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Abstract

Databases and data warehouses have grown dramatically in size in recent years, and we are
already seeing data warehouses that are tens of terabytes in size. Compression is important
in such systems because it reduces space requirements as well as response times for queries,
which are typically I/O-bound.

Conventional compression methods tend to compress and decompress objects in their
entirety, and are generally unsuitable for databases which require selective access to points in
the space of tuples they represent. The database compression method called Tuple-Difference
Coding (TDC) has been shown to meet the requirements for database compression, and to
achieve high compression ratios in practice. The factors affecting the performance of TDC
are known, but their effects are not well understood.

This paper presents a theoretical analysis of the performance of TDC, and verifies these
results through simulations. It presents analytical expressions for estimating the compression
ratios when database tuples are composed of one or more attributes drawn from various
distributions. It also studies the effects of attribute domain reordering on the compression
ratio. Our simulations show excellent agreement with theory.

1 Introduction

The importance of database compression has grown in recent years because of dramatic increases
in the volumes of data under management. Commercial enterprises have found it profitable to
maintain extensive archives of customer transactions, and to seek competitive advantage by dis-
covering patterns across and within transactions by interactive and automated queries. Systems
to support interactive queries are generally called data warehouses [Kimball, 1996], while systems
for automated querying are typically classified as data mining systems [Fayyad et al., 1996].
Such data archives typically contain records of transactions going back three to five years, and
in the case of large-volume retailers and telephone companies, can easily reach 10'2-10'3 bytes or
more in size!. These data volumes are many orders of magnitude larger than database designers
typically encountered only a few years ago. Despite significant differences in usage patterns,
there are great structural similarities between conventional databases and such warehouse data
archives. Since the differences in organization that do exist between them are not germane to the

1Tt has been reported, for example, that the mass retailer Wal-Mart has a 43-terabyte data warehouse at the
time of this writing.



compression approach we discuss, we will use the term “database” to simply mean a collection of
fixed-length records, so that the term will refer generically to both conventional databases and
to data warehouses.

1.1 Compression techniques

The use of compression in databases can have significant practical advantages since queries of
interest to us are typically aggregational, and tend to access substantial portions of the data
archive [Ng and Ravishankar, 1997]. Database compression is useful for two related reasons: it
reduces storage requirements, and it reduces the data transfer volumes between disk and main
memory. Queries in this domain generally request elementary “additive” statistics like sums
and variances formed over a large number of records selected from the archive according to user-
specified criteria. Typical queries may request a cross-tabulation of profit by retail outlet, month,
and product, or seek to discover correlations between sales of different products at various times.
Since such queries tend to access large data volumes, disk I/O tends to be the bottleneck to query
performance. The use of data compression reduces I/O loads by increasing processor loads, a
good tradeoff, given that processor performance is increasing much faster than that of disks.

Data compression is related to the problem of data modeling and source coding [Williams, 1991,
Rissanen and Langdon, 1981]. Conventional data compression techniques tend to use statistical
approaches under a serial model, where the source coder (transmitter) accesses the data to be com-
pressed serially, and compresses it according to a statistical model of the data that it constructs
and updates on the fly. Similarly, the receiver decompresses the data serially, and maintains
its own statistical model, which is updated and kept consistent with that of the transmitter as
decompression proceeds.

However, the desirable characteristics for database compression methods differ significantly
from those for conventional compression applications, making this approach unsuited for database
compression. First, database operations may access, update, or delete individual tuples in the
database. The serial model described above is inherently incompatible with this requirement,
since an update performed at point £ in the data stream would invalidate the statistical model
past point . A second problem is that compression efficiency clearly increases directly with the
amount of statistical information available on the distribution of symbols in the source. Thus
compression improves when the object to be compressed is large, and any fragmentation of the
object reduces compression. This causes difficulty in databases, where there are advantages to
applying compression at the level of disk blocks, rather than to the entire archive.

2 Tuple-Difference Coding

Tuple-Difference Coding (TDC) has been proposed as an alternative to conventional compression
methods for databases [Ng and Ravishankar, 1997], and has been shown to meet the requirements
of database compression well. TDC is quite practical since it can be integrated seamlessly into
traditional database structures, and results in substantial compression efficiencies in practice.
We say R is a relational schema over Dy, Dy, ..., D, with D; = {0,1,...,|D;| — 1} being the
ith attribute domain? if R = Dy X Dy X ... x D,. We call D a database with schema R if D C R.

2We will sometimes specify the domain as {1,2,---,|D;|} instead. However, this change of notation will not



Each record in the database is an r-tuple (dy,ds,...,d,), with d; € D;.

The idea in TDC is very simple: given a database D = {t1,t9,...,t,} of tuples, a bijective
mapping ¢ : D — Ny is constructed, where Ng = {0,1,...,|R| — 1}. Next, ¢ used to map each
database record t; to an integer, and the database is sorted on ¢(t;) as key. Successive tuples
are differenced, and the differences ¢(tx41) — ©(tx) are stored instead of the original tuples #;
and tx41 themselves. These differences tend to be significantly smaller than the original tuples,
thus achieving compression. In practice, it is convenient to to use a ¢ that is equivalent to
lexicographic sorting. Formally, given a tuple ¢, = (di,da,...,d,), with d; € D;,

T

ote) =Y di | T 1Dsl ), (1)
i=1

j=i+1

so that d; is simply treated as a digit with base |D;|, and ) becomes a mixed-radix number. This
mapping is invertible, so compression is lossless.

2.1 The performance of TDC

The original work describing TDC [Ng and Ravishankar, 1997] provides practical details such
as how to handle textual attributes in TDC, and experimental results on query times and other
performance parameters in practice. It demonstrates that TDC is superior to other database com-
pression methods currently in use, and provides both better compression as well as faster query
response times. The TDC method is also likely to be significant for practice. A patent has been
issued for the TDC method, and there appears to be interest in using it in real data warehousing
applications. A number of factors affecting compression are listed in [Ng and Ravishankar, 1997],
their effects discussed in qualitative terms. It is the purpose of this paper to provide a sounder
theoretical basis for the method and its performance characteristics.

2.1.1 A model for performance analysis

We have just outlined the conventional approach of modeling a database as a subset of the
product space of the attribute domains in the schema, but two points are worthy of note. First,
the distribution of values in different attribute domains D; and D is typically different, though
there may be correlations among these values. Second, the actual ordering of the D; in the
product space defining the schema R is typically immaterial to the database semantics.

It is reasonable, therefore, to view a database as a sample from the joint distribution of the
domains D;. Since it makes no sense for the database to contain duplicate tuples, this sample
must be taken from the joint space without replacement. We proceed to form the database by
choosing n samples (X1, ..., X,) from the joint distribution space F (D1, Ds,...,D,). Since this
sampling must be performed without replacement, these are not i.i.d. random variables, a fact
that causes significant technical difficulties for our analysis in the remainder of the paper. When
no compression is performed, we must allocate enough space in the tuple to accommodate any
value that may need to be stored in the database. Thus, if N = |Dy| - |Ds| - - - |D;|, each tuple
will need to be at least log, N bits in length, and the entire database will be nlog, N bits in size.

alter the semantics of compression, since TDC is is based on the spacings between successive samples.



We can apply TDC as follows. By sorting on ¢(X;) (see Equation 1), we can construct the
sorted database X (1) <y ... <, X(,), and by differencing them, the corresponding set of tuple
spacings {X(lc+1) — X(k)},k =1,...,n — 1. Since we store these spacings, estimating the size
characteristics of the compressed database is equivalent to estimating the sum of the logarithms
of these spacings. For convenience, we use natural logarithms rather than base-2 logarithms, and
form the statistic Ar = Zz;ll In(X(341) — X(x)). One of our chief challenges in the remainder of
the paper will be to estimate Ax for different attribute spaces F. To estimate the compression
efficiency, this value must be compared with the number n1n N, where N is defined as above.

While attribute domain ordering is irrelevant to semantics, some ordering must be chosen
for storing the tuples on disk. Since lexicographic sorting is used to order the tuples, we also
consider the problem of optimal ordering of the attribute domains to minimize Ax. Also, when
correlations exist between the attribute domains in R, the entropy of the database is lowered, so
that compression methods tend to perform better in such cases. To obtain lower bounds on the
performance of TDC, we therefore assume that attribute domains are uncorrelated. This model
will form the basis for further analysis.

3 An equivalent sampling scheme and related topics

In Section 2.1.1, the n samples Xi,..., X, drawn from the set F were assumed to be mutually
different since it makes no sense for a database to store a tuple more than once. This scheme of
sampling without replacement may be modeled as follows. Suppose |F| = N and the first sample
X1 has distribution Pr[X; = z1] = p(z1) for 1 € F. Given the first outcome X; = z1, X5 can
only be drawn from the set F — {z;} with mass function p(z2)/[1 — p(z1)]. Inductively, given
X1 =x1,X0 =x9,..., X1 =x_1, we have the conditional probability

p(zk)
1- 25;11 p(l'z)

for z € F —{z1,...,2x-1},k = 2,...,n. Hence, the joint distribution of X7,..., X,, will have
the form

Pr[Xy = 24| X1 = 21, Xo = 20,..., Xj_1 = 2p_1] =

n
PI'[X]_ = $1aX2 = T2y 7Xn—1 = .’L'n_]_,Xn = 'T’n] = H

which is complicated enough to make a direct analysis of the corresponding order statistics
Xy < ... < X() intractable. The random variables Xj,..., X, are related in an extremely
complicated fashion due to the dependence of X, on all the previous outcomes X1,..., X;_;. We
must resort to some suitable transformations and approximations here.

We therefore introduce the following alternative scheme based on sampling with replacement,
and show that it is equivalent to the one just described. We also use this alternative scheme to
build databases when testing the validity of our theoretical analysis through simulations. Let
{X1,Z,Z;,i > 1} be i.i.d. random variables. Define stopping times

J1El,Jk_H:inf{’i>Jk:ZiQ{ZJl,...,ZJk}},k‘Zl.



For any n, J, can be shown to be proper in the sense that Pr[J, < oo] = 1, which follows
immediately from the following Equation 3. Based on {J,,n > 1}, we can naturally obtain n
mutually different random variables Z;,,...,Z;, . We show that

X1y, Xn) 2 (Zsy -y Z1) (2)

Set conditional probability lﬁr[] =Pr[:|Z; = z1,...,2Z;, = xi). Using the Markov property, we
have

~

Pr[ZJk+1 = Tp11)

s
= ZPI[ZJk+l :37k_|_1,ZJk_|_j € {$1,...,.’Ek}, for j = 1,...,1—1]
=1

o0
= Y Pr[Z = 21| Pr[Z € {z1,... ]!
=1
P(Tg11)

1- Ef:l p(wz)

proving Equation 2.

Let Ty, = Jx11 — Jg, k > 1. It is easy to see that given the outcomes (z1,...,z,), the values
T}, are geometrically distributed with mean (1 — Zle p(z;))~L. On average, we need E[J,] i.i.d.
random variables to obtain n different values. This connection between the two sampling schemes
enables us to work with an i.i.d. sampling scheme instead of the more complex scheme of sampling
without replacement.

To illustrate the use of this idea, consider Theorem 4 below, which analyzes the performance of
TDC on databases which may be modeled by sampling a Zipf variable without replacement. The
theorem, in fact, gives approximations of KAz based on a sampling scheme with replacement;
that is, the proof of the theorem is developed in terms of n ii.d. Zipf(N) random variables.
Therefore, in applying Theorem 4 to obtain a reasonable estimate for FAz when replacement is
not allowed, we would use E[J,] in place of n.

However, it is still extremely difficult to use

n—1 n—1 k -1
ElJ,)=1+) E[l}]=1+) E [1 - Zp(Xi)] (3)
k=1 k=1 i=1

directly, given the very complicated nature of the joint distribution of (X1,...,X,). We finesse
this problem by considering the converse issue:

Question. Given n' i.i.d. random variables Z1, ..., Z,, what is the number of different elements
in this sample? Equivalently, what is the cardinality of {Z1,...,Zy}?

In this set up, n’ and |{Z1, ..., Z,» }| assume the roles of E[J,,] and n respectively in the original
problem. This converse can be interpreted as random allocation problem, which is extensively
studied in the literature, especially for weak convergence in terms of the Central Limit Theorem
and Poisson approximations (c.f. [Kolchin et al., 1978]). This converse question has also been



studied in [Csorgé and Wu, 1998] for the case where Z has uniform distribution, using large
deviation techniques.

Suppose we have N cells labeled by 1,..., N, and we view the random variablles Zyenny Ly a8
n’ balls with ball j being allocated to cell Z;. Define random variables Y; = 2?21 1(Z; =1i),i =
1,..., N, representing the number of balls in the ith cell, where 1(A) is the indicator function.

Hence the number of occupied cells [{Z1,...,Z,}| = ZJ 1 1(Y; > 0). Now (Y1,...,Yy) follows
the multinomial distribution Multi(n';p(1),...,p(N)). Let V; have Poisson distribution with
mean n'p(7) and suppose that {V;,1 < i < N} are independent. Then we have the following
Poisson representation of the multinomial distribution

(Yi,.. ., YN) 2 Vi, VNVi+ .. 4+ Viy =),

Denote M = szil Pr[V; > 0] = Ei]il[l — exp(—n/p(2))]. Then by Markov’s inequality, we have
for any € > 0,
Pr [

i

1(Y; > 0) — M‘ > n'e]

N
- Pr[Zl(W>O)_M‘2”’5‘/1+--.+VN=TL']
i=1
_ Pr 2N 1V > 0) - M| > n'e]
B PriVi+...+ VN =n/]
V™1 N 2
< — 7 F 1(V; >0)— M
= T (nle)? [;(0) ]

_ 3)2( DS )nm ¢ Pl

(n")3/
0(1) in/p(i)>1  n'p(i)<1
= e (e7tn +n')
_ oM
o (n/)l/Q’

yielding

1 [ P

- Y 1Yi>0) - M| —0.

Therefore, it is reasonable to take M as the expected number of occupied cells, and the expected

number of i.i.d. copies needed, n/, can be approximated via the equation

N

n=M=) [1—exp(—n'p(i))] (4)

=1

This scheme causes a complication if the definition of A given in Section 2.1.1 is used directly. Let
Z(1y < ... < Zy) be the order statistics of Zy,...,Z,. Since we cannot guarantee that the Z;



are mutually different, some of these spacings may be zero. The definition of A in in Section 2.1.1
is unusable since; it involves the logarithms for these spag:ings. Instead, we should use one of the
forms Az = Y0} Inmax(Z41) — Zky, 1) or Az = et In(Z41y — Zky + 1)- In this paper,
we suggest the second form, which appears conservative, and is mathematically convenient. In
addition, it captures an aspect of the real world: whenever Z ) — Z) = 1 in practice, we
need one bit to store the difference. However, the corresponding term in the first form goes to
zero and makes no contribution to the sum. Numerical simulation indicates that the difference
between the two forms is negligible.

4 Limit theorems for the single-field case

We begin our analysis of the TDC technique with the simplest case. We assume that the database
consists of n tuples, each tuple comprising a single attribute field A. This is a reasonable starting
point for two reasons. First, in some cases, we are able to reduce the general case of r attribute
domains to the case of a single attribute domain. Second, we use the single-attribute results to
construct an analysis for the multiple-domain case.

4.1 Single attribute, uniform distribution

We first consider the case when the attribute values are drawn uniformly from a single attribute
domain of size N. The uniform distribution is interesting for several reasons. First, many
attributes domains that appear in practice are uniform. Second, the uniform distribution is
known to yield the largest value for the sum of sample spacings of all distributions defined over
a given range [Shao and Marjorie, 1995]. In this sense, the behavior for the uniform distribution
form a lower bound for the compression efficiency of TDC. Also, the uniform distribution is a
“least informative” distribution over a given range, and is useful as a model when little is known
about a distribution. Finally, as we show in Section 5, a set of k£ uniformly distributed attribute
domains can be modeled as a single uniformly distributed domain.

We proceed to form the database by choosing n integers (X1, ..., X,) from {0,1,..., N — 1},

. - N .
so that each such n-tuple representing the database has the same probability 1/ ( n ) of being

selected. By sorting this database, we can construct the order statistics X(;) <... < X(3), and
the corresponding set of spacings {X(x41) — X}, k= 1,...,n— 1. As in Section 2.1.1, we form

the statistic Ay = ZZ;% In(X(x41) — X(x)) to estimate the size of the compressed database.

4.1.1 Prior work

We need to work with a discrete uniform distribution, and so we call the problem of estimating
Ay the discrete spacing problem. To the best of our knowledge, prior work in this area has dealt
exclusively with continuous distributions. See, for example, [Darling, 1953, Blumenthal, 1968,
Pyke, 1965, Shao and Marjorie, 1995]. Pyke [Pyke, 1965] reviews the literature in this area. Dar-
ling [Darling, 1953] uses characteristic function techniques to obtain the following limit theorem
for the continuous spacings of independent random variables uniform on (0, 1).



Theorem 1. Let Uy < Ugg) < ... < Uy, be the order statistics of i.i.d. uniform(0,1) random
variables Uy,...,U,. Then,

E?:_ll In (U(i+1) — U(,-)) +(n+1)(lnn+ ) i}
n(n?/6 — 1)

N(0,1).

However, we can not directly extend these results to the discrete case. In particular, although
sampling with and without replacement are equivalent for the continuous case, they are not so for
discrete distributions. Sampling with replacement causes a singularity in the logarithmic term
since X1y — X(x) = 0 with non-zero probability.

There are two ways to overcome this difficulty, and we explore both possibilities in our work.
The first way is to require sampling without replacement, as the nature of our problem dictates,
and as we assumed in Section 3. The second approach is to change In(X ;1) — X)) to In(Xj41)—
X(k) +1). We develop central-limit theorems (theorems 2 and 3 below) to address each of these
choices, respectively.

At first sight, it seems feasible to apply Darling’s Theorem to our situation by simply sub-
stituting the discrete random variables X; = |NU;|,1 < ¢ < n for the continuous random
variables NU;,1 < ¢ < n. However, this straightforward substitution becomes problematic
since the errors will be large if we replace the spacing term In(X;,1) — X(4)) in Theorem 2,
or In (X41) — X(x) + 1) in Theorem 3 by the continuous version In (NUy 1) — NU)) unless
NUgy1) —NUyy,1 < k <n—1 are stochastically large. The reason for this difficulty is obvious:
the error In(t + dt) — Int = dt/t will be small for large ¢. We show that this difficulty may be
circumvented when N is large enough, and specifically, when n? = o(N). A significant aspect
of our approach to the proof of Theorem 2 is that we estimate the possible errors caused by the
continuous approximation we use, and show them to be negligible. We then proceed to obtain the
limiting distribution. Although Darling’s Theorem is not helpful in the the proof of Theorem 2,
it does provide an incidental benefit. The asymptotic variance we obtain for our limit theorems
is hard to estimate analytically, but we can infer it by comparison with Theorem 1.

4.1.2 A Central-Limit Theorem for discrete uniform spacings

Since Ay is the sum of a large number of random variables, we would expect the statistic to
be distributed normally. However, in order to characterize the performance of TDC, we are
especially interested in the mean and variance of this distribution.

In Theorem 2 below, we prove a version of the Central Limit Theorem for this case, and show
that the expected value of Ay is approximately n[—vy+In(N/n)], where v = 0.57721 ... is Euler’s
constant. In contrast, the number of bits to store X1, ..., X, without compression is nln N.

In showing Theorem 2, we first approximate the sample (Xi,...,X,) by the i.i.d. random
variables X7,..., X] distributed as |NU|, U is uniformly distributed over (0,1). Obviously,
because we are sampling without replacement, (Xi,...,X,) are not independent, but if n =
o(N'/2), then we expect then to be asymptotically independent, since the probability of X; = X b
for some 1 < i < 7 < n is very small. In the proof, we deal with the order statistics X él) <...<

X zn)’ or equivalently, [NU(1)| < [NU() ] < ... < [NUy,)| using the representation

D S1 Sn
(U(l)aaU(n))_ <S’n+1"“’5n+1>’ (5)



where Y7,Y5, ... are i.i.d. exp(1) random variables, and S; = f Y

We will use this representation form throughout the paper. Therefore, Ay can be approxi-
mated by ZZ;% In (NYk41/Sn+1), which can be analyzed using the Strong Law of Large Numbers.
In the process, however, we encounter sets with small probabilities, with which we must deal with
care. We first prove the following lemma.

Lemma 1. Let {Y,Y;,i > 1} be i.i.d. exp(1) random variables. Suppose that n? = o(N,,). Then?

N,lnn P ?Z —0

Proof. Set b, = nl/QNn1/4. It suffices to show

n oe=T1 1 P
— — —E=1(Y >b!
an[y 1 >bn)]—>0 (6)
and
w Ly b, 7
NlnnEYl( > b)) — 0. (7)

Via the Markov inequality, (6) follows from

[ Z #—Z 1(Y; > by, )]

1 1
< Pr[ iy #yti> by )]SnPr[YZbEI]=n[1—eXP(bEI)]_*0
and
n? - ’
3 poo ns
2 n bn
< mEY 1Y >b;') < NQ/ y~ N?

For (7), we will have

2 2
n 1 n*(Inb, + 1)
E b Yy —— =
Nplnn Y( > N lnn / /— - Np,lan 0
if we can show that (N, Inn?)"'n?1n N, — 0. Define the sets Z = {n € N:n > 2, N,, > n*} and

J ={n €N:n>2 N, <n'}. Without loss of generality, we assume that |Z| = oo,|J| = oo.
Hence

n?In N, n?
limsup —— < limsup ——+—— =0
neZ,n—o0 N lnn neZ,n—o0 N 1/2 In n2

3This is a Feller-type theorem (c.f. Theorem 5.2.4 of [Chow and Teicher, 1988]). That result can not be applied
directly, but our proof proceeds along the same lines. This lemma is interesting because convergence still holds
although the mean EY ™! = oo.



and ) )

. n“1ln N, . n

lim sup 7721 <2 limsup — =0,
neJ ,n—»o0 NyInn neJ,n—oo iVn

which completes the proof. O

We now present a theorem dealing with the performance of TDC when the values in the
database are uniformly distributed, and when the database size n and the attribute domain size
N, obey n? = o(N,,). In this case, we are able to obtain accurate results without recourse to
the equivalent sampling scheme described in Section 3. In Section 4.1.3, we show how to extend
these results to the case when n? = o(N,,) fails to hold.

Theorem 2. Let (X1,...,X,) be n numbers sampled from the set {0,1,..., N, —1} equiprobably,
and without replacement. Let X1y < ... < X(y) be the order statistics of (X1,...,Xy), and define

the random variable Ay = EZ;% In(X(x11) — X)) Then, if n? = o(N,),

Ay —pv D
BUTHRU D, N, 1),
N (0,1)

where py = (n—1)[In Ny, —In(n+1) —v], oy = ay/n(n — 1), and v, « are defined in terms of
a standard exponential random variable Y as v = —E(InY) = 0.57721..., or Euler’s constant,
and o = Var(lnY —Y) =7%/6 — 1 = 0.644934 . ..

Proof. We write N = Np,0 = oy,p = py for simplicity. Let X{,..., X/} be iid. random
variables with common distribution Pr[X] = k] = 1/N for £k = 0,1,...,N — 1. First, we
claim the following distributional equality, which will transform the dependent random variables
(X1,...,Xy) to i.i.d. random variables (X7,...,X}):

(X1,..., X)) 2 (XY,..., X! |X!,..., X! are different). (8)
For z1,...,z, € {0,1,...,N — 1}, if z; = z; for some i # j, then

PI‘[Xl :$1,...,Xn :.’En] =0
= Pr[X| =uzi,...,X], = z,|X],..., X, are different].

If 21,9, ..., 2, are mutually different, then

Pr[X] = z1,...,X,, = z,| X1, ..., X}, are different]
= Pr[X] =uz1,...,X], = z,]/Pr[X],..., X, are different]

G2 ()
= Pr[X; =z,..., X, =)

Hence for fixed A € R,

10



1

br [(n —1)1/2¢

(v =) <]
n—1

= Pr[Zln+(Xék+1) - ka)) — < An—1)"Y2a|X!, ..., X! are different
k=1

= Pr[B,|Ay] (say),

where le) <...< Xén is the order statistics of (X!,...,X}), and In* z = In(max(1, z)).

S
Observing that Pr[A,] = [[/Z; (1 — j/N) = 1+ O(n?/N) =1+ o(1), and that

Pr[A, B;]
Pr[4,]

Pr[B,]
Pr[A,]

>

Pr[B,] 1
= Pr[B,|A,] > 1-—
Bl An] 2 57 Pr[A,]’
we find that Pr[B,|Ay] is close to Pr[B,]. Hence it suffices to show lim,_,« Pr[B,] = ®()\) =
\/LQ_W fjoo e~**/2dt as n — oco. Since X, 2 | NUy], where Uy, ...,U, are i.i.d. random variables
uniformly distributed over (0,1), we know

(X1,..., X0) 2 (INTLL, ..., INT,)),

which yields
D
(X1ys -+ s X(my) = (INU@y L5 -+, INU gy ). (9)

Let Y,Y7,... be i.i.d. exp(l) random variables, and let S, = > 7", Y;. We now make use of
Equation 5, and let event

n—1
B, = {kz:lhﬁ (INSky1/Sn+1] — [NSk/Sn+1]) — 1 < A(n — 1)1/204}'

A

From Equation 9, Pr[B,| = Pr[B,]. Now we can estimate Pr[B,] by approximating the integer
parts by the values themselves. Roughly speaking, the summand |NSk41/Sp+1] — [N Sk/Sn+1]
in the logarithmic terms will be close to NYj1/n, which is stochastically large since we have
N/n — oo and Sp41/n — EY =1, by the usual Strong Law of Large Numbers.

To be more precise, we introduce the events C,,, D,,, as follows:

NY, NY,
Cn:{ 2 >2,...,—”>2},Dn:{
Sn—l—l Sn—i—l

Sn+1—(n+1)‘ S 1}
vnlnn '

Under event C,,, the summands in the logarithmic terms are larger than 1, so it makes sense to
take logarithms. Event D¢, the complement of event D,,, leads us to the approximation S,1 =~ n.
If event C,, DS occurs, then we can show by a straightforward approach that In™ (| N.Sky1/Sn+1] —
| NSi/Sn+1]) can be approximated by In(NYj1/n).

Hence, we really need to show that Pr[C, D] = 1 + o(1), or, that Pr[C:] + Pr[D,] = o(1).
To prove this, first Pr[D,] < (nlnn) tE[S,11 — (n+ 1)]* = o(1). Next, for large n, we have
Pr[C,] > Pr[C,DE] > Pr[NY, > 3n,...,NY, > 3n,DE] > (e=3*/N)"~!' _Pr[D,] =1+ o(1).

11



Let {z} denote the fractional part of z (i.e., {z} = z — |z]), and let e, = {NSk/Sn+1} —
{NSk41/Sn+1} € (—1,1). If w € C, D¢, and n is sufficiently large, we can obtain the following
estimates: |Spy1/(n+1) —1| < (Inn/n)Y2, |Spi1/(n+1) =1 —In(Spy1/(n+1))| < (Spy1/(n+
1) —1)2 < Inn/n. From these estimates, we now have

-1

S (5] - ()= (E s+ S 00)
k=1

Sn+1 Sn+1 k=1
n—1
S, 1€nk S, +1 Sn+1 Sn+1

AN (1 M) 2( n —1) —1( 11 )‘

‘Zn v, ) T\ =D 1

n—1

25n+1 Inny1/2

< —|—2(—) +Inn

kz::lNYk+1 n

3l 1
< — +2Inn

Nk:l Yk+1

By Lemma 1, notice that Pr[C,,Df] =1 + o(1), we obtain

nli_ﬂ)#‘éh*‘ ([J\;iilJ - [gﬁiJ)—u—(S(lnYk+1+’)’) —Sn+1+n+1)‘ 2o,

which leads to Theorem 2 via Slutsky’s Theorem and the classical central limit theorem [(n —

1)21/204]*1 ZZ;% (InYyi1+y—Ysi1+1) N N(0,1). The exact value of the asymptotic variance

a” is presented in Corollary 1 below. U

Figure 1 compares the estimates of Ay from Theorem 2 with the results of experiments
on databases of different sizes containing integers drawn uniformly without replacement from
{1,2,---,23" — 1}. The two curves show the relative error observed when the database size n is
used directly in Theorem 2, and the lower error observed when the value n’ from Equation 4 is
used instead. Theory and experiment agree to within a fraction of one percent even for databases
as large as 2 - 10%, showing that the theorem is robust, since /N ~ 46,000 in this case.

The major idea in the proof of Theorem 2 was to first show the asymptotic equivalence of the
sample (X7,...,X,) without replacement and n i.i.d. uniform(N,) random variables under the
constraint n2 = o(NV,,) and hence reduce to the classical central limit theorem based on the i.i.d.
case. After some minor modifications, the proof in the second part also implies the following
theorem for the 7 i.i.d. uniform(N,) random variables.

Theorem 3. Assume that n?> = o(N,). Let X1y < Xg) < ... < X(p) be the order statistics
of i.i.d. uniform(N,) random variables X1,...,X,. Define Ay = ZZ;% In(X(pq1) — Xgy + 1)-
Then,

Av—pu D
20U Dy N0, 1),
N (0,1)

where uy,oy are the same as that in Theorem 2.
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Discrepancy between theoretical and experimental estimates for mean A
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Number of records in database
Figure 1: Uniform distribution: agreement between Theorem 2 and experiment

Remark 1. Theorems 2 and 3 can be used to construct confidence intervals based on the limiting
distributions.

Obtaining the exact form of the variance term is an interesting exercise. It is somewhat
challenging to obtain o = Var(InY —Y) directly, but we note that Theorems 1 and 3 jointly
lead to the following interesting observation.

Corollary 1. If Y is exp(1) distributed, then o = Var(InY —Y) = 72/6 — 1 = 0.644934.. . ..

4.1.3 The case of large databases

When n? = o(N,) is not satisfied, we must fall back on the equivalent sampling scheme described
in Sectlon 3. Since for the uniform distribution, p(z) = N~! for all z € F, we have E[J,] =
1+ > = k/n)~' by Equation 3. Under the assumptlon n < N/2, we claim that

E[J,] - NI (1—%)‘ < ”;2 (10)

Define function g(t) = (1 —¢/N) L. For integer k € [1,n — 1], if t € [k — 1/2,k + 1/2], the Taylor
expansion yields

g(t) = g(k) + (t = k)g' (k) + ~—5——¢"(9)
for some € € [k —1/2,k+1/2]. If t € (0, N/2), then

2 t\-3 16
'O = |3=(- %) | <5

Therefore

‘/n—l/Q dt—Zg ‘/klc—i—l/Z g

1/2 1/2

n-1 k—|—1/2 2
1 — 2 1
S k)dtg n o1
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Next,

Bl - N (1- 2| <1 +/1721/29(t)dt ~Nmn(1- 2|+ ?%N

< ‘%—l—Nln(l—%)‘—i—‘%—Nln(l—27)’_1)—i—Nln(l—ﬁﬂ—l-i

2N N 3N
n+2
N
Inequality 10 means that, on average, we have to draw n’ = —NIn(1 — n/N) = E[J,] ii.d.

samples uniformly from {1,2,---, N} to get n distinct values. Therefore, in applying Theorem 3
for a sample of size n obtained without replacement, we must use the adjusted sample size n' in
place of n to get a reasonable result. We also observe that under the assumption n? = o(NN,)
we get n' = —NIn(l —n/N) = n+ O(n?/N) = n, supporting our treatment in the proof of
Theorem 2.

It is instructive to examine the applicability of Equation 4 here. From this equation, the
adjusted sample size n' satisfies n = YN [1 — exp(—n'/N)] = N[1 — exp(—n//N)], so that we
have n’ = =N In(1 — n/N), which is in excellent agreement with Inequality 10.

4.2 Single attribute, Zipf distribution

We say that random variable X has the Zipf distribution with parameter N if Pr[X = k| =
k~'/Hy, k = 1,2,..., N, where Hy = Zle i~ The Zipf distribution is of practical interest
because many attribute domains appear to follow this distribution in practice. It was first studied
in the context of the distributions of word frequencies in documents, but it was soon found to
arise in a wide range of other applications. It is now known [Li, 1992] that the Zipf distribution
arises naturally in many contexts. For example, when strings are formed from letters chosen
randomly from an alphabet with fixed probabilities, the distribution of words is Zipf.

The Zipf distribution can pose considerable analytical difficulties, particularly in the context
of the problem we are addressing. When we take a sample X1, ..., X, without replacement from
the the set S = {1,..., N}, whose elements are distributed as Zipf (NN), the joint distribution of
the X; is very complicated. We find the sampling equivalence results of Section 3 especially useful
for this case. Theorem 4 below and Remark 2 give approximations of Az based on a sampling
scheme with replacement; i.e., the sample analyzed is of n i.i.d. Zipf(NN) random variables. Since
repetition is not allowed, we may apply the arguments in Section 3, and use E[J,] in place of n
in Theorem 4 to obtain reasonable estimates for A.

A problem is that E[J,] can be calculated directly from Equation 3 only for very special cases;
the only really tractable case may well be the uniform distribution. We must therefore solve for
n' from Equation 4, and proceed as follows. Define M = "V [1 —exp(\/i)], A = n'/Hy. By the
monotonicity of the function g(¢) = 1 — exp(—\/t) € (0,1) when t € [1, N],

2> |m - /IN(1 — exp(—A/t)dt

14



A _ _
_ ‘M_A/ LMM‘
A

N2
M * 1 —exp(—z) 11 —exp(—z) —=z N
> ,\‘—— R e — dr —In=—
- A /1 z? o /0 z? TN
MN | _ exp(—z) —
_1—>\‘/ ! eXp(2 ?) xda:‘
0 x
M N A2
> )\‘T—Ini+1—7‘—1—0(ﬁ).

Therefore, instead of solving for n’ from Equation 4 with M = n, we can solve for n’ from the

approximated equation

’I’LHN NHN
- —lnTzl—fy. (11)

n
Although an explicit formula for the root n' of Equation 11 does not exist, we can use the
fixed-point iteration scheme

forr = £, f1 = £, £(8) nily

T 1y +In(NHy) —In(t)’

kEeN. (12)

Since f(t) is monotone and grows very slowly, the scheme converges to a fixed point within just
a few iterations.

Before proceeding to Theorem 4, which deals with the estimation of Az, we first adopt the
following adjustments. Suppose Xi,...,X] are i.i.d. Zipf(N) random variables, with X{l) <
... < X/, being the corresponding order statistics. Since we have not required the X; in the
sample to be mutually different, the resulting order statistics cause problems since we need to
take logarithms of the differences in getting Az. We therefore adjust the order statistics to
Xél) < XéQ) +1<...< Xén) +n — 1. Let the quantile function Qn be defined such that
QN(t) =k ifHk_l/HN <t< Hk/HN, for k=1,2,...,N.

Now, for a random variable U uniform on (0, 1), the quantile function Qn(U) as defined above
satisfies Zipf (V) 2 Qn(U). For mathematical convenience, we may take fy(t) = N, ¢ € [0,1] to
approximate Qn(t), since we have the estimate for the total variation distance

drv (Qn (U), Lfn (U)]) := sup{| Pr[Qn (U) € A] — Px[|fn(U)] € A]|, A C Z"}
k™' In(k+1)—Ink| W(N+1)—InN 1
= Z‘H—N_ InN + InN _O<lnN)'

Therefore, we can use Ay = ZZ;% In(NYk+1) — NUk) +1) to approximate Az = EZ;% ln(XékH) —
X Ek) +1). As to Ay, we have the following limit theorem, which asserts that under suitable
conditions, the expected value of Ay is %(1 — pn)?nIn N, where p, = Inn/In N.

Theorem 4. Let Uyy < Ugg) < ... < Uy be the order statistics of i.i.d. uniform(0,1) random
variables Uy, ..., Uy,. If lim, n/Nﬁ/2 =0, and sup,~1InN,/Inn = C < oo, then we have
Ay 1

1—pn)2 250
nln N, 2( pn) ’
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and

as n — oo, where p, =Inn/InN.

Proof. We write N = N, for simplicity. The Zipf distribution is very skewed towards the
high-probability elements, so for any integer ky € N, the first kg values in the order statistics
X1y < X(g) < ... < X, are very likely to be 1,2,...,kp. We take ko = |np,] here. This

observation suggests that A}, = Zl,zo:_ll In(X 441y — X(x)) should be stochastically small. In
terms of our approximation, for the corresponding sum A/, = 21120:_11 In(NYe+n — NU®) 1), we
will prove A} /(nlnN) %, 0. Since the logarithm function is concave, we may apply Jensen’s

inequality to get

kol_ 1AIU =t <ko -1 koz_:l(NU(km - NY0 4 1)) <l (kol_ 1NU<k0> + 1).
Now for any € > 0,
or [fzoln_J\lf = (kol_ NU00 +1) > ]
s Pr [U(ko) 5, In(ko — 1) JIFHIRI(NE/”“ - 1)]
= [Snjk/o(/nkgr 0~ - ;;; tn(ko —1) JlrnlifN oo — 1)]

Since % i1 by the Weak Law of Large Numbers and

L. n+lln(k0—1)+ln(N5/p"—1) L. € €
> ) > —
mint i > iminf (14 55) 214 5.
we have lim,, ,o, A}, /(nInN) 2 0. Next define
n—1
"= Z In(NYe+) — NU®) 4 1)
k=ko
p InN - - ~Yi+1/Sn+1 —Sk+1/Sn+1
= 3 > Ska+ > I(1-N +N )
ko k—=ko

= In+ Jy(say).

Elementary calculations show that E| Z;é (Sky1 — k — 1)]? < n?, since for exp(1) random
variable Y, we know E(Y —1) =0, E(Y — 1)Q2 = 1. Hence,

-1 n—1
n (nlnN_ nSni1 >_n_z(sk+1_k_1)_’0,
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or, (nInN)=1I,, — (1 — p2)/2 25, 0. Now we consider J,. Given any € > 0, since 0 > In(1 —
N~Ye+1/Snt1 4 N=Se+1/Sn41) > In(1 — N~ Ye+1/Snt1),

1
Pr ]
rn1 N|J|>6 - -
n n
< P —e,— <1 P >1
- r[nlnNJn< E’Sn_|_1< ]+ I[Sn+1_]
1

InN
< E: n(l — e~ Yot —] P[ >1]
- [nln ~ € ) < e +Pr Snt1 —

Observe that if Yy, is exp(1), then 1 — e~ Y5+1 is uniform(0,1), Eln(1 — e Ys+1) = —1, hence
by Markov’s inequality, the first term < —(¢eIn N)"!EIn(1 — e~ Y#+1) = (¢In N)~!. Obviously,
the second term goes 0 via the Weak Law of Large Numbers, which completes the proof of the
first statement of Theorem 4. By Jensen’s inequality,

n—1

Ay

< In(Np, +n)
nln N, lnN

0
< In N,

(NU<k+1> — NUm 1)] < <2,

k=1

hence random variables {Ay/(nln Ny,) — (1 — pp)2/2,n > 2} are uniformly integrable. Then the
second convergence result stated in the theorem follows easily from the first one and the Mean
Convergence Criterion [Chow and Teicher, 1988].

O

Remark 2. Under the conditions of Theorem 4, a more careful analysis leads to the stronger
result A ,
lim =Y —Fn Hn P
n—oo n
where pu! = (1/2)(1 — p2)nInN + n(l — p,)(InInN — v — Inn), v = 0.5772... is Euler’s
constant. Since the details of the proof are complicated, we omit the proof and only pro-

0,

vide an outline here. First, to obtain Ap/n N 0, we use the Law of the Iterated Loga-
rithm [Chow and Teicher, 1988] limsup,,_,, |(Sp — n)/VnInlnn| = v/2, a much finer estimate
than we can obtain from WLLN. For I,,, the estimate used in the proof of Theorem 2 can yield
nI, — (1/2)(1 — p2)In N 5 0. Since In N~Ye+1/Snr1 2y 0, we can use Taylor’s expansion
1—N~Ye+1/52+1 & (In N)Yj41/Sny1. Hence J, can be further approximated by —(n—kg)(y+Inn)
by the usual SLLN (n — ko) ™! Ykt nYiy1 - ElnY = —y and Sy 1/n — 1 as.. Together,
these facts imply the refined limit theorem.

Figure 2 evaluates how well Remark 2 matches the results of experiments on databases
of different sizes containing integers drawn without replacement from a Zipf distribution over
{1,2,-.-,231 —1}. To validate both the analysis and the approximations driving it, we used
the actual value of Az obtained from experiments in place of Ay. Figure 2 shows the per-
centage difference between Az/(nInN) and p! /(nln N). Agreement is to within a few percent
even for databases that are quite large, suggesting that our formula is an excellent predictor of
experimental results.
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Discrepancy between theoretical and experimental estimates for mean A,
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Figure 2: Zipf distribution: agreement between Remark 2 and experiment

We appear to have satisfactorily addressed the problem of estimating Az for relatively large
databases. However, the situation for small databases is somewhat different, since the small
number of samples means that the spacings between them are likely to be larger. We now
address the case where the database is small, and present the following result.

Theorem 5. Let Uy < Uy < ... < Uy, be the order statistics of i.i.d. uniform(0,1) random
variables Uy, ..., Up. If lim,_,oon/In Ny, = 0, then we have

Ay 1P 0
nsonlnN, 2
and
EAy 1 0
im —==0.
n—oo 1 In Nn 2
Proof. As in the proof in Theorem 4, we write
n—1
Ay =) In(NVe+) — NV 4 1)
k=1
In N n—1 n—1
D Sn Z Spi1 + Zln(l — N~ Yet1/Sn41 4 N—5k+1/5n+1)
ntl oy k=1

= I, + Jy(say).

Using the same argument as in Theorem 4, we have (nln N)~1I,, —1/2 24 0. For any € > 0,
let n > ng be large enough such that (InN) !(n + 1) < 1/2, then

1
Pr |l > €]
' nlnN‘Jn|>€
1 — Yit1/S Sn+1 Snt1
<P[ In(1 — N~ “k+1/2n+1 —€, n <2] P[n_>2]
- 1PnlnNkz:n( ) < €n+1_ +rn-|—1_
1 n—1 S )
<P[ In(1 — e~ Vit —] P[”—+>2].
< rnlnNZn( e ) < —€| + rn+1_
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Again by the same arguments as in Theorem 4, we know (nIn N)~!Jy P, 0. Thus the sec-
ond convergence result stated in the theorem follows from the first one via uniform integrabil-

ity, which is an immediate consequence of the uniform boundedness of the random sequence
{(nlnN,)"tAy — 1/2,n > 2}. O

Remark 3. Under the conditions of Theorem 5, we have lim,, o Inn/In N, = 0, thus p, = 0.
Then interestingly enough, both Theorem 5 and Theorem 4 are consistent, and give the result
EAy = (1/2)nln N,.

4.3 Spacings for distributions with high concentration

A nonnegative integer-valued random variable Z is said to be highly concentrated if Z takes values
in a set of few elements with high probability. Thus, the Binomial, Poisson, Geometric, or general
Zipf distribution are highly concentrated. (The general Zipf distribution is defined by Pr[Z =
k] ~ ck™®, as k — o0, @ > 1.) When highly concentrated distributions are sampled without
replacement, the spacings Z(9) —Z (1), ..., Z(n) —Zn—1) are very likely to be 1, where Z(y),..., Z(,)
are the order statistics of n samples Z1,...,Z,. Thus, the total number of bits required in this
case is likely to be close to O(n). Defining Az simply as the sum of the logarithms of the difference
will lead to a smaller estimate since the logarithmic terms corresponding to differences of 1 will
be zero. Fortunately, adopting the conservative form Az = Ez;ll In(Z(g41) — Z(x) + 1) suggested
in Section 3 leads to Az =~ nIn2, in perfect agreement with practice.

5 Optimal ordering of attribute domains

When multiple attribute fields X7, Xo, - -, X}, are present in a database tuple, it is clear that the
ordering of the attribute fields in will influence the value resulting from the application of ¢ (see
Section 2) to the tuples. In this section, we consider the question of how to order the attribute
fields so that EA reaches its minimum.

5.1 Uniform attribute domains

Consider first the case when the k fields are all uniformly distributed, so that X; is uniform over
(1,|D;]). Somewhat contrary to intuition, FA will remain unaffected in this case by attribute
domain reordering, since the random integer X1 -|Ds|-|D3| - - - |Dg|+Xo-|D3|-|Da| - - - |Dg|+- - -+ Xk
is, regardless of field ordering, always distributed uniformly over the set {a +1,a +2,...,a+ b},
if we define a = |Dsg| - |D3|--- |Dg| + | D3| - |Dy|---|Dg| + -+ - + |Dgl|, and b = |D1]| - |Ds| - - - | Dg|-
This somewhat paradoxical result is confirmed by our simulations, which are shown in Figure 3.

5.2 Non-uniform attribute domains

The case of non-uniform attributes is more complex. In fact, the optimal attribute ordering
actually depends on the database size. A full analysis is elusive, but we provide general charac-
terizations of behaviors for different cases.

19



Effect of reordering of uniform attributes
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Figure 3: Two uniform attributes: effect of attribute reordering on (A, v, — Avyty )/ Avy v,

5.2.1 Small databases

Let us first consider the simplest case, where there are only two fields, and the database contains
just two records. We will use the analysis for this case to provide insights into more general
situations. Suppose that X,Y are independent random variables distributed as Zipf(m) and
Zipf(n) respectively. Therefore, Z = (X,Y) = nX + Y has distribution function

vy Hy oty )ty g

Fy(z) = Pr[Z < 2] = 2=

= r = ~ ~
Z\% =7 H,, zH, lnm+~vy Inm + v
for z=y+nz,z=1,...,m,y = 1,...,n. Hence Z can be approximated by random variable
FZ_I(U) = nexp[U(lnm + ) — 7], where U is uniform on (0,1). Take Z;, Z3 to be i.i.d. copies
of Z with order statistics Z(;) < Z(y). Now,

ENyy = Eln(Z9) — Zay+1) = Eln (neU<2>(lnm+7)—7 — neU<1>(lnm+7)—7)
v

2
= Inn—v+ (Inm+y)[EUq) + E(Ug) — Uyy)] =Inn + §1nm ~3

We may, but do not derive this asymptotic formula from the original distribution function F(z)
since that route involves elementary but tedious calculations. We observe that the random
variable F~'Z71(U) does not take the distribution of Y into account, which appears reasonable as
the first field will dominate A when dealing with a sample size of two. Hence this approach also
works for any discrete random variables Y taking possibly n values.

The same idea works when X is uniform on (1,m).

For integer valued random variable Y taking at most n values, We use F:Uil(U) = mnU to
replace Z = (X,Y) since

FU(Z) :Pr[nX+Y Snx+y] ~ x ~ i
m  mn
As before,
11
EAgy = Eln(Zg) — Z1y + 1) = Eln(mnUg) —mnUg) = Inm + Inn — e
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Effect of attribute field ordering, X is Zipf on [0:1000], Y is Zipf on [0:100000]
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Figure 4: Two Zipf attributes: characterizing skew through the distribution of quantiles

where Z(1y < Z(g) is the order statistics of Z1, Zs.
Now let us assume n > m. From the formulae above, if X is Zipf(m) and Y is Zipf(n), then

EAgy zlnn—l—%lnm— % >Ilnm + ;lnn— % ~ EANy,
suggests that we need to put field Y first to minimize EA.

This result also appears paradoxical, since the domain of X is smaller than that of Y. Intuition
might have suggested that placing X before Y would result both in smaller values of ¢, as
well as longer runs of leading zeroes in the sequence of of differences, leading to a lower value
of A. This apparent contradiction can be resolved by considering the skew and concentration
effects of the distributions involved. For any p € (0,1), the order (X,Y’) gives the p-percentile
Pi(p) = ﬁz_l(p) = nexp[p(lnm+vy)—~], by Pr[(X,Y) < Pi(p)] = p, while the order (Y, X) gives
the p-percentile P,(p) = mexp[p(Inn++)—+] < Pi(p). Hence the latter is more skewed than the
former, and consequently, the sample data is more likely to be concentrated on the left extreme,
reducing FA. Figure 4 convincingly suggests this relationship by displaying the quantiles.

We may also interpret this phenomenon in terms of the distribution functions. Clearly, for
integers 1 < z < m,1 <y < n, we have Pr[(X,Y) < (z,y)] = Pr[X < 2] + Pr[X = 2,V <
y| = Hy1/Hp + Hy/(cHp Hy) and Pr{(Y, X) < (y,z)] = PrlY < y]+PrlY =9y, X < z] =
Hy_/H, + Hy/(yHnHy,). It can be shown that Pr[(X,Y) < (z,y)] < Pr[(Y,X) < (¢, 2)], if
1<z, <m,1<y,y <nand zn+y =y'm+ 2’ through a rather complicated calculation.

Another extreme case is when all the fields are Zipf distributed so that X; is Zipf(|D;|). In
this situation, the analysis above suggests that to minimize E'A, we order fields so that the first
Zipf field corresponds to the largest value of |D;|, the second field has the second largest value,
and so on. If there exist both Zipf and uniform distributions among those fields, one should put
those field with Zipf distributions first, then those with uniform distributions. Similarly, when
there are fields with arbitrary non-uniform distributions, we place the uniformly distributed fields
last and the field with the highest concentration first, and then the field with the second highest
concentration, and so on. Figure 5 illustrates this effect by showing the values of Azy and Ayz
obtained through experiment.

Our analysis began by assuming a database size of 2, but can clearly be extended to databases
of size small relative to N = [];|D;|. The concentration effect is again the key to determining

e
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Effect of attribute reordering: Z:Zipf(0:103) and U:Uniform(0:105)
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Figure 5: Attribute reordering: One Zipf and one uniform attribute

the optimal ordering. We note however, that for two Zipf random variables, the advantage of
optimal ordering over an arbitrary ordering seems small since EA,y— EAy, ~ 1/31In(n/m), which
is significant only when the ratio n/m is extremely large. Even for n = 10'® and m = 10, the
difference is merely 51n 10, which is not very significant.

5.2.2 Large databases

Consider now the case when database size n is large, but we still have two Zipf attributes X and
Y. The situation is now quite different, since the concentration effect will no longer be crucial
in determining A. Whether we order the attributes as (X,Y) or (Y, X), it is very likely that
the initial segment of the order statistics Z(1) < Zg) < ... < Z(g) will be the first consecutive
d integers for some d € N. Thus, the lower values in the Zipf range are very likely to be
quickly exhausted; so that their contribution to A are small since n is relatively large. The main
contributions to A will come from the elements at the right extreme of the these order statistics.

From Jensen’s inequality, we have Az < (k— 1) In[(Zx) — Z(1))/(k —1)]. It is intuitively clear
that the two sides of this inequality will be closer together if spacings Zo) — Z(1), ..., Z(x) — Z(k—1)
are close to each other. Since k is large, Z(x) is close to mn for both orderings. Therefore, non-
uniformity within the set of spacings is really an issue. Such non-uniformity is most significant at
the right extreme, and more uniformity will lead to higher A. The quantile plot shown in Figure 4
of (X,Y) and (Y, X) shows that the former displays less uniformity at the right extreme, so that
we expect the corresponding A to be smaller. Figure 6 illustrates this effect through experiments
on two Zipf domains with Z; < Zs. For smaller database sizes, the order Z>Z; yields lower A
values (in agreement with our results in Section 5.2.1), while the order Z; Zs is better for larger
database sizes.

Although this discussion provides adequate intuition for understanding the difference between
the two orderings for small and large database sizes, it appears to be quite difficult to quantify
and compare the effects caused by concentration and non-uniformity. It also appears difficult to
determine the borderline represented by the value of k. We suggest that if ¥ < m = min(m, n),
then we use ordering (Y, X) and otherwise we use (X,Y).
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Effect of reordering of Zipf attributes, Z,=Zipf(0:10%), Z,=Zipf(0:251-1)
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Figure 6: Attribute reordering: two Zipf attributes

6 Limit Theorems for the multi-field Case

We now turn to the problem of estimating values of A when the database has several fields. Sup-
pose the database has k fields drawn from independent domains D1, ..., Dy, respectively. Con-
sider the corresponding random vector X = (X1,...,Xg) with X; taking values in {1, ..., |D;|},i =
1,...,k. As in Section 2, this random vector can be represented by the corresponding random
integer X - ‘DQ‘ s |Dk| 4o+ X1 |Dk| + X.

Our analysis in Section 5 showed that lower values of A result when the uniformly distributed
domains are placed at the least-significant end of the tuple. In this case, the remaining non-
uniform domains will be placed in some suitable order at the head of the tuple. We may view
these non-uniformly distributed domains as jointly constituting a single composite domain with
an arbitrary discrete distribution.

Let us therefore model the non-uniform domains Xi,---, X,,_1 as a single random variable
Z with and arbitrary distribution, and assuming values in the set {1,...,d} with probabilities
Pr[Z = k] = px > 0,k = 1,...,d for some fixed d € N. The remaining fields X, ..., X have
uniform distributions, whence X, - |D3|---|Dg| + -+ + Xk_1 - |Dg| + Xi may be collapsed into
a single random variable U uniformly distributed over the set {a + 1,a + 2,...,a + b}, where
a = |Dmy1| - |Dg|+ -+ |Dg_1] - |Dg| + |Dg| and b = |Dy,| - - - | D

Thus, in estimating A, we can collapse the fields X1, -+, X} into just two fields. Let Z be
an arbitrary discrete random variable assuming values from {1,2,---,d}, and U be uniform on
{1,2,---,up}. Let Z and U be independent, and form the random vector (Z,U). Let Y; =
(Zi,U;),i = 1....,n, be n ii.d. copies of this vector. Take Y{;) < Y5 < ... < V() to be the
order statistics of the Y;. Now form the statistic Apy = Z?:_ll In(Y(jp1) — Yy + 1).

If Z is uniform on {1, 2,-- - ,d}, then (Z,U) can be viewed as single large uniformly distributed
field. Theorem 2 can be directly applied to obtain the following result.

Corollary 2. If n? = o(uy), then (Apy — pn) /o N N(0,1), where ¢ = an'/?, p,, = (n—1)(Ind +
Inu, —v —1In(n + 1)).

If the distribution of Z is not uniform, we may proceed as follows. Since Z can take at most
d values, we would expect to see groups of tuples in the database sharing the same value in their

first fields. When the database is sorted, tuples in each such cluster will appear together, and
their differences will show a zero value in the first field. We call each such cluster of tuples in the
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sorted database a run. Therefore, we may split the original database into d smaller databases,
each defined by a run corresponding to a value of Z, with the jth run having N; = >"" | 1(Z; = j)
records. Since we may have N; = 0, we allow runs to be empty. Consequently, Apy, the overall
statistic to estimate database size, can be decomposed into two components: one to model the
spacings within the runs, and one to model the spacings across the runs. That is,

d d-1
Apy 2 ZAJ + Zln(Uj+1,1 —Ujn; +un +1) = Ay + Ayp.
j=1 j=1

In this formula, A; = Eiﬁ;l In(Uji+1—Uji+1), or given N; =1, Aj = A;() = S (U1 —

Uji+1),Uj1 <Uje <...Uj, is the order statistics of Uj 1,...,Uj;, where {U;:,1 <j<d,i>0},
are i.i.d. random variables uniform on {1,---,u,} and independent of Zi,...,Z,. A, is the
contribution to A pyy from within runs, and A, can be regarded as the spacings between consecutive
runs.

Obviously, (Ny,...,Ny) follows the multinomial distribution Multi(n;p1,...,pq), so that
N; has distribution Bin(n;p;). As in [Shiryaev, 1995], we may therefore write the inequality
Pr[|N;/n — p;| > €] < 2exp(—2ne?) for every € > 0. When N; = 0 or 1, we use the conven-
tion A; = 0, and define the corresponding summand in A, to be 0. However, given the the
large-deviation style inequality above, we are assured that N; = 0 or 1 with exponentially small
probabilities. Therefore, in pursuing the limiting distribution of Apy in Theorem 6, we may
assume without undue concern that N; > 2.

We now state the main theorem that allows us to estimate the size of a compressed database
with multiple attributes.

Theorem 6. Let each record in the database comprise two discrete random fields (Z,U), where
Z is an arbitrary distribution on {1,---,d}, and U is uniform on {1,---,up}. If n? = o(uy),
then as n — oo,

Apu —ppu D

/2 — N(0,1),
where
d d-1
oy = Y (np; — 1) (Inuy — In(npy) = 7) + I (2 4 ) o gy, gy
i=1 j=1 "Pi TPt
and

d d
2
F=a?+ Y pi(inp;)? - (ij lnpj) a? =n2/6—1=0.644934. .. .
Proof. We first introduce some heuristics. Since N; has distribution Bin(n;p;), we can replace N;

with the mean np;. Then EUjp1,1 = wn/(npjs1), B(un — Ujn,) = un/(np;), s0 we approximate

EAy by pp. By Theorem 2, the mean EA,, = u, and the variance is Z?:l aznpj = o?n. The

part n[Z;-lzl pi(lnpj)? — (Z?lej lnpj)Q] in the overall variance n3? can be interpreted as the
uncertainty in choosing differences across runs, which corresponds to Ay.
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Now for k > 1, set u(k) = (k —1)(—y + Inu, — Ink), and let pu(k) = 0 if £ < 1. To obtain
the limiting distribution, we apply the Lévy Continuity Theorem by analyzing characteristic
functions. We first note that given Ny = ny,..., Ng = ng, A1,..., Ay are independent. Hence for
t € R, we have via conditioning,

o s

_ ofs :

s g s )
_ {exp(\/_tzu \/_ np])HE

i)

Vn
We next assert the three convergence results (13), (14), and (15) and proceed to prove them using
the Lebesgue Dominated Convergence Theorem and Slutsky’s Theorem. These results will lead
to Theorem 6 via the Lévy Continuity Theorem.

[exp (\/_t \/H(N )> ‘Nj] e @Rit/2 , (13)
d d
Z p(N. npj (O, Zp] ]npj (Zp] lnpj) ), (14)

j=1
and for j =1,...,d,

1
Eﬁ5pmuﬁml—vﬁw+un+1y—m(ﬂl+- )]130. (15)

np; - npji1

To show (13), we proceed as follows. Since event {N; = [} and A;(l) are independent,

exp (\/_t \/T_L(N )> = FE|exp (ﬁt%)] = g(t;n,l).

Define set Z, = {l € N,I € (np; — n2/3,npj + n?/3)}. Observing that

Nj=1

. (N) —a?pit?/2
lim su exp | V— t N;| —e~>Pit"/
msup | p( NG 7
= hmsup(z Z)‘gtnl O‘pﬂt2/2‘1 i =1)
[ P R P
< limsupsup |g(t;n,l) — e~ Pt /2| | 2lini)sup I(N; ¢1,):=A+B,
n—oo

n—oo leT,

for (13), we only need to show A = 0,B = 0 a.s.. Again by inequality Pr[|N;/n —p;| > €] <
2 exp(—2ne?), limg_, 00 Yo PrN; ¢ 1,] < 2limgyo0 oo €xp[—2n(n ~1/3)2] = 0. Hence B = 0
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a.s. via the Borel-Cantelli lemma. If A # 0, then there exists an € > 0, a subsequence {n'} C N
and I(n') € T, such that along this subsequence, |g(t; n’,I(n'))—e~*?i**/2| > ¢ However, by Lévy
Continuity Theorem, we do have |g(t;n’, l(n'))—e‘a2pit2/2| — 0 following from (n')~Y/2[A;(I(n")) -
pu(i(n')] =25 N(0,2p;), which is due to I(n')/n’ — p; and [a21(n')]"Y/2[A;(I(n)) — u(l(n'))] =
N(0,1) asserted by Theorem 2 since [(n') — 0.

To prove (14), define p, = (Ni/n,...,Ng/n),p = (p1,--.,p4), and the entropy function
v(g) = Z?Zl gjIng; for a d-dimensional probability vector § = (qi,...,qq4). By the classical

Central Limit Theorem for vectors, we have nl/2(p, — p) 2N (0,%), where ¥ is a d x d
positive definite matrix with ¥;; = p;(1 — p;), X;; = —psp;. Using the Delta method described
in [van der Vaart., 1998], we have
>(5)
p 04

ov
g

2l (py) — v(p)] 2> N(o,

which we can use to prove (14) by writing

d
> [w(N;) — p(np;)] Zln ’J+n[v () — v(n)];

J=1

since

sz In p;)? (szlnpz) .

Dn,j — Pj a.s. an

/| 2y

b
dq

P
For (15), we only need to show that

npj+1

n

Ujr11 = Op(D), 22 (un = Uy, ) = Op(0).
n

The notation X,, = Op(1), as in [van der Vaart., 1998], means that the random sequence X, is
stochastically bounded; i.e., for each £ > 0, there exists a K = K (&) > 0 such that sup,,>; Pr[|X,| >
K] < €. In fact, it is possible to obtain the stronger result

D npj D
Uj_|_171 — exp(l), % (’U,n — Uj,Nj) — exp(l). (]_6)
n

Here we only prove the second case since the first one can be derived similarly. Actually, for
x>0,

i P[22 (o = ) > ] = f S Pe [ (0~ 00) > . = ]

RN | Up T 1 Up L1\ P31 Ni/ (np;) .
= nlﬂﬂo;(ﬂ“n—@]) Pr{N; —”—JE&E[(W [“”_@D ] =e

The last step follows from the Lebesgue Dominated Convergence Theorem.
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Discrepancy between theoretical and experimental estimates for mean Apy,
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Figure 7: Multiple fields: agreement between Theorem 6 and experiment

Figure 7 shows how closely Theorem 6 agrees with values of A observed in practice. We
generated two datasets, each with two distributions, one skewed and one uniform. The skewed
distribution in the first dataset was Zipf(100), and its second field being uniform over (0,107).
The other dataset had its first field distributed as Binomial(10,1/3), with its second field being
uniform over (0,10%). Agreement in both cases is to within a fraction of one percent over a large
range, illustrating the power of Theorem 6.

Remark 4. The reader may observe that, in order to obtain a more accurate estimate of EAy =
Z?;% In(Uj+11 — Uj,N; +up + 1), one must take advantage of the limiting distributions of Uj 411
and u, — Uj n; specified by (16) since bias will be caused if we directly replace Uji1,1,un — Uj, N;
by their asymptotic means wu,/(npjt1),un/(np;). This goal can be achieved by the following
steps. (We again omit the details because of the overwhelming complexity.) First, given N; and
Nj11, Ujt11,un — Uj N, are independent, since Nj, N; 1 are asymptotically independent. So we
have
nPj+1 Ujp11 + %(Un _ Uj,Nj) D, i + é’
Unp, Un Dj+1 Y2

where Y1,Ys are two i.i.d. exp(l) random variables. Next, following a careful estimation, the
random sequence in the proceeding display can be shown to be uniform integrable. Hence,

Un e v, Y.
lim EAy — (d—1)In " =3 Eln (—1 + —2).
n—roo nooid Pj+1  DPj

Finally, an elementary but interesting computation leads to
Eln (i + E) — / / oG+ 1 (L + i)dsdt _ pilnpjy —pjilnp;
Pj+1  Pj 0o Jo Pj+1  Pj Pj+1— Py
through the parameter transformation z = s/pj+1 + t/pj,y = s +t. To summarize, we outlined
a better estimate

d—1

N Dis1 — Dirq 0D

By = (d— 1) o] 4 3 Pilopin —pi g,
n Pj+1 —Pj

Jj=1

Remark 5. If the condition n? = o(u,) does not hold, we would use the techniques in Section 3.
An equivalent sampling scheme must be adopted with n replaced by the adjusted size n'.
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7 Conclusions and future Work

This paper provides the theoretical foundations for the Tuple Difference Coding method for
compressing Large databases and data warehouses. As already noted, practical interest is growing
in the TDC method, and the results given in this paper will help in the task of organizing the
data in the warehouse so as to maximize the effects of compression.

The problem of estimating the effectiveness of compression using TDC reduces to the problem
of estimating the sum of the logarithms of the spacings between elements of samples taken
without replacement. This is a non-trivial problem, but for the purpose of estimating compression
efficiency, we may consider the problem effectively solved using the techniques we have developed.
In particular, the approach we develop in Section 3 to sampling without replacement in terms of
sampling with replacement is likely to be useful beyond its applications in this paper.

This paper provides methods for estimating the compression for cases where the population
from which database records are sampled is either uniform, Zipf, or the product of a uniform
distribution and an arbitrary distribution. We have verified our theoretical results by conducting
experiments, and agreement between theory and practice is always within a few percent, and to
within a fraction of a percent in most cases.

The issue most in need of additional work is that of optimal ordering of attribute domains for
achieving optimal compression. We have made significant progress on the issue in this paper, but
do not yet have strong analytical results. This is material for further work. Also, our analysis
in this paper assumes knowledge of data distributions, but in practice, this information is not
always available. Much more likely is non-parametric knowledge of data characteristics, such as
variance, skew, or information such as “80% of data is formed from 20% of the values”. The
estimation of compression efficiency from such non-parametric information is an important area
of future work.

From the probability theory and statistics viewpoint, it appears quite important to derive the
asymptotic distributions for discrete spacings under proper scaling. The results available to date
require the strong assumption that the distribution functions are absolute continuous.
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