to inconsistency arising from persistence
and multiple threads of reasoning. In the previous chapter we showed these solutions
generally led to slight improvements in performance, in addition to guaranteeing consis-
tency in hierarchical reasoning. In this chapter, we consider using knowledge compilation
to further improve performance, thus addressing the second limitation of hierarchical
decomposition in execution environments introduced in Chapter 2. Compilation caches
the results of hierarchical decomposition in specific situations. If the agent encounters
a similar situation, the compiled knowledge will apply as soon as the knowledge can be
retrieved, thus obviating the delay that occurs due to decomposition. Compilation thus
provides experience-directed composition of complex behavior from simple subtasks.

In the following, we introduce a framework for using compilation in execution domains.
Importantly, compilation should occur as the agent executes its task, should not require
significant additional knowledge engineering demands, and should not adversely impact
agent performance. We show how any failure of the architecture to ensure consistency
leads to specific problems, requiring solutions that violate one or more of these criteria.
However, by guaranteeing consistency, Goal-Oriented Heuristic Hierarchical Consistency
avoids these problems and allows real-time compilation over dynamic behavior. We apply
compilation to the Soar 8 agents we used for our empirical evaluation of Goal-Oriented
Heuristic Hierarchical Consistency in Chapter 5. Our results show that performance and
responsiveness improve after compilation, but overall performance improvement is not
significant if hierarchical knowledge is used in addition to the compiled knowledge.

6.1 Compiling Hierarchically Decomposed Knowledge

In Chapter 2 we hypothesized that compilation could be used to improve the performance
of agents using hierarchical decomposition. In the following, we present an example from
the Blocks World to show how agent experience, coupled with a compilation mechanism
that caches the agent’s task experience, can lead to improvements in performance when
executing future tasks. We also detail the requirements for compilation in execution
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environments.

6.2 Knowledge Compilation in the Blocks World

Refer again to the Blocks World example we introduced in Figure 2.2. Assume an archi-
tecture executes the task according to rules like those introduced in Table 2.1, stepping
the gripper to the right to begin building a tower. We want the compilation process
to generate new knowledge that avoids intermediate goals in the decomposition, such as
pick-up. The end result of compilation should resemble a reactive rule, one that maps
the input state to an action. In this example, the resulting rule might look like this:

4. IF Task-Goal (Tower (x,y,z))
Not (On-Table(x))
Clear(x)
Left-of (Gripper, x)
Higher (Gripper, x)
THEN Execute(Step(right, Gripper))

This rule is dependent upon percepts and task goals and generates a primitive. Thus, if
the agent encounters a situation in which Rules 1, 2, and 3 would have fired previously,
this new rule can now subsume that function, and begin the execution of step-right
immediately.

How can the architecture automatically generate Rule 47 The agent begins executing
the task from the initial configuration in Figure 2.2. Rule 1 fires, generating the goal to
put block-3 on the table. Rule 2 then fires and establishes a goal to pick up block-3.
Now the conditions are true for Rule 3 to fire. Rule 3 generates the primitive command,
step-right. Because the primitive action terminates further decomposition, the gener-
ation of a primitive can act as a trigger for the compilation mechanism. In other words,
when a primitive command is generated, the architecture recognizes the situation as an
opportunity to compile the current hierarchy.

Goal regression provides a potential compilation process (Mitchell et al., 1986). The
regression traces back through the individual rule firings until the goal (the initiation
of the primitive) is expressed in terms of only task goals and percepts. For example,
in Rule 3, Left-0f and Higher are percepts and thus added directly to the rule being
constructed. However, the the pick-up goal is not a task goal or input, and so the
backtrace continues to Rule 2, the rule that created pick-up. Rule 2’s conditions are now
added to the compiled rule. However, the put-on-table goal is not a percept and this
triggers yet another regression step to Rule 1. Rule 1’s conditions are solely dependent
upon percepts and the task goals, terminating the compilation. The resulting rule is:

5. IF Task-Goal (Tower(3,2,1))
Not (On-Table(3))
Clear(3)
Left-of (Gripper, 3)
Higher (Gripper, 3)
THEN Execute(Step(right, Gripper))
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This rule is identical to the Rule 4 except that it is specific to the particular task goal
of building Tower (3,2,1). Thus, simple regression provides a mechanism sufficient for
compilation, at least in rule-based systems.

Explanation-based learning (EBL) approaches have used this goal regression technique
to operationalize problem solving knowledge in a number of domain classes including con-
cept formation (DeJong and Mooney, 1986; Mitchell et al., 1986), planning (Fikes et al.,
1972; Minton, 1988) and scheduling (Carbonell et al., 1991). EBL uses a domain theory
to generate an ezplanation of why some training instance is an example of a goal concept
according to some operationality criterion (DeJong and Mooney, 1986). In execution do-
mains, the goal concepts for EBL are the situations in which each primitive operation
should be generated in the current external state, where the current external state is de-
fined by the available percepts and task goals. This definition of external state serves as our
operationality criterion for execution domains: a condition is operational if it is a direct
input from perception or a task goal and does not require decomposition.! Explanation
occurs over the domain theory, or the hierarchical knowledge about the task domain.
The training example is the specific current situation. Therefore, the object of EBL in
execution environments is to operationalize appropriately the generation of a primitive
output command. EBL algorithms such as EBG (Mitchell et al., 1986) and chunking
(Laird et al., 1986a) also use generalization schemes that result in compiled rules more
general than Rule 5.

6.2.1 Requirements for Knowledge Compilation in Execution Domains

The compilation process we have described above is sufficient for the general goal of
caching the results of hierarchical decomposition in particular situations. However, our
larger goal is to incorporate compilation within agents behaving in dynamic domains.
As we have seen previously, the impact of a new capability on knowledge design cost
and performance must be considered as well. In the following, we outline additional
requirements for compilation in execution domains, based on the particular constraints of
agent execution systems.

Does Not Introduce New Knowledge Design Costs: Ideally, the compilation
mechanism caches the results of a specific decomposition as a new rule in the domain
irrespective of the representation. If the learning algorithm is complete and correct
(as required below), then the agent will not need to represent its knowledge in any
special way for the learning to occur, nor need special knowledge to enable learning
itself. Thus, the introduction of compilation should not introduce new costs in the
design of an agent.

Does Not Degrade Performance or Responsiveness: The performance system
must remain responsive to its environment, even with learning. Compilation re-
quires near-continuous learning (whenever a primitive is generated) and thus must
be efficiently implemented. The explanation generation component of EBL occurs
during the generation of the primitive, guided by the execution system. Thus, this
component of EBL impacts actual performance minimally. This leaves the sec-

'In Section 6.4.2, we will relax this operationality criterion for Soar to include any data in the highest
level of the hierarchy.
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ond part of the algorithm, generalization, to consider. While some EBL system’s
“re-prove” the explanation to create a generalized explanation, several systems use
architecture-specific techniques to improve efficiency. Examples include Prodigy’s
EBS algorithm (Minton, 1988) and Soar’s chunking mechanism (Laird et al., 1986a).

Agent knowledge bases may grow significantly as compiled experience increases the
number of rules. The addition of new knowledge, especially by an automatic process
such as compilation, can increase the cost of knowledge search for individual pieces
of knowledge such that knowledge search is more expensive than problem search
(i.e., the decomposition) in a smaller knowledge base. This average growth effect
(Doorenbos, 1993) is a specialized case of the well-known utility problem (Minton,
1988). We require that the agent’s reasoning not slow down significantly as the
number of rules in the agent increases. For instance, for a rule-based system, the
match time for a rule set should be no more than linear in the number of rules and
preferably sub-linear or independent of the number of rules. The RETE algorithm,
which we have discussed in previous chapters, provides one example of current rule
matching that technology can support such a requirement (Doorenbos, 1994).

Preserves Correctness: Execution during and after compilation on a given task must
be as proficient as the same system without learning. This goal requires a com-
putationally inexpensive compilation algorithm, as discussed above, and a compi-
lation process that preserves correctness. The compiled knowledge must preserve
the original behavior in the learned rules such that an agent, in the same or similar
situation, will repeat its original behavior. Although this requirement is important
for the compilation algorithm, it also makes demands on the execution system. For
instance, the target language of compilation must be sufficient for describing the
necessary computations in the subtask (Laird et al., 1986b).

6.3 Problems in Knowledge Compilation

Knowledge compilation has been used successfully in static domains and in dynamic do-
mains in which the learning occurs “off line” from the execution. For example, STRIPS
(Fikes et al., 1972) compiled macro-operators over a static planning space even though
these operators were then used to direct a robot in the external world. However, EBL has
been applied to external domains in only limited cases (e.g., (Bresina et al., 1993; Laird
and Rosenbloom, 1990; Mitchell, 1990)). In an interactive domain, where the training in-
stance may change over time, knowledge compilation methods will be potentially difficult
to incorporate. In particular, previous systems have been dependent upon specific rep-
resentation schemes to avoid problems resulting from compilation when the data base of
assertions can be inconsistent. These problems include creating rules that include features
that never co-occur (the non-contemporaneous constraints problem) and conflicts between
compiled and original task knowledge (the knowledge contention problem). These prob-
lems result when an architecture allows persistence and multiple threads of reasoning but
does not ensure consistency in the hierarchical processing. We now introduce these prob-
lems specifically, and also review two additional problems, over-specific and over-general
compilation, that are not specific to execution domains.
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put-on-table(3)
pick-up(3)

close-gripper

Figure 6.1: A potential source of non-contemporaneous constraints. The original selection
of put-on-table(3) is dependent on clear(block-3). However, close-gripper requires
that the gripper be immediately above block-3, meaning it is no longer clear. Regress-
ing through these conditions for compilation leads to the conditions clear(block-3) and
immediately-above(gripper,block-3), which do not occur simultaneously in this domain.

6.3.1 The Problem of Non-Contemporaneous Constraints

Non-contemporaneous constraints (Wray et al., 1996) occur in the conditions of a learned
rule when two or more conditions match against features which never occur simultane-
ously in the domain. A rule with non-contemporaneous constraints can never apply. The
agent expends effort to learn something useless and misses an opportunity to have learned
some useful knowledge. Non-contemporaneous constraints occur in compilation when the
architecture creates persistent assumptions that can become inconsistent with the hier-
archical context. Thus, the compilation of non-contemporaneous constraints is another
example of a problem that may arise when the agent fails to react to inconsistency-causing
changes in hierarchical context, as described in Chapter 3.

To see how non-contemporaneous constraints arise, assume we are using a knowledge-
based assumption consistency solution such as Soar 7 and refer again to the task posed to
the execution system in Figure 2.2. Suppose now that the gripper has executed the first
two step right commands and is now ready to pick up the block by closing the gripper
over block-3. This situation is illustrated in Figure 6.1. Rule 6 in Table 6.1 fires to
close the gripper because the pick-up goal created by the firing of Rule 2 has not yet
been achieved (its termination conditions are given in Rule 8) and because the gripper
is now immediately above block-3. Because close-gripper is a primitive, executable
command, the compilation process is initiated when Rule 6 fires.

The compiled rule will be identical to Rule 5 except that Immediately-Above from
Rule 6 replaces the Left-Of and Higher relations that came from Rule 3. The similarity
results because both pick-up and put-on-table are still instantiated goals (their termi-
nation conditions as given in Table 6.1 have not yet been met) and thus the regression is
repeated through Rule 2 and then Rule 1, as we described previously. The new rule is:

9. IF Task-Goal (Tower(3,2,1))
Not (On-Table (Bottom-Block(Tower(3,2,1))))
Clear (Bottom-Block(Tower(3,2,1)))
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6. IF Goal (Pick-Up(x))
Immediately-Above (gripper,x)
THEN Execute(Close-Gripper)

7. IF Goal (Put-On-Table(x))
On-Table(x)
THEN DeleteGoal (Put-0On-Table(x))

8. IF Goal (Pick-Up(x))
Holding(Gripper, x)
THEN DeleteGoal (Pick-Up(x))

Table 6.1: Rules needed for the execution of the tower-building task in progress in Fig-
ure 6.1.

Immediately-Above (Gripper, Bottom-Block(Tower(3,2,1)))
THEN Execute(Close-Gripper)

All of these conditions are satisfied at some point during the course of execution. For
this rule to fire, the gripper must be immediately above block-3 and the block must
also be clear. However, for a block to be clear, nothing can be immediately above it.
Thus, in this domain, these conditions will never be true at the same time; they are non-
contemporaneous constraints in the compiled rule. As we have seen in previous chapters,
the context of execution changes as it progresses. The regression process inspects every
relevant item used in the creation of the current subtask hierarchy and includes all the
operational tests it finds in the compiled rule. Thus, non-contemporaneous constraints
result when the architecture fails to react to changes in its hierarchical context, and then
attempts to compile over the resulting inconsistent hierarchy.

Consider the problem from an explanation-based learning point-of-view. The non-
contemporaneous constraints problem arises because the training instance over which
compilation occurs changes with time, or more precisely, when the training instance in-
cludes multiple, mutually exclusive states. The clear relation is fully operational but, at
the time at which Rule 6 fires, is no longer true in the environment. When EBL is ap-
plied to compile control knowledge within planning systems, even for dynamic domains,
non-contemporaneous constraints do not arise because the training instance is static dur-
ing the generation of the plan. For instance, both Chien et al. (1991) and DeJong and
Bennett (1995) describe approaches to planning and execution in which there is no in-
teraction with the environment during planning and learning. The non-contemporaneous
constraints problem can occur in such static environments, if the problem solver is allowed
to create persistent features based on other context features that may change. However,
the problem is exacerbated in external environments, where change can be both exogenous
and endogenous, and occur with higher frequency.

A rule with non-contemporaneous constraints will not lead to inappropriate behavior
but rather will never apply. This problem is a serious one because it presents further
difficulty in realizing the goal of using a straightforward EBL approach to operational-
ize execution knowledge in external domains. Instead, rules that can never fire due to
non-contemporaneous constraints in the conditions are added to the knowledge base,
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consuming resources (e.g., they are included in the rule match). Additionally, the same
useless rule may be created repeatedly, wasting still more architectural resources. Perhaps
most importantly, there is an opportunity to learn something in these situations but the
straightforward approach learns something useless instead. Thus, although the learned
rules do not lead to errors themselves, some alternative is necessary to avoid undue waste
of resources, as well as to operationalize the execution knowledge properly.

Because the compilation of non-contemporaneous constraints arises from inconsistency
due to persistence, we expect that any of the approaches we described in Chapter 3 will
avoid the problem (including, of course, Dynamic Hierarchical Justification). For example,
neither Theo (Mitchell et al., 1991) nor ERE (Bresina et al., 1993) suffer from non-con-
temporaneous constraints in learned rules. Theo never creates persistent assumptions.
Thus, the hierarchy never contains assertions derived in a context nonmonotonic to the
current one and compilation is not problematic. ERE, on the other hand, uses domain
constraints as a knowledge-based solution to maintaining consistency and thus avoids
non-contemporaneous constraints when learning.

Significantly, as we saw in the last chapter, knowledge-based methods do not guar-
antee consistency. However, without this guarantee, non-contemporaneous constraints
can result in compilation even when behavior is not impacted by inconsistencies. For
example, if we attempt to use compilation with the Soar 7 agents from the previous chap-
ter, the agents learn many rules with non-contemporaneous constraints, due primarily to
the persistence of subtasks. Although it is possible to structure knowledge to attempt
to avoid non-contemporaneous constraints, only an architectural solution provides a low-
cost guarantee of consistency and thus also guarantees no rules with non-contemporaneous
constraints will be learned.

6.3.2 Contention Between Compiled and Hierarchical Knowledge

We now consider another problem, which derives from multiple threads of reasoning in
the architecture. Knowledge contention arises when knowledge specifying the same action
is simultaneously asserted in two different levels of the hierarchy. Before the addition of
compilation, we could safely assume that it was unlikely for the same assertion to be
duplicated in different levels of the hierarchy because the knowledge engineer would avoid
such duplication. However, compilation, by definition, leads to knowledge operationalized
at higher levels in the hierarchy and thus potentially duplications in actions. We now
introduce an example to show how knowledge contention arises and the problem it presents
to the agent.

Suppose again the execution system encounters the situation presented in Figure 2.2.
We assume that the agent has compiled a rule for executing a rule to step-right in this
situation, such as Rule 4. However, now suppose that in addition to the conditions we
have seen previously, each rule issuing executing a primitive operation checks that the
gripper is ready before beginning execution. This assumption results in a compiled rule
such as Rule 10:
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10. 1IF Task-Goal (Tower (x,y,z))
Not (On-Table(x))
Clear(x)
Left-of (gripper, x)
Higher(gripper, x)
Ready (gripper)
THEN Execute (step-right (gripper))

If the gripper is ready in the Figure 2.2 state, Rule 10 would fire and execute the
step-right action. This result is exactly what we desired from the compiled knowledge,
moving the gripper without referencing the intermediate goals (and thus not delaying
while creating them).

However, consider what happens if it takes time following an action for the gripper to
become ready and that the gripper is not ready in the situation we have just described.
What does the agent do? It begins to decompose the problem as we described the process
in Chapter 2. Rule 1 fires to create the put-on-table(3) goal, then Rule 1 fires to create
the pick-up goal. It this point, the agent can progress no further until the gripper is ready.
We assume that the agent has no direct means of making the gripper ready; therefore,
the agent just waits to receive the ready(gripper) signal from the external environment.
What happens when the ready signal is received? In a parallel architecture, both Rule 10
and Rule 3 fire simultaneously. Depending on the specific implementation of the agent’s
motor system, the agent may step once to the right, two times to the right, or not at all.

This example illustrates the potential of contention between an agent’s original task
knowledge and its compiled knowledge. The agent now has two different rules that specify
the same action in the same state. However, the architecture cannot generally know the
result of a rule firing until after that rule has fired. For instance, two rules could fire
in parallel specifying the same actions (or different actions) for the same external situa-
tion. Knowledge contention arises because the architecture is pursuing multiple threads
of reasoning simultaneously, in multiple levels of hierarchy, similar to the basic problem
we described in Chapter 4. Thus, knowledge contention is an example of inconsistency
arising from overly aggressive response to changes in the context.

6.3.3 Learning Over-Specific and Over-General Rules

Compilation may sometimes lead to both over-specific and over-general rules. An over-
specific rule is one that is unnecessarily restrictive. Rule 5 is an example of an over-
specific rule because the name of the actual blocks (e.g., block-3) are really not important.
Instead, only the current relationships of the tower’s bottom block to the table and gripper
are necessary for an appropriately general rule.

An over-general rule is one that will fire in a circumstance for which it is inappropriate.
For instance, imagine Rule 1 without the condition that the bottom block not already be
on the table. This rule would then create the goal to put a bottom block on the table
even when the block was already on the table. Learning over-general rules violates one of
the general requirements for knowledge compilation, that learning preserve correctness.
Thus, avoiding over-general rules is necessary in any approach.

Both over-general and over-specific rules are closely tied to the representation of the
task as chosen by the user and the generalization process used in conjunction with re-
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gression. Thus, neither of these problems are specific to a system that compiles over
hierarchical execution knowledge. Both problems have been described for static domains
(Laird et al., 1986b; Rosenbloom and Laird, 1986).

However, both of these problems are complicated by interaction with external environ-
ments. For instance, if the representation of the environment via input contains absolute
information (e.g., coordinates in Cartesian space) then using this input directly may lead
to over-specific rules, depending on the specific generalization technique. Therefore, care
must be taken in not only choosing the task representation but also how input knowl-
edge is represented. For both these problems, careful choice of representation and task
knowledge will lead to the correct level of generalization.

In the Blocks World and gTAS domains, in which we have used compilation (as
described below), we had only to modify slightly the input representation to avoid over-
specific compilation in the Blocks World and pTAS. These changes account for 23 of the 24
productions changed for learning in Table 5.3. No changes were necessary for over-general
learning in the Blocks World, and only a single production in #TAS needed to be changed.?
Because these problems are highly dependent on the specific compilation algorithm and
proved to be insignificant in our empirical investigations, we will not consider them further.

6.4 Compilation under Goal-Oriented Heuristic
Hierarchical Consistency

In the previous section, we introduced the non-contemporaneous constraints and knowl-
edge contention problems that result from inconsistencies in agent processing. As we
described in Chapters 3 and 4, Goal-Oriented Heuristic Hierarchical Consistency guar-
antees consistency in the agent’s processing; thus, we expect that GOHHC will provide
a solution to both of these problems. In the following, we describe how Goal-Oriented
Heuristic Hierarchical Consistency solves the two compilation problems. Having solved
these problems, in the following section we then use compilation with the agents we used
in the previous chapter and observe if compilation under GOHHC meets our requirements
for knowledge compilation and leads to improvement in performance.

6.4.1 Solutions for Knowledge Compilation

Goal-Oriented Heuristic Hierarchical Consistency prevents the compilation of non-con-
temporaneous constraints in learned rules. Dynamic Hierarchical Justification never al-
lows a memory feature to persist any longer than features in the hierarchical context that
led to its creation. For example, in Figure 6.1, when the gripper moves above block-3, the
architecture removes the put-on-table subtask, because block-3 is no longer clear, and
thus the subtask initiation conditions are no longer supported in the current environment.
At this point, a new put-on-table operator is instantiated in the current situation, which
includes the relation immediately-above(gripper,block-3) rather than the clear(block-

2This change was motivated by locally-negated condition, the source of most over-general learning in
Soar agents. Because the architecture cannot determine, in general, the situations in higher levels of the
hierarchy that lead to something not being true in the local subgoal, these conditions are ignored when
compiling, and can thus lead to over-general compiled knowledge.

98



3) relation from the initial put-on-table operator. When the close gripper command is
generated, the compilation process will use the current instantiation of put-on-table,
resulting in Rule 11 rather than Rule 9:

11. IF Task-Goal (Tower(3,2,1))
Not (On-Table (Bottom-Block(Tower(3,2,1))))
Immediately-Above (Gripper, Bottom-Block(Tower(3,2,1)))
THEN Execute(Close-Gripper)

Thus, by ensuring consistency among assertion in the hierarchy, GOHHC also avoids the
non-contemporaneous constraints problem when compiling over the hierarchy.

GOHHC also prevents simultaneous knowledge contention. Recall from Chapter 4
that Subtask-limited Reasoning limits reasoning to only a single level of the hierarchy at
a time. In the example we presented above, both the compiled Rule 10 and Rule 3 match
simultaneously. However, under GOHHC, Rule 10 would always be asserted before Rule 3
because Rule 10 matches at a higher level of the hierarchy. Subtask-limited Reasoning
thus provides conflict resolution between compiled and original task knowledge, always
preferring the compiled knowledge because it necessarily matches higher in the hierarchy.

Subtask-limited Reasoning does not provide a complete solution to the knowledge con-
tention problem. It prevents the rules from firing simultaneously, but would not prevent
Rule 3 from firing sometime after Rule 10, provided Rule 3 still matched. We assume
that the agent’s knowledge includes knowledge that prevents the duplication of assertions.
For practical purposes, this requirement is already met by the agent’s knowledge. For in-
stance, Rule 3 in the Soar 7 agent’s knowledge base actually includes the condition that
the motor command has not already been initiated. Subtask-limited Reasoning provides
a solution for knowledge contention that an agent cannot recognize, due to the parallel
execution of identical actions. When the actions are not initiated simultaneously, the
agent can simply rely on its task knowledge to avoid knowledge contention.

6.4.2 Empirical Results

We expect Goal-Oriented Heuristic Hierarchical Consistency to avoid the compilation
problems without requiring extensive additions to an agent’s knowledge base or special
representation conventions. We have also suggested that Soar’s chunking algorithm pro-
vides the run-time performance and correctness properties that we require for knowledge
compilation and that the architecture’s RETE algorithm should not cause substantial
slowdown as the knowledge base grows with experience. Provided all these assumptions
are valid in Soar, we expect that Soar 8 agents should improve their performance by using
compilation.

In this section, we explore the use of compilation under Goal-Oriented Heuristic Hi-
erarchical Consistency empirically, by assessing the impact compilation has on the per-
formance and knowledge of Soar 8 agents in the Blocks World and yTAS domains. We
begin by outlining in greater detail how Soar’s learning mechanism meets the performance
requirements of agents behaving in dynamic domains. We then present results from the
Blocks World and yTAS domains that show performance improves in the Blocks World,
while response time improves in yTAS.
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Compilation using Soar

In this section, we look more closely at Soar’s learning mechanism, chunking, in order to
better understand how chunking meets the requirements for knowledge compilation we
described previously. The details of chunking are described elsewhere (Laird et al., 1986a;
Newell, 1990; Tambe et al., 1990); we instead concentrate on a general description of the
chunking process and a brief analysis of the algorithm to show how it interacts with the
requirements.

Chunking compiles threads of reasoning whenever a new assertion is returned to a
state higher in the hierarchy than the one in which it was created. Chunking produces a
new production, or chunk, that can generate this result in the future, without the subgoal.
As problem solving progresses, the dependencies between assertions are maintained in a
data structure. When a result is generated, the chunking process regresses through the
stored dependencies until the result can be summarized from assertions in memory at
the level of the result (and above). The backtrace process is similar to the algorithm
we introduced in Figure 3.3 for building assumption justifications. Because multiple
assertions can be created from a single rule firing, the backtrace process is linear in the
number production instantiations. Soar uses a heuristic generalization process which can
lead to over-specific and over-general knowledge, as we discussed previously. However, this
generalization technique does avoid re-proving the problem solving, a more conservative
but more computationally costly generalization technique used by many EBL algorithms.
Because individual chunks can be constructed in linear time, the chunking process can be
used as behavior progresses without significantly impacting performance. Thus, chunking
should meet this requirement for knowledge compilation.

We prefer to use chunking without making modifications specific for execution, and
without using a special knowledge representation for compilation. In execution agents,
decomposition leads to the eventual execution of a primitive action. In Soar, the interface
to the external environment is part of the top state or base level space (Newell, 1990).
Therefore, the initiation of an external action requires returning a motor command to
the top state as a result, and chunking compiles the decomposition that led to the result.
Thus, we can use chunking as it exists, using existing agent knowledge.

There is one exception to the unproblematic use of chunking for compilation in exe-
cution environments. As we described in Chapter 5, Soar selects an operator and then
creates a subtask (as a subgoal) to implement the operator. Because the highest opera-
tors appear in the top state, the chunking process does not automatically remove these
operators from compiled rules. For example, instead of Rule 4, the production that Soar’s
chunking mechanism actually creates is better summarized by Rule 12:

12. 1IF Clear (Bottom-Block(Tower(x,y,z)))
Left-of (Gripper, Bottom-Block(Tower(x,y,z)))
Higher (Gripper, Bottom-Block(Tower(x,y,z)))
Operator (put-on-table)
THEN Execute (Step(right, Gripper))

The conditions of this rule are the same as those we described previously, except
that the rule includes the highest operator in the current hierarchy, put-on-table, and
does not include the conditions in Rule 1 because regression terminates at the top-level
put-on-table operator. Thus, the actual rules learned by Soar are not completely reac-
tive to the environment, as we desired. Although it is possible to structure the knowledge
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to avoid including the highest operator in the compiled rules, rules with these conditions
have a number of desirable properties. First, including the operator allows each compiled
rule to reflect a deliberately chosen goal, such as put-on-table. After compilation, the
put-on-table operator, once chosen, will be able to issue all the primitive actions nec-
essary for putting a block on the table. Rather than learning reactive rules for behavior,
compilation in Soar via chunking allows the agent to initiate complex behaviors through
the deliberate selection of a single goal. Thus, chunking composes complex operators
from simple operators lower in the decomposition. Second, only a single operator can be
chosen at any particular time for any particular level in the hierarchy. The presence of a
known single-valued condition helps reduce the total match cost of the learned rules by
providing additional match constraint in compiled rules.

Finally, we suggested earlier that Soar would not suffer from the utility problem as
it compiled. What causes us to believe that the architecture will not slow down with
additional productions? Recall from our discussion in Section 5.3.2 of the previous chapter
that match time in Soar is bounded by the number of partial production instantiations, or
tokens. The total size of the token space is bounded by the number of unique conditions
in the agent’s productions, rather than the number of individual production conditions.
For example, Rule 2 and Rule 12 share two identical conditions, the left-of and higher
relations. In general, compilation adds new rules to the agent’s knowledge base but few
new unique conditions. The conditions in the compiled rules are derived from conditions
in the rules that led to the creation of the result, directly or indirectly. For example,
the conditions from Rule 2 are included in the compiled rule because the pick-up goal
contributed to the execution of the step-right primitive. Of course, there is a non-zero
“bookkeeping” cost for mapping conditions to productions when creating new production
instantiations. However, (Doorenbos, 1993) shows that for RETE (and thus Soar), the
number of compiled productions must grow several orders of magnitude to see appreciable
utility problems from this effect. Thus, the RETE algorithm and the duplication of
conditions from domain knowledge in compiled knowledge allow Soar to minimize utility
problems when adding new productions.

Based on these details of Soar’s chunking algorithm, we expect chunking will be suf-
ficient for compilation in external domains. Assuming GOHHC solves the compilation
problems, chunking allows us to 1) use existing domain knowledge, with few changes
necessary specifically for learning; 2) learn while also behaving with minimal impact on
performance; and 3) avoid utility problems. Some changes will be necessary to address
over-specific and over-general learning, however. In the next section, we empirically ex-
plore these claims.

Compilation in the Blocks World

In the Blocks World, we simply repeat the experiment we reported in the previous chapter,
but the Soar 8 agent learns while executing the individual tasks we described in Figure 5.2.
As the agent gains experience in the domain, we expect the knowledge it learns to transfer
to new tasks (i.e., different initial configurations of blocks). This transfer will obviate the
need for decomposition in the later execution tasks and thus we expect the performance
of the learning agent to improve over the execution of all the tasks in the Blocks World,
relative to the non-learning agents.

Table 6.2 summarizes the results from the Blocks World for our agents. We include,
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Soar 7 Soar 8

No Learning | No Learning Learning

z s.d. z s.d. z s.d.
Rules 188 175
Learned Rules 0 0 164
Decision Avg. 87.1 209 | 141.1 387 | 291 104
Avg. Outputs 22.3 6.1 | 223 6.1 | 223 6.1
Avg. CPU Time (ms) 413.1 1216 | 391.6 114.0 | 288.3 T71.1
Avg. Elaboration Cycles || 274.3  65.8 | 562.9 155.7 | 200.5 57.6
Avg. Rule Firings 720.3 153.5 | 855.6 199.6 | 395.2 779

Table 6.2: Summary of knowledge and performance data from the Blocks World with
compilation.

for comparison, the non-learning results presented in Table 5.1. As we anticipated, the
Soar 8 agent experienced no problems in compilation, while the Soar 7 agent, if learning
is used, was not able to complete even one task due to the compilation problems we
described previously. Additionally, CPU time, decisions, elaborations and productions
all decrease as the Soar 8 agent learns while executing the Blocks World tasks, leading
to improvement in the learning agents’ performance in comparison to the non-learning
agents. We consider specific results in more detail below.

We begin the analysis by examining the content of compiled rules and the learning
rate. Compiled knowledge in the Blocks World recognizes sub-configurations of blocks.
For example, after compiling Rule 12, the agent can immediately recognize that it should
step-right in any situation in which block-3 is not on the table and is clear, and the
gripper is to the left of the block, and not holding anything. After having compiled this
rule, the agent is able to avoid the decomposition necessary to execute step-right for
this situation, regardless of the specific locations of the other two blocks, or the distance
between the block-3 and the gripper. Thus, as we expected, the agents improve their
performance by recognizing situations they have previously encountered and executing a
primitive without decomposition.

The large magnitude of the improvement in performance occurs because the agents
are able to transfer their experience to most new tasks. For example, Rule 4 is applicable
in many more tasks than the one in which it was compiled. Figure 6.2 shows that the
transfer in the Blocks World is significant. Initially, the agents compile a large number
of new rules. For example, in the first fifty tasks (i.e., the first 5% of the tasks), the
Soar 8 agent compiles 62% (103 of 164) of the total number of rules it will compile over
all the tasks in the Blocks World. After a relatively short time, the agent is able to avoid
decomposition throughout execution and no new rules are learned, corresponding to the
flat part of the Soar 8 curve. When a novel configuration is encountered (e.g., Run 173),
the Soar 8 agent reverts to decomposition to execute the task and compiles the results of
the decomposition in the new situation.

Compilation reduces the need for decomposition to find a primitive action to execute,
but does not reduce the number of outputs or number of blocks that must be moved for
any initial configuration of blocks. As we showed in Chapter 5, production firings are
closely correlated to these two measures of complexity in the Blocks World. Figure 6.3
shows the relationships of production firings to outputs and number of blocks to move
in the Soar 8 non-learning and learning agents. The learning curve uses all but the first

102



700

600!
&
5500
9
3
8 400 Soar 8
% 300
L
Eo 200 Soar 7
100}
200 400 600 800

Runs

Figure 6.2: Knowledge as a function of runs in the Blocks World.
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Figure 6.3: Outputs vs. production firings in the Soar 8 agent for both learning (L) and
non-learning (NL) runs. The plot for the Soar 8 learning agent does not include data from
the first 100 cases (i.e., during the runs in which most compilation occurs). The shade
and size of each datum signifies the the number of blocks moved for the run: (smallest,
black) — 1 block; (larger, dark gray) — 2 blocks; (larger, medium gray) — 3 blocks;
(largest, light gray) — 4 blocks.
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Figure 6.4: Runs vs. decisions with compilation in Soar 8.

100 cases, which excludes about three-fourths of the learning. Thus, we can regard the
learning curve in the figure as a “post-learning” result. As is clear in the figure, produc-
tions firings remain closely correlated to the complexity of the task. When the compiled
knowledge supersedes the decomposition, fewer total production firings are necessary,
but the resulting production firings are still largely determined by the task complexity.
Thus, because the agent must still execute the same number of outputs for any task, the
complexity of the task provides a lower bound on the number of production firings.

In the non-learning agents, decisions were also closely correlated with task complexity,
as we saw in Figure 5.6. However, recall that decisions are roughly proportional to the
number of subtasks selected over the course of the execution of a task. Decisions improve
in greater proportion than the production firings in the learning agent because compi-
lation makes decomposition unnecessary for the majority of tasks the agents execute,
thus requiring many fewer subtasks. For example, Figure 6.4 shows how the decisions
vary over the individual tasks. Initially in the Soar 8 agent, the number of decisions for
individual tasks is greater than for the Soar 7 agent. However, within just a few runs,
the number of decisions drops significantly, as compiled knowledge intervenes to avoid
decomposition. For example, in the Soar 8 agent, the average over the first three tasks is
about 109 decisions. However, in the third triplet of tasks, the average has decreased to
31.3 decisions.

When no decomposition is necessary, one might expect the number of decisions to
be bounded by the number of blocks to move. For instance, for a task in which all the
blocks begin on the table, we would expect one decision for stack(2,3), and one decision
for stack(1,2). However, the simulation of block movement is synchronized with the
decision procedure, and the agents execute only a single motor command per decision.
Therefore, the minimum number of decisions for the learning agents is bounded by the
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Figure 6.5: Soar 8 decisions vs. the sum of outputs and number of blocks for move for
(primarily) post-learning cases in the Blocks World. The shade and size of each datum
signifies the the number of blocks moved for the run: (smallest, black) — 1 block; (larger,
dark gray) — 2 blocks; (larger, medium gray) — 3 blocks; (largest, light gray) — 4 blocks.

sum of the number of outputs and the number of blocks to move.? Figure 6.5 shows
that, post-learning, decisions are roughly equal to this sum. Thus, the learning agent
quickly learns to generate close to a minimum number of decisions for each task, as it
also learned to fire a minimum number of productions. However, the difference between
the decision minimum and the decisions made when not learning were much greater than
the corresponding production firing differences, resulting in the greater relative decision
improvement in the learning agents.

The results we have examined thus far suggest that the Soar 8 agent achieves significant
improvement, reducing production firings by about half and decisions by almost 80%.
However, the resulting decrease in total CPU time was only 26%. In the non-learning
agent, the average rate of production firings was 2.18 pf/ms, while in Soar 8, the average
rate decreased to 1.37 pf/ms, a decrease of about 37%. As the Soar 8 agent learns, its
knowledge base almost doubles. Thus, the difference in the rate of production firings
suggests the agent is experiencing some utility cost due to the new productions.

There are also two reasons to expect the rate to decrease, independent of utility prob-
lems. First, after learning, the runs are much shorter in length. There is a substantial
amount of initialization in the Blocks World, because the agent creates an internal rep-
resentation of the external environment. In one fully-compiled run, chosen at random,
one-sixth of the total number of changes to the agent’s memory over the course of the

3Some primitives take multiple steps to execute. In particular, move-up and move-down take an argu-
ment, n, indicating the number of spaces of move up or down. The execution of this primitive requires
n decisions to complete (i.e., each gripper step still requires one decision). We normalized the data in
Figure 6.5 to offset the effect of multi-step primitives. However, without this normalization, because only
a few multi-step primitives occur in the execution of the tasks, the results are nearly identical.
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Figure 6.6: Methodology used for pyTacAir-Soar compilation experiments.

run occurs in the first decision. The time required for this initialization is amortized over
fewer decisions (and production firings) when the agent learns, thus contributing to the
decrease in production firing rate. Second, in the learning runs, the agent is, of course,
using the compilation process, where it did not in the non-learning runs. Although we
argued this algorithm would not be prohibitively costly, it does add to the cost of the
executing the task. These effects both contribute to the increased cost of firing individ-
ual productions. However, total match cost does increase slightly as well. These results
suggest that utility effects may be a concern for external domains, although further, finer-
grained experimentation would be necessary to determine the contributing factors to the
decrease in production firing rate.

Compilation in pTacAir-Soar

The complexity and nondeterminism of yTacAir-Soar present two issues that make deter-
mining the impact of compilation in this domain more difficult than in the Blocks World.
First, the agents will not learn the complete task in a single run. In the Blocks World,
an agent can fully compile the steps for solving a particular configuration in a single run.
Subsequent runs then require no further decomposition. In gTAS, novel situations not
experienced in the first run may be encountered in subsequent runs of the same scenario.
Second, the knowledge learned in a single run may be different from run to run. This
variation contrasts with the Blocks World, where a particular agent performing a specific
task would always compile the exact same knowledge. Due to the nondeterminism in
uTAS, the agent may experience only a fraction of the possibilities in the scenario; thus,
from run to run, the specific experiences of the agent can be different, resulting in differ-
ences in the compiled knowledge. These issues make assessing the impact of compilation
more difficult because variations in performance from run to run can be attributed both
to the nondeterminism in the domain and to previous experience. Over multiple learning
scenarios, the content of an agent’s compiled knowledge and the agent’s performance can
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vary substantially, leading to potential difficulties in attributing performance differences
to the learned knowledge.

Because the agent compiles only a small number of all the rules that could be compiled
in the scenario, our goal is to measure the change in performance through a series of
learning “trials,” in which the agent uses the knowledge learned in previous trials to act in
a subsequent trial. We can solve the problem in performance variation as we did in the last
chapter, by averaging performance data over a number of runs. However, the knowledge
learned in each of these runs is different as well, and we cannot in general, average the
actual knowledge learned from run to run. Differences in the compiled knowledge make
it difficult to determine what knowledge should be used in the following learning trial.
If we randomly select knowledge from runs in the previous trial, large variation in the
individual runs results, unless we control for variability across those runs by making a
large number of runs for each set of knowledge chosen. However, this strategy requires
an exponential number of trials.

We developed the methodology illustrated in Figure 6.6 to combat this difficulty. We
divide groups of scenario runs into trials, as we suggested above. Each trial consists of
about 20 runs. We present average performance data from each trial in Table 6.3. Within
a trial, each lead agent begins with the same knowledge as the other leads. Similarly,
each wing shares the same knowledge as the other wings. The knowledge bases for the
leads and wings are identical between particular wing and lead agents only for runs in
the first trial. In subsequent trials, the compiled knowledge from one of the runs in the
previous trial, chosen randomly, along with the original domain knowledge serves as the
baseline knowledge base for the next trial. In the figure, the lead agents in Trial #2
use the original domain knowledge and the knowledge compiled in Run; 3. Similarly, in
Trial #3, the leads use the knowledge compiled by the lead in Runs 19, which also includes
Run; 3 compiled knowledge. Thus, within a trial, in each individual run the agent will
compile different experiences with resulting variation in both performance and compiled
knowledge. However, having controlled for potential variation in individual experiences
within a run, across trials we expect to see a gradual improvement in performance as the
agents compile responses to larger portions of the state space.

This methodology may be overly conservative and other methodological approaches
are also possible. We developed this solution because it allows us to measure the change
in performance across trials while the variation between runs within a trial does not de-
viate substantially from that of non-learning agents. It also reduces storage requirements
because only one set of compiled rules needs to be retained per trial.

Table 6.3 shows a summary of average data for the learning wing and lead agents
in yTAS over 10 learning trials, using the methodology we described in Figure 6.6. Im-
portantly, even in the much more dynamic domain, we observed no problems due to
non-contemporaneous constraints or knowledge contention using Soar 8. Additionally, we
needed to make no changes to the knowledge specifically for learning, other than those
we described for over-general and over-specific learning, as we described in Section 6.3.3.
These results are significant because they suggest that compilation can be used routinely
in dynamic domains, without having to engineer the knowledge for anything other than
task performance. However, if we compare the performance metrics to those we sum-
marized in Table 5.2, the results are much less encouraging. Overall performance does
not improve relative to the Soar 8 non-learning agent. In this section, we explore the
reasons for this lack of improvement while in the following section we will observe that
responsiveness does improve significantly as the agents gain experience in the domain.
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Figure 6.7: Total production rules for the lead and wing agents across yTAS learning trials
using Soar 8 (star). The Soar 7 non-learning agent (diamond) is included for reference.
The points represent the averages of the production rules at the end of each trial.
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We begin by examining the effects of compilation on the total knowledge, illustrated
in Figure 6.7.* We expect the learning rate to decrease over several trials, as the agents
gain experience in repeating the same task over successive trials. This expectation is
realized in the first trial, where both the lead and wing learn about a third of the total
new production rules learned over the ten trials. However, in further trials, the learning
is roughly constant (although the number of new rules per run is decreasing slightly in
the later trials). We discovered that both the lead and wing agents are still learning some
over-specific rules. For example, when executing the patrol mission, the lead determines
when to turn based, in part, on the distance from a reference point. When it executes
the turn, the agent also learns a new rule that will execute the patrol-leg turn in the
future without decomposition. However, this new rule depends on the exact distance to
the reference point and is thus unlikely to be used again.

Consistent with our overall methodology, we made very conservative changes to the
agent’s knowledge base for avoiding over-specific compilation. In particular, we ensured
only the compilation of any rule that changed a particular motor command (e.g., the
current heading) did not depend on the numeric value of that particular motor command.
In the turning example, however, the decision to turn is based on a different categorical
value (distance) and thus we did not change this knowledge. Importantly, the rules that
are over-specific do not cause behavior problems or represent incorrect learning; they are
simply so specific to the current situation that they have little chance of being used again.

We did not make eliminating over-specific learning a priority. Recent work has shown
that chunking can be modified to use more typical explanation-based learning generaliza-
tion techniques and thus avoid the limitations of the variabilization process in chunking
that leads to over-specific rules (Kim and Rosenbloom, 1995). However, the occurrence
of over-specific rules in our results does impact the learning rate, as we observed above,
and means that our estimate of the changes necessary to address over-specific learning is
low for the current implementation of chunking in Soar.

Unlike the decrease we observed in the Blocks World, the number of production fir-
ings does not change with learning in the yTAS agents. Figure 6.8 shows the average
production firings for the lead and wing agents as a function of the number of trials. In
the leads, the production firings increase initially and then return to about the same level
as in the non-learning lead. In the wings, the production firings increase slightly, about
2.6%. This lack of improvement occurs even though the agent are compiling new rules
throughout the trials.

In order to explain the difference between the Blocks World and pTacAir-Soar results,
we again must examine the differences between the tasks in these domains. In the Blocks
World, the execution of a primitive action causes a transition to a qualitatively different
state: the position of the blocks and grippers have changed such that another action
should be generated. The agent is able to speed up its overall behavior because the
transition from one state to another occurs as quickly as it can generate the actions to
move from state to state. Production firings decrease as a result because the compiled
knowledge is able to effect an immediate transition to a new state, thus avoiding the delay
necessary for decomposition.

In contrast, when a yTAS agent executes a particular action in the environment,
particular values in the state may change quickly (e.g., aircraft heading in a hard turn)

*In this figure, as in the ones which follow, Soar 8 non-learning results are included as Trial 0.
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Figure 6.8: Productions firings for the lead and wing Soar 8 agents across the yTAS
learning trials.
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but the qualitative state changes at only a few points over the scenario, such as when the
lead finishes a patrol leg or when an enemy plane enters into missile range, as we observed
in Figure 5.9. Although the agent may execute many primitives in order to effect a
change to a different qualitative state (e.g., maneuvering to get into missile range), it
takes a long time, relative to an agent’s reasoning cycle, for an agent to effect a change
in the qualitative state.

When qualitative states change slowly, the agents have opportunity to access their
original domain knowledge. Production firings do not decrease in yTAS because the
agent generates its hierarchical reasoning while waiting for the transition to a new state.
By generating the task hierarchy, the agent can ensure that its current course of behavior,
already initiated by the compiled knowledge, is consistent with the domain knowledge. In
some cases, the current course of action will be further elaborated by the decomposition
knowledge, leading to both an increase in the total production firings and the compilation
of new rules. Because the agent has decomposed the problem, it can respond immediately
if some new situation arises for which it currently lacks domain knowledge. Thus, the use
of the original domain knowledge is not a liability. Further, as we will see in the next
section, responsiveness does improve with compilation because the compiled knowledge is
applied before the task is decomposed.

Figure 6.9 suggests this additional elaboration is occurring in pTAS. The number
of outputs increases as learning progresses, by about 12% in the lead and 5% in the
wing. Because the agent need not delay reaction while decomposing the task for the
current situation, the agent can react more quickly and in some cases more often than
it could previously. Thus, the yTAS agents’ lack of improvement in production firings is
attributable to the domain rather than the agent architecture or compilation. Moreover,
decomposition occurs after the execution of primitives and thus action itself is no longer
delayed by the decomposition, as we will see in the following section.

Because production firings increase slightly, and the agent is invoking the compilation
process as well, we now expect to observe a slight increase in CPU time across trials.
Figure 6.10 shows the actual average change in CPU time across the learning trials.
Although the overall increases in CPU times are reasonable (10.6% in the lead, 6.3%
in the wing) and all within a single standard deviation of the Trial 0 CPU time, the
average CPU time does appear to be increasing slightly with additional learning trials.
For instance, the number of production firings is roughly constant over the final 5 trials
while CPU time is increasing almost linearly in the wing and in the lead as well, although
less regularly. Additionally, unlike the Blocks World, the increase in CPU time cannot be
attributed to either a decrease in decisions or the learning process itself. If the compilation
process was causing the increase, we would expect to see a larger increase in the first trial,
where about about twice to three times as many total rules are learned as compared to the
subsequent trials. These factors suggest that the increase in CPU time is due the increase
in the number of the learned rules. In other words, the agent may be experiencing a slight
average growth effect. However, without extensive profiling of the system, we can not say
with certainty if the increase in CPU time is due primarily to average growth effects. We
will return to this subject when we consider directions for future work, in Chapter 6.
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the pTAS learning trials.
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Avg. In-Range Time | Avg. Launch Time | Reaction Time n
| Soar 7 \ 161.816 162.084 268 | 95
Soar 8

Trial 0 162.048 162.994 0.945 | 99
Trial 1 161.927 162.891 0.964 | 39
Trial 2 161.493 162.050 0.557 | 41
Trial 3 161.327 161.830 0.503 | 45
Trial 4 161.377 161.757 0.380 | 42
Trial 5 161.644 161.889 0.244 | 40
Trial 6 161.458 161.617 0.159 | 46
Trial 7 161.260 161.406 0.146 | 39
Trial 8 161.457 161.584 0.127 | 40
Trial 9 161.245 161.370 0.125 | 37
Trial 10 161.450 161.552 0.103 | 107

Table 6.4: The effect of compilation on reaction time in 4 TAS. Each row of the table shows
the average times (in seconds) for successive learning trials. Each trial was averaged over
N runs.

Effect of Compilation on Responsiveness

We now examine the impact of compilation on responsiveness. In the previous chapter,
we observed that responsiveness can actually decrease in Soar 8 even though overall per-
formance improves. We hypothesized that compilation would allow the agent to improve
responsiveness both by avoiding the delays due to decomposition and also by composing
the actions of individual subtasks into more complex behaviors.

As we did in the last chapter, we examine one specific example of responsiveness,
the reaction time for launching a missile. Table 6.4 shows average reaction time results
from the individual trials, along with the results from Table 5.4, reproduced here for
convenience. Figure 6.11 illustrates the change in average reaction time with learning.
As these results indicate, average reaction time increases substantially with learning in
Soar 8. In the first trial, there is no improvement. In each individual scenario, there is
normally only a single opportunity to launch a missile. Thus, in all the Trial 1 runs, the
agent uses only its domain knowledge to execute the task. Just one learning opportunity
decreases the reaction time by 40% in the second trial. By the fifth learning trial, reaction
time in Soar 8 has improved in comparison to Soar 7. In the final learning trial, reaction
time has decreased to about one-tenth of a second, a 61% improvement in comparison to
the Soar 7 agent.

The improvement in reaction time is attributable to two different factors. First, after
compilation, the agent is able to recognize the conditions under which a missile should
be launched without referring to the hierarchy. Thus, the agent has gained more op-
erational knowledge of when to fire a missile, as anticipated, and no longer delays the
initiation of the missile launch for decomposition. Second, individual actions have been
composed into operators higher in the hierarchy and no longer require individual selection
and application. Thus, multiple actions can be taken within a single Soar decision. Signif-
icantly, these results show that although overall performance does not improve in pTAS,
responsiveness can improve substantially with compilation thus improving the quality of
agent behavior. Further, the potential degradation in responsiveness using Goal-Oriented
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Figure 6.11: Improvement in reaction time with learning.

Heuristic Hierarchical Consistency can be successfully avoided as well.

6.5 Summary

The results of our empirical investigation of compilation are not as decisive as those of the
previous chapter. Figure 6.12 shows compilation results from the Blocks World in terms
of the overall performance and knowledge dimensions. Figure 6.13 similarly illustrates
the results from the lead and wing agents in pTacAir-Soar. In both the Blocks World
and in g TacAir-Soar, we were able to use compilation with minimal additional knowledge
engineering cost because Goal-Oriented Heuristic Hierarchical Consistency provided solu-
tions to both the non-contemporaneous constraints and knowledge contention problems.
The learning agents automatically acquired new productions, leading to an increase in the
total number of productions in the agent but not an increase in total knowledge design
cost.

In the Blocks World, average CPU time decreases, indicating an overall performance
improvement, but we observed that the decrease in CPU time was modest in comparison
to the decrease in production firings and decisions. In pTAS, overall performance does
not improve. The lack of overall improvement can be explained, in part, by the agent’s
continued use of its hierarchical knowledge in conjunction with compilation. As we saw
in Figure 6.11, responsiveness does improve with compilation. Thus, even when overall
performance does not improve, the agent is able to react to the current situation without
the hierarchy and thus improve behavior.

Although we did observe some performance improvement, we also were concerned
that the average growth effect was contributing to some slowdown in the average rate
of matching and firing individual productions. Determining whether or not the average
growth effect is leading to a degradation in performance in these systems is a subject of
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Figure 6.12: Blocks World Summary: Mean CPU Time in milliseconds vs. knowledge in
productions for Soar 7 (diamond) and Soar 8 (star) agents.

future work. Evidence from many previous systems suggests that utility problems can be
avoided in Soar. However, these previous systems have generally not tried to use learning
with an existing knowledge base while also attempting to minimize changes to that knowl-
edge base. Additional work may show that the use of compilation does require additional
revision to existing knowledge bases to avoid over-specific learning (which causes increases
in match cost) and over-general learning (which causes incorrectness in behavior).

Significantly, however, our experiences show that compilation can be used “on line”:
agents can learn while also behaving in dynamic domains with little detriment to their
overall performance. For example, even over ten learning trials in yTAS, the average CPU
time during the tenth trial was still well within the standard deviation of the average CPU
time prior to learning. Compilation not only allows an agent to act without delaying for
decomposition, it also allows it parallelize and compose it actions, releasing the initiation
of actions from the seriality of the architecture’s subtask selection process. Thus, assuming
the technical problems we introduced can be addressed, compilation allows significant
improvement in performance with experience, while maintaining the low knowledge design
cost of hierarchical agents.
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Chapter 7

Summary and Future Work

There is more to life than increasing its speed.

— Mohandas Gandhi

In the previous chapters, we have developed and empirically tested an efficient, archi-
tecture-based solution that ensures processing consistency in agents employing hierarchi-
cal task decompositions. This solution allows agents to act reliably in complex, dynamic
environments while also maintaining the low cost of agent development provided by hierar-
chical task decomposition. This solution also solves several extant problems in knowledge
compilation, thus enabling compilation in complex, dynamic environments which leads to
improvements in agent performance.

In this chapter, we explore a number of additional aspects of this research. First,
we summarize the contributions of this work, considering especially the generality of the
methods and solutions we have described in the previous chapters. Second, we describe the
impact of this work on the Soar architecture, both in terms of its impact on existing Soar
systems and the repercussions on Soar as the implementation of a psychological theory.
Finally, we describe some potential future directions for this research, summarizing and
expanding some of the ideas we have presented in previous chapters.

7.1 Contributions

In this section, we revisit the contributions we introduced in Chapter 1. The primary
contributions of this thesis have been to:

e Provide an understanding of how inconsistency can arise due to persistence in hi-
erarchical architectures and develop potential solutions that efficiently solve this
problem.

Inconsistency in processing can arise when the context changes and an agent fails
to update a persistent assumption in the subtask hierarchy that is logically depen-
dent on the changed value in the hierarchy. Many solutions to this problem rely on
specific knowledge to resolve the inconsistencies, which can be difficult to identify,
costly to create, and provides no guarantee of consistency in all circumstances. We
introduced two new solutions, Assumption Justification and Dynamic Hierarchical
Justification, that require no additional knowledge because the determination of con-
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sistency is made by the architecture. Both solutions limit persistence by justifying
local assumptions with respect to the hierarchical context. This partial justification
allows local nonmonotonic reasoning while ensuring that local assumptions remain
consistent with the hierarchical context. Dynamic Hierarchical Justification avoids
some of the computational expense of Assumption Justification by associating de-
pendencies with subtasks rather than individual assertions.

Provide an understanding of how inconsistency can arise due to multiple, simulta-
neous threads of reasoning in a hierarchical architecture and develop solutions that
efficiently solve this problem.

Inconsistency in processing can also arise when the agent reacts to a context change
in a local level of the hierarchy before all the ramifications of the context change
have been elaborated. Reacting too quickly can cause some inefficiency, because
newly asserted knowledge may be retracted as soon as the context is fully elab-
orated. More problematically, nonmonotonic assertions, such as the initiation of
motor commands, can lead to irrational behavior. Again, previous solutions to this
problem use agent knowledge to avoid inconsistency. We introduced a solution,
Subtask-limited Reasoning, that sequences the reasoning in the hierarchy, allowing
multiple local threads of reasoning but serializing threads of reasoning across sub-
tasks. Subtask-limited Reasoning avoids the computational expense of computing
dependencies between different assertions by recognizing that progress in a subtask
can not proceed until the agent is certain that the subtask remains a valid task in
the current situation.

Provide an empirical analysis of Goal-Oriented Heuristic Hierarchical Consistency, a
combination of Dynamic Hierarchical Justification and Subtask-limited Reasoning.

The analysis of Dynamic Hierarchical Justification and Subtask-limited Reasoning
suggested that these solutions could guarantee consistency without sacrificing per-
formance in execution. However, these solutions are heuristic: they simplify the
computation of dependencies in reasoning between assertions by taking advantage
of the locality of assertions in the hierarchy. These simplifications have the poten-
tial to increase the time necessary to execute a task, even though the individual
procedures are inexpensive. Therefore, we evaluated an implementation of the com-
plete solution, Goal-Oriented Heuristic Hierarchical Consistency, in two different
domains. Our results show that, at least for the tasks we evaluated, GOHHC can
actually reduce the time cost of execution, because the overall knowledge require-
ments are reduced, leading to less knowledge accessed over the course of executing
the task. This evaluation confirms GOHHC does indeed provide an efficient solution
to inconsistency and thus may be a worthwhile solution for other architectures.

Introduce a new methodology that allows comparison of a new architecture to a
baseline architecture by comparing the relative behavior of agents implemented in
the architectures.

We wanted to evaluate GOHHC according to its knowledge requirements, perfor-
mance and responsiveness. However, these criteria are strongly determined by spe-
cific tasks as well as specific architectures. Therefore, in order to evaluate GO-
HHC, we compared GOHHC agents to agents performing the same tasks in a
“non-GOHHC” architecture using knowledge-based solutions for inconsistency. This
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methodology allows one to constrain the degrees of freedom in agent design and thus
reduce the possible variation in results. However, this methodology requires agents
for identical tasks developed in two different architectures. We avoided some of this
disadvantage by choosing previously-existing agents, already optimized for behav-
ior, and made conservative changes to those agents for the GOHHC architecture.
We looked at only two domains. However, we chose these domains deliberately. The
Blocks World is a synthetic, endogenous, and relatively simple domain. pTacAir-
Soar is a real domain (albeit a simulation environment), highly dynamic and exoge-
nous, and relatively complex. Thus, we chose two tasks at the extremes of these
particular dimensions. Additional task dimensions could be explored as well, as we
discuss below. However, this methodology should be useful as a general tool for the
assessment of the impact of new architecture capabilities and features.

Provide an understanding of how inconsistency in an agent’s processing can lead to
specific problems in compilation and show that Goal-Oriented Heuristic Hierarchical
Consistency provides a guarantee of consistency sufficient for on-line compilation of
subtask processing in the hierarchy.

Inconsistency in processing also makes knowledge compilation difficult. We de-
scribed two specific problems, non-contemporaneous constraints and knowledge con-
tention, and showed that GOHHC solves these problems because it guarantees con-
sistency in reasoning. Importantly, we showed that consistency also eliminates much
of the specific knowledge representation requirements for learning, thus allowing the
compilation of execution knowledge not specifically designed for learning.

We employed compilation to improve performance in agent domains. We learned
that overall performance is not as important as responsiveness in some domains.
In particular, compiled knowledge can be used to generate responses immediately,
without incurring the cost of decomposition while hierarchical reasoning can evaluate
the behavior generated by the compiled knowledge, ensuring behavior agrees with
an agent’s goals. In this situation, overall performance as measured by CPU time
is not expected to improve, but the qualitative behavior improves.

Compilation improves performance as long as the utility problem and, more specif-
ically, average growth effects, are not overly problematic. We observed a slight
potential average growth effect in our empirical results with compilation but not
one that slowed reasoning more than a standard deviation from the non-learning
baseline. However, further understanding how new knowledge can impact the re-
sponsiveness of the architecture is a subject of future work, as we outline below.

How applicable will these analyses and solutions be for other architectures? Our anal-

ysis of the sources of across-subtask inconsistency may make other researchers aware of
similar issues in their own architectures. As we described in Chapters 3 and 4, often-
times these problems are viewed as requirements on the agent’s domain knowledge. Our
analysis points out that this knowledge is expensive to develop, degrades the modularity
and simplicity of the hierarchical representation, and is only as robust as the knowledge
designer’s imagination. When agents are developed in sufficiently complex domains, the
expense of creating this knowledge may grow prohibitive, and lead researchers to consider
architectural assurances of consistency.

The introduction of new capabilities in the architecture, such as compilation, may

also motivate architectural solutions to consistency. We were led to consider the issue of
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inconsistency by our desire to use compilation in Soar in execution environments without
having to structure domain knowledge specifically for learning. Of course, our specific
solutions may not be useful for other architectures, which include different capabilities.
However, we attempted to reduce the specificity of our results to Soar in two ways. First,
we explored a space of solutions to the particular problems and outlined the costs and ben-
efits of each. For other architectures, some of the solutions not optimal for Soar may not
be as costly and can be adopted. Second, the specific solutions we chose were based both
on the architecture and on the structure of hierarchically decomposed tasks. Although
the specific implementations and procedures may be different for other architectures, the
heuristic simplifications employed by Goal-Oriented Heuristic Hierarchical Consistency
should transfer to any architecture utilizing hierarchical task decomposition.

7.2 Impact on the Soar Architecture

In this section, we describe some repercussions of Goal-Oriented Heuristic Hierarchical
Consistency on the Soar architecture, in addition to the general results we described in
Chapters 5 and 6. We concentrate specifically on the compatibility of GOHHC with
existing systems and the impact of GOHHC on Soar as a psychological theory. Although
this section will be of primary interest to those who use Soar, this discussion suggests
potential impacts the inclusion of Goal-Oriented Heuristic Hierarchical Consistency may
have in other architectures as well.

7.2.1 Compatibility with Existing Systems

Soar has been used as the basis for a large number of artificial intelligence systems and
cognitive models. Throughout its history, the architecture has been modified to accom-
modate new features and capabilities (Laird and Rosenbloom, 1995). In this section, we
consider how currently existing Soar systems will be impacted by the incorporation of the
Goal-Oriented Heuristic Hierarchical Consistency in the architecture.

As we discussed in Chapter 5, we converted two existing systems designed for the
current architecture for the GOHHC version of Soar, Soar 8. Neither of these systems
was designed to learn. As we observed, the conversion to Soar 8 for these systems could
be substantial, especially as measured by the number of rules that needed to be added,
deleted, or changed. For instance, uTacAir-Soar required some change to about 40% of
the original knowledge base.

These experiences suggest that converting existing Soar systems to Soar 8 will be
costly. However, there are two reasons to anticipate less costly conversion. First, using
the number of rules changed as a metric leads to overestimates of cost. Many of the
required changes can be made to an existing system automatically, without human anal-
ysis (e.g., the deletion of termination conditions for operators). Further, as we pointed
out in Chapter 5, some of the changes were required to repair problems in the original
decomposition. Regenerations simplify the identification of these problems.

Second, conversion cost should be significantly less expensive for existing Soar systems
that were designed to learn. In non-learning systems, only those inconsistencies that man-
ifest themselves behaviorally are usually identified and fixed. However, as we described
in Chapter 6, systems designed for learning are necessarily more thorough in removing
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inconsistency. Thus, we expect these systems can be converted with much less expense.
For example, although we do not report the results directly in this thesis, we have de-
veloped additional Blocks World agents for two representational conventions, or modeling
idioms (Lallement and John, 1998), that make learning unproblematic. The emphasis
of the modeling idioms is psychological rather than functional, although both do provide
knowledge-based solutions to inconsistency (Lehman et al., 1995; Rieman et al., 1996).
The Blocks World agents using these conventions were developed for Soar 7. However, in
both cases, these agents also run under Soar 8 with virtually no modification. Although
we do not expect every existing Soar 7 learning system to run immediately under Soar 8,
these experiences suggest that the conversion to Soar 8 for systems designed for learning
in Soar 7 will be not be as extensive as required by the examples in this thesis.

7.2.2 Effect on Psychological Theory

Soar has been used to model psychological phenomena and has been proposed as a unified
theory of cognition (Newell, 1990). We now briefly consider the potential impact of
GOHHC on Soar as a psychological theory and tool for psychological modeling.

The basic commitments of the Soar architecture — associative retrieval of knowledge,
problem spaces, impasse-driven subgoaling, and chunking — are unchanged in Soar 8. Psy-
chological models built using Soar usually describe phenomena at this level of description
and should be unaffected. For example, as we saw above, learning systems, which include
many psychological models built using Soar, may run with only minor modification in the
GOHHC version of Soar. As another example, models of dual-task performance imple-
mented in Soar 7 (using a particular modeling idiom) and in Soar 8 have both been shown
to match human performance data closely (Lallement and John, 1998). In general, most
psychological phenomena modeled with Soar will not intersect with the changes necessary
for Goal-Oriented Heuristic Hierarchical Consistency.

One seemingly possible impact of the GOHHC architecture is that it will force Soar
to always behave “rationally.” Psychological research shows that people often reason
inconsistently, even when the total knowledge available to them would allow correct con-
clusions. For example, Tversky and Kahneman (1982) relate many examples of situations
in which subjects make errors in judgment under uncertainty. In one experiment, after
observing a series of coin tosses in which the coin consistently shows “tails,” subjects,
when asked the probability of the next toss resulting in “heads,” consistently choose a
probability greater than one-half, even if told the coin is fair.

Superficially, these results appear to conflict with Goal-Oriented Heuristic Hierarchi-
cal Consistency. However, GOHHC enforces consistency in processing — the manipulation
of symbols — but says nothing about potential inconsistencies in the interpretation and
use of those symbols. Tversky and Kahneman attribute the errors in judgment to the
information available when the judgment is made (not to some inherent error in the pro-
cessing). This information then biases the resulting judgment. Although modeling the
effects of such judgments would probably involve details of Soar’s architectural commit-
ments, Goal-Oriented Heuristic Hierarchical Consistency alone would not preclude the
use of Soar for such a model. The information and biases in the knowledge would be the
strong determiners of behavior, rather than the underlying manipulation processes.

However, some details of the architecture have changed under GOHHC and may have
some implication for psychological modeling. As one example, consider post-completion
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errors (Byrne and Bovair, 1997). Post-completion errors are errors in behavior that arise
when a goal is completed but some cleanup is necessary following the achievement of the
goal. For example, when making a photocopy, one might forget to retrieve the original
along with the copy. People find it very difficult to learn to avoid post-completion errors
and they appear across tasks and domains. These characteristics suggest an architectural
source of post-completion errors.

Soar 8 might provide a parsimonious explanation of post-completion errors. Recall
from Chapter 5 that Soar 8 automatically terminates subtasks when their initiation condi-
tions are no longer satisfied. Thus, Soar 8 would predict that post-completion errors arose
because the make-copy goal is retracted as soon as the goal is achieved. This termination
contrasts with knowledge-mediated termination in the current Soar architecture.

A simple model of make-copy might include a proposal for the subtask with very
general conditions (e.g., “need copy”). Then, when the copy is available, the goal is
satisfied and automatically removed by the architecture, causing the post-completion
error. Learning to remember to retrieve the original would be difficult because it would
require specialization of the original subtask initiation conditions to include the original
in the achievement of the goal (“need copy and original”), even though the original is
already possessed when the goal is initiated.

Fully understanding the role of GOHHC in the Soar’s psychological theory is an open
question. However, this discussion points out our expectation that GOHHC should have
little impact on that theory because the major architectural commitments used in com-
puter simulations of psychological phenomena are unchanged.

7.3 Directions for Future Work

Future work can be divided into two distinct categories. The first category widens the
scope of our evaluation of Goal-Oriented Heuristic Hierarchical Consistency by exploring
different architectures and tasks. The second category deepens the analysis within Soar in
order to understand more completely how GOHHC interacts with the Soar architecture.

7.3.1 Further Investigations in Breadth

e Implement and evaluate GOHHC in other plan execution architectures.
Our evaluation necessarily concentrated on a single architecture. However, one ob-
vious next step would be to implement Goal-Oriented Heuristic Hierarchical Con-
sistency in another plan execution architecture. The goal of a new implementation
would be to further understand the requirements and costs for both Dynamic Hier-
archical Justification and Subtask-limited Reasoning.

A candidate architecture should have several important features in addition to using
hierarchical task decomposition and supporting persistence and multiple threads of
reasoning. For example, in order to compute dependencies for Dynamic Hierarchical
Justification, the architecture should support dynamic access to assertions outside
of the local subtask. Similarly, Subtask-limited Reasoning requires that the archi-
tecture be able to determine (inexpensively) to which subtask a particular assertion
is local. An efficient match process is not necessarily required because the Soar’s
RETE matcher was critical for utilizing compilation, rather than GOHHC. Because
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the GOHHC heuristic is based on the structure of the task, as we described above,
we would expect similar results in evaluating another architecture, although the
specific magnitudes of cost and performance differences would be different. Imple-
mentations in other architectures would thus lead to a more complete understanding
of the benefits of Goal-Oriented Heuristic Hierarchical Consistency, irrespective of
the underlying architecture.

e Evaluate GOHHC along additional task dimensions.

Our evaluation concentrated on a few tasks. We argued above that the differences
between the Blocks World and pTacAir-Soar represented two extremes along a few
dimensions. However, additional tasks would allow us to further explore GOHHC
and characterize it more completely. For example, in both the Blocks World and
pTacAir-Soar, there are only a few high-level goals (e.g., stack, patrol). Another
task class to evaluate would be one with more high level goals, and more switching
between those goals.

e Develop better metrics for design cost, performance, and task complexity.

Our overall conclusions from the evaluation of Goal-Oriented Heuristic Hierarchical
Consistency are weakened by the lack of concrete metrics for cost, performance, and
task complexity. For example, we hypothesized that making changes to an existing
knowledge base was less costly than creating a knowledge base with a similar number
of rules. Intuitively, this assumption seems correct but without appropriate metrics
we could not draw quantitative conclusions. Drawing on results from software en-
gineering, more descriptive quantitative metrics could be developed, although they
might be restricted to particular architectures or domains. However, even with this
restriction, more descriptive metrics would provide a way of exploring quantitative
relationships between cost, performance, and task complexity, such as the one we
hypothesized in Figure 2.7.

7.3.2 Further Investigations in Depth

o Assess the impact of GOHHC on the RETE algorithm.

We observed in Chapter 5 that some of the improvement in overall performance
using Soar 8 could be attributed to lower match cost. We hypothesized that this
decrease in cost might be explained by additional constraint in the Soar 8 agent’s
knowledge. Therefore, one question to explore for future research would be to de-
termine if this result is consistent across other tasks. If confirmed, this result would
indicate GOHHC leads to improvements in match cost (with RETE) in addition to
to the other improvements made possible by Goal-Oriented Heuristic Hierarchical
Consistency.

e Explore average growth effects for compilation in dynamic domains.
We observed slight increases in CPU time with compilation in the 4 TAS agents. Is
this increase due to an average growth effect? If so, what properties of the task,
architecture, or, less plausibly, GOHHC are causing the increase in match cost?
The answers to these questions will be important for further use of compilation in
dynamic environments.

125



¢ Evaluate maintainability of Soar 8 agents.
Maintainability has previously been identified as a problem for large Soar systems.
Goal-Oriented Heuristic Hierarchical Consistency eliminates the need for consistency
knowledge that reasons about the interactions between the knowledge in different
levels of the hierarchy. Thus, the removal of this knowledge should make the knowl-
edge of Soar agents more modular and maintainable. Confirming this hypothesis
would provide further motivation for adopting GOHHC in other architectures.

Finally, we also showed in this research that Goal-Oriented Heuristic Hierarchical
Consistency solves the non-contemporaneous constraints and knowledge contention prob-
lems, allowing on-line compilation of behavior in dynamic domains. In Chapter 6 we
showed that compilation could provide improvements in responsiveness and overall per-
formance. Additional directions for research in compilation include exploring more fully
the use of on-line compilation in external environments. For example, we described using
an EBL version of chunking to avoid over-specific compilation in Chapter 6 and further
characterization of average growth effects above.

Non-problematic, on-line compilation also facilitates the inductive use of learning in
execution environments. For example, chunking can be used to compile inductive problem
solving, resulting in inductive learning (Rosenbloom et al., 1988). Importantly, compila-
tion provides the potential for knowledge-rich, computationally efficient inductive learning
that can occur in conjunction with behavior. Inductive learning could be used to modify
behavior with changing domains, self-correct errors in execution knowledge, etc. Al-
though explorations of inductive learning have not yet been attempted in this framework,
Goal-Oriented Heuristic Hierarchical Consistency provides an important stepping-stone
towards the achievement of these goals.
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Appendix A

Typography Conventions

This appendix describes the typographical conventions used in the text of the dissertation.

Representation Font Example
Relations input from external environment slanted clear
Relations internal to the agent sans serif empty
Objects bold block-1
Subtasks/operators in the hierarchy typewriter put-on-table
Problem Spaces SMALL CAPS  STRUCTURE

128



Appendix B

Summary of Assumptions

Assumption 1: Experiment in simulation domains. The difficulty inherent in

building physical agents has the potential to distract from the goal of addressing
the limitations of hierarchical decomposition for plan execution systems. Further,
the complexity of both domains and tasks make complete formalization of the char-
acteristics of hierarchical decomposition intractable. Therefore, we will pursue an
empirical characterization of hierarchical decomposition and limit these investiga-
tions to simulation domains where the engineering effort for the interface is more
easily controlled. Support for this assumption includes (Hanks et al., 1993), which
suggests that simulated “test beds” are a good choice for empirical studies because
the experimenter has control over the underlying domain. As a further control, we
will use simulation tasks designed independently of this research.!

Assumption 2: Focus on the execution level. The complexity of agent design for

interactive, real domains makes simplification necessary. For our empirical investi-
gations, we assume that agents have all the execution knowledge necessary for their
tasks, and thus no planning layer is necessary. A number of successful execution sys-
tems have been built without a planning component (Bonasso et al., 1997; Georgeff
and Lansky, 1987; Pearson et al., 1993; Tambe et al., 1995). We also assume that
our agents can treat reactive skills as primitives by making them directly executable
in simulation. Thus, no control layer will be used. We will be careful to point out
when the specifics of some technique impacts processing in either the planning or
the control layer but we will ignore these layers for the most part in our analysis
and experiments.

Assumption 3: Focus on a particular implementation. Although we are interest-

ed in the general characteristics of hierarchical task decomposition, we will focus
our empirical experimentation in one plan execution system: the Soar architecture
(Laird et al., 1987). We originally became interested in the characteristics and
problems of hierarchical task decomposition through the use of Soar in a number
of different plan execution environments constrained by Assumption 2 (Laird and
Rosenbloom, 1990; Pearson et al., 1993; Tambe et al., 1995)). Given the com-
plexity inherent in both domain and architecture, we decided to limit our actual

!The specific methodology used in the thesis is discussed in Chapter 5.
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implementations to this single architecture. Where possible, we will point out how
some particular analysis applies to other architectures but we will not attempt to
implement our approaches in different architectures.

Assumption 4: Focus on tasks that are (nearly) decomposable. Hierarchical
task decomposition is based on the premise that tasks can be broken down into
discrete units that have little interaction with other units. Simon (1969) argues
that hierarchic structure is a natural consequence of evolutionary processes; a hi-
erarchy simply provides stable, intermediate structure during the design process,
offsetting increasing complexity. This intermediate structure gives hierarchical de-
composition the advantages for execution we describe below. In this research, we
assume that the tasks we will be addressing are nearly decomposable. A fully de-
composable system has no interaction with other units in the system while a “nearly
decomposable” system has limited interaction among different units. For example,
in the Blocks World, the tasks of picking up a block and putting a block down
have little interaction; each can be executed with no reference to the other. On
the other hand, the put-down operator will need to know where to place the block,
leading potentially to some interaction with an operator that determines the right
space. The prevalence of planning and execution systems suggests this assumption
is a reasonable one, although it does suggest that our methods and results will not
apply to non-decomposable tasks.

Assumption 5: Engineering effort should be minimized. An important
evaluation criterion in our work will be to ask how an approach or solution impacts
the knowledge design or engineering effort associated with building an agent for a
particular task. Solutions that minimize effort with acceptable task performance will
be preferred over solutions that require more engineering effort. Because engineering
effort is difficult to measure precisely, our experimental methodology will rely on
relative measures of engineering effort rather than absolute ones. For instance, we
will measure the number of rules required for particular tasks and compare this
measure of effort to those of other approaches for the same task. However, we will
not compare the number of rules for one task versus another because rules may not
be a good measure of effort across different tasks.

Assumption 6: Development cost can be amortized over many applications.
An architectural solution presents a dilemma because it is generally easier to de-
velop a knowledge-based solution for a specific task than it is to develop a general
solution applicable to all tasks. Thus, this approach appears to be in conflict with
Assumption 5. However, we assume that there will be many agents developed
using the architectural solution. Thus, the effort necessary for developing a gen-
eral solution can be amortized over the development of all the agents using the
architectural solution.

Assumption 7: The world has regularities that make learning useful. We
assume that the world has goal-relevant regularities (Laird et al., 1996). A block
stacking robot regularly encounters situations in which it must stack blocks. The
can-collecting robot regularly encounters situations in which it must move, search,
and grasp cans. Regularities in the task domain provide the impetus to learn from
experience because it is reasonable to assume similar situations will be encountered
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again.
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