Code Compression for DSP

CSE-TR-380-98

Charles Lefugy and Tevor Mudge
{lefurgy,tnm}@eecs.umich.edu

EECS Department, Uwrsity of Michican
1301 Beal Ae., Ann Arbor MI 48109-2122

http://www.eecs.umich.edu/~tnm/compress

Presented at
Compiler and Architecture Support for Embedded Computing Systems (CASES 98)
December 4-5, 1998
Geoge Washington Uniersity
Washington DC

Abstract

Previous works have proposedadding compressiorntechniquesto a variety of architecturalstylesto reduce
instruction memoryrequirementslt is not immediatelyclear how theseresultsapply to DSP architecturesDSP
instructionsarelongerandhave potentiallygreatevariationwhich candecreaseompressiomatio. Our resultsdem-
onstratethat DSP programsdo provide sufiicient repetitionfor compressioralgorithms.We proposea compression
methodandapplyit to SHARC, a popularDSP architecture Even usinga very simple compressioralgorithm, it is
possible to hale the size of the instruction memory requirements.

Keywords. Compression, Code Densiode Space Optimization, D3mbedded Systems

1 Introduction

Architecturesfor digital signal processing(DSP)
have adopted several characteristicsof Very Long
InstructionWord (VLIW) architecturesincludingwide
instructionwords. The costof usingthe explicit paral-
lelism of VLIW is muchlarger codesizes.Beyond the
classical optimizations used to achieze smaller pro-
grams,compressiorcan shrink programsize by utiliz-
ing repetition found at the instruction level. Several
compressionechniquesave beenproposedor general
purposearchitecturesfWolfe92, Kozuch94,Fraser95,
Liao95, Benes97, Ernst97, Kirovski97, Lefurgy97,
Wolf97, Aranjo98]. Previous work focusedon using
short variable-length codevords and increasing the
meaningof codedby allowing themto decodeo alist of
instructions It is not known if suchcompressiometh-
odscanbe usedon DSParchitecturesDSPinstructions
canhold multiple independenbperationsvhich poten-
tially increasewariancein the instructionbit patterns.
Our previous study [Lefurgy98] noted that most com-
pressioncanbe attributedto singleinstructionpatterns.
We usethis ideato shav that programsfor DSP archi-
tecturesarehighly compressibleCompressiorior DSP
hastwo importantramifications First, performancecan
be tradedfor small codesize. Second,small codesize
reduceghe frequeng at which overlaysare performed
and therefore caragtly imprae execution time.

Theorganizationof this papers asfollows. Section
2 reviews previous work in code compression.We
presentour compressionmethod in section 3. Our
experimentalresultsare presentedn section4. In sec-
tion 5, we discusssome implications of the results.
Finally, section 6 contains our conclusions.

2 Previouswork

Therehave beenseveralrecentworkson codecom-
pression. The CompressedCode RISC Processor
(CCRP)[Wolfe92,Kozuch94 Benes97]s a MIPS pro-
cessorthat compressesnstruction cachelines using
Huffman coding. Dictionary compression methods
[Bell90] have been studied for several processors
[Liao95, Lefurgy97]. A software-managedcompres-
sion-cachehatdecompressesinctionson a cachemiss
has been proposed[Kirovski97]. Compressioralgo-
rithmsbasedn operandactorizatiorandMarkov mod-
els have beensuggestedor transmittingprogramsover
networks [Ernst97]. A C compiler that producescus-
tomized compactinterpretersand byte-codehas been
demonstratedFraser95].Carmel[Sucher98]Jis a DSP
architecturethat usesa dictionary compressiontech-
nigue. More complicatedcompressioralgorithmshave
combined operand factorization with Huffman and
arithmetic coding [Aranjo98, Lekatsas98].A VLIW

programrepresentatiofConte95]reducedorogramsize
by eliminating NOP fields.

In apreviouswork [Lefurgy97], we useddictionary
compressiono reducethe instructionmemoryfootprint
of embeddedprograms.We examined replacing fre-
guentlyusedsequencesf instructionswith a codevord.
The codevord sened asanindex into a list of instruc-
tion sequencesk-etchingand decodingthe codevords
recoveredthe original sequencef instructionsto exe-
cute.A variable-lengttencodingusingsmallcodevords
(8-bits, 12-bits, and 16-bits), allowed us to compress
PaverPC programsto 60% of their original size. We
will shaw thatevensimplercompressiottechniquesan
improve SHARC [ADI] programsby much greater
amounts.

3 Compression architecture

Our compressionschemetakes adwantageof the
obsenationthatthe instructionsin programsare highly
repetitve. Eachuniqueinstructionword in the program
is put in an instruction table Eachinstructionin the
programis thenreplacedwith anindex into this table.
Becausethe instruction words are replaced with a
shortercodeand becauséhe table overheadis usually
small comparedto the programsize, the compressed
version is smaller than the original. Instructionsthat
only appearoncein the programare problematic.The
originalinstructionin theinstructiontableandtheindex
in the programstreamarelargerthanthe singleoriginal
instruction, causinga slight expansionfrom the natve
representation.

The SHARC pipeline is shavn in Figurel.
SHARC typically usesthe Program Memory bus to
fetch instructionsand usesthe Data Memory bus to
fetchdata.However, it canalsousethesebussedor dual
data access When this happensjnstructionsare exe-
cuted from the instruction cacheso that the Program
Memory bus canbe usedfor datafetch. The modifica-
tion of SHARC for compressegrogramsis given in
Figure2. We augmentthe 3 stageSHARC pipeline by
adding a pre-fetch stage. First, the pre-fetch stage
retrieves the 16-bit instructionindex from the external
memory The instruction table addressregister holds
thelocationof theinstructiontablein theinternalmem-
ory. Adding the contentsof this register to the index
forms the addressof the SHARC instruction. Second,
the fetch stage uses this addressto get the 48-bit
SHARC instruction word. Finally, the instruction is
issued to the decode stage.

Therearethreecostsfor addingthe pre-fetchstage.
First, an extra internal memory bus must be addedto
supportsimultaneousccesgo the index memory pro-
grammemory and datamemories. SHARC usesdual-

Internal SRAM
Program Data
Memory Memory

c c
Lo |2
S3 1|8 Program Data
E5 | & Bus Bus
22| 2
=<7y Y
Insn-Fetch | Decode | Execute |
_ | A A A
Sy
S8 x Program Data
53| 8 B Bus
2zl 2 us
\

Instruction
Cache

Figure 1: SHARC pipeline

Top shows program fetch during execution of a
single data access instruction. Bottom shows
program fetch during execution of a dual data
access instruction. Instructions are fetched from
cache when execution unit uses both Program
and Data busses to fetch data.

Program || Data
Memory || Memory

Internal SRAM

Internal SRAM
Index Program Data
Memory Memory Memory
c % 5
29 Index E2|g | Program Data
2215 | Bus =£|2| Bus Bus
33| AR
£ |E cI|E
Y Y Y
| Index-fetch | Insn-Fetch | Decode | Execute |
A 5, A A A
5 Index §§ % Program Data
) Bus 2ol Bus Bus
SO | x =<¥=
55| -
22| Instruction
Cache

Index Program | | Data
Memory Memory Memory

Figure 2: Compressed program pipeline

Top shows program fetch during single data path
instruction execution. Bottom shows program
fetch during dual data path execution.

Internal SRAM

portedSRAM to achiese simultaneousiccessesverthe
programanddatabussesinsteadof addinganothemort
to SRAM for the index bus, a separateSRAM block
could be dedicatedto index memory Second the pre-
fetch stageaddsa third branchdelayslot. Last,onereg-
istermustbeaddedo holdtheaddres®f theinstruction
table.

When dataand programaccessesompetefor use
of the program bus, SHARC puts the conflicting
instructionin theinstructioncache Futurereferenceso
the sameinstruction addresscan use the I-cacheand
allow the programbus to be usedfor data.This feature
allows loopswith instructionsthat usethe programbus
for dataaccesgo executewithout penaltydueto bus
contention.This is extremelyimportantfor DSP algo-
rithms which tendto be composedf small, computa-
tion-intensve loops. Our compression architecture
retains this aluable feature.

The 16-bit index limits a programto useonly 64K
unigueinstructions.However, programsthat use more
instructionscanbe accommodateddnealternatve is to
addamode-switchingpranchto theinstructionsetsimi-
lar to the oneusedin ARM [ARM95, Turley95]. This
would causethe fetch units to switch betweenusing
indexes and normal SHARC instructions. In natve
mode,the pre-fetchstagecould be turnedoff. Thefetch
stagewould usethe programcounterto fetch SHARC
instructionsas usual. Another possibility is to encode
differentpartsof the programby usingdifferentinstruc-
tion tables.By simply re-loadingthe instruction table
addressregister, an entire new setof 64K instructions
canbeused.Thisregistercanalsobe usedto allow each
programin anembeddedystemto useits own instruc-
tion tablesothatthe tablesaretunedto the instructions
that the program actually uses.

3.1 Branch instructions

In our previous work, we did not compresdranch
instructionsbecausedoing so could affect instruction
repetitionin complicatedvays.Using patternsof only 1
instructionwith a fixed-lengthencodingeliminatesthis
problem.Compressing programmovesall instructions
to adifferentlocation.This affectsbranchesvhich have
index and addressfields. Additionally, codevords are
smallerthanthe original instructions so the instruction
fetch mechanismand brancheanustuse a new align-
ment.Sincewe areusing16-bit codevords,PC-relatve
branchesand absolutebranchesnow specify a 16-bit
alignedaddresslin this simpleschemethe index fields
of the PC-relatve brancheglo not changesincethe dis-
tance (numberof instructionsor codevords) between
the branchandtarget are the same.Absolutebranches,
which the compilerusesfor functioncalls,mustchange
to use the addressfor the new location of the tamget
function. However, all such branchesthat matched
beforewill alsomatchafterthis transformationThere-
fore, we caneasilycompresdranchinstructiongust as
ary other instruction.

Static Original Size Compressed Compression

Benchmark Optimization Instructions Tablesize (bytes) Size (bytes) Ratio
npeg2enc none 28, 832 7,167 172,992 100, 666 58. 2%
-0 26, 537 8,118 159, 222 101, 782 63. 9%

go none 81, 343 8,564 488, 058 214,070 43. 9%
-oL 76, 424 12,931 458, 544 230, 434 50. 3%

ghost scri pt none 352, 525 33,322 2,115, 150 904, 982 42. 8%
-0l 310, 869 49,734 1, 865, 214 920, 142 49. 3%

Table 1: Baseline results

4 Results

In this sectionwe integrateour compressiortech-
nigueinto the SHARC ADSP-2106xnstructionset.We
use benchmarksfrom SPEC CINT95 [SPEC95] and
MediaBench[Lee97]. Thesebenchmarksare compiled
with the VisualDSPcompilerfrom AnalogDevices.The
portionsof the benchmarkdor file 1/O were removed
sincethey arenot supportecby the compilers libraries.
Our resultsinclude both applicationand library code.
All compressegrogramsizesinclude the overheadof
thedictionary Compessiorratio is usedto measurehe
amount of compressibility

compressed size

compression ratio= o -
original size

(Eq. 1)

Tablel shavstheresultsfor theour basiccompres-
sion method.Eachbenchmarkwas compiledwith and
without optimizations We only use“-O1” optimization
becausehigherlevels of optimizationexposedbugsin
the compiler The Table Sizecolumnis the numberof
entriesin the instructiontable Thereis one entry for
eachuniqueinstructionbit patternin the program.Com-
pressedsizeis the combinedsizeof theindexesandthe
instruction table.

Classicakodeoptimizationsareonewayto attaina
smaller code size. Using some optimization on the
benchmarkgeducesthe numberof instructions,but it
also increaseghe table size. The table size increases
becausethe number of unique instructionsincreases
whensingle operationinstructionsare combinedinto 2
and 3 operation instructions. In un-optimized code,
instructions only contain 1 operation and are more
likely to match each other The reducednumber of
instructionsin the optimized codedid not accountfor
the increasein the table size. Therefore,the smallest
representationwvas attained by compressingun-opti-
mized code.

The instruction tables contain mary instructions
thatareusedonly oncein the entire program.Onerea-
sonthis happenss thatthe combinationof registersthe
register allocation algorithm uses for a particular

instructionmay not matchary otherinstruction.We can
improve the compressionratios by removing these
unigueinstructionsfrom the table. To accomplishthis,
we selectsomeinstructionsthat can be representedn
16-bitsand mix themin with the index stream.These
shortinstructionswill be codedwith unusedndex val-
ues. For this experiment,we selectedthe 8 most fre-
quent ALU operationsfor eachbenchmarkto use as
shortinstructions.The encodingof the index streamis
asfollows. If anindex begins with the bit 0, thenthe
remaining 15 bits are the index into the instruction
table.If thenindex beginswith 1, thennext 3 bits will
selectan ALU operationin the SHARC. Theremaining
12bits aredividedinto groupsof 4-bitsto select3 regis-
ters for the ALU operation.The 3-bit ALU operation
field selectsoneentry from an 8-entrytable of SHARC
ALU opcodes.This table could be programmableso
thateachprogramcould selectthe 8 bestALU instruc-
tions to help compression.

Resultsfor mixing ALU operationsandindexesare
presentedn Table2. SomecommonALU operations
used are addition, multiplication, subtraction, pass,
comparejncrementanddecrementThis encodingsig-
nificantly reduceghetablesize.However, for mp&2enc
with optimization,therearetoo few unusedindex val-
uesto add the shortenedALU instructions.For other
benchmarksthecompressiomatiois improvedbetween
1.2% and 3.7%.

5 Discussion

For comparison,we also compressedhe bench-
marks with a nibble compression algorithm
[Lefurgy97]. This algorithm reducesthe size of code-
words (indexes) to 8 bits, 12 bits, and 16 bits. Each
codevord canrepresens list of instructions.However
branchinstructionsare not encoded.Insteadthey are
prefixed with an 4-bit escapenibble to differentiate
themfrom the codevords.Table3 shavs theresultsand
comparesthem to the baselinemethod. This demon-
stratesthat more complicatedschemesanattain better
compressiomatios.Interestinglythe compressiomatios
for thelargerbenchmarksrequite similar which shavs

Tablesize Compression

changefrom Compressed Compression ratio change

Benchmark Optimization Tablesize baseline size (bytes) ratio from basdline
npeg2enc none 6,107 - 1060 94, 306 54.5% -3. 7%
-0 7,323 -795 97, 012 60. 9% -3. 0%
go none 7,213 -1351 205, 964 42. 2% -1. 7%
-0 11, 728 -1203 223,216 48. 7% -1.6%
ghost scri pt none 29, 183 -4139 880, 148 41. 6% -1. 2%

-0L 46, 498 -3236 N A N A N A

Table 2: Addition of short instruction words

Compression

Compressed Compression ratio change

Benchmark Optimization size (bytes) ratio from basdline
npeg2enc none 89, 647 51. 8% -6. 4%
-0l 88, 541 55. 6% -8.3%
go none 196, 260 40. 2% -3.7%
-0l 203, 632 43. 3% -7.0%
ghost scri pt none 883, 789 41. 8% -1. 0%
-0L 852, 871 45. 7% -3.6%

Table 3: Nibble encoding

that even simple compressioralgorithmscan be effec-

tive. Using the shortercodevordsinsteadof compress-
ing branchesyielded slightly bettercompressiorratios

for the lager benchmarks.

In embeddedystemghat mustuseexternalmem-
ory to storeprogramspverlaysareanimportantway to
effectively useinternalmemoryto achiese high perfor-
mance.Code compressiorncan assistsuch systemsto
achieve even greaterperformance.Smaller code size
reduceshe frequenyg at which overlaysmustbe used
sincea larger portion of the programcanfit in internal
memory In addition, loading a compressedunction
from externalmemoryrequireslesstime thanloadinga
non-compressed function.

6 Conclusions

We have demonstratedhat even simple compres-
sion methodscan be highly effective at reducingcode
sizes in DSP programs.Compressingonly single
instructionsto a fixed-lengthcodeallows us to have a
simple mechanisnfor decompressiomhich hasmini-
mal impact on the SHARC architecture.Our method
cancompresgprogramsgo half their original sizewhile
allowing the hand-codednumerical loops that are
important in DSP algorithms to run at watispeeds.

Acknowledgments

This work was supported by DARPA grant
DABT63-97-C-0047.

References

[ADI] Analog Deices, Inc.. SHARC Uses Manual

[ARM95] AdvancedRISC MachinesLtd., An Introductionto
Thumb March 1995.

[Bell9O] T. Bell, J. Cleary |. Witten, Text Compession Pren-
tice Hall, 1990.

[Benes97] M. BenesA. Wolfe, S.M. Nowick, “A High-Speed
AsynchronouDecompressior€Circuit for EmbeddedProces-
sors”, Proceedingsof the 17th Confeence on Advanced
Reseath in VLS| September 1997.

[Conteds] T. ConteandS. Sathaye;Dynamic Rescheduling:
A Techniquefor ObjectCodeCompatibilityin VLIW Archi-
tectures”,Proceeding®f the 28th AnnualInternational Sym-
posium on Miaparchitectue, November 1995.

[Ernst97] J.Ernst, W. Evans, C.W. Fraser S.Lucco, and
T. A. Proebsting,“Code compression”,Proceedingsof the
ACM SIGPLAN’'97 Confeence on Programming Languaje
Design and Implementation (PLDJune 1997.

[Fraser95] C. W. FraserT. A. ProebstingCustominstruction
Setsfor Code Compession unpublished http://www.cs.ari-
zona.edu/people/todd/papers/pldi2.ps, October 1995.

[Kirovski97] D. Kirovski, J.Kin, andW. H. Mangione-Smith,
“ProcedureBasedProgramCompression”Proceeding®f the

30th Annual International Symposiurmon Microarchitecture,
December 1997.

[Kozuch94] M. Kozuch and A. Wolfe, “ Compressionof
EmbeddedystemPrograms, IEEE InternationalConfeence
on Computer Desigri994.

[Lee97] C. Lee, M. Potkonjak, and W. Mangione-Smith,
“MediaBench:A Tool for Evaluatingand SynthesizingMulti-
media and CommunicationsSystems”, Proceedingsof the
30th Annual International Symposiurmon Microarchitecture,
December 1997.

[Lefurgy97] C.Lefurgy, P. Bird, 1.-C. Chen,and T. Mudge,
“Improving codedensityusingcompressiottechniques”Pro-
ceedingsof the 30th Annual International Symposiumon
Microarchitectue, December 1997.

[Lekatsas98] H. Lekatsasand W. Wolf, “Code Compression
for EmbeddedSystems”, Proceedingsof the 35th Design
Automation Confeance June 1998.

[Liao95] S. Liao, S. Devadas,K. Keutzer “Code Density
Optimization for EmbeddedDSP ProcessorsUsing Data
CompressiorTechniques”,Proceedingsof the 15th Confer-
ence on Advanced Reseain VLS| March 1995.

[SPEC95] SPEC CPU’95, @chnical Manual, August 1995.

[Sucher98] R. Sucher R. Niggebaum,G. Fettweiss,and A.
Rom, “CARMEL - A New High PerformanceDSP Core
Using CLIW”", 9th AnnuallnternationalConfeenceon Signal
Processing Applications aneédhnolagy, September 1998.

[Turley95] J.L. Turley. “Thumb squeezesarm code size”.
Microprocessor ReporB(4), 27 March 1995.

[Wolfe92] A. Wolfe and A. Chanin,“ExecutingCompressed
Programson an EmbeddedRISC Architecture, Proceedings
of the 25th Annual International Symposiunon Microarchi-
tectuie, December 1992.

	Abstract
	1 Introduction
	2 Previous work
	3 Compression architecture
	3.1 Branch instructions

	4 Results
	Table 1: Baseline results
	Table 2: Addition of short instruction words

	5 Discussion
	Table 3: Nibble encoding

	6 Conclusions
	Acknowledgments

