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Abstract

The statistical analysis of traces taken from the NAS Parallel Benchmarks can tell one much about

the type of network tra�c that can be expected from scienti�c applications run on distributed memory

parallel computers. For instance, such applications utilize a relatively few number of communication library

functions, the length of their messages is widely varying, they use many more short messages than long

ones, and within a single application the messages tend to follow relatively simple patterns. Hardware and

software designers can use information such as this to optimize their systems for the highest possible per-

formance. This paper presents speci�c data on how these generally known characteristics about distributed

memory applications are exhibited in the NAS Parallel Benchmarks.

1 Introduction

Parallel computing is a computer paradigmwhere multiple processors attempt to co-operate in the comple-
tion of a single task. Within the parallel computing paradigm, there are two memorymodels: shared-memory
and distributed memory. The shared-memory model distinguishes itself by presenting the programmer with
the illusion of a single memory space. The distributed-memory model, on the other hand, presents the pro-
grammer with a separate memory space for each processor. Processors, therefore, have to share information
by sending messages to each other. To send these messages, usually applications call a standard communi-
cation library. The communication library is usually MPI (Message Passing Interface) [7] or PVM (Parallel
Virtual Machine) [2], with MPI rapidly becoming the norm.
An important component in the performance of a distributed-memory parallel computing application is

the performance of the communication library the application uses. Therefore, the hardware and software
systems providing these communication functions must be tuned to the highest degree possible. An important
class of information that would aid in the tuning of a communication library is an understanding of the
communication patterns that occur within applications. This includes information such as the relative
frequency with which the various functions within the communication library are called, the lengths of the
messages involved, and the ordering of the messages.
Since it is not realistic to examine all the distributed-memory parallel applications in existence, one looks

to �nd a small set of applications that reasonably represents the entire �eld. The representative set of
applications that was chosen was the widely used NAS Parallel Benchmarks (NPB) [1]. The rest of this
paper describes in further detail the NPB and the results obtained from analyzing the frequency and type
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of message calls which occur within the NPB. This area of research is not new (see Section 6). However, the
NAS Parallel Benchmarks have not been quanti�ed in this manner before.
Section 2 of the paper describes the NPB. Section 3 describes the instrumentation methodology used on

the NPB. Following that is Section 4, which describes the assumptions made about the manner in which the
MPI message-passing library was implemented. Section 5 gives a summary of the data gathered from the
traces. Section 6 discusses related work on the NAS Parallel Benchmarks and on the characterization of the
communication patterns of distributed memory parallel applications. Section 7 provides an explanation for
the patterns observed, in terms of the nature of the communication patterns of the NPB. Section 8 provides
some �nal conclusions.

2 NAS Parallel Benchmarks Description

The NAS Parallel Benchmarks are a set of scienti�c benchmarks issued by the Numerical Aerodynamic
Simulation (NAS) program located at the NASA Ames Research Center. The benchmarks have become
widely accepted as a reliable indicator of supercomputer performance on scienti�c applications. The bench-
marks are largely derived from computational 
uid dynamics code and are currently on version 2.2. The NAS
Parallel Benchmarks 2.2 includes implementations of 7 of the 8 benchmarks in the NAS Parallel Benchmarks
1.0 suite. The eighth benchmark shall be implemented in a later version of the NAS Parallel Benchmarks.
The benchmarks implemented are:

BT: a block tridiagonal matrix solver.

EP: Embarrassingly Parallel, an application where there is very minimal communication amongst the pro-
cesses

FT: a 3-D FFT PDE solver benchmark.

IS: integer sort

LU: an LU solver.

MG: a multigrid benchmark.

SP: a pentadiagonal matrix solver.

The benchmark codes are written in Fortran with MPI function calls, except for the IS benchmark which
is written in C with MPI function calls. The NAS Parallel Benchmarks can be compiled into three problem
sizes known as classes A, B, and C. The class A benchmarks are tailored to run on moderately powerful
workstations. Class B benchmarks are meant to run on high-end workstations or small parallel systems.
Class C benchmarks are meant for high-end supercomputing.

3 Trace Gathering

3.1 Instrumenting the Benchmarks

The source code for the NPB was instrumented by preprocessing the source code with a �lter written in
Perl. Since all MPI function calls have the form:
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call MPI function name(parameter1,parameter2,...)

the Perl preprocessor simply uses pattern matching to �nd the MPI function calls in the program and inserts
code just before the MPI function call to print out the relevant parameters of the MPI function call. The
static frequency of MPI function calls was determined by using the grep utility to search for \MPI " in all
source �les.

3.2 Running the Benchmarks

The benchmarks were compiled as class B benchmarks and traced on machines at the University of Michi-
gan's Center for Parallel Computing. When the dynamic frequencies of the MPI function calls were calculated
from the traces, theMPI COMM * functions and the MPI WTIME function were not included because
the beforementioned functions are not inherently involved in the transfer of data between processors. Also,
many of the benchmarks run an iteration of the code before the running and timing of the main loop. This
is done to minimize variations in performance that would be caused by cache misses, TLB misses, and page
faults. The portions of the traces that correspond to this extra iteration were not included in the dynamic
results due to the fact that we wished the results to be as close as possible to those which would be found if
the benchmarks were used in real-world situations.
The BT and SP benchmarks were run with 4, 9, and 16 processors. The FT, IS, LU, and MG benchmarks

were run with 2, 4, 8, and 16 processors. As an example of the type of information gathered by the traces,
for an MPI SEND function call, the following information is output to stdout:

1. MPI SEND

2. the ID of the sending process

3. number of data items being transferred

4. datatype of the transferred data (i.e. INTEGER, DOUBLE, or DOUBLE COMPLEX)

5. the ID of the receiving process

6. the type tag for this interprocess communication

4 MPI Implementation Model

Given the fact that the low-level implementation of the MPI library is platform and vendor dependent,
there are then widely varying answers to the question of how many messages it takes to implement any
given MPI function. Therefore, for this paper, we created a limited MPI implementation model that we feel
reasonably represents how the MPI library functions found within the NAS Parallel Benchmark 2.2 could
be implemented. Then, for each function call, we determined how many messages the processor with pid
equal to one would send. The processor with pid equal to one was chosen as the one to model over the
more typical processor zero is because many times the processor with pid equal to zero is used to broadcast
information, causing its call frequency to be unrepresentative of that of a typical node.
Our model is as follows:

MPI ALLREDUCE The MPI ALLREDUCE function call is modeled as a reduction followed by a broad-
cast. The reduction and broadcast are each modeled as occurring via binary trees. In the binary tree
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Figure 1: Dynamic Frequency of MPI Function Calls in the NAS Benchmarks

model, one message travels over each edge. Also, in a binary tree of p vertices, there are p � 1 edges.
Therefore, (p�1)�2 total messages are sent globally for each MPI ALLREDUCE function call. In this
model, processor one sends two messages.

MPI ALLTOALL The straightforward method of having each node send out p� 1 messages is the model
used for the MPI ALLTOALL function call. Globally, this implies that p(p � 1) messages are sent for
each MPI ALLTOALL function call. For processor one, the model implies p� 1 messages.

MPI ALLTOALLV It is modeled in the same manner as the MPI ALLTOALL function call is modeled.

MPI BARRIER It is treated as an MPI ALLREDUCE where the message length is 4 bytes.

MPI BCAST It is modeled as occurring via a binary tree-based algorithm. Therefore, p� 1 messages are
sent globally. Processor one sends one message.

MPI IRECV Since a message is received, no messages are sent by processor one.

MPI ISEND Processor one sends one message.

MPI RECV Since a message is received, no messages are sent by processor one.

MPI REDUCE The model assumes a binary tree-based algorithm, implying p�1 total messages globally.
Processor one sends one message.

MPI SEND Processor one sends one message.

5 Results

A plethora of conclusions can be drawn from the trace data:
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Percent
MPI Function Frequency

MPI IRECV 14.4%
MPI SEND 10.6%
MPI ISEND 10.2%
MPI BCAST 9.7%
MPI WAIT 9.7%
MPI ALLREDUCE 7.2%
MPI BARRIER 7.2%
MPI ABORT 4.7%
MPI COMM SIZE 4.2%
MPI WAITALL 3.4%
MPI FINALIZE 3.0%
MPI COMM RANK 2.5%
MPI INIT 2.5%
MPI REDUCE 2.5%
MPI ALLTOALL 1.7%
MPI COMM DUP 1.7%
MPI COMM SPLIT 1.7%
MPI RECV 1.7%
MPI WTIME 0.8%
MPI ALLTOALLV 0.4%

Table 1: Static Frequency of MPI Function Calls in the NAS Parallel Benchmarks 2.2

� One of the most interesting results reached by examining the traces was that relatively few of the
functions in the MPI library are used by the NAS Parallel Benchmarks. Table 1 shows the static
frequency in percent of MPI function calls in the NAS Parallel Benchmarks 2.2. Of the 125 functions
in the MPI communication library, only 20 were actually used in the NAS Parallel Benchmarks. The
functions used are:

1. MPI ABORT (abort from MPI)

2. MPI ALLREDUCE (reduction plus a broadcast)

3. MPI ALLTOALL (all-to-all communication where all the messages are the same length)

4. MPI ALLTOALLV (all-to-all communication where the messages can be of di�erent lengths)

5. MPI BARRIER (barrier synch)

6. MPI BCAST (broadcast)

7. MPI COMM DUP (duplicate a communication group pointer)

8. MPI COMM RANK (�nd processor id)

9. MPI COMM SIZE (�nd number of processors in group)

10. MPI COMM SPLIT (split current communication group into two groups)

11. MPI FINALIZE (shut MPI down cleanly)
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Figure 2: Length of MPI Messages in the NAS Parallel Benchmarks

Static Dynamic
MPI ALLREDUCE 17 268
MPI ALLTOALL 4 128
MPI ALLTOALLV 1 32
MPI BARRIER 17 4
MPI BCAST 23 86
MPI IRECV 34 45,604
MPI ISEND 24 32,436
MPI RECV 4 139,500
MPI REDUCE 6 98
MPI SEND 25 152,628
MPI WAIT 23 27,568
MPI WAITALL 8 16,206

Table 2: Dynamic versus Static MPI Function Calls

12. MPI INIT (initialize MPI)

13. MPI IRECV (non-blocking receive)

14. MPI ISEND (non-blocking send)

15. MPI RECV (blocking receive)

16. MPI REDUCE (reduction)

17. MPI SEND (blocking send)

18. MPI WAIT (wait for a non-blocking communication to complete)

19. MPI WAITALL (wait for a list of non-blocking communications to complete)

20. MPI WTIME (system time)

This phenomena is not unique to the NPB, as others have noted that relatively few MPI commands
are needed for most programs. For example, in the tutorial by Gropp [4], he states \MPI is small (6
functions) | many parallel programs can be written with just 6 basic functions."
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IS non-IS
Percent Percent

MPI Function Frequency Frequency

MPI ALLREDUCE 30.5% 0.1%
MPI ALLTOALL 30.5% 0.0%
MPI ALLTOALLV 24.4% 0.0%
MPI BARRIER 0.0% 0.0%
MPI BCAST 0.0% 0.0%
MPI IRECV 3.1% 11.0%
MPI ISEND 0.0% 7.8%
MPI RECV 0.0% 33.7%
MPI REDUCE 6.1% 0.0%
MPI SEND 2.3% 36.8%
MPI WAIT 3.1% 6.7%
MPI WAITALL 0.0% 3.9%

Table 3: Dynamic Frequency of MPI Function Calls in the IS Benchmark vs. the Other Benchmarks

� When looking at the dynamic frequency of the MPI functions in the NAS Parallel Benchmarks, as shown
in Figure 1, another interesting result is noted. Fully 89% of the MPI functions calls are blocking or
non-blocking sends and receives. None of the more complex MPI communication functions nor even
more complex sends or receives such as bu�ered sends and bu�ered receives are used.

� Another interesting result is shown in Figure 2. It shows that 74.8% of the messages have a message
length of 600, 640, 1240, or 2480 bytes, implying that short messages dominate NPB network tra�c.
However, the mean message length is 73,447 bytes, the median message length is 1240 bytes, and the
standard deviation is a rather large 1,594,623 bytes. Thus there was wide variation in the message
lengths. The largest message length is 128 MB when two nodes exchange 128 MB messages using
MPI ALLTOALL in the 2-processor version of the FT benchmark. The shortest message length is 4
bytes which is mainly used by MPI BCAST synchronization messages.

Overall, the conclusion that can be drawn is that interprocessor communication hardware and software
must be optimized for both short and long messages. It is the norm now for parallel machines to realize
their full bandwidth for extremely long messages. These traces show that a large percentage of messages
are not extremely long. These short messages should also be experiencing the full bandwidth of the
interconnect. If this occurred, then many applications would notice increased performance from their
distributed environment. Note, however, that \short" is not a few bytes, but hundreds of bytes.

� The IS benchmark is the only NAS parallel benchmark which performs computations on primarily integer
datatypes. The others operate primarily on 
oating point datatypes. The inclusion of the IS benchmark
within the NAS Parallel Benchmarks implies that the authors of the NPB felt that the IS benchmark is
representative of distributed memory parallel computer applications that operate primarily on integer
datatypes. Therefore, contrasting the IS benchmark against the other NAS Parallel Benchmarks may
indicate some di�erences between applications which operate primarily on integer datatypes versus those
which operate primarily on 
oating point datatypes. Table 3 indicates that the IS code is dominated
by reductions and all-to-all communication as opposed to the 
oating point code which is dominated
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IS non-IS
MPI ALLREDUCE 40 228
MPI ALLTOALL 40 88
MPI ALLTOALLV 32 0
MPI BARRIER 0 4
MPI BCAST 0 86
MPI IRECV 0 45,600
MPI ISEND 0 32,436
MPI RECV 0 139,500
MPI REDUCE 8 90
MPI SEND 3 152,625
MPI WAIT 4 27,564
MPI WAITALL 0 16,206

Table 4: Absolute Count of MPI Function Calls in the IS Benchmark vs. the Other Benchmarks
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Figure 3: Length of MPI Messages in the IS Benchmark

by sends and receives. Figure 3 shows the distribution of message lengths in the IS benchmark and
Table 5 compares the message length statistics of the IS benchmark versus the rest of the NAS Parallel
Benchmarks. It shows that the mean of the IS benchmark is two orders of magnitude larger than the
mean of the rest of the NPB, and the standard deviation of the IS benchmark is three times larger
than the standard deviation of the rest of the NPB. Thus the IS benchmark has a wider variation in
message lengths than the rest of the NPB, a fact which may be indicative of some di�erences between
data-intensive and computation-intensive applications. However, it should not be taken to be indicative
of general di�erences between codes dominated by integer operations versus 
oating point operations.

� Just from comparing the total number of dynamic versus static MPI function calls, as shown in Table 2,
one can immediately conclude that some of the function calls in the NAS application codes are being
visited a large number of times. This would lead one to believe that the communication patterns of the
NPB are dominated by their behavior within loops. Section 7 explores this issue further.

The reason that the number of dynamic MPI BARRIER function calls is less than the number of static
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IS non-IS
Benchmark Benchmarks

(bytes) (bytes)

Mean 1,332,196 69,317
Median 4116 1240
Minimum 4 4
Maximum 33,716,496 134,217,728
Standard Deviation 4,568,524 1,574,036

Table 5: Message Length Statistics for the IS Benchmark vs. the Rest of the NAS Parallel Benchmarks 2.2

MPI BARRIER function calls in Table 2 is because we did not in the dynamic frequency count include
MPI function calls that were included speci�cally to aid in the timing of the NAS Parallel Benchmarks.
The reason for this is that we wanted the dynamic function call counts to be as representative as possible
of the counts one would �nd when using the applications in a production environment. Those added MPI
function calls were MPI BARRIER calls. However, the MPI BARRIER function calls were included in
the static MPI function call count.

The eleven function call di�erence in the total static count between (non-blocking and blocking) sends
and (non-blocking and blocking) receives (see Table 2) is entirely due to the MG benchmark which
contains one MPI IRECV call and twelve MPI SEND calls. In all the other benchmarks, the number of
static non-blocking and blocking sends equals the number of static non-blocking and blocking receives.
This example also illustrates a simple fact about the MPI communication library: a blocking send can
transmit data to a non-blocking receive and the opposite can also be true. This leads to the fact that
there is not an equivalence, for example, between the dynamic frequency of blocking sends and the
dynamic frequency of blocking receives. The IS, LU, and MG benchmarks mix the use of blocking and
non-blocking MPI function calls. The other benchmarks do not.

6 Related Work

The NAS Parallel Benchmarks have been extensively analyzed. Strohmaier [10] presented a methodology
for characterizing the performance of the NAS Parallel Benchmarks without a detailed knowledge of the
source code. White et al. [11] measured the performance and communication bandwidth needed to run the
NAS Parallel Benchmarks using PVM as the communication library. Simon and Stohmaier [9] used Amdahl's
Law to analyze the performance of the NAS Parallel Benchmarks.

Many studies have been done that characterize the communication patterns of distributed memory parallel
computers. Cypher et al. [3] characterized the amount and type of communication in non-NPB distributed
memory codes. They also obtained results indicating that there is a wide variation in the size of messages.
Kim and Lilja [5] analyzed some benchmarks to using some locality metrics. They established that most
nodes only communicate with a few other nodes using only a few message sizes. O'Hallaron and Shewchuk [8]
analyzed the communication characteristics of a family of unstructured 3D �nite element simulations and
also found wide variations in the message sizes.
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7 NAS Parallel Benchmark Communication Kernels

Within the NAS Parallel Benchmarks there is a very simple structure to the communication that occurs
between nodes. The Appendix contains pseudocode delineating the communication structure of the NPB
codes. As the Appendix shows, the communication is dominated by a loop-based repetition of a few simple
communication calls.

Tables 6, 7 and 8 are another view of this simple communication structure. It contains equations that
describe the relationship between the frequency of an MPI function being called and the number of processors
a benchmark is run on for the various NAS Parallel Benchmarks.

The loop-based patterns mean that the communication structure is static for long periods of time, leading
one to believe that simple strategies can detect the pattern. Most likely, there are hardware and software
optimizations that can be used to take advantage of these communication patterns. This is an ongoing area
of research for us.

8 Conclusion

The fact that only the knowledge of a few MPI functions are really necessary in order to create applications
is emphasized to programmers even as early as the �rst MPI tutorial [6]. This paper, however, goes one step
further and quantitatively describes which MPI functions are important. We considered both their static
frequency, i.e., how often they were written, and their dynamic frequency, i.e., how often they were executed.

Our statistical analysis of traces taken from the NAS Parallel Benchmarks can tell one much about the
type of network tra�c to be expected from parallel distributed-memory scienti�c applications. For instance,
these applications will utilize a relatively few number of communication library functions, and the length of
these messages will be widely varying. Further, for an application, the majority of the messages are issued
within loops having a simple communication pattern.

Since communications is a critical component of distributed-memory parallel computing, it is important
that it be carefully optimized. Hardware and software designers to tune their communications systems to
increase the performance of real applications can use studies such as those in this paper. This in turn should
enable users to achieve higher performance and increased scalability of their codes.
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MPI Function BT FT IS
MPI ALLREDUCE 2 0 10
MPI ALLTOALL 0 22 10
MPI ALLTOALLV 0 0 if (processors = 2) then 5

if (processors = 4) then 8
if (processors = 8) then 9
if (processors = 16) then 10

MPI BARRIER 0 0 0
MPI BCAST 3 2 0
MPI IRECV 1200

p
processors + 6 0 0

MPI ISEND 1200
p
processors + 6 0 0

MPI RECV 0 0 0

MPI REDUCE 1 20 2
MPI SEND 0 0 if (processors = 2) then 0

if (processors > 2) then 1

MPI WAIT 2400
p
processors � 2400 0 0

MPI WAITALL 201 0 0

Table 6: Expressions Describing the MPI Dynamic Function Call Frequency in the NAS Parallel Benchmarks
2.2 as a Function of the Number of Processors, Part 1
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MPI Function LU

MPI ALLREDUCE 8
MPI ALLTOALL 0
MPI ALLTOALLV 0
MPI BARRIER 0
MPI BCAST 9
MPI IRECV if (processors = 2) then 252

if (processors = 4) then 506
if (processors = 8) then 759
if (processors = 16) then 759

MPI ISEND 0
MPI RECV if (processors < 16) then 15500 log

2
(processors)

if (processors = 16) then 46500
MPI REDUCE 0
MPI SEND if (processors = 2) then 15755

if (processors = 4) then 31506
if (processors = 8) then 47258
if (processors = 16) then 47258

MPI WAIT if (processors = 2) then 252
if (processors = 4) then 506
if (processors = 8) then 759
if (processors = 16) then 759

MPI WAITALL 0

Table 7: Expressions Describing the MPI Dynamic Function Call Frequency in the NAS Parallel Benchmarks
2.2 as a Function of the Number of Processors, Part 2
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MPI Function MG SP
MPI ALLREDUCE 46 2
MPI ALLTOALL 0 0
MPI ALLTOALLV 0 0
MPI BARRIER 1 0
MPI BCAST 6 3
MPI IRECV if (processors < 16) then 2772 2400

p
processors + 6

if (processors = 16) then 2572
MPI ISEND 0 2400

p
processors + 6

MPI RECV 0 0
MPI REDUCE 1 1
MPI SEND if (processors < 16) then 2772 0

if (processors = 16) then 2532
MPI WAIT if (processors < 16) then 2772 0

if (processors = 16) then 2572
MPI WAITALL 0 2400

p
processors � 1999

Table 8: Expressions Describing the MPI Dynamic Function Call Frequency in the NAS Parallel Benchmarks
2.2 as a Function of the Number of Processors, Part 3
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This appendix contains the pseudocode which exposes the structure of interprocessor communication
within the various NAS Parallel Benchmarks. The pseudocode was formulated from the gathered communi-
cation traces and is, therefore, from the viewpoint of the processor with its id equal to 1 running a class B
compilation of the benchmark. The pseudocode contains the variable number of processors which repre-
sents the total number of processors utilized during an execution of the application. Within the pseudocode,
the variable pid is a number between 0 and number of processors-1. Each processor's pid variable is
assigned a unique value within the beforementioned range. Furthermore, all reduction operations have the
processor with pid equal to 0 as the root.
The MPI function calls within the pseudocode have been abbreviated for simplicity. A short description

of the meaning of the �elds within the pseudocode MPI function calls is, therefore, necessary:

1. mpi allreduce(number of items, datatype of items, reduction operation)

2. mpi alltoall(number of items, datatype of items)

3. mpi bcast(number of items, datatype of items)

4. mpi irecv(number of items, datatype of items, destination)

5. mpi reduce(number of items, datatype of items, reduction operation)

6. mpi send(number of items, datatype of items, destination)

For function calls where the source, destination, or message length cannot be succinctly mathematically
expressed, the function call does not contain any �elds.
Finally, the pseudocode for the all benchmarks is appropriate for an arbitrary number of processors except

the pseudocode for the MG benchmark. Within the MG benchmark, multiple grids of varying resolution
are used to �nd the solution to an equation. The resolution of these �elds depends on a variety of factors
such as the number of processors, number of grids, and problem size. As the number of processors increases,
then, the communication structure of the benchmark changes. To reduce the complexity of the pseudocode,
we have only given a version appropriate for sixteen or fewer processors.
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A BT Benchmark Code

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(3,MPI_INTEGER)

do i=1,200

loop()

end do

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_waitall()

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

---------------

loop()

{

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_waitall()

/* x-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* x-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* y-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* y-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* z-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()

mpi_irecv()

mpi_wait()

mpi_wait()

end do

/* z-axis */

do i=1,sqrt(number_of_processors)

mpi_isend()
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mpi_irecv()

mpi_wait()

mpi_wait()

end do

}
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B FT Benchmark Code

count=33554432/(number_of_processors*number_of_processors)

mpi_bcast(3,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_alltoall(count,MPI_DOUBLE_COMPLEX)

do i=1,20

mpi_alltoall(sendbuf,count,MPI_DOUBLE_COMPLEX)

mpi_reduce(1,MPI_DOUBLE_COMPLEX,MPI_SUM)

enddo
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C IS Benchmark Code

do i=1,10

loop()

end do

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

if (pid > 0)

mpi_irecv(1,MPI_INTEGER,pid-1)

end if

if (pid < number_of_processors-1)

mpi_send(1,MPI_INTEGER,pid+1);

end if

mpi_wait()

mpi_reduce(1,MPI_INTEGER,MPI_SUM)

---------------------------------

loop()

{

mpi_allreduce(1029,MPI_INTEGER,MPI_SUM)

mpi_alltoall(1,MPI_INTEGER)

mpi_alltoallv()

}
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D LU Benchmark Code

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(5,MPI_DOUBLE_PRECISION)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

mpi_bcast(1,MPI_DOUBLE_PRECISION)

do i=1,2

mpi_irecv()

if (number_of_processors > 4)

mpi_send()

end if

mpi_wait()

if (number_of_processors > 4)

mpi_irecv()

end if

mpi_send()

if (number_of_processors > 4)

mpi_wait()

end if

if (number_of_processors > 2)

mpi_send()

mpi_irecv()

mpi_wait()

end if

end do

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_barrier()

do i=1,249

j_loop()

k_loop()

mpi_irecv()

if (number_of_processors > 4)

mpi_send()

end if

mpi_wait()

if (number_of_processors > 4)

mpi_irecv()

end if

mpi_send()

if (number_of_processors > 4)

mpi_wait()

end if

if (number_of_processors > 2)

mpi_send()

mpi_irecv()

mpi_wait()

end if

end do

j_loop()

k_loop()

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_irecv()

if (number_of_processors > 4)

mpi_send()

end if

mpi_wait()

mpi_send()

if (number_of_processors > 4)

mpi_wait()

end if

if (number_of_processors > 2)

mpi_send()

mpi_irecv()

mpi_wait()

end if

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

if (number_of_processors > 2)

mpi_irecv(()
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mpi_wait()

end if

if (number_of_processors > 4)

mpi_irecv()

mpi_wait()

end if

mpi_send()

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_SUM)

if (number_of_processors > 4)

mpi_irecv()

mpi_wait()

end if

mpi_send()

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_SUM)

if (number_of_processors == 4)

mpi_irecv()

mpi_wait()

end if

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_SUM)

---------------------------------------------

j_loop()

{

do j=1,62

mpi_recv()

if (number_of_processors > 4)

mpi_send()

end if

if (number_of_processors > 2)

mpi_send()

end if

end do

}

---------------------------------------------

k_loop()

{

do k=1,62

if (number_of_processors > 4)

mpi_recv()

end if

if (number_of_processors > 2)

mpi_recv()

end if

mpi_send()

end do

}
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E MG Benchmark Code

if (number_of_processors < 16)

{

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(8,MPI_INTEGER)

mpi_barrier()

do i=1,10

loop3()

end do

mpi_barrier()

do i=1,2

loop1()

end do

do i=1,23

loop2()

end do

mpi_barrier()

do i=1,10

loop3()

end do

mpi_barrier()

loop2()

mpi_barrier()

loop1()

do i=1,459

loop2()

end do

loop1()

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

}

else

{

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(8,MPI_INTEGER)

mpi_barrier()

do i=1,10

loop3()

end do

mpi_barrier()

do i=1,2

loop1()

end do

do i=1,6

loop2()

end do

mpi_irecv()

mpi_irecv()

mpi_wait()

mpi_wait()

do i=1,5

loop2()

end do

mpi_barrier()

do i=1,10

loop3()

end do

mpi_barrier()

loop2()
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mpi_barrier()

loop1()

do i=1,6

loop2()

end do

do i=1,19

mpi_irecv()

mpi_irecv()

mpi_wait()

mpi_wait()

do j=1,21

loop2()

end do

end do

mpi_irecv()

mpi_irecv()

mpi_wait()

mpi_wait()

do j=1,14

loop2()

end do

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

}

---------------------------------------------

loop1()

{

loop2()

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_SUM)

}

---------------------------------------------

loop2()

{

mpi_irecv()

mpi_irecv()

mpi_send()

mpi_send()

mpi_wait()

mpi_wait()

mpi_irecv()

mpi_irecv()

mpi_send()

mpi_send()

mpi_wait()

mpi_wait()

mpi_irecv()

mpi_irecv()

mpi_send()

mpi_send()

mpi_wait()

mpi_wait()

}

---------------------------------------------

loop3()

{

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

mpi_allreduce(1,MPI_DOUBLE_PRECISION,MPI_MIN)

mpi_allreduce(4,MPI_INTEGER,MPI_MAX)

}
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F SP Benchmark Code

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(1,MPI_INTEGER)

mpi_bcast(3,MPI_INTEGER)

loop()

mpi_barrier()

do i=1,400

loop()

end do

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_waitall()

mpi_allreduce(5,MPI_DOUBLE_PRECISION,MPI_SUM)

mpi_reduce(1,MPI_DOUBLE_PRECISION,MPI_MAX)

---------------------------------------------

loop()

{

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_irecv()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_isend()

mpi_waitall()

/* x-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* x-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* y-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* y-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* z-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

/* z-axis */

do i=1,sqrt(number_of_processors)-1

mpi_isend()

mpi_irecv()

mpi_waitall()

end do

}
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