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ABSTRACT

Improving Processor
Performance by Dynamically Pre-

Processing the Instruction
Stream

by

James David Dundas

Chairman: Trevor Mudge

The exponentially increasing gap between processors and off-chip memory, as mea-

sured in processor cycles, is rapidly turning memory latency into a major processor perfor-

mance bottleneck. Traditional solutions, such as employing multiple levels of caches, are

expensive and do not work well with some applications. We evaluate a technique, called

runahead pre-processing, that can significantly improve processor performance.

The basic idea behind runahead is to use the processor pipeline to pre-process instruc-

tions during cache miss cycles, instead of stalling. The pre-processed instructions are used

to generate highly accurate instruction and data stream prefetches, while all of the pre-pro-

cessed instruction results are discarded after the cache miss has been serviced: this allows us

to achieve a form of very aggressive speculation with a simple in-order pipeline. The princi-

pal hardware cost is a means of checkpointing the sequential state of the register file and



memory hierarchy while instructions are pre-processed. As we discard all pre-processed

instruction results, the checkpointing can be accomplished with a modest amount of hard-

ware.

The instruction and data stream prefetches generated during runahead episodes led to a

significant performance improvement for all of the benchmarks we examined. We found

that runahead typically led to about a 30% reduction in CPI for the four Spec95 integer

benchmarks that we simulated, while runahead was able to reduce CPI by 77% for the

STREAM benchmark. This is for a five stage pipeline with two levels of split instruction

and data caches: 8KB each of L1, and 1MB each of L2. A significant result is that when the

latency to off-chip memory increases, or if the caching performance for a particular bench-

mark is poor, runahead is especially effective as the processor has more opportunities in

which to pre-process instructions. Finally, runahead appears particularly well suited for use

with high clock-rate in-order processors that employ relatively inexpensive memory hierar-

chies.
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Chapter  1

Runahead

The severe device count constraint forced upon the design space of a Gallium Arsenide

processor led us to consider a number of unorthodox architectural ideas. One of these was

runahead pre-processing. The basic idea is to allow a simple, yet very fast, processor pipe-

line to pre-process instructions during cache miss cycles, instead of stalling.

The pre-processed instructions are used to generate highly accurate instruction and data

stream prefetches by detecting cache misses before they would otherwise occur, while all of

the pre-processed instruction results are eventually discarded. This allows us to achieve a

form of very aggressive speculation with a simple in-order pipeline. The principal hardware

cost is a means of checkpointing the sequential state of the register file and memory hierar-

chy while instructions are pre-processed. Since we discard all results that are computed dur-

ing runahead episodes after the cache miss has been serviced, the checkpointing can be

accomplished with a modest amount of hardware.

By waiting until cache misses occur before generating prefetches, runahead adds a

highly responsive feedback component to the memory hierarchy: the greater the cache miss

penalty, the more opportunities there are for prefetching, which tend to reduce the frequency

of future cache misses. Conversely, if an application enters a phase where its hit rate is high,

few prefetches are generated.
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1.1 Basic runahead theory

When a runahead processor detects an L1 instruction or data cache miss it records the

instruction address of the faulting access and enters runahead mode. A demand fetch

request for the missing instruction or data cache line is generated if necessary. The proces-

sor also checkpoints the register file, RF, by copying its contents to a backup register file, or

BRF. The processor then pre-processes subsequent instructions while the cache miss is ser-

viced. The goal is to generate prefetches for instructions and data that will be needed in the

near future. If a pre-processed load or store generates a cache miss the processor can gener-

ate a prefetch for the missing line. Similarly, instruction fetch misses in the instruction

cache during runahead become instruction stream prefetches. Because the value returned

from a cache miss cannot be known ahead of time, it is possible for pre-processed instruc-

tions to be dependent upon invalid data. Rather than terminating runahead we allow regis-

ters and data cache values to have an explicit “invalid” state during runahead. Denoting this

value, INV, requires an extra bit associated with each register in the RF as well as with each

word in the L1 data cache (if byte or half-word addressing is allowed, additional bits are

required). Pre-processing of most instructions consists of the usual steps of fetch, decode,

and execute, with some changes to deal with INV data. Also stores are treated slightly dif-

ferently. The actions associated with pre-processing can be summarized as follows:

1. register-to-register instructions mark their destination register INV if any of their
source registers are marked INV. (They can also replace an INV value in their des-
tination register if all sources are VALID).

2. load instructions mark their destination register INV if any of three cases arises:

i. if the base register used to form the effective address is marked INV, or

ii. a cache miss occurs, or

iii. the target word in the cache is marked INV as a result of a preceding store dur-
ing the same runahead episode (see next case).
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(They can also replace an INV value in their destination register if none of the pre-
ceding three cases apply).

3. store instructions do not write data into the cache or main memory. They do, how-
ever, mark the referenced cache item INV, if the base register used in address cal-
culation is VALID and the target line is in the cache.

4. conditional branch instructions are resolved normally if their branch condition is
VALID. If it is marked INV, the outcome is determined by whatever branch predic-
tion strategy the processor employs, and the processor continues to pre-process
instructions down the predicted path.

5. indirect branch instructions (the target of the branch is obtained from a register)
in which the register is marked INV stall the processor pipeline until normal oper-
ation resumes.

6. instruction cache misses during runahead generate instruction stream prefetches.

The above actions were formulated from straightforward considerations of read-after-

write dependencies, however they do not always accurately anticipate what occurs during

actual execution. Action 3 does not account for the case when stores cause a cache miss or

cannot compute their target addresses because their base register is marked INV. Such stores

cannot mark their target word INV. It thus follows that subsequent loads have a small possi-

bility of introducing apparently VALID data into the RF, which should have been INV.

Action 4 does not account for the case when an unresolvable conditional branch is mispre-

dicted. Finally, action 5 does not account for the case when an instruction cache miss causes

the processor to not pre-process one or more taken branch or ALU instructions, which can

insert uncertainty into the RF and PC state during runahead.

To summarize, the above runahead pre-processing actions result in values in the RF that

cannot be trusted with certainty: there is a small possibility that a VALID register should be

marked INV and vice versa. As the values in the RF during runahead are only used to gener-

ate prefetches, they do not affect the sequential state of the machine. Actions taken by the

processor during runahead episodes cannot affect program correctness.
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After the cache miss that initiated runahead mode is serviced, the processor resumes

execution at the PC of the faulting instruction, and the RF is restored from its backup, the

BRF. The runahead valid bits in the RF and the L1 data cache are then set to the VALID

state. The L1 data cache runahead valid bits for a given line are also set to the VALID state

whenever a new line of data is allocated in the cache.

1.2 Some Runahead Examples

An example sequence of code is shown in Figure 1.1. Note that the sub-block runahead

valid bits in the L1 data cache are not shown for this example, and that only the first eight

general purpose registers are considered. The runahead valid bits for these registers are col-

lectively referred to as the Invalid Register Vector (IRV). A register is marked INV if its cor-

responding bit in the IRV is a 0.

Figure 1.1      Basic runahead example

The first instruction in the sequence is a load that misses in the L1 data cache, causing

the processor to enter runahead. The bit in the IRV corresponding to the destination register

of the load (r1) is marked INV (with a zero) in the IRV. The second instruction sources an

INV register (r1). Its destination register (r3) is subsequently marked INV. The third instruc-

tion is another load. This load cannot properly form its target address, since it sources an

INV register (r3). As a result this load cannot generate a runahead prefetch, and has to mark

load r1, 0(r2)

add r1, r2, r3

load r4, 4(r3)

sub r6, r2, r5

load r5, 0(r5)

0 1 2 3 4 5 6 7
1 0 1 1 1 1 1 1

r r r r r r r r

dcache miss

INV result

bad address

correct result

prefetch if miss

1 0 1 0 1 1 1 1

1 0 1 0 0 1 1 1

1 0 1 0 0 1 1 1

1 0 1 0 0 ? 1 1

Comment Instruction IRV State
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its destination register (r4) as INV. The fourth instruction can source VALID registers (r6

and r2), which it uses to compute a new value for (r5), which remains VALID. The final

instruction in the sequence is another load. This load can compute a VALID address using

r5. If the load hits in the L1 data cache, then it marks its destination register (r5) as VALID

after reading the data from the cache. If the load misses in the cache, then it marks its desti-

nation register (r5) as INV, and generates a prefetch for its target line.

This process continues until the memory hierarchy is able to service the L1 data cache

miss corresponding to the first instruction. When this occurs, the processor leaves runahead

mode and restarts execution at the instruction that initiated runahead (the first instruction in

Figure 1.1). Before the processor can leave runahead mode it has to reset all of the IRV and

L1 data cache sub-block valid bits to the VALID state, and perform the 1:1 copy from the

BRF registers to their counterparts in the RF.

Once the processor has left runahead mode it restarts execution at the PC of the first

instruction shown in Figure 1.1. Since the miss corresponding to the load has already been

serviced, it is guaranteed to hit in the L1 data cache. The following add instruction is then

able to execute normally. The third instruction may generate a L1 data cache miss. If it does

not, then it can execute in the normal fashion. If it does generate a cache miss, then the pro-

cessor re-enters runahead starting at the second load instruction. Assuming that the second

load did not generate a L1 data cache miss, then the fourth instruction (the subtract) can

execute normally. Finally, if the last instruction in the example generated a prefetch during

the previous runahead episode, and that prefetch has been serviced, then the load will not

generate an L1 data cache miss. If the prefetch has not been serviced, then the processor

will re-enter runahead mode.
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Another runahead example is shown in Figure 1.2.

Figure 1.2      Stores during runahead

Note that the first instruction in the sequence is the same as that in the previous example.

It has generated a runahead-initiating L1 data cache miss, and marked its destination regis-

ter INV as in the previous example. The second instruction is a store that needs to use an

INV register (r1) to calculate its target address. Since it cannot determine its target address,

it cannot mark its target word in the L1 data cache as INV, even if it is in the cache. As a

result, the subsequent load instruction cannot know for certain if the word it attempts to read

from the L1 data cache is INV or not, as it could be read-after-write dependent upon the

store instruction (in which case the data in the cache is stale). As these dependencies should

be relatively rare, the processor should always assume that any word in the L1 data cache

that it reads that is not marked as INV, is actually VALID. However, if a dependence does

exist, a load can unknowingly add an “undetectable” INV value to the register file.

A third runahead example is shown in Figure 1.3. This example illustrates the effect of

branches during runahead.

load r1, 0(r2)

store r2, 0(r1)

load r4, 4(r3)

1 0 1 1 1 1 1 1dcache miss

INV dcache word

is r4 valid?

1 0 1 1 1 1 1 1

1 0 1 1 ? 1 1 1

Comment Instruction IRV State

0 1 2 3 4 5 6 7
r r r r r r r r
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Figure 1.3      Dependent branches during runahead

The first instruction initiates runahead as before. Note that the conditional branch is

dependent upon the INV register generated by the load miss (r1). A runahead processor

implementing a conservative runahead scheme would simply halt pre-processing at the

INV-dependent branch in order to avoid polluting the L1 data cache. A runahead processor

implementing a more aggressive runahead scheme would continue to pre-process instruc-

tions past the branch, using its branch prediction unit to predict the likely path of future exe-

cution. In preliminary tests with our current simulator we found that the aggressive scheme

always provided superior performance. For this reason all of the runahead simulation results

that we present are for processors models that use the aggressive scheme.

1.3 Dissertation Organization

The dissertation is organized as follows. Chapter 2 discusses previous research work.

Chapter 3 describes the methodology. Chapter 4 presents experimental results for a baseline

runahead processor model. Chapter 5 presents an analysis of the effectiveness of runahead

at both the function and instruction level, as well as a study of register and instruction usage.

Chapter 6 describes simulation results for more advanced runahead processor models, in

which the effects of instruction cache misses, memory hierarchy bandwidth, and wrong-

path effects are eliminated. Chapter 7 describes simulation results for reduced-cost

load r1, 0(r2)

blt r1, loop

load r4, 4(r3)

1 0 1 1 1 1 1 1dcache miss

dependent branch

prefetch if miss?

1 0 1 1 1 1 1 1

1 0 1 1 ? 1 1 1

Comment Instruction IRV State

0 1 2 3 4 5 6 7
r r r r r r r r
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runahead processor models. Chapter 8 presents a summary of our work. Chapter 9 con-

cludes with a discussion of future work.
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Chapter  2

The Memory Latency Problem

Processor clock rates have been increasing at about 40% per year, accounting for much

of the 59% per year increase in performance [1]. During this time, the access time of com-

modity DRAM has been decreasing at only 7% per year [2], resulting in an exponentially

increasing cycle time gap between processors and main-memory. Unless clever architec-

tural tricks are employed, Amdahl’s Law [2] tells us that memory latency effects will even-

tually dominate the execution time of applications. There are many different established

methods of attacking the problem of memory latency.

2.1 Caches

The classic method of reducing the impact of memory latency is to employ one or more

levels of high-speed cache memory [3]. Caches work by exploiting locality of reference,

meaning that if a data item is referenced once, then that item, or one near it in the address

space, is likely to be referenced in the future. Locality of reference is exploited by holding,

or caching, recently referenced data items in a small, fast, memory located close to the pro-

cessor. While a data item is in the cache, subsequent accesses to it have a much lower

latency than a main memory access. Caches work well for applications whose address

streams exhibit locality, however many important applications do not. Nevertheless, caches
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still form the backbone of high-performance memory systems, and can be made very effec-

tive when combined with other latency reduction and toleration techniques.

2.2 Perform other useful work during cache miss cycles

One way to add a measure of memory latency tolerance is to allow a processor to con-

tinue to perform useful work while a cache miss is serviced. This can be done in a variety of

ways. Non-blocking L1 data caches [4] allow a processor to continue to access the cache

while a miss is serviced. Processors that allow the out-of-order completion of instructions

[2] can continue to execute instructions while a data cache miss is serviced. This allows a

processor to tolerate cache miss latency by attempting to keep the execution units busy

while a cache miss is serviced. A conceptually similar approach is taken by coarse-grained

multi-threaded processors, which can switch between independent threads of execution

when a cache miss is detected [5].

2.3 Use the available memory bandwidth more effectively

Another way to reduce latency is to control the store traffic to the lower levels of the

memory hierarchy. Reducing store traffic allows the lower levels of the memory hierarchy

to concentrate on servicing demand misses, which must be fulfilled quickly in order to

maintain a high rate of execution, unlike store traffic, which is only needed to ensure consis-

tency throughout the memory hierarchy.

The easiest way to reduce store traffic is to use a write-back, as opposed to a write-

through data cache [3]. While write-back caches make sense for the lower levels of the

memory hierarchy where accesses are less frequent, using a write-back L1 cache can com-

plicate processor design [6].
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If the priority of store traffic can be made lower than that of miss fill requests, then the

average latency of miss fill requests can be lowered by allowing them to proceed ahead of

earlier stores. This requires both a relaxed memory consistency model [2], as well as a

means of checking to ensure that miss fill request and store addresses do not conflict. One

way of lowering the priority of store traffic is to place them into a buffer, where they can be

deferred until the off-chip memory is not busy servicing miss fill requests. The easiest way

to do this is to place stores into a FIFO queue called a write buffer [2]. Loads that pass stores

in the buffer must compare their target address to the target addresses of the stores in the

buffer. The performance of write buffers can be increased by coalescing stores in the buffer

that map to the same block of memory. This further reduces the amount of store traffic by

combining requests that map to the same line into a single access to the next level of the

memory hierarchy. An even more advanced way of controlling store traffic is to employ a

write cache [7]. A write cache is essentially a coalescing write buffer with an LRU line

replacement policy, as opposed to a FIFO replacement policy, turning the buffer into a

cache. This allows the write cache to coalesce even more stores, resulting in an even greater

reduction in store traffic.

2.4 Increase the bandwidth of the memory hierarchy

A low latency memory hierarchy is not enough to ensure adequate performance on

many applications [8]. Memory bandwidth is also very important. Bandwidth can be

increased in many different ways. Cache and main memory bandwidth can be increased by

employing wider cache lines or memory buses, pipelining accesses, and interleaving cache

and memory banks. Main memory bandwidth can be increased even more by employing
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exotic DRAM types, such as RAMBUS, as opposed to traditional commodity-type DRAMs

[9].

2.5 Statically schedule loads before stores

One way to reduce the effects of memory latency is to statically schedule code such that

loads are moved as far as possible before any subsequent dependent instructions. This will

allow an aggressive processor to start loads earlier than usual, increasing the likelihood that

some or all of any cache miss latency will be hidden by the time any load-dependent

instructions are ready for issue. This approach is limited by the ability of the compiler to

statically detect dependencies between load and store instructions, among other things.

Although some dependence analysis can be done statically, in the general case it is difficult

to move loads before stores due to the problem of memory dependences between them.

These potential hazards can only be detected after address calculations have been per-

formed, which themselves, require hazard detection. The solution to this problem is referred

to as memory disambiguation [10].

Although pure hardware memory disambiguation techniques, such as the store-buffer,

can allow loads to pass stores dynamically, additional performance can be obtained by

improving the static code schedule beyond that obtainable with standard compiler optimiza-

tions. One way of doing this is to employ hybrid hardware-software memory disambigua-

tion, a recent example of which is [10], which introduced the memory conflict buffer

(MCB). The MCB is a hardware device used to detect dependencies between rescheduled

load instructions and any subsequent store instructions. This allows the traditional load

instructions to be split into two parts: a preload instruction that can be scheduled by the

compiler before any prior ambiguous stores, and a check instruction located at the position
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of the original (non-rescheduled) load instruction. The preload instruction executes before

the ambiguous stores, and records its target address and destination register in an MCB

entry. Any stores that execute after the preload, but before the check instruction, access the

MCB. If a store target address matches that of any MCB entries, then one or more load-store

conflicts exist, and the target registers of the corresponding preload instructions are marked

invalid in the MCB. If and when the corresponding check instructions are executed, they

access the MCB to see if their corresponding preload conflicted with a store. If a conflict

exists, the check instruction causes the processor to branch to a preload-specific fixup rou-

tine that fixes the error. This is done by re-executing the load instruction, as well as any

load-dependent instructions that were rescheduled by the compiler.

2.6 Executing loads early

The conventional five-stage pipeline [11] uses an adder in the ALU to compute load-

store target addresses. This improves performance by reducing the branch misprediction

penalty, since the ALU execute stage is the first stage that instructions enter once they are

issued. Unfortunately, this comes at the price of a load hazard.

A hardware load-use interlock is control hardware that is added to a pipeline that detects

data dependencies, or load hazards, between load destination registers and subsequent

dependent instructions [2]. The interlock hardware can stall the pipeline until any data

dependencies can be resolved. This results in increased design complexity, however this

allows the compiler to ignore the pipeline implementation, if correct operation is all that is

needed. An alternative is to require that the compiler to either insert independent instruc-

tions, or NOPs, into the slots after a load that can result in a data hazard [11]. This approach
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makes the compiler’s job harder, as well as that of any future processor designers that may

wish to radically change the microarchitecture of a subsequent implementation.

The work in [12] first proposed eliminating the load-use interlock (LUI) in the tradi-

tional five-stage pipeline by performing load/store address calculation in a stage before the

ALU execute stage. This allows loads to execute in the same stage as ALU operations,

which when combined with result forwarding, allows load-data dependent ALU instruc-

tions to be issued immediately after a load. This replaces the load-use interlock with an

address-generation interlock, which occurs less often in typical applications. For this reason

this pipeline organization is often referred to as the address generation interlock (AGI) orga-

nization. Unfortunately it delays branch resolution by an additional cycle, resulting in an

increased branch misprediction penalty. In [11] this trade-off was evaluated, and concluded

that a five stage AGI pipeline had to have a branch misprediction rate no greater than 20% in

order to beat the performance of the traditional LUI pipeline. This pipeline organization has

been employed in Intel i486, Pentium, Cyrix M1, and R8000 processors [11]. Note that

while the AGI organization was initially proposed in [12], they concluded that the extra

adder that it required was expensive enough to make the LUI organization more attractive at

the time.

Another way to perform loads early in a pipeline is to detect them early, and attempt to

access the data cache ahead of time by predicting the load target address. This idea was first

explained in [13] where the concept of the load target buffer (LTB) was introduced. The

LTB is a table indexed by the processor PC. Each entry of the LTB contains fields that hold

the previous target address of a load instruction, the difference between the target addresses

of the last two executions of the load (the stride), and some status bits. The LTB is accessed
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in parallel with the instruction cache in the fetch stage of a pipeline. If the PC hits in the

LTB, then the pipeline is fetching a load instruction. If on a hit, and the status bits indicate

that the target address and stride should be trusted based upon the prior history of the load,

then a speculative load from the address previous_address + stride is immediately issued to

the data cache, when possible. If the speculative load hits in the data cache, and the pre-

dicted address is correct, then the load latency is hidden. In [13] it was concluded that the

latency to the L1 data cache must be at least five cycles to justify the use of a moderate sized

LTB.

In [14] a method is presented to reduce load latency by performing effective address cal-

culation in parallel with data cache access within the cache access stage. They employed a

simple carry-free addition circuit that can compute the cache set index portion of the effec-

tive address with a single level of logic. Assuming that no carries are generated within, or

propagated to, the set index portion of the address, the set index can usually be computed by

simply ORing the set index portion of the address operands together. This very fast compu-

tation of the set index allows them to perform set index calculation in series with data cache

access. The tag portion of the effective address can be computed in parallel with the cache

lookup, as well as the actual effective address of the load. This allows them to perform

many loads one cycle earlier than would otherwise be the case. If the carry-free addition

was incorrect, or if the data cache port is busy, the load is performed in the customary MEM

stage of the pipeline.

The authors in [15] went on to combine the idea of the LTB [13] with their earlier work

on Fast Address Calculation [14] to reduce load latency even further. They proposed the

Base Register and Index Cache (BRIC), a cache of general purpose register values that is
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accessed in the fetch stage in parallel with the instruction cache. Each entry in the BRIC

contains a register pair consisting of the base and index (if used) register values correspond-

ing to a load instruction. These register values are used in conjunction with the load offset

(if any) and some predecode information from the instruction cache to allow load instruc-

tions to obtain their address operands by the beginning of the decode stage of the pipeline.

The pipeline can then use Fast Address Calculation (FAC) [14] to potentially access the data

cache during the decode stage of the pipeline. If this succeeds, then two cycles of load

latency are hidden. If the BRIC misses, the register values read during the decode stage can

be used to perform the cache access during the execute stage of the pipeline using FAC.

This will still hide one cycle of load latency. If the FAC fails, then the data cache is accessed

in the usual fashion during the MEM stage of the pipeline.

2.7 Data Prefetching

Data prefetching can reduce average memory latency by bringing data close to the pro-

cessor before it is needed. The problem of course is selecting which data to prefetch. If data

is prefetched into the L1 cache, then useless prefetches will replace other lines. As these

other lines were probably fetched as a result of actual misses as opposed to prefetches,

replacing these lines with useless prefetches can degrade performance. This is referred to as

cache pollution [3]. If data is prefetched into a buffer where it waits for a demand miss

before it is moved into the cache, pollution effects can be reduced, although useless

prefetches can still reduce performance by increasing memory traffic. Prefetching into a

buffer also introduces coherency problems, as the buffer contents must be checked every

time that a store is committed.
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The most elementary form of data prefetching is provided by having cache lines larger

than the largest addressable data item. This brings additional data items into the cache,

where they may be used before they are displaced from the cache. Other forms of data

prefetching can generally be divided into hardware and software approaches.

2.7.1  Hardware data prefetching

Hardware data prefetching techniques allow the processor to generate prefetch requests

without the intervention or knowledge of the compiler. This is more versatile, as it allows

prefetching to be employed on legacy code, and across platforms.

The earliest form of hardware prefetching, sequential prefetching [3], generates

prefetches for one or more lines located immediately after a referenced line in the address

space. When this is done on every access, it is referred to as always-prefetch. Generating

sequential prefetches only when a reference to the current line misses is referred to as

prefetch-on-miss. It is also possible to perform tagged-prefetch, a variation of always-

prefetch, in which sequential prefetches are generated whenever a previously prefetched

line is accessed. One of the problems with sequential prefetching is that prefetched lines

that are not referenced in the near future can displace useful lines from the cache, resulting

in cache pollution. Sequential prefetch can also generate a great deal of additional traffic,

which can swamp the connection to memory.

A conceptually similar approach, the data stream buffer, was proposed in [16]. The data

stream buffer generates fetch requests for sequential lines after a missing line. These lines

are fetched into the FIFO stream buffer, where they can be subsequently placed into the

cache if the processor requests them. Since the stream buffer does not place prefetched lines

into the cache until they are requested, cache pollution is kept to a minimum. Note that both
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the stream buffer and sequential prefetching are conceptually similar to having very large

cache lines, however using a stream buffer requires that the cache and buffer be kept coher-

ent at all times. One of the problems with both the stream buffer and sequential prefetching

is that prefetches are only generated for lines located after a missing line in the address

space. Another problem with using the stream buffer for data stream prefetching is that mul-

tiple stream buffers are usually required for adequate performance, multiplying the coher-

ency problem.

In [17] a more advanced sequential prefetching scheme for shared memory multiproces-

sors was proposed and evaluated. They compared the simple sequential prefetching tech-

nique [3], with an adaptive technique of their own design. Their adaptive sequential

prefetching technique can dynamically adjust the number of sequential lines that are

prefetched after a miss during program execution. This approach can even turn off prefetch-

ing if the program is in a region where prefetching is detrimental to performance, and subse-

quently re-enable prefetching if it detects that it would have benefited from prefetching.

More advanced hardware data prefetching methods attempt to generate prefetches for

non-sequential lines. These approaches are particularly suited for processors executing sci-

entific code, which typically access very large sparse matrices. The stride prefetch cache

[18] can generate prefetches by using stride information obtained from vector memory

operations to generate the prefetch addresses. Unfortunately this only works for vector

machines, although one could use the PowerPC load/store with update instructions in a sim-

ilar fashion under certain circumstances.

Conventional processors can generate strided prefetches by caching information about

the history of memory operations. This was first done by [19] with their Reference Predic-
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tion Table (RPT). The RPT is a table that contains information about loads and stores exe-

cuted in the recent past. The table is accessed by a Lookahead Program Counter (LA-PC)

which is simply a register that runs ahead of the conventional program counter, using a

branch target buffer to (hopefully) stay on the proper path of execution. If at any time the

LA-PC “hits” in the RPT, then the LA-PC points to a likely future execution of a load or

store instruction. Each entry of the RPT contains the previous target address of the load or

store, the difference between the target addresses of the last two executions of the instruc-

tion (the stride), and some state information. If the state information for the entry indicates

that the reference information can be trusted, then a potential prefetch with the target

address previous_address + stride is generated if the target address misses in the cache, and

there is no outstanding fetch to that address in progress.

In [20] the Stride Prediction Table (SPT) was proposed. It is conceptually very similar

to those developed by [19] and [21]. The primary difference between the SPT and the RPT

[19] is that the SPT is indexed by the PC, while the RPT is indexed by the lookahead PC

(LA-PC), which can move ahead of the PC. This means that the RPT can generate

prefetches earlier than the SPT. The approach taken by [21] is similar to the SPT.

The authors of [19] continued their work with the RPT, and proposed three variants in

[22]. The basic scheme uses the PC to index into the RPT, similar to that described in [20].

The lookahead scheme is basically the same as that described earlier in [19], except that an

additional iteration count field is added to the RPT that allows the LA-PC to continue to

generate prefetches when it has moved multiple loop iterations ahead of the PC. The corre-

lated scheme attempts to correlate prefetches with changes in loop level, unlike the previous

table approaches.



20

The authors of [23] recognized that the reference prediction table (RPT) described in

[22] could not keep up with the issue rate of superscalar processors, as it could only scan

one instruction at a time. Their basic idea is the same, except that they use a modified

branch target buffer (BTB) called a program progress graph (PPG). Instead of outputting the

predicted taken target address, the PPG outputs a pointer to the next branch on the predicted

path of execution in the PPG. In other words, the PPG provides a way to a way to jump

between basic blocks in a rapid fashion. The output of the PPG is applied to their supersca-

lar reference prediction table (SRPT). When the output of the PPG is applied to the SRPT,

any cached stride information about any loads or stores in the predicted future basic block

of instructions drop out of the SRPT automatically in parallel, and are then used to generate

hardware prefetches in the same manner as that described by [22].

2.7.2  Software data prefetching

Software prefetching was first proposed in passing in [3], and expanded upon without

evaluation in [24]. The general idea is to add a instruction or instructions to the ISA that can

compute a target address using the same addressing modes as the load and store instructions

already present in the ISA. These instructions can be used to probe the L1 data cache for the

presence of a given block of data. If the desired block is not in the cache, then a prefetch for

the missing block is generated. These prefetches are generally non-binding, i.e. they are

dropped if they would cause an exception, and they prefetch into the cache, not the register

set. In other words, non-binding prefetches cannot cause incorrect program execution. Soft-

ware prefetching is generally only effective for scientific applications that stride linearly

through large matrices in a predictable manner.
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In [25] a simple heuristic was proposed to decide where to insert the prefetch instruc-

tions. If an innermost loop induction variable is used to generate a load or store address,

then the loop step is added to the induction variable and a prefetch instruction for that target

address expression is inserted into the code by the compiler. This prefetch instruction can

then generate prefetches for data one loop iteration before it is needed. This simple method

inserts too many prefetch instructions, resulting in wasted execution slots. In an attempt to

solve this problem a heuristic that predicts which accesses are likely to cause cache misses

was proposed. The overflow iteration is defined as the maximum number of loop iterations

whose data accesses can fit into the cache. Any data dependence that is carried by a loop for

more iterations than the overflow iteration is likely to cause a miss. Prefetches are only gen-

erated for these accesses. This simple heuristic made software prefetching practical, at least

for scientific applications that stride through large matrices in a regular fashion.

Additional software prefetching work was performed by [26]. They developed the con-

cept of the prefetch distance, or the number of loop iterations a data item should be

prefetched before its first use. The prefetch distance is based upon system memory latency

and the estimated execution time of one loop iteration, and allows them to generate

prefetches several iterations before the data will be needed, increasing the likelihood that

prefetched data will be available by the time the first use of the data occurs. As the prefetch

distance can be fairly large, prefetched data is sent to a buffer where it waits until needed by

the cache. This avoids displacing useful data from the cache, however this comes at the cost

of keeping data in the buffer and cache coherent.

The authors of [27] considered using software prefetching with a shared-memory multi-

processor. Their scheme was somewhat different as their prefetch instructions could fetch
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multiple cache lines. Furthermore, they assume that cache coherence is maintained via soft-

ware, making all prefetches binding, which forces the compiler to carefully consider control

and data dependences before inserting prefetch instructions. This requires the compiler to

be very conservative, greatly reducing the performance benefits of prefetching.

In [28] an attempt was made to use software prefetching on integer benchmarks. Very

small caches were used with a relatively small miss penalty in conjunction with a prefetch

buffer. The prefetch buffer helped to reduce the amount of pollution, which is critical when

software prefetching is used for integer codes whose access patterns are typically difficult to

predict. Their results were mixed.

The authors of [29] introduced an algorithm for inserting software prefetches that per-

forms two very important tasks. Their algorithm employs software pipelining in order to

ensure that the accesses in each iteration of a loop are covered by software prefetches. The

algorithm also performs locality and reuse analysis to predict which accesses and loop itera-

tions require prefetches given known cache parameters, leading to the prefetch predicate.

For example, if every n-th iteration of a particular access in a loop is predicted to cause a

cache miss, then the loop is unrolled by a factor of n, and a single prefetch is generated. This

avoids the cost of executing n-1 redundant prefetches.

The general consensus up to this point is that software prefetching is generally only use-

ful for scientific codes that access matrices in a predictable fashion. A number of recently

developed software prefetching schemes have been developed to address this shortcoming.

The authors of [30] developed a way to generate useful software prefetches for pointer-

intensive integer programs. Their scheme inserts software prefetch instructions at procedure

call sites that passed pointers as arguments. The pointers are used to specify the prefetch tar-
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get addresses. This takes advantage of the fact that pointer arguments are likely to be deref-

erenced during a procedure call.

The authors of [31] examined ways to generate software prefetches for pointer-intensive

integer programs that employ recursive data structures. A recursive data structure (RDS) is a

heap-allocated object, such as a linked-list, tree, or graph, whose individual nodes are linked

together via pointers. A node pointer is a pointer within an RDS node that points to an adja-

cent node. The basic idea is to insert software prefetches for one or more nodes that are

likely to be accessed in the future, every time a given node in the RDS is traversed. They

came up with two different ways of inserting software prefetches. The first, which they call

greedy prefetching, inserts software prefetches for every node pointer in each RDS node.

This causes the processor to issue prefetch instructions for all of the possible successor

nodes of a given node when that node is traversed. They expanded upon this idea to create

history-pointer prefetching. This approach adds a new pointer, called the history pointer, to

each node of the RDS. These history pointers point to nodes that are likely to be visited sev-

eral traversals in the future. Software prefetches that are issued for these pointers are more

selective, and are more likely to be serviced by the time the processor visits the future node.

2.7.3  Hybrid hardware-software data prefetching

One of the problems with relying on software prefetch instructions is that even if every

dynamic execution of a prefetch instruction generates a useful prefetch, the instructions still

waste issue slots. A similar fault can be found with table-based hardware prefetching meth-

ods: relying on the hardware to allocate table entries can waste a great deal of hardware.

Combining aspects of both methods can result in improved performance.
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The authors of [32] took the idea of the reference prediction table [19] one step further

by placing their instruction stride table (IST) under compiler control. This allows the use of

a much smaller table, on the order of 4-8 entries as opposed to 1K entries or more, as entries

are only allocated for accesses for which the compiler is certain will benefit from prefetch-

ing. Their IST is also more versatile, since it allows the compiler to not only specify the

stride of the prefetches, but the number of prefetches to generate for each IST entry. Unlike

the other table-driven approaches, the IST only generates prefetches when the current

access misses in the cache. This allows the IST to be placed off-chip.

The authors of [33] combined the basic ideas of the IST [32] and the prefetch predicates

of [29] to form the runahead table. The major difference between the IST and the runahead

table is that the runahead table can initiate prefetches whenever the processor PC touches an

entry in the table. They also eliminate redundant prefetches by adding predicate information

to each entry, which is conceptually similar to that employed in [29].
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Chapter  3

Runahead Simulation Methodology

The preliminary studies that we reported in [35] did not consider instruction stream,

pipeline, or wrong path speculation effects. Wrong path speculation is of particular impor-

tance, as instruction pre-processing on the wrong path may generate useless prefetches. Fur-

thermore, the memory hierarchy that the preliminary simulations assumed was rather

simple.

Unfortunately, creating a simulator that can accurately model a runahead pipeline is a

non-trivial task. Trace driven simulation methods cannot be used to model wrong path

effects or, just as important, the state of the register file, caches, and main memory during

runahead episodes. This led us to conclude that a processor model that could actually exe-

cute code was needed.

We added a significant amount of code on top of an existing simulation tool, ATOM

[34], to allow us to obtain both a cycle-accurate model of a pipeline, including wrong path

effects during both runahead episodes and normal operation, as well as a way to deal with

O/S calls and the like.

3.1 The basic idea behind the simulator

The simulator models a runahead processor consisting of a pipeline and several caches.

During normal (non-runahead) operation the simulated pipeline retires benchmark instruc-
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tions in lockstep with the workstation that is executing the instrumented benchmark. Imme-

diately after the simulated pipeline retires a given instruction, the workstation retires the

same instruction. If, for example, the instruction is a store, then the workstation executes the

store immediately after the simulated pipeline retires the store. Subsequent load instructions

in the simulated pipeline can access the store data, as well as the rest of main memory, by

computing the load target address using simulated register values and using a pointer con-

taining this address to access main memory. This allows the simulated pipeline to treat the

workstation’s main memory as its main memory, allowing us to avoid having to deal with

the problem of modeling the state of main memory.

ALU instructions are simulated exactly as they would behave in a real pipeline. Their

operands are read from a simulated register file, the actual result is computed and subse-

quently committed to the simulated register file, if the instruction reaches the writeback

stage of the pipeline without getting squashed. Branch instructions are treated in a similar

manner.

3.2 How the workstation and simulator interact

The retiring of instructions in lockstep with the workstation processor is performed by

adding a function call before every instruction in the benchmark using ATOM. These func-

tion calls form a one-way bridge between the workstation and simulator. Enough informa-

tion is passed to the simulator by each function call to allow the simulated pipeline to

emulate unimplemented instructions, such as system calls and floating point instructions.

When the simulated pipeline retires an instruction, the function call has completed, and con-

trol is passed back to the workstation processor. The workstation processor then immedi-

ately executes the instruction in the benchmark corresponding to that which the simulated
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pipeline just retired, thus keeping the workstation and simulated processors in lockstep.

Unimplemented instructions are emulated by syncing the state of the simulated processor’s

register file and PC to that of the workstation processor after unimplemented instructions

have been executed by the workstation processor.

3.2.1  Simulation example

Suppose that we have a very short benchmark consisting of the four instructions shown

in Figure 3.1:

Figure 3.1      Uninstrumented benchmark

ATOM is used to insert function calls to two different functions at various points in the

benchmark. The first function call,InitializeSimulator , synchronizes the register

file and program counter state of the simulated and workstation processors at the start of the

simulation. This function call is inserted before the first instruction of the benchmark. This

ensures that the simulated and workstation processors start execution at the same point in

the benchmark, and that their register files contain the same values.

A second function call, EmulationBridge , is the link between the sequential state

of the workstation and the simulated processor. Every time thatEmulationBridge  is

called, the simulated processor “clocks” itself until it retires an instruction in the instru-

mented benchmark corresponding to its twin in the uninstrumented benchmark. When the

call is finished, the state of the simulated processor’s register file and updated PC are the

PC Instruction
0 add r1, r2, r3
4 load r2, 0(r1)
8 store r4, 32(r2)
c store r2, 36(r2)
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same as that of the workstation processor. Also, the state of main memory, which is

accessed by both the simulated processor and the workstation processor, is updated when

the workstation processor executes the instruction once theEmulationBridge  call is

finished.

The instrumented benchmark is shown in Figure 3.2. Note that the instructions in the

instrumented benchmark that correspond to their counterparts in the original uninstru-

mented benchmark are shown in bold text. The simulator function calls are also shown. The

values under the PC heading correspond to the instruction addresses of the instructions in

the uninstrumented benchmark. The IPC, or instrumented-PC, values are the actual

addresses of the instructions in the instrumented benchmark. The function calls that are

inserted between the instrumented instructions force “sequential” instrumented instructions

to be separated by a value of 4+δ bytes in the address space, as opposed to 4.

Figure 3.2      Instrumented benchmark

Note that every call toEmulationBridge has as arguments the contents of the

entire integer register set, as well as the instrumented program counter value, as they exist

before the workstation processor executes each instruction in the instrumented benchmark

PC IPC Instruction
- - InitializeSimulator(r0, r1, ..., r31, IPC=0, PC=0)

- - EmulationBridge(r0, r1, ..., r31, IPC=0)

0 0 add r1, r2, r3
EmulationBridge(r0, r1, ..., r31, IPC= 4+δ)

4 4+δ load r2, 0(r1)
EmulationBridge(r0, r1, ..., r31, IPC= 8+2δ)

8 8+2 δ store r4, 32(r2)
EmulationBridge(r0, r1, ..., r31, IPC =c+3 δ)

c c+3 δ store r2, 36(r2)
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corresponding to the instructions in the uninstrumented benchmark. These values are only

used to detect simulator bugs, and to provide a work-around for instructions that the simula-

tor does not implement. These values are simply ignored when the simulated processor is

executing user-level integer instructions. The simulated processor actually fetches, decodes,

executes, and retires the fixed-point user-level instructions in the instrumented benchmark

corresponding to their counterparts in the uninstrumented benchmark. TheEmulation-

Bridge  function handles runahead episodes by ending the function call only when the

pipeline retires a non-runahead instruction. This allows the simulated pipeline to go down

wrong paths, etc., during runahead episodes exactly as a real pipeline would.

3.2.2  Modeling the instruction stream

One of the consequences of relying upon instrumentation is that the instructions that the

simulator executes are no longer located at sequential addresses due to the function calls

inserted before each instruction. Therefore, the simulated processor maintains a value, IPC,

or Instrumented Program Counter, that is used instead of the conventional PC, or Program

Counter. Whenever the simulated processor wants to update its IPC in order to determine

the fetch address of the next instruction, it has to scan through the text portion of the address

space, starting at the un-incremented value of the IPC, until it finds the next “sequential”

instruction in the instrumented benchmark corresponding to the next sequential instruction

in the uninstrumented benchmark. This is done by looking for a branch-to-subroutine

(unconditional branch) instruction to the known starting address of theEmulation-

Bridge function. The next “sequential” instruction is located a fixed number of instruc-

tions after this branch-to-subroutine instruction. This IPC value is used to fetch instructions
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using a pointer into the main memory of the workstation. Taken branches and jumps are

handled by computing the new value of the IPC in the conventional manner.

As the IPC does not point to sequential addresses, due to the intervening instructions

used to perform theEmulationBridge  function calls, it cannot be used to simulate

instruction stream effects such as cache misses. To get around this we need a way to trans-

late the non-sequential IPC values into sequential PC values that can be applied to an

instruction cache model. Note that simply dividing the IPC by a fixed integer will not suffice

as ATOM frequently inserts a random number of NOPs between function calls. We created

a table that can be used to quickly translate IPC values to their PC counterparts in the fetch

stage of the simulated processor. This table is created during theInitializeSimula-

tor  call before the simulator starts execution. These translated PC values can then be

applied to a simulated instruction cache in order to accurately model instruction cache miss

effects. While these translated PC values are more than accurate enough to use to measure

instruction stream statistics, they cannot be used to access the contents of the workstation’s

memory. This is why our simulated processor has separate L2 instruction and data caches.

3.2.3  Unimplemented instructions

When our simulated processor fetches an unimplemented instruction (floating point or

PALCODE instruction), it simply tags that instruction as unimplementable, and allows it to

flow down the simulated pipeline as a NOP. If the instruction reaches the writeback stage of

the pipeline, the writeback stage detects that it is an unimplemented instruction. It then

squashes all of the instructions in the pipeline, including the unimplemented instruction.

However, before it can continue, it has to deal with the effects of the unimplemented

instruction. As the simulator does not actually execute these unimplemented instructions, it
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takes a copy of the updated register file contents as they would be if the instruction had actu-

ally executed, as passed to the simulator via the nextEmulationBridge  call, and places

it into the simulated register file. This nextEmulationBridge  call also supplies the IPC

of the next sequential instruction, which is used to restart the simulated instruction fetch.

This is one of the few places where the simulator actually needs ATOM in order to function

properly. Note that unimplemented instructions are rarely encountered in the benchmarks

that were simulated.

3.2.4  Side effects of instrumentation

Another problem with relying upon instrumentation is that adding the function calls

before every instruction in a benchmark expands the size of the benchmark by about a factor

of 40. For most benchmarks this is not a problem. However, if a benchmark executable is

sufficiently large before instrumentation, the code expansion caused by instrumentation can

“break” branches in the benchmark by placing the instrumented branch target out of the

portion of the address space that the branch instruction can jump to using an immediate off-

set obtained from the instruction word. ATOM automatically fixes “broken” branches by

trapping and using fixup code to obtain the proper branch target. Unfortunately it is not

practical for our simulator to use this approach. We use the processor state passed to the

simulator via theEmulationBridge  calls as a work-around.

The simulated processor automatically compares the register file and IPC state of the

simulated processor to that of the workstation processor at the beginning of everyEmula-

tionBridge  call. This was done originally to detect errors while we were debugging the

simulator, however we can also use this functionality to fix the branch problem. If the simu-

lated processor executes a “broken” branch it will jump to the wrong target. This will be
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immediately detected after the firstEmulationBridge  call after the branch retires, as a

mismatch between the workstation IPC and the simulated processor updated IPC. When

this occurs, the simulator flushes the pipeline, and restarts instruction fetch at the updated

IPC supplied by theEmulationBridge  call. This results in a 5 cycle “branch fixup”

penalty, which is not significantly greater than our simulated pipeline’s 2 cycle mispredicted

branch penalty.

Most of the SPEC benchmarks that we examined do not contain any broken branches as

a result of instrumentation. The benchmarks that do have this problem only have to perform

this fixup a few thousand times, at most, during simulations that last for 100 million instruc-

tions. This cannot have a noticeable effect on our simulation results.

3.3 Pipeline Model

As runahead is ideally suited to simple, yet fast, pipelines, we decided to use an in-order

five-stage Address Generation Interlock, or AGI [12] pipeline with our simulator. A block

diagram of the AGI pipeline is shown in Figure 3.3. We assume that our simulated pipeline

is run at a clock speed of 1 GHz.
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Figure 3.3      Block Diagram of the AGI Pipeline

The FETCH stage of the pipeline attempts to fetch a single instruction each cycle from

the L1 instruction cache. The FETCH stage stalls on L1 instruction cache misses if

runahead is not enabled. A branch predictor is also read out of a tagless array of 1024 2-bit

counters which employ the Smith Algorithm [37]. This 2-bit prediction is used during the

DECODE stage to predict conditional branches, and is updated during the WRITEBACK

stage.
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The DECODE stage decodes a single instruction each cycle. It also reads instruction

operands from the simulated register file, predicts branch outcomes using the output of the

branch prediction unit, and computes branch targets. If a conditional branch is predicted

TAKEN, or if an unconditional branch is decoded, then the FETCH stage is immediately

notified so that it can fetch the branch target instruction. If this prediction is correct, then

there is no branch penalty. All branch mispredictions are detected in the EXECUTE stage,

resulting in a two cycle misprediction penalty. Indirect branches (branches which obtain

their target address from a register) are resolved in the EXECUTE stage, and their target

addresses are not predicted.

The ADDRESS stage computes load and store addresses using register values that were

read in the DECODE stage. This stage also executes load-address instructions, which sim-

ply compute an address and place the result in a register. Note that since we perform address

computations in a stage before the EXECUTE stage, we have to provide an address-genera-

tion interlock. Basically if a load, store, or load-address instruction is address operand

dependent upon an immediately previous ALU or load instruction result, then it must stall

in the ADDRESS stage until the EXECUTE result can be forwarded via the forwarding

paths. This is a one cycle stall in this pipeline, assuming that the EXECUTE stage itself

does not stall.

The EXECUTE stage executes ALU instructions using register operands. It also redi-

rects the FETCH stage when it detects that conditional branches have been mispredicted or

when an indirect branch is executed, resulting in a two-cycle penalty. Loads are also exe-

cuted in this stage by accessing the contents of the workstation’s memory using the load tar-

get address as a pointer.
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The WRITEBACK stage is where simulated instruction results are committed to the

simulated register file. Unimplemented instructions (floating point and PALCODE instruc-

tions) are emulated in this stage by flushing the pipeline and syncing the simulated proces-

sor IPC and register file contents with the state of the workstation processor at the next

EmulationBridge  call, resulting in a 5 cycle penalty. This pipeline model is slightly

unusual in that store instructions commit in the WRITEBACK stage, rather than in EXE-

CUTE with the load instructions. This is a consequence of our simulation methodology, in

which the state of main memory is not updated (by the workstation) until simulated instruc-

tions actually exit the pipeline. As a consequence, loads that are dependent upon stores must

stall in the EXECUTE stage until their dependent store retires. This rarely happens, so we

can ignore the occasional stall cycle introduced. An interlock is provided to check for loads

that map to the same doubleword as stores. As the L1 data cache is a write-through allocate-

on-store-miss cache, stores retire when they update the L1 data cache and add a store-

through request to the L2 data cache store-through queue. The 2-bit counter array is also

updated with conditional branch outcomes during WRITEBACK.

Pipeline hazards are handled by stalling the pipeline if necessary, and forwarding results

where possible via a full complement of forwarding paths. Back-to-back dependent ALU

instructions do not require any stalls, nor do back-to-back dependent LOAD-ALU (the

ALU instruction is dependent upon the LOAD result) instructions. As was mentioned ear-

lier, an address-generation interlock is provided to ensure that load, store, and load-address

instructions obtain the proper operands for their address computations in the ADDRESS

stage.
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3.4 Processor model including the memory hierarchy

A block diagram of the simulated processor is shown in Figure 3.4.

Figure 3.4 Block Diagram of the Baseline Processor Model

3.4.1  L1 instruction cache

The L1 instruction cache is an 8KB direct-mapped virtual cache with a 32B line size.

Each access takes a single cycle, and reads a single 4B instruction word. As the processor

model assumes a 1 GHz processor clock frequency, this corresponds to a peak L1 instruc-

tion cache bandwidth of 4 GB/s. L1 instruction cache misses are serviced by placing a fetch

request into the L1 instruction fetch queue. This is an 8 entry queue that communicates
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instruction fetch requests to the L2 instruction cache. The instruction fetch queue also pro-

vides the functionality of Miss Status Holding Registers, or MSHRs, making the L1 instruc-

tion cache non-blocking, which allows the cache to continue to service accesses during

runahead episodes.

An 8 entry instruction prefetch queue is also provided that communicates instruction

prefetch requests to the L2 instruction cache. This queue is identical to the instruction fetch

queue in all respects.

3.4.2  L2 instruction cache

The L2 instruction cache is a 1MB direct-mapped virtual cache with a 32B line size. In

the baseline model each instruction fetch or prefetch request takes a minimum of 25 cycles

to complete after a request has been placed into the instruction fetch or prefetch request

queue. It is assumed that L2 instruction cache accesses are pipelined such that fetch and

prefetch requests can be pipelined through the L2 cache 5 cycles apart, and that each access

of the L2 instruction cache has a latency of 5 cycles. The amount of time required to get

requests from the L1 instruction cache to the L2 queue, plus any time it takes to get them to

the off-chip L2 instruction cache from the L2 queue is emulated by requiring requests to sit

in the L2 queue for at least 10 cycles after the L1 instruction cache places them in the L2

queue. Once the request has been in the L2 queue for at least 10 cycles, it takes 5 cycles to

access the L2 instruction cache, assuming that no other higher priority accesses are arbitrat-

ing for access to the cache. If the request hits in the L2 instruction cache, then it has to sit in

the L2 queue for 10 additional cycles to model the time it takes to transfer the L2 instruction

cache line to the L1 instruction cache. Adding all of these times together gives us a mini-

mum time to service an L1 instruction cache miss of 25 cycles. If a fetch or prefetch request
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misses in the L2 instruction cache a request is added to the unified main memory queue.

Once the request has sat in the unified main memory queue for at least 10 cycles it is eligible

to access the main memory, if the memory is available. Accessing the main memory takes

80 cycles, after which the request must sit in the unified main memory queue for another 10

cycles. Once the request has sat in the unified queue for the final 10 cycles the main memory

unified queue entry is freed, and the L2 instruction cache is filled. The corresponding

request in the L2 queue then has top priority for access to the L2 instruction cache, which

takes an additional 5 cycles. After the second L2 instruction cache access occurs, the

request is freed in the L2 queue after an additional 10 cycles. When this final 10 cycles is

completed, the L1 instruction cache is filled, completing the instruction fetch/prefetch

cycle. The timing for an L1 instruction cache access that misses in the L2 instruction cache

is therefore: 1 + 10 + 5 + 10 + 80 + 10 + 5 + 10 + 1 = 132 cycles. A timing diagram that

illustrates the minimum timing for L2 instruction cache accesses is provided in Figure 3.5.

Note that this timing also applies to the L2 data cache.

L1 cache access:

Wait in L2 queue:
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Figure 3.5      Minimum L2 cache access timing
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Other fetch or prefetch requests behind the original request in the L2 instruction fetch or

prefetch queue can access the L2 instruction cache while the original request waits on main

memory. This makes the L2 instruction cache non-blocking. As 32B fetch or prefetch

requests can access the L2 instruction cache 5 cycles apart, the L2 instruction cache has a

peak bandwidth of 6.4 GB/s. Demand fetch requests in the fetch queue are given priority

over prefetch requests in the prefetch queue in order to improve performance.

3.4.3  L1 data cache

The L1 data cache is an 8KB direct mapped virtual cache with a 32B line size. Each

access reads either a 32b word or a 64b doubleword. This results in a peak L1 data cache

bandwidth of 8 GB/s. Note that our simulation methodology requires that we perform loads

and stores in separate stages. We do not model contention for the L1 data cache between

loads and stores in separate stages as a real implementation would perform loads and stores

in the same stage. L1 data cache misses are serviced by placing a fetch request in the L1

data cache fetch queue. L1 data cache prefetch requests are handled by the L1 data cache

prefetch queue.

As the L1 data cache is a store-through cache, we have to provide a means of sending

store-throughs to the L2 data cache. This is done with an 8 entry non-coalescing store

queue. Stores place their store data into the store queue when they retire. Stores must stall in

the WRITEBACK stage if a store queue entry is not available. This queue does not allow

store-dependent fetch or prefetch requests to forward data out of the queue. This is not a sig-

nificant performance problem as the L1 data cache performs store miss allocation, which

makes it unlikely that a store dependent demand fetch or prefetch request will occur soon

after a store-through is placed in the store queue.
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3.4.4  L2 data cache

The L2 data cache is very similar to the L2 instruction cache, with the exception that it

must also handle store traffic. Access latency, size, bandwidth, and queue timing are the

same as the L2 instruction cache. A diagram that illustrates the minimum timing for L2 data

cache fetch and prefetch accesses is provided in Figure 3.5. Store-throughs are taken off of

the store queue one at a time and committed to the L2 data cache strictly in queue order. If a

miss occurs, a main memory fetch request is made for the missing line. Unlike the L1 data

cache, the L2 data cache is a writeback cache. If a miss in the L2 data cache causes new data

to map to a line that has been modified by a store through, then the dirty line is read out of

the L2 data cache and written back to main-memory.

The L2 data cache must also respect read-after-write dependencies between store-

throughs and fetch and prefetch requests. This must be done to prevent the L1 data cache

from obtaining stale data due to a fetch or prefetch “passing” a dependent store-through.

This is done by checking the store-throughs already in the store queue for dependencies

with new fetch or prefetch requests. A fetch or prefetch request is assumed to have a depen-

dency upon an outstanding store-through if they map into the same cache line address. If

there is a dependency between an outstanding store-through and a demand fetch, then the

fetch is provided with a pointer (tag) to the dependent store-through. The L2 data cache will

not service the dependent fetch until the store-through that it is dependent upon has updated

the L2 data cache. The processor handles dependencies between prefetches and store-

throughs by dropping prefetches that map to lines for which there is an outstanding store-

through in the store queue. This is done before prefetches are placed into the prefetch

queue. Note that fetch and prefetch store-through dependencies are rare as the L1 data cache
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performs store-miss allocation. This makes it unlikely that a demand fetch or prefetch will

be generated soon after a store-through to the same cache line address is placed in the store

queue.

The L2 data cache attempts to maximize performance by prioritizing accesses: demand

fetches are allowed to proceed before prefetches and store-throughs, while prefetches are

given priority over store-throughs. This can lead to a deadlock condition if the highest prior-

ity fetch request is dependent (as indicated by the tags attached to each fetch request) upon a

store-through in the store queue. If this is the case, the requests in the store queue are given

priority until the store-through that the fetch in question is dependent upon commits itself to

the L2 data cache. Also, prefetches and fetches in the queues can access the L2 data cache

while earlier requests that missed in the L2 data cache are serviced by the main memory.

Simulations that do not include L2 Data Cache

Some simulation models do not include an L2 data cache in order to increase the aver-

age access time to off-chip memory. When this is done the simulator simply uses the L2

data cache simulation code as a means to arbitrate between L1-L2 data fetch, prefetch, and

store-through requests for access to the unified main memory queue. This was done by

making two simple modifications to the L2 data cache simulation code: the L2 data cache

access time was set to zero and no lines are allocated in the L2 data cache. Also, requests do

not have to sit in the fetch or prefetch queues for any length of time before they can be

placed in the unified main memory queue. Store-throughs are sent directly from the store

queue to the unified main memory queue. The minimum time for an off-chip access is then

102 cycles. A diagram that illustrates the minimum timing for main memory accesses is

provided in Figure 3.6.
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3.4.5  Main Memory

The simulated main memory is assumed to be a high bandwidth pipelined memory.

Each main memory access either fetches or writes back 32B at a time. New accesses can be

started 20 cycles apart, resulting in a peak bandwidth of 1.6 GB/s. The main memory access

time is 80 cycles, but this does not take into account getting requests to and from main

memory itself.

A single 8 entry queue is provided to communicate fetch, prefetch, and writeback

requests from the L2 instruction and data caches to main memory. Requests are added to the

queue by the L2 caches and are serviced by the main memory strictly in the order in which

they are placed in the queue. As with the other queues, requests must sit in the main mem-

ory queue for a minimum of 10 cycles to simulate the amount of time that it takes for

requests to travel to the main memory. Once fetch and prefetch requests are serviced by the

main memory they must sit in the queue for an additional 10 cycles to simulate the amount

of time that it takes to transfer their data from the main memory to the L2 cache. The access

time of the main memory is 80 cycles, which results in a minimum time to access main

L1 cache access:

Wait in fetch/prefetch queue:

Wait in Unified Main Memory Queue:

Access Main Memory:

1
+
0
+
10

+
80

1
+
0
+
10

+

Start L1 Finish L1
access access

L1 Cache Miss

Figure 3.6      Minimum L1 data cache miss timing for processors without L2 data cache
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memory from the L2 caches of 100 cycles, when the time that requests must sit in the

queues behind other requests is taken into account. Writebacks from the L2 data cache to

the main memory only require 90 cycles to complete (minimum) as no data is returned to

the L2 data cache, although the queue entry that is occupied by the writeback is not freed for

an additional 10 cycles. Access ordering is maintained by using main memory queue entries

whose fetch or prefetch accesses eject dirty lines from the L2 data cache to perform write-

backs.

3.5 What the simulator does not model

As was mentioned earlier, the simulator emulates, rather than simulates floating point

code. This is not felt to be a problem because we intended from the start to only consider

integer benchmarks, which contain little or no floating point code. The simulator also emu-

lates, rather than simulates PALCODE (system calls, etc.). The side effects of not simulat-

ing O/S calls are minimal, as the SPEC benchmarks do not spend much time in the O/S.

Finally, our simulation models do not include virtual memory effects, such as TLB misses.

Page faults are modeled in a limited sense, as we drop prefetches that correspond to pages

that have not been demand fetched from.

3.6 Processor modifications to support runahead

The most important difference between a runahead pipeline and a normal pipeline is

that runahead instructions must be able to exist in the pipeline at the same time as normal

instructions, without affecting program correctness. This requires a number of minor modi-

fications to the pipeline control logic.
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3.6.1  Hazard logic modifications

Runahead instructions can be read-after-write (RAW) dependent upon earlier non-

runahead instructions that are in the pipeline when the processor enters runahead mode.

These dependencies should be detected in the usual fashion, and the forwarding paths

employed where possible.

However the reverse is not true. Non-runahead instructions cannot be read-after-write

dependent upon runahead instructions for two reasons. First, and most important, runahead

instructions are highly speculative by nature, and their results (in the general case) must be

discarded if the processor is to maintain program correctness. Second, runahead instructions

that are in execution represent an attempt to anticipate future events (hence the term “pre-

processing”) with respect to any subsequently issued non-runahead instructions, and as such

these non-runahead instructions cannot be RAW dependent upon them. The pipeline control

logic must keep this in mind. This requires that each instruction in the machine be provided

with a “runahead valid” (RV) bit that travels with it through the pipeline, in a fashion similar

to the usual “valid” (V) bit that allows the pipeline to flag bubbles. If a given instruction in

the pipeline has both its RV and V bits set to TRUE, then it is a runahead instruction. If the

RV bit is FALSE but the V bit is TRUE, then the instruction is a “normal” (non-runahead)

instruction. If the V bit is FALSE, then the “instruction” is a pipeline bubble.

3.6.2  Runahead instruction source and destination valid bits

Each instruction must also have a “runahead destination valid” (RDV) bit that travels

with it through the pipeline. The RDV bit is set to indicate if its result is (believed to be)

VALID during runahead episodes, and is used to update the IRV when and if the runahead

instruction reaches the writeback stage without getting squashed. In order to allow an
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instruction to determine if its result is runahead VALID when it executes, the instruction

must be able to know if its operands are VALID. This is done by providing a Runahead

Operand Valid (ROV) bit for each operand of every instruction in the pipeline. This bit is

read out of the IRV at the same time that the register file is accessed when the runahead

instruction is in the DECODE stage of the pipeline. If a runahead instruction obtains an

operand from a forwarding path, then the ROV bit of the forwarded value is obtained from

RDV bit of the instruction providing the forwarded value.

In general, if all of an instructions operands ROV bits are VALID, then its result has its

RDV bit set to VALID. If not, then its RDV bit is set to INV. This is true for ALU instruc-

tions and branches that update registers (unconditional and indirect branches). Load instruc-

tions are handled slightly differently. If a load whose address operand register ROV bit is

VALID misses in the cache, then its load destination register has its RDV bit set to the INV

state. The load destination register RDV bit is also set to INV if its address operand regis-

ter’s ROV bit is set to the INV state. If the operand register’s ROV bit is marked VALID,

and the load hits in the cache, then load destination register is marked VALID if the target

word in the L1 data cache was not the target of a preceding runahead store. If the word was

the target of a preceding runahead store during that runahead episode, as indicated by the L1

data cache runahead valid bit for the target word, then the load destination register has its

RDV bit set to the INV state, indicating that was a runahead load-store dependency.

3.6.3  Entering runahead mode

A runahead pipeline treats load and store instructions slightly differently than a normal

pipeline. During normal operation a runahead pipeline behaves exactly like a normal pipe-

line when loads and stores hit in the L1 data cache. When a load or store misses in the
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cache, a runahead pipeline makes a demand fetch request for the missing L1 data cache line

(if there is no outstanding fetch or prefetch request for the line) and enters the runahead pre-

processing mode of operation. If the instruction that missed in the L1 data cache is a load

instruction, then the pipeline sets the load destination register RDV bit to the INVALID

state. The RDV value is not allowed to update the IRV until the instruction reaches the

writeback stage of the pipeline without getting squashed. If the instruction is a store, then

there is no destination register to mark. However, the store instruction, as well as all subse-

quent store instructions during the runahead episode, are not allowed to update any level of

the memory hierarchy.

The next thing that happens is that the pipeline sets the RV bits of any non-runahead

instructions in the pipeline that were issued after the runahead-initiating instruction to the

TRUE state, making them runahead instructions. The FETCH logic also has a global RV bit

that is set to the TRUE state. This bit is used to set the RV bits of instructions that are

fetched to the proper state. The FETCH logic also saves the IPC of the load or store instruc-

tion so that it can re-fetch the instruction once the runahead episode has completed.

3.6.4  Pipeline operation during runahead mode

At this point the pipeline is in runahead mode. If the load or store instruction that initi-

ated runahead reaches the WRITEBACK stage of the pipeline without getting squashed by

an earlier non-runahead instruction, then several things happen.

First, the WRITEBACK stage saves the contents of the register file (RF) in the backup

register file (BRF). This is done to checkpoint the sequential state of the architected register

file. This is assumed to happen in a single cycle. At the same time, if the instruction is a
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load, then its RDV bit is used to update the IRV. Store instructions do not update the IRV as

they do not write to the RF.

After the runahead-initiating instruction completes in the WRITEBACK stage, subse-

quent runahead instructions commit their results, if any, to the RF and IRV. The sequential

state of the machine is safe as the IPC and RF state were checkpointed when the runahead-

initiating instruction reached the WRITEBACK stage.

3.6.5  Resuming normal operation

When the memory hierarchy has serviced the demand fetch (or prefetch if there was an

outstanding prefetch for the line in question) corresponding to the load or store miss that ini-

tiated runahead mode, the pipeline has to resume normal operation at the point in the

instruction stream where it entered runahead mode. This is done by performing the follow-

ing tasks.

First, it has to notify the FETCH stage to resume instruction fetch at the IPC of the load

or store instruction that initiated runahead mode. Second, it copies the checkpointed state of

the RF that was saved in the BRF back into the RF. Both of these actions are assumed to

take place in a single cycle. The global RV bit in the FETCH stage is also set to FALSE.

Once this is done, the FETCH stage will re-fetch the runahead initiating instruction.

However, ignoring any prior instruction cache misses, the later stages of the pipeline will

still contain runahead instructions. These instructions can still generate useful prefetches, so

they should not be squashed in the general case. However, they must not be allowed to cor-

rupt the newly restored sequential state of the processor. The newly restored RF state is pro-

tected by not allowing any remaining runahead instructions in the pipeline to update the RF.

The newly restored IPC of the machine is protected by not allowing any remaining
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runahead branches or jumps in the pipeline to redirect the FETCH stage. This is done by

squashing the first, if any, runahead branch instruction and subsequently fetched runahead

instructions that are in the pipeline when the processor resumes normal operation.

3.6.6  Instruction cache miss initiated runahead

In addition to the data stream runahead episodes initiated by load or store data cache

misses, a runahead processor can also enter runahead mode on an L1 instruction cache miss.

This instruction stream runahead is identical to load- and store-miss initiated runahead epi-

sodes, with the exception that the instructions in the missing instruction cache line cannot

be pre-processed during the runahead episode. Instead of simply stalling on an L1 instruc-

tion cache miss during normal operation, the runahead processor enters runahead mode as

described in the previous sections. Instruction fetch is redirected to that portion of the

address space that is likely to be close to the proper fetch target after the instructions in the

missing instruction cache line. The simplest approach is to attempt to pre-process the

instructions located in the cache line sequentially after the missing instruction cache line. If

these instructions are in the L1 instruction cache, then they can be pre-processed, starting

with the first instruction in the cache line, in an attempt to generate data stream prefetches in

the usual runahead fashion. If this line is not in the instruction cache, then an instruction

stream prefetch can be generated for the missing line, and an attempt to pre-process the next

sequential line can be attempted. This process continues until the instruction cache miss

corresponding to the runahead initiating instruction fetch has been serviced, at which time

the processor resumes normal operation in the same fashion as for load- and store-miss ini-

tiated runahead episodes.
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One potential drawback of instruction-miss initiated runahead is that the instructions

that are not pre-processed in missing instruction cache lines introduce undetectable INV

values to the register file and data cache. If these values are used to generate prefetches then

some number of erroneous prefetches can be generated, which may affect performance. The

processor can also go down a wrong path if a skipped instruction cache line contained a

taken branch, or an instruction that should have modified a branch condition.

3.6.7  Instruction cache misses during load and store miss initiated runahead

It is possible for instruction cache misses to occur during load- and store-miss initiated

runahead episodes. If this occurs, the runahead processor redirects its fetch stream to the

next sequential line in the instruction stream, which may or may not be in the cache. If it is

in the cache, then pre-processing continues at the first instruction in this line. If not, then an

instruction stream prefetch can be generated. This approach is similar to instruction-miss

initiated runahead, and has the same drawbacks.

3.6.8  Branch prediction

In keeping with the small and simple, yet fast, processor model we chose to simulate a

rather simple branch prediction scheme. We use an array of 1024 tagless 2-bit counters

using the Smith Algorithm [37] for our dynamic predictors. In our branch prediction

scheme, conditional branches always update the dynamic predictor array when they reach

the WRITEBACK stage, whether they are runahead branches or non-runahead branches.

This allows runahead episodes to train the 2-bit counters for branches that have not yet been

encountered dynamically during normal operation, which can potentially improve their

accuracy.



50

Unfortunately, this can cause branch mispredictions if the state of the 2-bit counters get

too far ahead of the sequential state of the program. This can happen if a static branch is pre-

processed several times in rapid succession, during which the behavior of the branch

changes. This can be alleviated by saving runahead branch outcomes in a register, and forc-

ing the processor to use these predictors, when available, instead of the 2-bit counters. This

register forms a bridge between the sequential state of the program and the “future” state of

the runahead-trained 2-bit counters. We call this register the Runahead Branch Register

(RBR).

The operation of the RBR is rather simple, which acts as a 1-bit wide circular queue.

Three modulo counters are used to access the RBR. The HEAD counter points to the entry

after the last predictor added to the RBR during runahead. The RA_TAIL counter points to

either the next predictor to be used during runahead (if RA_TAIL != HEAD), or the location

in the RBR that will hold the next conditional branch outcome resolved during runahead (if

RA_TAIL == HEAD). The NORA_TAIL counter points to the next predictor to be used

during normal operation. If a tail counter is equal to the HEAD counter, then no prediction

can be made with the RBR during the mode in question (RA_TAIL during runahead and

NORA_TAIL during normal operation).

Note that in this simple scheme it is possible for the HEAD counter to pass the

NORA_TAIL counter, causing the RBR to “overflow” and provide incorrect predictions.

This possibility is handled by flushing the RBR whenever it mispredicts a branch during

either runahead or normal operation. Flushing is performed from the tail pointer that pre-

dicted the mispredicted branch to the head pointer: flushing the entire RBR on a mispredic-

tion during normal operation, but only the known wrong path portion on a misprediction
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during runahead. RBR overflows can be reduced by making the RBR larger than the num-

ber of basic blocks pre-processed during a typical runahead episode. An eight entry RBR

should provide a comfortable margin of safety. We assume a 1024 entry RBR for all of our

studies in an attempt to determine the absolute best performance that can be obtained via

this method.

A pseudo-code listing of the behavior of the RBR is shown in Figure 3.7, while a short

example of RBR operation is given in Figure 3.8.
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Figure 3.7     Pseudo code description of Runahead Branch Register Behavior

• When the processor is reset:

HEAD = 0;
RA_TAIL= 0;
NORA_TAIL= 0;

• When the processor resumes normal operation after leaving runahead mode:

RA_TAIL = NORA_TAIL;

• When branches are predicted:

if(instr->runahead == TRUE && RA_TAIL != HEAD) {
instr->pred_branch_outcome = RBR[RA_TAIL];
instr->rbr_used_to_predict = TRUE;
instr->tail_used = RA_TAIL;
RA_TAIL++;

}
else if(instr->runahead == FALSE && NORA_TAIL != HEAD) {

instr->pred_outcome = RBR[NORA_TAIL];
instr->rbr_used_to_predict = TRUE;
instr->tail_used = NORA_TAIL;
NORA_TAIL++;
RA_TAIL++;

}
else {

instr->pred_outcome = TWO_BIT_COUNTERS[instr->PC];
instr->rbr_used_to_predict = FALSE;

}

• When branches are retired

if(instr->rbr_used_to_pred == TRUE) {
if(

instr->pred_outcome != instr->actual_outcome &&
instr->condition->runahead_valid == TRUE

) {
if(instr->runahead == TRUE) {

HEAD = instr->tail_used; // some entries get flushed
RA_TAIL = instr->tail_used;

}
else {

HEAD = instr->tail_used; // all entries get flushed
RA_TAIL = instr->tail_used;
NORA_TAIL = instr->tail_used;

}
}

if(runahead == TRUE) {
if(instr->tail_used == HEAD) {

RBR[HEAD] = instr->actual_outcome; // save result in RBR
HEAD++;

}
}

}
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Figure 3.8     Runahead Branch Register Example
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The example shown in Figure 3.8 represents the state of the RBR and its counters at the

start of the execution of a program. The topmost oval on the left hand side of Figure 3.8 rep-

resents a load or store instruction that has missed in the L1 data cache, causing the processor

to enter runahead mode. The pipeline generates a demand data stream fetch for the missing

line in the usual fashion, and continues to pre-process instructions. At some point after

entering runahead, the pipeline retires a branch instruction (branch A), and saves the out-

come of the branch in the RBR at the location pointed to by RA_TAIL, which is then incre-

mented. A data stream prefetch is generated at some point after branch A, and two more

branch outcomes are saved in the RBR (branches B and C). At some point the demand fetch

that triggered the runahead episode is serviced, and the pipeline re-fetches the runahead ini-

tiating instruction. This is shown on the right hand side of Figure 3.8 with the re-issued load

or store instruction represented by the topmost oval. As the demand fetch has been serviced,

this instruction retires in the normal fashion, and the pipeline continues to execute instruc-

tions. At some point the pipeline reaches branch A, and is able to predict it using the predic-

tor A in the RBR. Eventually, the pipeline reaches the instruction that generated the data

stream prefetch in the previous runahead episode. Unfortunately, this prefetch has not yet

been serviced, and the pipeline enters runahead again. Branch B is subsequently pre-pro-

cessed a second time during runahead, only this time there is a predictor in the RBR that can

be used by the pipeline due to the overlap between the runahead episodes. The same hap-

pens for branch C. After using predictor C to predict branch C, the pipeline continues to

pre-process instructions, and eventually pre-processes branch D. Unfortunately, this

dynamic branch has not been pre-processed before, so there is no predictor in the RBR that

can be used. Therefore, the pipeline predicts the branch using the 2-bit counters. When the
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branch is retired, the pipeline saves the branch outcome D in the RBR and continues. At

some point when the unserviced prefetch that initiated runahead has been serviced, the pipe-

line resumes normal execution at the point that the prefetch was generated. When this

occurs the RBR contains the outcomes of three branches, B, C, and D, that are still useful.

Note that this example ignores the effects of instruction cache misses: they are simply

ignored in our baseline runahead branch prediction scheme. As with any branch mispredic-

tion, if a skipped branch caused by an instruction cache miss results in an RBR branch

misprediction, the affected portions of the RBR are flushed. Also, as our runahead processor

continues to pre-process instructions past conditional branches that cannot be resolved with

VALID registers, we need a strategy to keep the RBR in sync with the aggressive pipeline.

This is done by simply assuming that the branch prediction scheme used is good enough to

keep the pipeline on the right path past unresolvable branches most of the time. When an

unresolvable conditional branch is retired during runahead the predicted outcome of the

branch, obtained from the 2-bit counters, is saved in the RBR.

3.6.9  Unimplemented instructions during runahead

While the pipeline can emulate unimplemented instructions during normal operation by

flushing the pipeline and re-syncing the state of the simulated processor to that of the work-

station processor, this cannot be done during runahead episodes. During runahead episodes

the simulator is no longer retiring instructions in “lockstep” with the workstation processor,

so there is no way for it to use the workstation as an emulation work-around for unimple-

mented instructions.

This leaves the runahead processor with two possible courses of action when it attempts

to retire an unimplemented instruction during runahead. It could simply treat the unimple-
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mented instruction as a bubble, and assume that the instruction would not re-direct the

instruction stream. This would work fine as long as the instruction is a floating point opera-

tion, or a similar more-or-less innocuous instruction. We have chosen a simpler approach, in

which our pipeline halts if it attempts to retire an unimplemented instruction. If this occurs

during runahead the pipeline is flushed when normal operation resumes. If this occurs dur-

ing normal operation the next call toEmulationBridge  detects the unimplemented

instruction in the WRITEBACK stage and performs the pipeline flush and state synchroni-

zation. As unimplemented instructions are rare in SPEC integer benchmarks this approach

should not significantly affect performance.

3.6.10  Avoiding segmentation faults during runahead simulation

Due to the highly speculative nature of runahead it is possible for the processor to gener-

ate erroneous prefetches. As our simulated pipeline actually reads load data values from the

workstation’s main memory when it simulates loads during both runahead and normal oper-

ation, it is possible for our simulator to generate a segmentation fault if it attempts to load a

value from a speculative address that is incorrect. These accesses would quickly kill the

simulation if they were not detected before being allowed to access the contents of memory.

We solved this problem in a two-fold fashion. First, we observed that if a runahead load

target address hits in either of the simulated data caches, then we know for certain that it is

safe for the simulator to access that address in the workstation’s memory as that line must

have been successfully allocated in the simulated cache at some point.

Segmentation faults can still occur for prefetches that in a real machine would have to

go all the way out to main memory. We detect potential segmentation faults for these

prefetches by maintaining a linked list of all of the virtual page numbers that have been
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demand fetched by the simulated processor during normal operation. This list is checked

whenever a data stream prefetch reaches the simulated main memory. If the virtual page

number corresponding to the prefetch does not exist in the linked list, then there is a very

good chance that a segmentation fault will occur if we allow the runahead prefetch to access

the contents of the workstation’s memory. These prefetches are dropped.

The performance of the linked list access is improved by “bumping” page number

entries that hit in the list to the head of the list. This reduces the average number of list

nodes that have to be examined. Note that this list acts as an infinite TLB used with a main

memory that never swaps out pages.

A simpler approach is used to detect instruction fetches or prefetches that could cause a

segmentation fault. We avoid checking for bad addresses as long as instruction stream

fetches hit in the L1 instruction cache. If an instruction fetch or prefetch misses in the simu-

lated instruction caches, we can determine if it is an illegal instruction address by checking

to see if it maps into the known limits of the text space for the instrumented benchmark.

These limits are obtained via ATOM when the simulator is initialized. If an attempted

instruction fetch or prefetch address falls outside of these limits, then the instruction fetch or

prefetch is dropped, and the FETCH stage halts. This can happen during normal operation

on a mispredicted branch or jump, in which case fetch is restarted when the misprediction is

detected in the EXECUTE stage of the pipeline. This can also happen during runahead if

the pipeline goes down a wrong path. When this happens, the FETCH stage is restarted if

the fetch attempt was caused by a mispredicted branch during runahead, or when normal

operation resumes when the runahead-initiating fetch has been serviced.
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3.7 Benchmarks

We chose to use the GO, PERL, VORTEX, and IJPEG benchmarks from the SPEC’95

Integer Suite [38] for the bulk of our simulation studies. The STREAM benchmark [39] was

also used in order to stress the memory hierarchy. As STREAM is a floating point bench-

mark we had to modify the code such that all of the data types were typeunsigned

long  before we could use it with our simulator. The arguments that are passed to each

benchmark are provided in Table 3.1, “Benchmark Arguments,” on page 60. Descriptions of

each SPEC benchmark follow, all of which are assembled from [38]. Simulations of the

SPEC benchmarks were run for 100M instructions, while STREAM was run for 10M

instructions. All of the caches were cold-started, and statistics gathering was initiated at the

beginning of each simulation.

VORTEX

VORTEX is a single-user object-oriented database transaction benchmark which exer-

cises a system kernel coded in integer C. The VORTEX benchmark is a derivative of a full

OODBMS that has been customized to conform to SPEC CINT95 guidelines.

Transactions to and from the database are translated though a schema in which the

benchmark is pre configured to manipulate three different databases: mailing list, parts list,

and geometric data. The benchmark builds and manipulates three separate, but inter-related

databases based on the schema. The size of the database is scalable, and for CINT95 guide-

lines has been restricted to about 40MB. VORTEX been modified to not commit transac-

tions to memory in order to remove input-output activity from this CINT95 (component)

benchmark.

The workload is modeled after common object-oriented database benchmarks with

modifications to vary the mix of transactions.
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GO

Go is a cpu-bound integer benchmark. It is an example of the use of artificial intelli-

gence in game playing. Go plays the game of go against itself. The benchmark is stripped

down version of a successful go-playing computer program. The benchmark is imple-

mented in ANSI C (with function prototypes). There is a great deal of pattern matching and

look-ahead logic. As is common in this type of program, up to a third of the run-time can be

spent in the data-management routines.

IJPEG

The IJPEG benchmark performs jpeg image compression and decompression with vari-

ous parameters. This is a cpu intensive benchmark.

PERL

The PERL benchmark performs text and numeric manipulations consisting of anagrams

and prime number factoring. As much as 10% of the time can be spent in routines com-

monly found in libc.a: malloc, free, memcpy, etc.

3.7.1  System Issues

The benchmarks were compiled using the DEC OSF/1 AXP C Compiler version 3.11

supplied with OSF/1 version 3.2. The “-std1 -O2 -non_shared -r” flags were used as argu-

ments to the compiler. Instrumentation was performed with version 2.29 of ATOM running

on DEC 3000 workstations employing ALPHA 21064 CPUs. No flags were passed to

ATOM.
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Table 3.1 Benchmark Arguments

Benchmark
Data Set

VORTEX “vortex vortex.raw”
reference data set
vortex.raw contains:
MESSAGE_FILE   vortex.msg OUTPUT_FILE    vortex.out
DISK_CACHE     bmt.dsk RENV_FILE      lendian.rnv
WENV_FILE      lendian.wnv PRIMAL_FILE    vortex.pml
PARTS_DB_FILE parts.db DRAW_DB_FILE   draw.db
EMP_DB_FILE    emp.db PERSONS_FILE   persons.1k
PART_COUNT     16000 OUTER_LOOP     1
INNER_LOOP     14 LOOKUPS        250
DELETES        8000 STUFF_PARTS    8000
PCT_NEWPARTS   0 PCT_LOOKUPS    0
PCT_DELETES    0 PCT_STUFFPARTS 0
TRAVERSE_DEPTH 3 FREEZE_GRP     1
ALLOC_CHUNKS   10000 EXTEND_CHUNKS 5000
DELETE_DRAWS   1 DELETE_PARTS   0
QUE_BUG        1000 VOID_BOUNDARY 67108864
VOID_RESERVE   1048576

GO “go 10 13”
requires just over 100M instructions to run to completion

IJPEG “:ijpeg
-image_file specmun.test.ppm
-compression.quality 25
-compression.optimize_coding 0
-compression.smoothing_factor 90
-difference.image 1
-difference.x_stride 10
-difference.y_stride 10
-verbose 1
-GO.findoptcomp”
requires just over 100M instructions to run to completion

PERL “perl scrabbl.pl < scrabbl.in”
reference data set

STREAM N = 400000
NTIMES = 1
OFFSET = 0
requires just over 10M instructions to run to completion
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Chapter  4

Baseline Runahead Experiments

In this chapter we evaluate the runahead processor model described in Chapter 3. The

intent is to provide an overview of the general characteristics of runahead. Subsequent chap-

ters provide a more detailed analysis of runahead, as well as an examination of low-cost

implementations.

4.1 CPI results

The most important result that we can present for these preliminary simulations is the

improvement in CPI (Cycles Per Instruction) that can be obtained via runahead. Bar charts

that illustrate the CPI obtained for our baseline runahead processor model are shown in Fig-

ures 4.1 through 4.5. There are three stacked bars in each plot. The height of each bar, as

enumerated on the y-axis, represents the number of processor cycles that each 100M

instruction simulation required to complete. Each bar is broken down in to 9 parts, repre-

senting the contribution to processor CPI that each instruction class plus instruction cache

misses had to the overall CPI of the simulation. These classes include the following:

• L1 instruction cache misses

• Load instructions

• Store instructions

• Load-address instructions (these compute an address and place it into a register)

• ALU instructions
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• Indirect branch instructions

• Unconditional branch instructions

• Conditional branch instructions

• Unimplemented instructions (floating point and PALCODE)

The left-most of the three stacked bars represents the overall CPI of a baseline processor

that does not employ either runahead or prefetching of any kind. The center stacked bar rep-

resents the CPI of the runahead processor. The right-most stacked bar does not represent a

specific simulation, rather it represents the number of instructions (execute counts) of each

class that were executed during normal operation by the processor. Cycles that the processor

spends in load- and store-miss initiated runahead episodes are attributed to load and store

instructions in the CPI plots.

The overall CPI of each simulation is provided at the top of each bar. In order to ease the

comparison between the runahead and non-runahead simulation results, the load, store, and

instruction cache miss portions of the runahead processor stacked bar have their percentage

reductions over their equivalents in the non-runahead processor located next to them. Note

that the percentage reduction in CPI for loads and stores do not include cycles in which

loads and stores are retired: the latter are represented as the load and store portions of the

execute counts stacked bar. These percentage reduction figures include both data cache

miss, store queue, load-store dependency, and address generation interlock stalls. The load-

store dependency stalls are a by-product of our simulation methodology, which requires us

to execute loads and stores in separate stages of the pipeline.

The first plot, shown in Figure 4.1, is for the GO benchmark. The overall CPI of the

runahead processor is a moderate 3.02, while the CPI of the runahead processor is 2.24.

Runahead was able to reduce overall CPI by a respectable 26%. About one-half of the CPI
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improvement is attributable to reductions in instruction cache misses (75% reduction in

instruction cache miss CPI) due to instruction stream prefetches generated by runahead. The

rest of the CPI reduction came about as a result of data stream prefetching for loads and

stores. The load portion of pipeline CPI was reduced by 26%, while the store portion was

reduced by 35%.

The second plot, shown in Figure 4.2, is for the VORTEX benchmark. The overall CPI

for VORTEX is rather high at 4.00, while the CPI of the runahead processor is 2.51, corre-

sponding to a 37% reduction in CPI. As was true for the GO benchmark, about half of the

improvement came from reductions in instruction cache misses, with runahead reducing the

instruction cache miss portion of CPI by 69%. The load portion of pipeline CPI was

reduced by 27%, and the store portion was reduced by 43%.

The third plot, shown in Figure 4.3, is for the STREAM benchmark. Runahead was able

to reduce the overall CPI from 18.96 to 4.41, a 77% reduction. Runahead is able to improve

performance a great deal, with the load contribution towards pipeline CPI reduced by 83%,

and the store portion reduced by 79%. This superior performance is the result of four fac-

tors. First, the data cache miss rate is high, providing many opportunities for the processor

to enter runahead mode. Second, the benchmark strides linearly through memory, allowing

the runahead processor to nearly always compute load and store addresses correctly during

runahead. Third, the benchmark itself is very small, resulting in a very small instruction

cache miss rate. This effectively eliminates instruction cache miss effects during runahead

episodes. Fourth, the processor does not suffer from branch mispredictions for STREAM,

as the benchmark consists of a sequence of loops that are executed many times.
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The fourth plot, shown in Figure 4.4, is for the IJPEG benchmark. Runahead was able to

reduce the overall CPI from 1.55 to 1.30, corresponding to a reduction in CPI of 16%. In

spite of this relatively small improvement, runahead was able to reduce the load portion of

pipeline CPI by 44%, and the store portion by 27%. These excellent load and store CPI

improvements do not translate into a correspondingly large improvement in overall CPI as

IJPEG is ALU intensive, which can be seen in the execute counts bar. The situation on the

instruction stream side was similar for IJPEG: runahead was able to reduce the instruction

cache miss portion of CPI by 78%, but as the instruction cache miss rate for IJPEG is low,

this does not translate into a major performance improvement.

The results for the PERL benchmark are shown in Figure 4.5. Runahead was able to

reduce overall CPI 34% to 2.86 from 4.30. The store contribution to pipeline CPI was

reduced 42%, while that of loads was reduced 38%. The largest component of the overall

CPI for the non-runahead processor is attributable to instruction cache misses. Runahead

was able to reduce instruction cache CPI by 52%, the least of the instruction cache miss CPI

improvements of all of the benchmarks that were simulated.
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Figure 4.3
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4.2 Memory Bandwidth

We measured the average bandwidth at various levels of the memory hierarchy during

our simulations and present the results in this section. Plots of the average memory system

bandwidth are shown in Figures 4.6 through 4.20. Each plot consists of two stacked bars:

one for the runahead processor, and one for a non-runahead processor. Each of these bars

has its bandwidth broken down into its component parts. Data stream bandwidths are bro-

ken down into store-through/writeback, prefetch, and demand fetch components. Instruc-

tion stream bandwidths are broken down into prefetch and demand fetch components. Note

that we do not present bandwidths for the L1 caches, as these numbers are not particularly

enlightening for a runahead processor which more or less constantly accesses the L1 caches.

Also, note that our bandwidth numbers are for accesses that actually supply data: cache

Figure 4.5
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accesses that result in misses do not count towards our bandwidth numbers. Our memory

hierarchy requires all L2 cache accesses that miss to access the cache a second time; in

other words we do not simulate fetch-around. All main memory accesses count of course, as

misses do not occur at that level of the memory hierarchy.

4.2.1  Main memory bandwidth

The average main memory bandwidth for the GO benchmark is shown in Figure 4.6.

Note that both the runahead and non-runahead bandwidths are rather low, at 21.49 and 1.98

MB/s respectively. This is normal for the SPEC benchmarks, which tend to fit in large L2

caches. Even so, the runahead processor was able to increase the average main memory

bandwidth by a factor of ten over that of the non-runahead processor. This is a consequence

of prefetch traffic and the resulting CPI improvements, which reduce the amount of time

available for the main memory to service a given number of requests. Note that relatively

few instruction prefetches made it out to the main memory. This is a consequence of the

benchmark largely fitting in the 1MB L2 instruction cache. Interestingly, there was very lit-

tle writeback traffic from the L2 data cache to the main memory for the GO benchmark.

The average main memory bandwidth for the VORTEX benchmark is shown in Figure

4.7. This benchmark requires significantly more main memory bandwidth (40.4 MB/s and

92.7 MB/s for the non-runahead and runahead processors respectively) than GO. VORTEX

generates a significant number of prefetch requests that reach main memory, enough of

which are useful enough to significantly reduce the number of demand data fetches. Instruc-

tion prefetches are kept to a minimum, while there is a significant amount of store traffic.

The main memory bandwidth for the PERL benchmark is shown in Figure 4.8. As with

VORTEX a significant amount of the main-memory bandwidth is used by both the
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runahead and non-runahead processors, however the average bandwidths are much lower

than the available bandwidth. The runahead main-memory bandwidth (80.3 MB/s) is

slightly more than twice that of the non-runahead main-memory bandwidth (39.6 MB/s).

Note that more than half of the demand fetch bandwidth is eliminated when runahead is

employed.

The main memory bandwidth plot for the STREAM benchmark is particularly interest-

ing, and is shown in Figure 4.9. The non-runahead processor produces a respectable average

bandwidth of 323 MB/s, however this is greatly overshadowed by the bandwidth of the

runahead processor at 1.39 GB/s. This huge average runahead main memory bandwidth for

STREAM is very close to the peak 1.6 GB/s bandwidth that our simulated main memory

can provide. Although STREAM is a somewhat contrived benchmark, it is does indicate

that runahead can readily use a high bandwidth memory hierarchy when an application

exhibits particularly poor caching behavior. Note that most of the traffic for the runahead

processor are data stream prefetches, while the majority of the remainder is store traffic.

Few demand instruction or data fetches are presented to the main memory.

The main memory bandwidth for the IJPEG benchmark is shown in Figure 4.10. Note

that this benchmark requires relatively little main memory bandwidth, as do most of the

SPEC benchmarks. The non-runahead processor only produces an average bandwidth of

1.81 MB/s, while the runahead processor produces a somewhat higher bandwidth of 5.19

MB/s. Most of the bandwidth consists of data fetches and prefetches, with most of the

remainder consisting of instruction prefetch and fetch traffic. There is virtually no writeback

traffic from the L2 data cache.



70

Figure 4.6
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Figure 4.8
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4.2.2  L2 data cache bandwidth

Unlike the relatively low main memory bandwidth produced for most of the bench-

marks, the small 8KB L1 data cache used in our simulations requires a large amount of traf-

fic between the L1 and L2 data caches. Store traffic was a significant source of bandwidth

for all of the benchmarks, but did not even come close to saturating the L2 data cache as

none of the benchmarks used even half of the available bandwidth.

The average L2 data cache bandwidth for the GO benchmark is shown in Figure 4.11.

The non-runahead processor used an average of 1.27 GB/s, of which about two-thirds of

which were store-throughs from the write-through L1 data cache to the writeback L2 data

cache. The remaining traffic consists of demand data fetches. The runahead processor used

a significantly greater average bandwidth of 1.77 GB/s. The store traffic still makes up about
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two-thirds of the total, however nearly half of the remainder is made up of data prefetches.

These relatively high average bandwidth figures imply that the GO benchmark is able to

make good use of the 6.4 GB/s peak bandwidth of the L2 data cache.

The L2 data cache bandwidth for the VORTEX benchmark, shown in Figure 4.12, has

even higher average bandwidths than those obtained for GO. The non-runahead processor

uses an average of 1.72 GB/s, most of which consists of store-throughs. The runahead pro-

cessor used a significantly larger average bandwidth of 2.77 GB/s. As with the GO bench-

mark, nearly half of the non-store bandwidth consisted of prefetch traffic.

As was the case for the main memory bandwidth, the L2 data cache bandwidth for the

STREAM benchmark, shown in Figure 4.13, is particularly interesting. The non-runahead

processor used a relatively low average bandwidth of 608 MB/s, most of which consists of

store-through traffic. The data fetch and prefetch L2 data cache bandwidths for the runahead

and non-runahead processors are virtually the same as their main memory counterparts,

which is intuitive given the lack of locality in the benchmark. The runahead processor gen-

erated an average L2 data cache bandwidth of 2.61 GB/s. Note that more than one-third of

the traffic was for data prefetch requests, and that very few demand fetches were requested.

The bulk of the traffic is of course store traffic. The total L2 data cache bandwidths for both

processor models are higher than their main memory counterparts due to the writeback L2

data cache, which coalesces multiple L2 data cache store-throughs into a single main mem-

ory writeback transaction.

The L2 data cache bandwidth for the IJPEG benchmark, shown in Figure 4.14, has

nearly the same bandwidths for both the non-runahead and runahead processors, at 1.87 and
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2.23 GB/s respectively. Nearly all of the traffic consists of store-throughs, however more

than half of the non-store traffic for the runahead processor consists of prefetches.

The runahead processor was able to significantly increase the L2 data cache bandwidth

for the PERL benchmark, shown in Figure 4.15, with an average runahead bandwidth of

1.82 GB/s as compared with 1.23 GB/s for the non-runahead processor. As was the case

with the IJPEG benchmark, most of the L2 data cache traffic consists of store-throughs.
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Figure 4.11
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Figure 4.13
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4.2.3  L2 instruction cache bandwidth

The L2 instruction cache bandwidths are not nearly as interesting as those for the data

stream side of the memory hierarchy. This is a consequence of the relatively good instruc-

tion stream caching behavior of most of the SPEC benchmarks. STREAM of course easily

fits into the L1 instruction cache.

The L2 instruction cache bandwidth for the GO benchmark is shown in Figure 4.16. The

non-runahead processor has a low average bandwidth of 352 MB/s, while the runahead pro-

cessor comes in at 858 MB/s. The overwhelming majority of the runahead processor’s L2

instruction cache bandwidth is made up of prefetch requests.

The results for the VORTEX benchmark, shown in Figure 4.17, exhibit significantly

greater bandwidths. The non-runahead processor uses an average of 583 MB/s, while the

Figure 4.15

data fetch
data prefetch
store traffic

0

0.5

1.0

1.5

2.0

2.5

1.82 GB/s

1.23 GB/s

B
an

dw
id

th
 (

G
B

/s
)

Average L2 Data Cache Bandwidth for PERL

Non Runahead Runahead



78

runahead processor uses 2.0 GB/s of bandwidth, the majority of which is for prefetch

requests.

The L2 instruction cache bandwidth for the STREAM benchmark, shown in Figure

4.18, is rather uninteresting. The non-runahead processor uses an average of 3.72 KB/s of

bandwidth for demand fetches, while the runahead processor uses 23.3 KB/s, most of which

consists of prefetch requests.

The runahead processor produced a large increase in L2 instruction cache bandwidth for

the PERL benchmark, shown in Figure 4.19. The bandwidth increases from 580 MB/s for

the non-runahead processor to 2.61 GB/s for the runahead processor. Virtually all of these

accesses hit in the L2 instruction cache, as instruction stream fetch and prefetch requests

comprise a rather small proportion of total main memory bandwidth (Figure 4.8).

The instruction stream bandwidth for the IJPEG benchmark, shown in Figure 4.20, is

relatively low, even when runahead is employed, when compared to the figures obtained for

the other SPEC benchmarks. This is a result of the relatively low L1 instruction cache miss

rate for the IJPEG benchmark.
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Figure 4.16
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Figure 4.18
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4.3 Prefetching effectiveness over the course of runahead episodes

As these runahead simulations allow the processor to speculatively pre-process instruc-

tions past branches that cannot be resolved, there will likely be a significant number of

instructions that are pre-processed on wrong paths. These instructions can generate errone-

ous prefetches, even if their register values are VALID.

4.3.1  Probability of remaining on the correct path during runahead

An instruction is on the proper path in a runahead episode if all of the instructions in the

runahead episode up to and including the instruction in question are executed during normal

operation at the conclusion of runahead, starting with the first instruction in the runahead

episode. Also, note that it is possible for the processor to re-enter runahead mode multiple
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times before all of the instructions in a given runahead episode are executed during normal

operation.

The x-axis of each plot represents the distance into the average runahead episode, in

instructions, with the x = 0 point indicating the instructions that initiate runahead mode. The

y-axis represents the probability that an instruction at a given point in the runahead episode

is on the right path. Measuring this was complicated somewhat by the fact that the processor

can execute the same dynamic instance of an instruction multiple times in successive

runahead episodes before the instruction is actually executed, if ever, during normal opera-

tion. Note that instructions skipped due to instruction cache misses are still considered to

have been pre-processed. The PCs of these skipped instructions are compared to those exe-

cuted when normal operation resumes in the same manner that instructions that are actually

pre-processed are. Each plot has three data sets, representing averages for load-, store-, and

instruction-miss initiated runahead episodes. We do not present STREAM results as the

simple nature of this benchmark virtually guarantees that the processor remains on the cor-

rect path during load- and store-miss initiated runahead episodes.

The first plot, shown in Figure 4.21, is for the GO benchmark. Note that the first two

instructions in both load and store-miss initiated episodes are always on the correct path.

The first instruction in a data stream runahead episode is always, by definition, a load or

store instruction. These instructions cannot of course redirect the instruction stream. The

second instruction in these episodes can be a conditional branch, which can of course be

mispredicted. Instructions after the branch can be on the wrong path. The store-miss initi-

ated runahead episodes are by far the most likely to stay on the right path during the average

runahead episode. This is a consequence of their being initiated by store instructions, which
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do not introduce INV values into the processor register file. Any INV registers can of course

cause a branch to be mispredicted. In fact, for the GO Benchmark there is about an 80%

probability that a store-miss initiated episode is on the right path after 25 instructions. The

effect of INV registers can be seen in the data set for load-miss initiated episodes. There is

an immediate drop off in the probability after the first few instructions into the average load-

miss initiated episode. Even so, there is still about a 50% probability of runahead remaining

on the right path after 25 instructions. The instruction-miss initiated runahead data set is

interesting as it starts out at the x = 0 position with about a 75% probability of being on the

right path. This is a consequence of the fact that instruction miss initiated episodes are initi-

ated in the FETCH stage, where they can get squashed by instructions farther down the

pipeline. These brief instruction-miss initiated episodes still count however, because they

can generate a large number of erroneous prefetches. Each instruction stream prefetch can

generate up to 8 skipped instructions. Instruction miss initiated episodes are also hampered

as they skip instructions, some of which may have redirected the fetch stream. This is appar-

ent in the data set for the GO Benchmark, where the average instruction miss initiated epi-

sode only has about a 15% chance of being on the right path after 25 instructions have been

pre-processed.

The second plot, shown in Figure 4.22, is for the VORTEX benchmark. This plot

appears rather similar to the GO plot shown in Figure 4.21. As before, store-miss initiated

episodes are significantly more likely to stay on the right path during the average runahead

episode, with about a 93% probability after 25 instructions. The load-miss initiated data set

doesn’t drop off quite as fast as that for the GO benchmark. Even so, there is still a greater

than 50% probability of load-miss initiated episodes being on the right path after 25 instruc-
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tions. The instruction miss initiated data set is exhibits worse performance than that for GO,

with only about a 10% chance of being on the right path after 25 instructions have been pre-

processed.

The results for the PERL benchmark are shown in Figure 4.23. As was the case for the

VORTEX benchmark, this plot appears similar to that obtained for the GO benchmark.

The data obtained for the IJPEG benchmark, shown in Figure 4.24, is particularly inter-

esting. Note that both load and store-miss initiated episodes have a very high probability of

being on the right path, even after 25 instructions have been pre-processed. This is a result

of the relatively few branches in the benchmark that are dependent upon load-miss data.

Note that this result confirms our preliminary results reported in [36] where we found that

the aggressive and conservative runahead models reported virtually identical performance

improvements for IJPEG. IJPEG instruction miss initiated episodes also perform compara-

tively better than the other benchmarks, with a nearly 50% probability of being on the right

path after 25 instructions have been pre-processed.
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Figure 4.21
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Figure 4.23
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4.3.2  Number of runahead episodes of each type

The total number of runahead episodes that are initiated for each type of runahead is

shown in Figure 4.25. Note that load-miss initiated episodes outnumber store-miss epi-

sodes: this was expected as there are more load than store instructions executed in each

benchmark. Recall that the STREAM benchmark was simulated for 10M instructions, while

the SPEC benchmarks were simulated for 100M instructions.

4.3.3  Average number of prefetches generated per runahead episode

The average number of load, store, and instruction prefetches generated during each

type of runahead episode are shown in Figure 4.26. Note that store-miss initiated runahead

episodes always generate more data stream prefetches per episode than either load- or

instruction-miss episodes. This is a consequence of store misses not immediately seeding

the RF with INV values at the initiation of runahead. Interestingly, STREAM generates the

least data stream prefetches per episode of all of the benchmarks, yet it derives the most

benefit from runahead. This is a result of its high miss rate, and correspondingly larger num-

ber of runahead episodes. This can be seen in Figure 4.25. While STREAM generates the

most instruction prefetches on average, all of them are generated during instruction-miss

initiated runahead episodes, of which there are very few due to the extremely low instruc-

tion cache miss rate.
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4.3.4  Prefetching utility over the course of runahead episodes

We were particularly interested in finding out how effective runahead was over the

course of the average episode. We define a useful runahead prefetch as a prefetched line that

is accessed at least once during normal operation before it is either ejected from the L1

instruction or data cache, or the simulation ends. Accesses that occur during runahead do

not count, as these can be on the wrong path, and at any rate do not directly perform useful

work. Useless prefetches are of course the opposite of useful prefetches: they are never

accessed during normal operation before they are ejected from the L1 instruction or data

cache, or the simulation ends.

Having defined what we mean by useful and useless prefetches, we can now describe

the plots that we will use to illustrate the utility of runahead over the course of the average

episode. We want to be able to illustrate the number of useful vs. useless prefetches that

have been generated as a function of the number of instructions that have been pre-pro-

cessed. Note that these plots are cumulative as we want to show the utility of runahead up to

a certain number of instructions into the average episode. Due to the different nature of load,

store, and instruction miss initiated runahead episodes, we have chosen to present separate

plots for each runahead episode type. These plots are shown in Figures 4.27 through 4.66.

Each plot contains 4 data sets, which allow us to break the useful and useless prefetches

down into prefetches generated on the right and wrong paths. Finally, as noted earlier the

average runahead episode is shorter than 100 instructions in length. Because of this we limit

the x axis to a maximum of 100 instructions. Prefetches generated past this point are taken

care of by recording the total number of prefetches as spikes at x = 100.
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Load-miss initiated runahead

The first set of plots, shown in Figures 4.27 through 4.29 is for the GO benchmark. The

first of these, shown in Figure 4.27, is for load prefetches generated during load-miss initi-

ated runahead episodes. Note that the majority of the prefetches fall into the useful/right-

path category, and that virtually all prefetches generated during the first five or so instruc-

tions into runahead fall into this category. After about five instructions significant numbers

of wrong path prefetches start to be generated. However, note that most of these are still

useful prefetches. Very few prefetches are generated past the 25th instruction into the aver-

age runahead episode, as indicated by the flat curves past that point. This indicates that the

overwhelming majority of the runahead-initiating misses hit in the L2 data cache. At that

point the overwhelming majority of prefetches are useful, and of these most are on the right

path. Useless/wrong-path prefetches make up less than 10% of the total, while very few use-

less/right-path prefetches are generated. Note that most useless/right-path prefetches should

have been useful, however they were ejected from the cache by other prefetches before they

could be accessed during normal operation. Figure 4.28 shows the breakdown for store

prefetches generated during load-miss initiated runahead episodes for GO. Note that this

plot is very similar to the load prefetch plot, the only noteworthy difference being that load-

miss initiated episodes tend to generate many more load prefetches than store prefetches for

the GO benchmark. Figure 4.29 shows the breakdown for instruction stream prefetches.

Note that both right- and wrong path useful prefetches predominate for the first 99 instruc-

tions of the average episode, and that nearly all prefetches fall into either useful prefetch

category during the first twenty or so instructions into the average episode. The number of

useful/right-path and useless/right-path prefetches spikes at 100 instructions in to the aver-

age episode. As was mentioned earlier, the points at x = 100 represent the total number of
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prefetches generated. These spikes are a result of a succession of instruction cache misses

that occur late during runahead episodes that last much longer than average. The plots for

the VORTEX, PERL, and IJPEG benchmarks are very similar to those obtained for GO, and

can be found in Figures 4.30 through 4.38.

The plots for the STREAM benchmark, shown in Figures 4.39 and 4.40, are particularly

interesting. Note that all of the prefetches fall into the useful/right-path category. The access

pattern of STREAM is such that prefetched lines are not ejected until the data stream

“wraps around” the cache. As this takes quite a few cycles, even for a relatively small 8KB

cache, virtually all prefetched lines are accessed during normal operation before they are

ejected. Also, STREAM does not exhibit the “knees” that the other benchmarks have: virtu-

ally all L1 data cache misses for STREAM have to go out to main memory, which pushes

the average runahead episode length out to close to 100 instructions. We do not present
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instruction prefetch results for STREAM due to its extremely low instruction cache miss

rate.
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Figure 4.28
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Figure 4.30
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Figure 4.32
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Figure 4.36
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Figure 4.38
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Store-miss initiated runahead

Store-miss initiated runahead episodes are more promising as they do not add an INV

value to the register file at the initiation of runahead. Unfortunately, loads tend to outnumber

stores, which will result in more load than store miss initiated runahead episodes.

The first set of plots, shown in Figures 4.41 through 4.43, is for the GO benchmark. The

first of these plots, shown in Figure 4.41, is for load prefetches. Note that virtually all of the

load prefetches generated are useful/right-path prefetches. Very few useless prefetches are

generated, and of these, useless/right-path prefetches predominate. A similar plot for store

prefetches is shown in Figure 4.42. The plot for instruction prefetches generated during

store-miss initiated episodes, shown in Figure 4.43, is very similar to that for instruction

prefetches generated during load-miss initiated runahead episodes, shown in Figure 4.29.

The only notable difference is that useful/right-path prefetches predominate over the entire

Figure 4.40

0 20 40 60 80 1000

1

2

3

Instructions into Runahead Episode

N
um

be
r 

of
 p

re
fe

tc
he

s 
ge

ne
ra

te
d 

(x
10

5 )

Data Stream Prefetch Utility for STREAM
STORE prefetches during LOAD miss initiated runahead

useful right path prefetches
useful wrong path prefetches

useless wrong path prefetches
useless right path prefetches



100

course of the average runahead episode. This is due to the greater probability of staying on

the right path for store miss initiated runahead episodes, as can be seen in Figure 4.21. The

plots for the VORTEX, PERL, and IJPEG benchmarks are very similar to those obtained for

GO, and can be found in Figures 4.44 through 4.52. Note that the plots for STREAM shown

in Figures 4.53 and 4.54 are very similar to their load-miss initiated counterparts in Figures

4.39 and 4.40.
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Figure 4.41
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Figure 4.43
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Figure 4.45
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Figure 4.51
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Figure 4.53
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Data stream prefetching during instruction cache miss initiated runahead

Instruction miss initiated runahead is inherently more speculative than data stream miss

initiated runahead due to the uncertainty arising from the skipping of instructions. Note that

we do not present any results here for the STREAM benchmark due to its very low instruc-

tion cache miss rate.

The first set of plots, shown in Figures 4.55 and 4.56, are for the GO benchmark. The

first of these plots, Figure 4.55, is for load prefetches. Note that useful prefetches outnumber

useless prefetches for about the first two dozen instructions into the average episode. After

this point the number of useless prefetches is approximately the same as the number of use-

ful prefetches. The situation is even worse for store prefetches, as shown in Figure 4.56.

Here useful prefetches are outnumbered by useless prefetches at the start of the average

runahead episode.

The second set of plots, shown in Figures 4.58 and 4.59, are for the VORTEX bench-

mark. Data stream prefetching during instruction cache miss initiated runahead episodes

makes no sense at all for VORTEX, as useless prefetches outnumber useful prefetches right

from the start.

The third set of plots, shown in Figures 4.61 and 4.62, are for the PERL benchmark. As

with GO, some number of useful load prefetches are generated during the first few instruc-

tions of the average runahead episode. This situation quickly changes however, with useless

prefetches outnumbering useful prefetches. Interestingly, most of the useful load prefetches

are on the wrong path. The situation reverses for store prefetches: most store prefetches are

useful.
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The fourth set of plots, shown in Figures 4.64 and 4.65, are for the IJPEG benchmark.

Most of the load and store prefetches are useful, although for store prefetches the ratio

approaches unity for runahead episodes that pre-process more than about 50 instructions.

Instruction stream prefetching during instruction cache miss initiated runahead

Data stream prefetches may suffer more from instruction cache miss effects than

instruction stream prefetches as the accuracy of data stream prefetches can be affected by

both register dependences upon skipped instructions and skipped branches. The validity of

instruction stream prefetch addresses is affected primarily by the processor missing

branches in skipped instruction cache lines. This implies that the processor may benefit

more from instruction than data prefetching during instruction cache miss initiated

runahead episodes. As before, we do not present STREAM results here due to the extremely

low instruction cache miss rate for this benchmark.

The first plot is for the GO benchmark, and is shown in Figure 4.57. Useful prefetches

outnumber useless prefetches by a wide margin for the first two dozen or so instructions into

the average episode, after which the number of useless prefetches starts to become signifi-

cant. This comes about due to a tapering off of the number of useful prefetches that are on

the right path, which is largely a consequence of the processor missing taken branches in the

instruction cache lines that are skipped. The number of wrong path prefetches, both useful

and useless, tend to increase linearly. Note that the wrong path curves tend to have a more or

less staircase shape, and that the width of each step is about 8 instructions. This is a result of

the fact that most of the wrong path prefetches are sequentially clustered after the runahead

initiating miss, and that the instruction cache line width is 8 instructions.
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The plots for the VORTEX and PERL benchmarks, shown in Figures 4.60 and 4.63

respectively, show essentially the same behavior as GO.

The final plot is for the IJPEG benchmark, and is shown in Figure 4.66. IJPEG exhibits

different behavior, with useful/right path prefetches dominating all other types. Unfortu-

nately IJPEG does not suffer much from instruction cache misses, even without runahead.
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Figure 4.56
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Figure 4.58
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Figure 4.60

0 20 40 60 80 1000

1

2

3

4

Instructions into Runahead Episode

N
um

be
r 

of
 p

re
fe

tc
he

s 
ge

ne
ra

te
d 

(x
10

6 )

INSTRUCTION prefetches during INSTRUCTION miss initiated runahead
Instruction Stream Prefetch Utility for VORTEX

useful right path prefetches
useful wrong path prefetches

useless wrong path prefetches
useless right path prefetches

0 20 40 60 80 1000

2

4

6

8

10

Instructions into Runahead Episode

N
um

be
r 

of
 p

re
fe

tc
he

s 
ge

ne
ra

te
d 

(x
10

4 )

Data Stream Prefetch Utility for PERL
LOAD prefetches during INSTRUCTION miss initiated runahead

useful right path prefetches
useful wrong path prefetches

useless wrong path prefetches
useless right path prefetches

Figure 4.61



114

0 20 40 60 80 1000

5

10

15

Instructions into Runahead Episode

N
um

be
r 

of
 p

re
fe

tc
he

s 
ge

ne
ra

te
d 

(x
10

3 )

Data Stream Prefetch Utility for PERL
STORE prefetches during INSTRUCTION miss initiated runahead

useful right path prefetches
useful wrong path prefetches

useless wrong path prefetches
useless right path prefetches

Figure 4.62

0 20 40 60 80 1000

2

4

6

8

10

Instructions into Runahead Episode

N
um

be
r 

of
 p

re
fe

tc
he

s 
ge

ne
ra

te
d 

(x
10

6 )

Instruction Stream Prefetch Utility for PERL
INSTRUCTION prefetches during INSTRUCTION miss initiated runahead

useful right path prefetches
useful wrong path prefetches

useless wrong path prefetches
useless right path prefetches

Figure 4.63



115

0 20 40 60 80 1000

1

2

3

Instructions into Runahead Episode

N
um

be
r 

of
 p

re
fe

tc
he

s 
ge

ne
ra

te
d 

(x
10

3 )

LOAD prefetches during INSTRUCTION miss initiated runahead
Data Stream Prefetch Utility for IJPEG

useful right path prefetches
useful wrong path prefetches

useless wrong path prefetches
useless right path prefetches

Figure 4.64

0 20 40 60 80 1000

2

4

6

8

Instructions into Runahead Episode

N
um

be
r 

of
 p

re
fe

tc
he

s 
ge

ne
ra

te
d 

(x
10

2 )

STORE prefetches during INSTRUCTION miss initiated runahead
Data Stream Prefetch Utility for IJPEG

useful right path prefetches
useful wrong path prefetches

useless wrong path prefetches
useless right path prefetches

Figure 4.65



116

4.4 Measurements of miss-prefetch spatial locality

Plots that illustrate the spatial locality between runahead-initiating misses and subse-

quently generated prefetches are provided in Figures 4.67 through 4.75.

The x = 0 point on each plot represents the cache line address of each runahead-initiat-

ing L1 data cache miss. The other points on the x-axis represent the distance in cache lines

between the address of each runahead-initiating miss and any prefetches that are generated

during the corresponding runahead episode. For example, x = 1 represents the address of the

next sequential line in the address space after the address that caused the runahead-initiating

miss. The y-axis is a cumulative value. Its value at a particular x, say x = 35, represents the

cumulative total of all runahead prefetches generated for any of the 35 sequential line

addresses after the address of the miss that initiated runahead. The negative portion of the x-
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axis represents addresses before the runahead-initiating miss. The extreme data points at x =

+/- 100 lines represent the total number of runahead prefetches generated including those

whose addresses correspond to lines that are at least 100 lines distant from their correspond-

ing runahead-initiating misses. We include cumulative totals for both useful and useless

prefetches on each plot.

4.4.1  Data stream prefetch locality

The fact that our simulated runahead processor can generate data stream prefetches dur-

ing load-, store- and instruction-miss initiated runahead episodes complicates things some-

what. It does not make sense to talk about locality between data stream prefetches and

runahead-initiating instruction stream accesses. For this reason the data stream prefetch

locality plots that we present in this section are only for data stream prefetches that are gen-

erated during runahead episodes that are initiated on data cache misses. At any rate, rela-

tively few data stream prefetches are generated during instruction stream runahead

episodes.

The first data stream locality plot is for the GO benchmark, and is shown in Figure 4.67.

As we saw earlier in the prefetch utility plots, virtually all of the prefetches are useful. The

spikes at x = +/-100 indicate that most of the prefetches are for lines at addresses far

removed from that of their runahead initiating miss. Note that while virtually all of the use-

less prefetches fall into this category, a small fraction of the useful prefetches show some

spatial locality with the runahead initiating miss. The plot for PERL, shown in Figure 4.68,

is very similar to that for GO.

The third data stream prefetch locality plot is for the VORTEX benchmark, and is

shown in Figure 4.69. Nearly one-half of the prefetches are for lines that are located a small
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positive distance from their runahead initiating miss. Nearly all of the remaining prefetches

are for lines that show little spatial locality. Again, note that very few prefetches are useless,

and that most of the useless prefetches show little spatial locality with their runahead-initiat-

ing miss.

The fourth data stream prefetch locality plot is for the IJPEG benchmark, and is shown

in Figure 4.70. As with GO and PERL, most of the prefetches are for lines that show little

spatial locality, and there are very few useless prefetches. The staggered nature of the useful

prefetch curve is due to the way in which IJPEG structures it accesses.

The final data stream prefetch locality plot is for the STREAM benchmark, and is

shown Figure 4.71. Many of the useful prefetches are for lines that are a small positive dis-

tance from their runahead initiating miss: these represent prefetches for the array that

caused the runahead-initiating miss. The spikes at x = +/- 100 represent prefetches gener-

ated for arrays other than the one containing the runahead-initiating miss. Prefetches for one

array exhibit no locality with respect to accesses in another, as the arrays do not overlap.
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Figure 4.67

-100 -50 0 50 100-0.1

0.1

0.3

0.5

0.7

0.9

1.1

Locality with respect to runahead-initiating miss (lines)

N
um

be
r 

of
 p

re
fe

tc
he

s 
ge

ne
ra

te
d 

(x
10

6 )

-75 7525-25

Data Stream Prefetch Locality for GO

useful prefetches
useless prefetches

Figure 4.68

-0.1

0.1

0.3

0.5

0.7

-100 -50 0 50 100
Locality with respect to runahead-initiating miss (lines)

N
um

be
r 

of
 p

re
fe

tc
he

s 
ge

ne
ra

te
d 

(x
10

6 )

-75 7525-25

Data Stream Prefetch Locality for PERL

useful prefetches
useless prefetches



120

Figure 4.69
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4.4.2  Instruction stream prefetch locality

The instruction stream prefetch locality plots require some additional discussion before

we can present them. The locality between instruction stream prefetches generated during

runahead episodes that are initiated by instruction stream accesses is easy to calculate and

understand. However, the locality of instruction stream prefetches generated during data

stream access initiated runahead is not quite so straightforward. We define the locality of

these instruction stream prefetches to be difference between the cache line addresses of the

instruction prefetches and the cache line address of the PC of the load or store access that

initiated the runahead episode. As was the case with the prefetch utility plots, we do not pro-

vide a plot here for the STREAM benchmark due to its extremely low instruction cache

miss rate.

Figure 4.71
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The first instruction stream prefetch locality plot is for the GO benchmark, and is shown

in Figure 4.72. This plot looks nothing like its data stream counterpart in Figure 4.67. The

overwhelming majority of the prefetches are for lines that are a small positive distance from

their runahead initiating miss. This was expected, as instruction stream accesses typically

exhibit a significant amount of spatial locality, which is why sequential prefetching tech-

niques work well with the instruction stream of most applications. Most of the prefetches

that are generated for lines very close to their runahead initiating miss are useful; the ratio is

lower the farther away they are generated. This was also expected. The plots for the VOR-

TEX and IJPEG benchmarks, shown in Figures 4.73 and 4.74 respectively, are essentially

similar to that for GO.

The fourth instruction stream prefetch locality plot is for the PERL benchmark, and is

shown in Figure 4.75. This figure is essentially similar to that for GO, with the exception

that the majority of the prefetches that are generated are useless. Even so, prefetches that are

generated for lines very close to that of the runahead initiating miss are likely to be useful.
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Figure 4.72
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Figure 4.74
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4.5 What happens to potential data stream prefetches during runahead

Many of the pre-processed load and store instructions are unable to generate prefetches

for a variety of reasons:

• the instruction could not generate its target address with a VALID register, or

• the instruction hit in the L1 data cache, obviating the need to prefetch, or

• a demand fetch or prefetch for the missing line was already in progress, or

• the prefetch queue was full, forcing the processor to drop the prefetch, or

• the prefetch missed in the L2 data cache but its virtual page had not yet been the

target of a demand fetch (page fault).

If a potential prefetch does not fall into any of the above categories, it will eventually be

serviced by the memory hierarchy. Once this occurs it is still possible for the prefetch to fall

into the useless prefetch category if its corresponding line in the L1 data cache is not

accessed during normal operation before it is cast out of the cache, or the simulation ends.

We have divided up all of the potential load and store prefetches encountered during

each simulation into the above categories, and present them in Figure 4.76. There are two

stacked bars for each of the benchmarks: one each for load and store instructions. The

height of each bar represents the total number of loads and stores that are preprocessed dur-

ing the course of each simulation. Note that it is possible for this number to be quite high:

the number of loads and stores pre-processed during the STREAM simulation exceeds the

number of instructions of all types that are actually executed during the course of the simu-

lation. This is a consequence of the processor spending more time in runahead than in nor-

mal operation.

From Figure 4.76 it can be seen that a small fraction of the pre-processed loads and

stores generate prefetches. For the SPEC benchmarks most of the potential prefetches are

lost as they either hit in the L1 data cache or their address register is INV. The first category
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is misleading, as the fact that their accesses hit in the L1 data cache means that a prefetch is

unnecessary. For this reason we have reproduced the plot in Figure 4.76 in Figure 4.77, with

the L1 data cache hit category removed.

For the SPEC benchmarks most of the potential prefetches that can compute their target

addresses, and that do not correspond to an in-flight fetch or prefetch, actually generate

prefetches that are useful. Very few are dropped due to page faults or a full prefetch queue.

The only SPEC benchmark that has to drop a significant number of prefetches due to a full

queue is VORTEX, which it does for store prefetches.

The STREAM benchmark exhibits different behavior. A very large fraction of the

potential prefetches correspond to lines for which there is already an outstanding prefetch.

The nature of the benchmark leads to a great deal of overlap between consecutive runahead

episodes. Very few are dropped due to an outstanding demand fetch; again the nature of the

benchmark ensures that most accesses that go out to off-chip memory are prefetches and not

demand fetches. A large fraction of the potential prefetches are dropped due to a full data

stream prefetch queue. Increasing the size of the prefetch queue cannot improve perfor-

mance as the main memory interface is already saturated with fetch, prefetch, and store-

through requests. STREAM has an average main memory bandwidth of 1.39 GB/s, corre-

sponding to an 87% utilization of peak bandwidth (Figure 4.9).
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Figure 4.76

0

5

10

15

20

25

N
um

be
r 

of
 p

ot
en

tia
l p

re
fe

tc
he

s 
(x

10
6 )

Breakdown of what happens to pre-processed

GO - loads

GO - stores

IJPEG - loads

IJPEG - stores

VORTEX - loads

VORTEX - stores

STREAM - loads

STREAM - stores

PERL - loads

PERL - stores

useful prefetch
useless prefetch
prefetch dropped - bad address
prefetch dropped - queue full
other fetch servicing
other prefetch servicing
L1 data cache hit
invalid address register

loads and stores during runahead

Figure 4.77

useful prefetch
useless prefetch
prefetch dropped - bad address
prefetch dropped - queue full
other fetch servicing
other prefetch servicing
invalid address register

GO - loads

GO - stores

IJPEG - loads

IJPEG - stores

VORTEX - loads

VORTEX - stores

STREAM - loads

STREAM - stores

0.0

5.0

10.0

N
um

be
r 

of
 p

ot
en

tia
l p

re
fe

tc
he

s 
(x

10
6 )

Breakdown of what happens to pre-processed

7.5

2.5

PERL - loads

PERL - stores

without L1 data cache hits
loads and stores during runahead



128

4.6 Branch Prediction Effects

Branch mispredictions can cause a runahead processor to pre-process instructions down

wrong paths, which can reduce performance by generating useless prefetches.

A runahead processor may be able to reduce the number of branch mispredictions dur-

ing both runahead and normal operation by pre-processing branch instructions before they

are executed during normal operation. Conditional branch outcomes are recorded in the

Runahead Branch Register (RBR) during runahead episodes for use during normal opera-

tion as branch predictors. The RBR contents can also be used during runahead episodes that

overlap with previous episodes. In this way the RBR functions as a small window into the

likely future outcome of conditional branches. Refer to Chapter 3 for more details on RBR

operation.

The number of outcomes that are added to the RBR is proportional to the length of the

average runahead episode, which is roughly equal to the average latency to off-chip mem-

ory. This leads to an interesting trade-off: a runahead processor with a high latency to off

chip memory may have a better branch misprediction ratio than a runahead processor with a

low latency off-chip memory. The potentially improved branch misprediction rate, com-

bined with the longer runahead episode length, may allow a runahead processor with a high

latency (or inexpensive) off chip memory hierarchy to have performance competitive, or

perhaps even superior to, a runahead processor with a low latency (or expensive) off-chip

memory hierarchy.

One factor that can affect the accuracy of predictors in the RBR is L1 instruction cache

misses. Our baseline runahead processor can enter runahead mode on instruction cache

misses, and once in runahead mode continues to pre-process instructions even if subsequent
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instruction cache misses occur. The processor does this by assuming that the instructions in

the missing instruction cache line are not of critical importance during runahead and simply

skips over them sequentially until either normal operation resumes, or it finds a sequential

instruction cache line to pre-process. This skipping of instructions can cause the RBR to

yield incorrect predictors if the skipped instructions would have modified a branch condi-

tion or contain a taken branch.

In order to address these concerns we present several sets of branch misprediction data

for each of our benchmarks. The baseline for comparison is a non-runahead processor using

1024 2-bit counters to predict conditional branches. Several runahead processor configura-

tions are compared with this baseline. All of them have a 1024 entry RBR in addition to the

1024 2-bit counters. These models are as follows:

1. Runahead with real L2 instruction and data caches

2. Runahead with perfect L1 instruction cache and real L2 data cache

3. Runahead with perfect L1 instruction cache and no L2 data cache

The first model is the standard runahead processor model that we have been using all

along. This model can incur instruction cache misses which can interfere with the operation

of the RBR. The second model has a perfect L1 instruction cache, and is intended to illus-

trate more clearly the performance enhancing capabilities of the RBR approach. The third

model is the same as the second, only it has no L2 data cache. The lack of an L2 data cache

dramatically increases the length of the average runahead episode, which provides the pro-

cessor with more opportunities to add branch outcomes to the RBR.
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4.6.1  Branch misprediction rates

We present our branch misprediction statistics in Figures 4.78 through 4.82 with a series

of four stacked bars for each benchmark: one bar for the non-runahead processor and one

each for the three different runahead processor configurations. The height of each bar repre-

sents the total number of conditional branches executed in the benchmark in question. As a

result all of the bars for each benchmark are the same height. However, each bar is divided

into two sections representing the number of branches predicted with the RBR and the num-

ber of branches predicted with the 2-bit counters. The overall branch misprediction rate

(percentage) for each processor configuration is provided at the top of the each bar. The

branch misprediction rates for branches predicted with the RBR and 2-bit counters are pro-

vided to the right of their portion of each bar.

The results for the STREAM benchmark are shown in Figure 4.78. Note that the branch

misprediction rate for all of the processor configurations is zero. The non-runahead proces-

sor naturally has to use the 2-bit counters to predict all of its benchmarks, while the

runahead processors use the RBR to predict all of their branches. The RBR is able to pro-

vide predictors for all of the conditional branches as a result of the regular behavior of the

STREAM benchmark. The small size of the STREAM executable also helps in that there

are virtually no instruction cache misses. The fact that the branches in STREAM are inde-

pendent of the streaming data also helps. The RBR works very well for this benchmark,

unfortunately the simple nature of this benchmark does not require sophisticated branch

prediction: static branch prediction would suffice.

The results for the IJPEG benchmark are shown in Figure 4.79. This benchmark exhib-

its markedly different behavior than STREAM: the RBR is effectively utilized during
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runahead episodes, but the realistic nature of IJPEG as compared to STREAM keeps things

under control. For the baseline runahead processor the RBR misprediction rate is a fairly

low 8.98%. Unfortunately only 13% of the conditional branches are serviced by the RBR,

preventing it from contributing much to the overall branch misprediction rate of 10.12%.

The 2-bit counters have a misprediction rate of 10.26%, which is only slightly higher than

the 2-bit counter rate for the non-runahead processor. This is a result of instruction cache

misses during runahead, which can cause the processor to go down wrong paths and/or miss

conditional branches during runahead. Both can result in the 2-bit counters getting improp-

erly updated during runahead, and can also cause outcomes to be added in the wrong

sequence to the RBR. This results in mispredictions that would otherwise not happen. This

can be seen in the third stacked bar, which is for the runahead processor with a perfect L1

instruction cache. Note that both the 2-bit counter (10.24%) and RBR (8.56%) branch

misprediction rates are reduced, resulting in an overall branch misprediction rate of 10.05%.

Unfortunately, this overall branch misprediction rate is still close to that of the non-

runahead processor without the RBR. The fourth stacked bar represents a runahead proces-

sor identical to that of the third, only without an L2 data cache. The lack of an L2 data cache

significantly increases the length of the average runahead episode, providing the processor

with more opportunities to add outcomes to the RBR. Removing the L2 data cache allows

the RBR to service 39% of the conditional branches, with a misprediction rate of 5.23%.

The longer runahead episodes also provide more opportunities to train the 2-bit counters,

resulting in an improved misprediction rate of 9.84%. The overall misprediction rate for this

runahead processor is a significantly improved 8.56%.
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The results for the VORTEX benchmark are shown in Figure 4.80. Unfortunately

runahead does not help the branch misprediction rate for this benchmark at all. The non-

runahead processor is able to get a respectably low misprediction rate of 6.65% with only

the 2-bit counters. The baseline runahead processor (second stacked bar) increases this

somewhat to an overall rate of 7.95%. Nearly half of the conditional branches are serviced

by the RBR, at a 7.66% misprediction rate, while the remainder are serviced by the 2-bit

counters, at a 8.16% misprediction rate. The situation is improved somewhat when a perfect

L1 instruction cache is used (third bar). Here the overall misprediction rate of 6.67% is

nearly identical to that of the non-runahead processor, with a significantly lower rate of

4.81% provided by the RBR. This improved RBR performance is offset by the 2-bit counter

misprediction rate of 8.16%. Eliminating the L2 data cache makes things worse with an

overall misprediction rate of 8.34%, an RBR rate of 7.12%, and a 2-bit counter rate of

10.19%.

The results for the GO benchmark are shown in Figure 4.81. Runahead is able to consis-

tently improve the branch misprediction rate for this benchmark. The non-runahead proces-

sor (first bar) has a rather high misprediction rate of 21.95%. This is improved upon

somewhat with the baseline runahead processor (second bar) which achieves an overall rate

of 21.09%, with an RBR rate of 20.41% and 2-bit counter rate of 21.49%. The mispredic-

tion rate improves even more when a perfect L1 instruction cache is added (third bar) pro-

viding an overall rate of 20.75%. Eliminating the L2 data cache provides a large

misprediction rate improvement (fourth bar), with an overall rate of 16.73%. The RBR

misprediction rate is reduced to 13.31%, and the 2-bit counter rate to 20.88%.
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The results for the PERL benchmark are shown in Figure 4.82. The non-runahead pro-

cessor utilizing only the 2-bit counters (first bar) provides a misprediction rate of 10.86%.

The baseline runahead processor (second bar) has a somewhat worse overall misprediction

rate of 13.19%. This is largely the result of the rather large RBR misprediction rate of

16.66%, and is caused by instruction cache misses during runahead which allow the RBR to

get out of sync with the instruction stream. When a perfect L1 instruction cache is used

(third bar), the situation improves. While the overall misprediction rate is not significantly

improved (10.34%), the RBR rate does come down to 9.45%. The best results are obtained

when the L2 data cache is deleted (fourth bar). When this is done the overall branch mispre-

diction rate drops to 9.84%. This is entirely due to the RBR rate dropping to 8.65%, as the

2-bit counter rate increases slightly to 11.63%

Note that increasing the length of the average runahead episode does not necessarily

translate into a fourfold increase in the proportion of branches serviced by the RBR. This is

a consequence of our using aggressive runahead, which relies upon branch prediction to

resolve conditional branches during runahead that cannot be resolved with VALID registers,

as well as an increase in overlap between successive runahead episodes, which prevents the

addition of branches to the RBR. If a branch prediction is incorrect, then the processor will

go down the wrong path during the runahead episode. This can add many wrong path

branch outcomes to the RBR, which are likely to be incorrect. The RBR detects these cor-

rupted entries and flushes them when the processor discovers that a conditional branch has

been mispredicted with the RBR. While it is possible to flush additional incorrect predictors

from the RBR before they cause mispredictions during normal operation, it is not possible

to flush the 2-bit counters. This inability to unwind the 2-bit counter state leads us to con-
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clude that it may be possible to improve performance if 2-bit counter updates are not

allowed during runahead.



135

10

C
on

di
tio

na
l B

ra
nc

he
s 

R
et

ire
d 

(x
10

5 )

Conditional Branch Statistics for STREAM

Non-Runahead

Runahead

Runahead + Perfect L1I

No L2 Dcache

5.0

7.5

2.5

0

Predicted with 2-bit Counters
Predicted with RBR

0 0 0 0
0 0 0 0

Figure 4.78

Runahead + Perfect L1I

8

C
on

di
tio

na
l B

ra
nc

he
s 

R
et

ire
d 

(x
10

6 )

Conditional Branch Statistics for IJPEG

Non-Runahead

Runahead

Runahead + Perfect L1I

Runahead + Perfect L1I

No L2 Dcache

6

4

2

0

Predicted with 2-bit Counters
Predicted with RBR

10.22 10.12 10.05 8.56
10.22

10.26
10.24

9.84

10.24

8.98 8.56 5.23

Figure 4.79



136

0

10

C
on

di
tio

na
l B

ra
nc

he
s 

R
et

ire
d 

(x
10

6 )

Conditional Branch Statistics for VORTEX

Non-Runahead

Runahead

Runahead + Perfect L1I

Runahead + Perfect L1I

No L2 Dcache

15

5

Predicted with 2-bit Counters
Predicted with RBR

6.65 7.95 6.67 8.34
6.65

8.16 8.16

10.19

7.66 4.81 7.12

Figure 4.80

go.branch_pred_rates.xmgrpost_MRL/perfect_icache/plots/real_control/branch_prediction/rates/go

0

10

20

C
on

di
tio

na
l B

ra
nc

he
s 

R
et

ire
d 

(x
10

6 )

Conditional Branch Statistics for GO

Non-Runahead

Runahead

Runahead + Perfect L1I

Runahead + Perfect L1I

No L2 Dcache

15

5

Predicted with 2-bit Counters
Predicted with RBR

21.95 21.09 20.75 16.73
21.95

21.49 21.49

20.88

20.41 19.52 13.31

Figure 4.81



137

4.6.2  Runahead Branch Register Utilization

These simulations assume that the RBR can hold up to 1024 predictors in an attempt to

ensure that RBR size is not a performance limiting factor. The average number of outcomes

added to the RBR during runahead is a particularly useful statistic. Unfortunately this is not

the entire picture, as runahead episodes can overlap, during which time outcomes cannot be

added to the RBR. Instead, outcomes are read out of the RBR (non-destructively) for use as

predictors during runahead. This results in an interesting trade-off: less overlap allows the

processor to potentially add more outcomes to the RBR for use during normal operation, but

the presence of overlap allows the processor to use the RBR as a predictor during runahead,

which may increase the likelihood that runahead will stay on the proper path and generate

more useful prefetches than would otherwise be the case.

Figure 4.82
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We have measured the above statistics for each of the three runahead processor configu-

rations previously described, and present the results for each benchmark in Figure 4.83. The

height of each stacked bar in Figure 4.83 represents the number of outcomes in the RBR at

the conclusion of the average runahead episode. These outcomes are divided into two cate-

gories: those corresponding to branches that overlap with prior runahead episodes, and

those that were added to the RBR during the current runahead episode. As was mentioned

earlier, the overlap outcomes were used as predictors during runahead, while the non-over-

lap outcomes were added to the RBR during runahead. There is also an AVERAGE case for

each runahead processor configuration, which is simply the mean of the results for all of the

benchmarks.

Note that for almost all of the benchmarks there are more RBR outcomes used as pre-

dictors during runahead then there are outcomes added to the RBR. The only exception to

this rule is STREAM. The average number of outcomes in the RBR increases significantly

when a perfect L1 instruction cache is used (the center group). The average number of out-

comes in the RBR is directly related to the average number of outcomes added to the RBR,

which is proportional to the number of instructions actually preprocessed on average. Hence

reducing the instruction cache miss rate (or simulating a perfect instruction cache) is one

way of increasing RBR utilization.

Eliminating the L2 data cache (right-most group) significantly increases the length of

the average runahead episode, which increases the number of branches pre-processed. This

can be readily seen in Figure 4.83. The only exception is the STREAM benchmark, which

does not benefit from the L2 data cache due to its lack of data stream locality.
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4.7 Summary and Conclusions

The highlights of our experimental results are as follows:

• Runahead leads to a significant reduction in CPI for all of the benchmarks that

were examined. The reduction in CPI attributable to runahead ranges from 16% for

IJPEG to 77% for STREAM.

• Data stream prefetches generated during load and store miss initiated runahead

episodes are highly likely to be useful: typically at least 90% of prefetched lines

are accessed at least once during normal operation. Data stream prefetches gener-

ated after an instruction cache miss is detected are less likely to be useful, however

very few of these are generated.

• Instruction stream prefetches generated during runahead episodes are likely to be

useful: typically about two-thirds of prefetched lines are accessed at least once

during normal operation.
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• Runahead can improve conditional branch prediction accuracy to some extent for

some benchmarks. Our results indicate that attempting to save branch outcomes

during runahead for use during normal operation will not noticeably improve per-

formance in most cases.

• The price of these improvements is an increase in the bandwidth that the L2 caches

and main memory buses must supply. Main memory bus utilization can become a

bottleneck for some benchmarks, such as STREAM. Fortunately most of the bus

bandwidth dedicated to prefetching is useful.

The most important result of these experiments is that it is possible to achieve good per-

formance with even a simple pipeline when runahead is employed. Other than the poten-

tially troublesome register file save and restore operation, the hardware required to

implement runahead is rather modest, and should not impact the cycle time of an aggressive

processor.

Allowing the processor to generate data stream prefetches during instruction cache miss

initiated runahead episodes appears to be of dubious utility. Any data stream prefetches that

are generated are about as likely to be useless as they are to be useful. However, the rela-

tively few data stream prefetches that were generated in this fashion did not have a notice-

able impact on our simulations.

Allowing the processor to generate instruction stream prefetches will improve perfor-

mance. Instruction prefetches generated during load- and store-miss runahead episodes are

more likely to be useful than their instruction-miss initiated runahead counterparts, although

the majority of the latter are still useful. Reducing the number of instruction prefetches that

are generated, particularly those generated late in the average runahead episode, may

improve performance.
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Chapter  5

Runahead at the Instruction and Function level

Thus far we have confined ourselves to looking at the effects that runahead has on over-

all performance statistics: CPI, number of prefetches generated, etc. Unfortunately, these

statistics do not give us any information about what is happening during runahead for indi-

vidual functions or instructions. This chapter addresses these concerns.

We modified our simulator such that it could record information about runahead on a

per instruction basis. This was done by associating counters with every instruction in the

benchmark. These counters record the following statistics:

• The PC, IPC, mnemonic, and registers used by the instruction

• number of useless prefetches generated by the instruction

• number of useful prefetches generated by the instruction

• number of times a line prefetched by an instruction is accessed during normal

operation

• number of demand fetches generated by the instruction during normal operation

• number of times a line demand fetched by an instruction is accessed during normal

operation

• number of times the instruction is executed during normal operation

• number of times the instruction is pre-processed during runahead
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We also wanted to be able to determine exactly where in the benchmark source code

each of the prefetch-generating instructions are. This was done by having ATOM record the

function, source file name, and line number for every instruction in each benchmark.

5.1 Processor Model

All of the simulation results reported in this chapter are for processors that have perfect

L1 instruction cache. This was done to remove second order effects from our processor

model, as our intent is to examine what happens when instructions are actually pre-pro-

cessed. In all other respects the runahead and non-runahead processor models are the same

as those described in Chapter 3.

5.1.1  The distribution of prefetches on a per-function basis

In this section we present a breakdown of prefetch activity in each function. Tables 5.1

through 5.4 contain a listing of the top 40 prefetch producing functions in each benchmark.

STREAM results are not provided, as this benchmark does not perform any function calls.

Each entry provides the function name, the number of prefetches generated by instructions

within the function, the fraction of the prefetches that were useful, and the fraction of all

prefetches that were generated by the function. This last entry is used to sort the table

entries in descending order.
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Table 5.1     Prefetches Generated by Most Prolific Functions in GO

Function Name
Prefetches
Generated

by Function

Fraction of
Prefetches that

are Useful

Fraction of
all

Prefetches
Comment

blockuc 179100 0.921173 0.088261

addlist 150427 0.786355 0.074131

mrglist 76359 0.947786 0.037630

dellist 68390 0.935195 0.033703

chckside 65733 0.938844 0.032393

lupdate 52084 0.968052 0.025667

getterr 51463 0.849620 0.025361

getefflibs 46609 0.938124 0.022969

bestpot 42462 0.928148 0.020925

cpylist 41615 0.983011 0.020508

check_ex 38542 0.903741 0.018994

undercut 36995 0.910285 0.018231

ldndate 36097 0.945923 0.017789

radiatepiece 35322 0.944850 0.017407

adpot 33612 0.961353 0.016564

upltr 32795 0.940845 0.016161

iscaptured 31468 0.952205 0.015507

getarmyuc_pot 30681 0.880023 0.015120

findshapes 28236 0.989092 0.013915

fixcnprot 26140 0.891048 0.012882

newalive 24763 0.942333 0.012203

rmpot 23162 0.955919 0.011414

getarmyex_pot 22247 0.940037 0.010963

getarmynbp 21797 0.811625 0.010742

markspot 21764 0.974959 0.010725

extendforeyes 21295 0.933412 0.010494

startalive 20871 0.877150 0.010285

pointeyes 19663 0.865789 0.009690

getarmyth_pot 19606 0.905437 0.009662

getarmycn_pot 19418 0.875322 0.009569

evallibsterr 19245 0.924136 0.009484

getarmylibs 17697 0.946319 0.008721

canrunhere 17379 0.885494 0.008564

getarmytv_pot 15599 0.891211 0.007687

lcombine 15307 0.969360 0.007543

findblock 15212 0.911320 0.007496

cntterr 15212 0.936563 0.007496

genrestatk 14330 0.942917 0.007062

initarmyalive 13245 0.843488 0.006527

livesordies 13119 0.926443 0.006465
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Table 5.2     Prefetches Generated by Most Prolific Functions in IJPEG

Function Name
Prefetches
Generated

by Function

Fraction of
Prefetches that

are Useful

Fraction of
all

Prefetches
Comment

rgb_ycc_convert 644767 0.989852 0.750714

rgb_ycc_start 43508 0.780730 0.050657

decode_mcu 26810 0.942186 0.031215

jpeg_idct_islow 19038 0.998949 0.022166

h2v2_merged_upsample 15500 0.989097 0.018047

memset 12792 1.000000 0.014894 libc/memset.s

fullsize_smooth_downsample 9404 0.870693 0.010949

h2v2_smooth_downsample 8227 1.000000 0.009579

encode_one_block 7081 0.797486 0.008245

sep_downsample 6168 1.000000 0.007182

spec_difference_images 5085 0.984267 0.005921

forward_DCT 4624 0.994810 0.005384

expand_right_edge 4207 1.000000 0.004898

pre_process_context 3689 0.995392 0.004295

jpeg_fdct_islow 3090 1.000000 0.003598

encode_mcu_huff 3047 1.000000 0.003548

fix_huff_tbl 2813 0.991824 0.003275

decompress_data 2547 1.000000 0.002966

merged_2v_upsample 2488 1.000000 0.002897

start_pass_merged_upsample 2427 1.000000 0.002826

process_data_simple_main 2261 1.000000 0.002633

compress_output 2017 0.731780 0.002348

__divl 1830 1.000000 0.002131 libc/divrem.s

jpeg_read_scanlines 1790 1.000000 0.002084

compress_data 1711 0.906487 0.001992

fill_bit_buffer 1688 0.999408 0.001965

compress_first_pass 1598 0.948686 0.001861

memcpy 947 1.000000 0.001103 libc/memcpy.s

encode_mcu_gather 836 0.997608 0.000973

access_virt_barray 788 0.623096 0.000917

htest_one_block 787 0.872935 0.000916

decompress 731 0.998632 0.000851

spec_define_subimage_int 661 0.998487 0.000770

_doprnt 620 1.000000 0.000722 libc/doprnt.c

free 599 0.994992 0.000697 libc/malloc.c

gen_huff_coding 550 1.000000 0.000640

malloc 500 0.994000 0.000582 libc/malloc.c

cartesian_alloc 494 0.961538 0.000575 libc/malloc.c

start_input_pass 489 0.883436 0.000569

read_markers 441 0.968254 0.000513
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Table 5.3     Prefetches Generated by Most Prolific Functions in PERL

Function Name
Prefetches
Generated

by Function

Fraction of
Prefetches that

are Useful

Fraction of
all

Prefetches
Comment

malloc 570019 0.884549 0.300116 libc/malloc.c

eval 253016 0.999186 0.133213

cmd_exec 237005 0.999439 0.124783

regexec 150807 1.000000 0.079400

str_gets 133191 0.998851 0.070125

str_sset 129381 0.991629 0.068119

hsplit 124980 0.606377 0.065802

str_new 54913 0.992916 0.028912

memmove 47028 0.998830 0.024760

safemalloc 34438 0.987369 0.018132

str_nset 33081 0.979535 0.017417

hfetch 27634 0.980097 0.014549

cartesian_alloc 18238 0.797291 0.009602 libc/malloc.c

do_match 16457 0.992830 0.008665

memcpy 15958 0.915904 0.008402 libc/memcpy.s

str_grow 10661 0.936591 0.005613

hash_insert 10439 0.985631 0.005496 libc/malloc.c

memset 8958 0.998326 0.004716 libc/memset.s

hstore 7888 0.901242 0.004153

cartesian_insert 5562 0.922869 0.002928 libc/malloc.c

nsavestr 2675 0.875888 0.001408

yyparse 2048 0.878906 0.001078

str_magic 816 0.976716 0.000430

yylex 776 0.905928 0.000409

stabent 374 0.903743 0.000197

free 359 0.774373 0.000189 libc/malloc.c

cartesian_free 260 0.934615 0.000137 libc/malloc.c

make_op 143 0.958042 0.000075

cartesian_merge 138 0.949275 0.000073 libc/malloc.c

op_new 131 0.984733 0.000069

cartesian_growheap2 125 1.000000 0.000066 libc/malloc.c

scanident 123 0.959350 0.000065

realloc 124 0.951613 0.000065 libc/malloc.c

yyerror 111 0.333333 0.000058

scanstr 100 0.960000 0.000053

__filbuf 94 1.000000 0.000049 libc/filbuf.c

str_free 91 0.890110 0.000048

make_acmd 91 0.978022 0.000048

block_head 79 1.000000 0.000042

main 60 0.900000 0.000032
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Table 5.4     Prefetches Generated by Most Prolific Functions in VORTEX

Function Name
Prefetches
Generated

by Function

Fraction of
Prefetches that

are Useful

Fraction of
all

Prefetches
Comment

memset 306155 0.999824 0.176391 libc/memset.s

Chunk_ChkGetChunk 235250 0.964973 0.135539

TmFetchCoreDb 95140 0.979241 0.054815

memcpy 72160 0.962486 0.041575 libc/memcpy.s

Mem_GetWord 62077 0.982200 0.035766

Grp_GetRegion 46910 0.939139 0.027027

TransGetMap 46152 0.993326 0.026590

OaGet 44366 0.969346 0.025561

Ut_StackTrack 43600 0.668991 0.025120

Tree_CompareKey 42506 0.899308 0.024490

C_ReFaxToDb 38364 0.975263 0.022103

Mem_GetAddr 31738 0.997416 0.018286

malloc 24902 0.924745 0.014347 libc/malloc.c

SpclAddIntoTree 24739 0.996605 0.014253

Ut_MoveBytes 21900 0.993607 0.012618

Person_Import 18599 0.984462 0.010716

Grp_GetFrozenEntry 17318 0.965412 0.009978

SaFindIn 17101 0.945442 0.009853

OmGetObjHdr 16641 0.886545 0.009588

Grp_GetEntry 15760 0.999873 0.009080

KernelGetAttrInfo 14922 1.000000 0.008597

__divlu 13990 0.992995 0.008060 libc/divrem.s

OaGetObject 13866 0.984494 0.007989

Tree_AddInto 12999 0.833141 0.007489

OaUpdateObject 12830 0.995012 0.007392

Void_ExtendCore 12824 0.988459 0.007389

Tree_RecurseSearch 11986 0.930502 0.006906

sprintf 11949 0.302536 0.006884 libc/sprintf.c

Trans_FetchAttrOffset 11217 0.999554 0.006463

Chunk_ChkPutChunk 10887 0.982824 0.006273

OmGetObject 10736 0.792288 0.006186

printf 10621 0.147350 0.006119

Ut_PrintErr 10480 0.955057 0.006038

EnvFetchAttrOffset 10376 0.912298 0.005978

TmIsValid 10356 0.968231 0.005967

EnvFetchObjSize 9851 0.998985 0.005676

C_GetObjectImage 9836 0.999593 0.005667

Tree_GetRecursePos 9729 0.998664 0.005605

Ut_CompareString 9500 0.941579 0.005473

Mem_NewChunkChunk 9450 0.994074 0.005445
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5.1.2  The distribution of prefetches on a per-instruction basis

We were particularly interested in finding out which instructions were the most effective

at generating prefetches during runahead. It turns out that a small fraction of the load and

store instructions tend to generate most of the prefetches. This is illustrated in Figure 5.1.

The load and store instructions in each benchmark are sorted based upon the number of

prefetches that they generate. The instructions in this sorted list are then divided into 10

groups, or deciles, each of which generate approximately 10% of the total prefetches. The

first decile in each stacked bar (depicted at the top of each bar) corresponds to a very small

fraction of the total number of load and store instructions that generate prefetches. The size

of the deciles increase as you move down each bar, corresponding to the lower number of

prefetches generated by each load and store instruction in the deciles. In other words, the

load and store instructions in the higher deciles are more effective at generating prefetches.

Note that we provide the number of instructions in each decile to the right of each stacked

bar.

For example, only 15 instructions generate 10% of the prefetches for the GO bench-

mark. The next 10% of the prefetches are generated by 30 instructions. The number in each

decile increases swiftly until we reach the tenth decile, which consists of 8634 instructions.

The decile breakdowns for the rest of the SPEC benchmarks are similar to that for GO. The

very small number of instructions in the STREAM benchmark result in 90% of the

prefetches being generated by only 9 instructions.
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It is possible of course that the utility of the prefetches generated in each decile may be

quite different. For example, the fact that a large number of prefetches are generated by the

relatively few instructions in the first decile is of little importance if a majority of the

prefetches generated by them are useless. Similarly, the large number of instructions in the

10th decile may be more important if most of the useful prefetches that are generated are in

this decile. To address these concerns we computed the fraction of the total prefetches in

each decile that are useful for each benchmark. These fractions are provided in Figure 5.2.

The fraction of the prefetches in each decile that are useful is consistently high for all of

the benchmarks. As we have seen in earlier chapters, all of the prefetches generated by

STREAM are useful, which manifests itself as a straight-line across the top of Figure 5.2.

The rest of the benchmarks are not quite as well behaved, but they are fairly consistent
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across the deciles nonetheless, indicating that we can safely assume that the proportion of

useful to useless prefetches is uniform across the deciles for all of the benchmarks.

If this was not the case, then we could easily use the compiler to improve runahead per-

formance even more. Suppose, for example, that first few deciles of instructions for a

benchmark produce nearly all of the useful prefetches. This implies that the overwhelming

bulk of the large number of load and store instructions in the remaining deciles are produc-

ing useless prefetches. Using this information we could have the compiler mark the load

and store instructions in the useless deciles such that the processor will not generate

runahead prefetches for them on a miss during runahead. This could dramatically cut down

on the number of useless prefetches that are generated, and lead to a significantly better uti-

lization of the memory hierarchy as well as better performance overall.
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5.1.3  Where are the most useful loads and stores in the source code?

We now present an analysis of the load and store instructions in the top decile of each

benchmark. Compiler register usage conventions are provided in Table 5.5, “DEC OSF/1

Alpha Register Usage,” on page 166.

The GO benchmark

In the top decile for GO, four of the fifteen instructions in the decile are in the

addlist()  function. This function is shown in Figure 5.3.
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The third most productive prefetch instruction is in the functionundercut() , shown

in Figure 5.4.

int addlist(int value,int* head){
   register int ptr,optr;

if(list[*head] > value){ /* add to front of list */
      ptr = *head;
      *head = freelist;
      freelist = links[freelist];
      links[*head] = ptr;
      list[*head] = value;
      return(TRUE);

}
if(list[*head] == value)return(FALSE);
optr = *head;
while(1){

ptr = links[optr];
if(list[ptr] >= value){

if(list[ptr] == value)return(FALSE);
links[optr] = freelist;
list[freelist] = value;
freelist = links[freelist];
links[links[optr]] = ptr;
return(TRUE);

}
optr = links[ptr];
if(list[optr] >= value){

if(list[optr] == value)return(FALSE);
links[ptr] = freelist;
list[freelist] = value;
freelist = links[freelist];
links[links[ptr]] = optr;
return(TRUE);

}
ptr = links[optr];
if(list[ptr] >= value){

if(list[ptr] == value)return(FALSE);
links[optr] = freelist;
list[freelist] = value;
freelist = links[freelist];
links[links[optr]] = ptr;
return(TRUE);

}
optr = links[ptr];
if(list[optr] >= value){

if(list[optr] == value)return(FALSE);
links[ptr] = freelist;
list[freelist] = value;
freelist = links[freelist];
links[links[ptr]] = optr;
return(TRUE);

}
}

}

ldl a2, 0(a1)
s4addq a2, a5, t2
ldl v0, 0(t2)
cmplt a0, v0, t3
beq t3, 0x10032758
ldq t0, -24936(gp)
ldq t1, -24944(gp)

s4addq a4, t1, a2
ldl a3, 0(a2)

#4

#2

#1

s4addq a3, t1, a2
ldl a4, 0(a2)#15

Figure 5.3 addlist() function from the GO benchmark
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The 5th and 13th most productive prefetch instructions are in the functiondel-

list() , shown in Figure 5.5.

int undercut(int s,int dir,int dir2,int c,int udir,int udir2){
int lcount = 0,rcount=0,sn,g,uc,cval,dist;
sn = s-dir;
do {

sn += dir;
g = board[sqrbrd[sn][udir]];
dist = dstbrd[sn][udir];
uc = grcolor[g];
if((gralive[g] < SMOTHERED || gralive[g] > DEAD) &&

uc == 1-c && canundercut(sqrbrd[sn][udir],dir2,sn,dist)){
lcount++;
}

if((gralive[g] == SMOTHERED || grthreatened[g]) && uc == c &&
dist < 2)
lcount++;

g = board[sqrbrd[sn][udir2]];
dist = dstbrd[sn][udir2];
uc = grcolor[g];
if((gralive[g] < SMOTHERED || gralive[g] > DEAD) &&

uc == 1-c && canundercut(sqrbrd[sn][udir2],-dir2,sn,dist)){
rcount++;
}

if((gralive[g] == SMOTHERED || grthreatened[g]) && uc == c &&
dist < 2)
rcount++;

}while(edge[sn] != 0 && (edge[sn] != 1 || edge[sn-dir] != 2));
cval = 0;
if(rcount)cval += 4;
if(lcount)cval += 4;
return(cval);

}

addq s2, s2, t12
ldq t5, -28352(gp)

#3

s8addq t12, t5, s6
addq s6, t8, t6
ldl s4, 0(t6)

Figure 5.4     undercut() function from the GO benchmark
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The 9th, 11th, 12th, and 14th most productive prefetches are located in the function

blockuc() , which is shown in Figure 5.6.

/* delete value from sorted list at *head.  return true if
successful */
int dellist(int value,int* head) {
   register int ptr,optr;
   if(list[*head] >= value){
      if(list[*head] != value)return(FALSE);
      ptr = *head;
      *head = links[*head];
      links[ptr] = freelist;
      freelist = ptr;
      return(TRUE);
      }
   optr = *head;
   while(1){
      ptr = links[optr];
      if(list[ptr] >= value){

if(list[ptr] != value)return(FALSE);
links[optr] = links[ptr];
links[ptr] = freelist;
freelist = ptr;
return(TRUE);
}

      optr = links[ptr];
      if(list[optr] >= value){

if(list[optr] != value)return(FALSE);
links[ptr] = links[optr];
links[optr] = freelist;
freelist = optr;
return(TRUE);
}

      ptr = links[optr];
      if(list[ptr] >= value){

if(list[ptr] != value)return(FALSE);
links[optr] = links[ptr];
links[ptr] = freelist;
freelist = ptr;
return(TRUE);
}

      optr = links[ptr];
      if(list[optr] >= value){

if(list[optr] != value)return(FALSE);
links[ptr] = links[optr];
links[optr] = freelist;
freelist = optr;
return(TRUE);
}

      }
   }
}

ldl a2, 0(a1)#5

s4addq a2, a5, t1
ldl v0, 0(t1)
cmplt v0, a0, t2
bne t2, 0x100329f4

s4addq a4, t0, a2#13
ldl a3, 0(a2)

Figure 5.5     dellist() function from the GO benchmark
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Figure 5.6     blockuc() function from the GO benchmark

int blockuc(int army,int s){
int ptr,ptr2,rlist = EOL,c,crawl,so,sd,i,ldtmp,sn;
c = grcolor[list[armygroups[army]]];
if(ltrgd[s] == 4 || ltrgd[s] == 5)

for(ptr = nblbp[s]; ptr != EOL; ptr = links[ptr]){
if(edge[list[ptr]] == edge[s] && edge2[s] < 4 &&
   edge2[list[ptr]] < edge2[s])

findblock(s,list[ptr],&rlist,c);
if(edge[list[ptr]] >= edge[s])continue;
findblock(s,list[ptr],&rlist,c);
}

else if(ltrgd[s] == 3){
i = fdir[s];
for(ldtmp = ldir[i]; i < ldtmp; ++i){

sn = s + nbr[i];
if(board[sn] == NOGROUP)continue;
if(grlibs[board[sn]] != 2)continue;
for(ptr = grlbp[board[sn]]; ptr != EOL; ptr = links[ptr])

if(lnbn[list[ptr]] > 1)addlist(list[ptr],&rlist);
}

if(lnbf[s][c] == 1 && grlibs[lgr[s]] == 2)
addlist(s,&rlist);

for(ptr = nblbp[s]; ptr != EOL; ptr = links[ptr]){
if(edge[list[ptr]] < edge[s])continue;
if(lnbf[list[ptr]][1-c] != 0){

addlist(list[ptr],&rlist);
if(lnbn[list[ptr]] < 3)

addlist(s,&rlist);
}

if(lnbn[list[ptr]] == 4)addlist(list[ptr],&rlist);
}

}
if(rlist == EOL){

if(ld[s] == NEUTRALLD){
crawl = FALSE;
so = sd = NOSQUARE;
for(ptr = nblbp[s]; ptr != EOL; ptr = links[ptr]){

if(edge[list[ptr]] == edge[s]){
so = list[ptr];
crawl = TRUE;
}

if(edge[list[ptr]] < edge[s]){
sd = list[ptr];
}

}
if(lnbf[s][c] > 1)addlist(s,&rlist);
else if(crawl){

if(lnbn[so] == 3 && lnbf[so][c] == 1 && so != NOSQUARE)
addlist(so,&rlist);

else addlist(s,&rlist);
}

else if(sd != NOSQUARE && lnbf[s][c] > 1)addlist(sd,&rlist);
else addlist(s,&rlist);
}

if(grthreatened[lgr[s]])
addlist(s,&rlist);

for(ptr = nblbp[s]; ptr != EOL; ptr = links[ptr]){
if(edge[list[ptr]] > edge[s] &&
   (edge2[s] > 3 || edge2[list[ptr]] != edge2[s]))continue;
if(lnbf[list[ptr]][1-c] != 0){

addlist(list[ptr],&rlist);
if(lnbn[list[ptr]] < 3)

addlist(s,&rlist);
}

else if(board[list[ptr]+list[ptr]-s] == NOGROUP){
if(lnbf[list[ptr]+list[ptr]-s][1-c] != 0)

addlist(list[ptr],&rlist);
}

else for(ptr2 = nblbp[list[ptr]]; ptr2 != EOL; ptr2 = links[ptr2])
if(edge[list[ptr2]] > edge[s] && lnbn[list[ptr2]] > 2)

addlist(list[ptr2],&rlist);
}

}
return(rlist);

}

lda sp, -256(sp)
ldah gp, 6(t12)
stq ra, 0(sp)
lda gp, -21552(gp)
stq s0, 8(sp)
stq s1, 16(sp)
stq s6, 56(sp)
stq s2, 24(sp)
stq s3, 32(sp)
stq s4, 40(sp)
stq s5, 48(sp)
addl a0, 0, a0
stq a1, 216(sp)
ldq s5, -29448(gp)

ldq t5, -29032(gp)
s4addq a0, t5, t6
ldq t10, -29184(gp)
ldl t7, 0(t6)
s4addq t7, s5, t8
ldl t9, 0(t8)
s4addq t9, t10, t11
ldl t12, 0(t11)
stl t12, 176(sp)

#9

#14

ldq ra, 0(sp)
ldq s0, 8(sp)
ldq s1, 16(sp)
ldq s2, 24(sp)
ldl v0, 184(sp)
ldq s3, 32(sp)
ldq s6, 56(sp)
ldq s4, 40(sp)
ldq s5, 48(sp)
lda sp, 256(sp)
ret zero, (ra), 1

#12

#11
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The 6th and 7th most productive prefetches are located in the functioncpylist() ,

shown in Figure 5.7.

The 10th most productive instruction is located in the functionmrglist() , shown in

Figure 5.8.

void cpylist(int list1,int *list2){  /* copy list1 to list2. list2 must be empty */
   register int ptr,ptr2;

   if(list1 == EOL)return;
   *list2 = freelist;
   ptr2 = freelist;
   ptr = list1;
   while(1){
      list[ptr2] = list[ptr];
      ptr = links[ptr];
      if(ptr == EOL)break;
      ptr2 = links[ptr2];
      }
   freelist = links[ptr2];
   links[ptr2] = EOL;
}

s4addq a2, a0, t2

#7

s4addq v0, a0, t4
ldl t3, 0(t2)
stl t3, 0(t4)

s4addq a2, a1, t5#6 ldl a2, 0(t5)

Figure 5.7     cpylist() function from the GO benchmark
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/* merge list1 into list2, leaving list1 unchanged.  return
 * number of elements added to list2
 */

int mrglist(int list1, int* list2){
   register int ptr1,ptr2, count,temp,temp2;
   count = 0;
   if(list1 == EOL)return(0);
   if(*list2 == EOL){
      cpylist(list1,list2);
      ptr1 = *list2;
      while(ptr1 != EOL){
        ++count;
        ptr1 = links[ptr1];
        }
      return(count);
      }

   if (list[list1] < list[*list2]) {
      temp = *list2;
      *list2 = freelist;
      freelist = links[freelist];
      links[*list2] = temp;
      list[*list2] = list[list1];
      ptr1 = links[list1];
      ++count;
      }
   else if(list[list1] == list[*list2])
      ptr1 = links[list1];
   else ptr1 = list1;

   ptr2 = *list2;

   while(ptr1 != EOL){

/* guaranteed that list[ptr1] > list[ptr2] */

      if(links[ptr2] == EOL){
         links[ptr2] = freelist;
         while(ptr1 != EOL){
            list[freelist] = list[ptr1];
            ptr2 = freelist;
            freelist = links[freelist];
            ptr1 = links[ptr1];
            ++count;
            }
         links[ptr2] = EOL;
         return(count);
         }

      temp2 = list[links[ptr2]];
      if(list[ptr1] < temp2){
         temp = links[ptr2];
         links[ptr2] = freelist;
         ptr2 = freelist;
         freelist = links[freelist];
         links[ptr2] = temp;
         list[ptr2] = list[ptr1];
         ++count;
         ptr1 = links[ptr1];
         }
      else if(list[ptr1] == temp2)
         ptr1 = links[ptr1];
      else ptr2 = links[ptr2];
      }

   return(count);
   }

s4addq a4, a3, t0#10
ldl a0, 0(t0)
lda t6, -13594(a0)
bne t6, 0x10032570

Figure 5.8     mrglist() function from the GO benchmark
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The 8th most productive instruction is located in the functionfindshapes() , shown

in Figure 5.9.

void findshapes(int fsqr,int lsqr){
int s,sh;
int top; /* start at this point */
int bot; /* stop when get past this point */
int width; /* width of rectangle */
int right; /* right edge of rectangle */
int color, point,t,b,l,r,left,up;
t = b = l = r = TRUE;  /* do all patterns at top, bottom, etc */
for(sh = 0; sh < numshapes; ++sh){
   if(shapes[sh].xsize > boardsize || shapes[sh].ysize > boardsize)

   continue;
   bot = lsqr;
   left = xval[fsqr] - shapes[sh].xsize + 1;
   if(left < 0)left = 0;
   up = yval[fsqr] - shapes[sh].ysize + 1;
   if(up < 0)up = 0;
   top = up * boardsize + left;

   if(xval[bot] + shapes[sh].xsize > boardsize)
   bot -= xval[bot] + shapes[sh].xsize - boardsize;

   if(yval[bot] + shapes[sh].ysize > boardsize)
   bot -= boardsize * (yval[bot] + shapes[sh].ysize - boardsize);

   right = xval[bot];
   width = right - xval[top] + 1;
   t = yval[top] == 0;
   b = yval[bot] == boardsize-shapes[sh].ysize;
   l = xval[top] == 0;
   r = xval[bot] == boardsize-shapes[sh].xsize;
   color = vclr[values[shapes[sh].startpoint]];
   point = points[shapes[sh].startpoint];
   switch(shapes[sh].where){

case ANYWHERE:
for(s = top; s <= bot; ++s){

if(xval[s] > right)s += boardsize - width;
if(grcolor[board[s+point]] == color && match(sh,s))

addlist(sh,&shapebrd[s]);
else if(grcolor[board[s+point]] == 1-color &&

match2(sh,s))
addlist(sh,&shapebrd[s]);

else if(shapebrd[s] != EOL)
dellist(sh,&shapebrd[s]);

}
break;
case TOP:
if(t)for(s = top; s < top + width; ++s)

if(grcolor[board[s+point]] == color && match(sh,s))
addlist(sh,&shapebrd[s]);

else if(grcolor[board[s+point]] == 1-color &&
match2(sh,s))
addlist(sh,&shapebrd[s]);

else if(shapebrd[s] != EOL)
dellist(sh,&shapebrd[s]);

break;

(DELETIA)

case RIGHT:
if(r)for(s = bot; s >= top; s -= boardsize){

if(grcolor[board[s+point]] == color && match(sh,s))
addlist(sh,&shapebrd[s]);

else if(grcolor[board[s+point]] == 1-color &&
match2(sh,s))
addlist(sh,&shapebrd[s]);

else if(shapebrd[s] != EOL)
dellist(sh,&shapebrd[s]);

}
break;
}

}
}

ldq t9, -22840(gp)
s4addq a0, t9, t12
ldl t11, 0(t12)
stl t11, 192(sp)

#8

Figure 5.9     findshapes() function from the GO benchmark
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The IJPEG Benchmark

The IJPEG benchmark is rather different from most of the benchmarks that we have

examined in that prefetch generation is largely confined to a very small section of the code.

Virtually all of the instructions in the top 7 deciles are confined to the bracketed lines of

source code in the functionrgb_ycc_convert() , shown in Figure 5.10.

METHODDEF void
rgb_ycc_convert (j_compress_ptr cinfo,

 JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
 JDIMENSION output_row, int num_rows)

{
  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
  register int r, g, b;
  register INT32 * ctab = cconvert->rgb_ycc_tab;
  register JSAMPROW inptr;
  register JSAMPROW outptr0, outptr1, outptr2;
  register JDIMENSION col;
  JDIMENSION num_cols = cinfo->image_width;

  while (--num_rows >= 0) {
    inptr = *input_buf++;
    outptr0 = output_buf[0][output_row];
    outptr1 = output_buf[1][output_row];
    outptr2 = output_buf[2][output_row];
    output_row++;
    for (col = 0; col < num_cols; col++) {
      r = GETJSAMPLE(inptr[RGB_RED]);
      g = GETJSAMPLE(inptr[RGB_GREEN]);
      b = GETJSAMPLE(inptr[RGB_BLUE]);
      inptr += RGB_PIXELSIZE;
      /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
       * must be too; we do not need an explicit range-limiting operation.
       * Hence the value being shifted is never negative, and we don’t
       * need the general RIGHT_SHIFT macro.
       */
      /* Y */
      outptr0[col] = (JSAMPLE)

((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
 >> SCALEBITS);

      /* Cb */
      outptr1[col] = (JSAMPLE)

((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
 >> SCALEBITS);

      /* Cr */
      outptr2[col] = (JSAMPLE)

((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
 >> SCALEBITS);

    }
  }
}

Top 39 most productive
instructions

(~70% of prefetches)

Figure 5.10     rgb_ycc_convert() function from the IJPEG benchmark
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The PERL Benchmark

Most of the instructions in the top deciles of the PERL benchmark are in the libc code.

Unfortunately, we did not have access to the libc source code. Note that 30% of the

prefetches are generated within themalloc()  function (Table 5.3).

The VORTEX Benchmark

The first decile of prefetches for VORTEX are generated by two instructions that are in

the libcmemset()  function. Unfortunately, we did not have access to the libc source code.

However, the second decile of prefetches are generated by two instructions that are in the

Chunk_ChkGetChunk() function, which is shown in Figure 5.11.

boolean    ChkGetChunk (numtype     ChunkNum,    indextype     Index,
                        size_t      SizeOfUnit,  ft F,lt Z,zz *Status)
{
indextype  StackPtr = 0;

  Mem_ChunkExpanded                = 0;
  if (ChunkExists (ChunkNum,McStat))
  {
     if (Chunk_IsData        (ChunkNum)

// macro = ((Theory->Flags[ChunkNum] & Is_Data))

     &&  Chunk_IsNumeric     (ChunkNum)
     && (size_t)Unit_Size    (ChunkNum)   == SizeOfUnit)
     {
       StackPtr = Stack_Ptr  (ChunkNum);
       if (Index   >= StackPtr)
       {
          if (SetGetSwi)
            *Status    = Set_EndOfSet;

          else {
             DumpChunkChunk (0, ChunkNum);
            *Status    = Err_IndexOutOfRange;
          }
       }

     } else {
        if ((size_t)Unit_Size     (ChunkNum) != SizeOfUnit)
        {
           *Status = Err_BadUnitType;

        } else {
           *Status = Err_BadChunk;
        }
        DumpChunkChunk (0, ChunkNum);
     }
  }

TRACK(TrackBak,”ChkGetChunk\n”);
return(STAT);
}

Figure 5.11     Chunk_ChkGetChunk() function from the VORTEX benchmark

0x100441e4:ldq v0, -19216(gp)
0x100441c8:zap t0, 0xf0, t2
0x100441d0:ldq v0, 0(v0)
0x100441d4:ldq t3, 16(v0)
0x100441d8:s4addq t2, t3, t4
0x100441e0:ldl t1, 0(t4)
0x100441e4:and t1, 0x8, t5
0x100441e8:beq t5, 0x10044260
0x100441ec:and t1, 0x40, t6
0x100441f0:beq t6, 0x10044260
0x100441f4:ldq t8, 0(v0)
0x100441f8:zap t0, 0xf0, t7
0x100441fc:s8addq t7, t8, t9
0x10044200:ldq a0, 0(t9)
0x10044204:ldl t10, -28(a0)
0x10044208:cmpeq a2, t10, t11
0x1004420c:beq t11, 0x10044260

#3
#4
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The STREAM benchmark

As we mentioned earlier the STREAM benchmark is quite small, and nearly all of the

prefetches are generated by only nine instructions. Because of this we have reproduced here

the disassembled code that makes up themain() function of STREAM. The size of the

code requires us to break it up into two sections in Figures 5.12 and 5.13. Each of the

instructions in the figures has its source code line number, PC, and mnemonic. They also

have their ranking in terms of the number of prefetches that they generate, with #1 indicat-

ing the instruction that generates the most prefetches, #2 the next most prolific instruction,

etc. Note that this is only done for the top 20 prefetch-generating instructions. It should also

be noted that the top 9 instructions each generate approximately 10% of the total number of

prefetches.
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[44] 0x120001fc0: ldah t2, 73(gp)
[44] 0x120001fc4: bis zero, zero, t1
[44] 0x120001fc8: ldq_uzero, 0(sp)
[44] 0x120001fcc: lda t2, 480(t2)
[44] 0x120001fd0: ldah t2, 73(t2)
[44] 0x120001fd4: lda a2, -15392(gp)
[44] 0x120001fd8: bis t2, t2, a4
[44] 0x120001fdc: ldah a2, 73(a2)
[44] 0x120001fe0: bis t2, t2, a3
[44] 0x120001fe4: bis t2, t2, a5
[46] 0x120001fe8: bis zero, zero, t0
[46] 0x120001fec: ldq v0, -32624(gp)
[46] 0x120001ff0: lda a1, -31264(gp)
[46] 0x120001ff4: bis zero, zero, zero
[47] 0x120001ff8: ldq t6, 24(a1) #4
[47] 0x120001ffc: ldq t4, 8(a1) #17
[47] 0x120002000: ldq t3, 0(a1)
[47] 0x120002004: ldq t5, 16(a1) #16
[47] 0x120002008: addq a1, 0x20, a1
[47] 0x12000200c: stq t6, 24(v0) #5
[47] 0x120002010: cmpeq a1, a2, t7
[47] 0x120002014: stq t3, 0(v0) #15
[47] 0x120002018: stq t5, 16(v0) #19
[47] 0x12000201c: stq t4, 8(v0)
[47] 0x120002020: addq v0, 0x20, v0
[47] 0x120002024: beq t7, 0x120001ff8
[49] 0x120002028: bis zero, zero, t0
[49] 0x12000202c: ldq a0, -32640(gp)
[49] 0x120002030: ldq v0, -32624(gp)
[49] 0x120002034: bis zero, zero, zero
[50] 0x120002038: ldq t3, 24(v0) #3
[50] 0x12000203c: ldq t8, 0(v0) #18
[50] 0x120002040: ldq t12, 16(v0)
[50] 0x120002044: ldq t10, 8(v0) #20
[50] 0x120002048: s4subqt3, t3, t4
[50] 0x12000204c: stq t4, 24(a0) #2
[50] 0x120002050: s4subqt12, t12, t2
[50] 0x120002054: stq t2, 16(a0)
[50] 0x120002058: s4subqt10, t10, t11
[50] 0x12000205c: stq t11, 8(a0)
[50] 0x120002060: s4subqt8, t8, t9
[50] 0x120002064: stq t9, 0(a0)
[50] 0x120002068: addq a0, 0x20, a0
[50] 0x12000206c: cmpeqa0, a3, t5
[50] 0x120002070: addq v0, 0x20, v0
[50] 0x120002074: beq t5, 0x120002038

int main()
{
    register intj, k;
    unsignedlongscalar, t;

    scalar = 3;

    for (k=0; k<NTIMES; k++)
{
for (j=0; j<N; j++)
    c[j] = a[j];

for (j=0; j<N; j++)
    b[j] = scalar*c[j];

for (j=0; j<N; j++)
    c[j] = a[j]+b[j];

for (j=0; j<N; j++)
    a[j] = b[j]+scalar*c[j];
}

    return 0;
}

Figure 5.12     First portion of the main () function from the STREAM benchmark
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int main()
{
    register intj, k;
    unsignedlongscalar, t;

    scalar = 3;

    for (k=0; k<NTIMES; k++)
{
for (j=0; j<N; j++)
    c[j] = a[j];

for (j=0; j<N; j++)
    b[j] = scalar*c[j];

for (j=0; j<N; j++)
    c[j] = a[j]+b[j];

for (j=0; j<N; j++)
    a[j] = b[j]+scalar*c[j];
}

puts(“Finished the main loop”);

    return 0;
}

[52] 0x120002078: bis  zero, zero, t0
[52] 0x12000207c: ldq  v0, -32624(gp)
[52] 0x120002080: ldq  a0, -32640(gp)
[52] 0x120002084: lda  a1, -31264(gp)
[53] 0x120002088: ldq  t6, 0(a0)
[53] 0x12000208c: ldq  t7, 0(a1)
[53] 0x120002090: ldq  t2, 16(a1) #6
[53] 0x120002094: ldq  t9, 8(a0)
[53] 0x120002098: ldq  t10, 8(a1) #14
[53] 0x12000209c: addq  t6, t7, t8
[53] 0x1200020a0: ldq  t5, 24(a1)
[53] 0x1200020a4: addq  a1, 0x20, a1
[53] 0x1200020a8: ldq t4, 24(a0) #1
[53] 0x1200020ac: ldq  t12, 16(a0)
[53] 0x1200020b0: addq a0, 0x20, a0
[53] 0x1200020b4: stq  t8, 0(v0) #13
[53] 0x1200020b8: cmpeq a0, a4, t7
[53] 0x1200020bc: addq  t4, t5, t6
[53] 0x1200020c0: addq  t9, t10, t11
[53] 0x1200020c4: stq  t6, 24(v0) #7
[53] 0x1200020c8: addq  t12, t2, t3
[53] 0x1200020cc: stq  t3, 16(v0)
[53] 0x1200020d0: stq t11, 8(v0)
[53] 0x1200020d4: addq  v0, 0x20, v0
[53] 0x1200020d8: beq  t7, 0x120002088
[55] 0x1200020dc: bis  zero, zero, t0
[55] 0x1200020e0: ldq  v0, -32624(gp)
[55] 0x1200020e4: ldq  a0, -32640(gp)
[55] 0x1200020e8: lda  a1, -31264(gp)
[55] 0x1200020ec: bis zero, zero, zero
[56] 0x1200020f0: ldq  t8, 0(v0)
[56] 0x1200020f4: ldq  t10, 0(a0)
[56] 0x1200020f8: ldq  t12, 8(v0)
[56] 0x1200020fc: s4subq t8, t8, t9
[56] 0x120002100: addq  t9, t10, t11
[56] 0x120002104: ldq  t5, 16(v0) #8
[56] 0x120002108: ldq  t9, 24(v0)
[56] 0x12000210c: s4subq t12, t12, t2
[56] 0x120002110: ldq t3, 8(a0) #12
[56] 0x120002114: addq  v0, 0x20, v0
[56] 0x120002118: stq  t11, 0(a1)
[56] 0x12000211c: s4subq t5, t5, t6
[56] 0x120002120: ldq  t11, 24(a0) #11
[56] 0x120002124: s4subq t9, t9, t10
[56] 0x120002128: ldq t7, 16(a0)
[56] 0x12000212c: addq a0, 0x20, a0
[56] 0x120002130: addq  t2, t3, t4
[56] 0x120002134: stq  t4, 8(a1)
[56] 0x120002138: cmpeq a0, a5, t2
[56] 0x12000213c: addq t10, t11, t12
[56] 0x120002140: addq  t6, t7, t8
[56] 0x120002144: stq t12, 24(a1) #9
[56] 0x120002148: stq  t8, 16(a1)
[56] 0x12000214c: addq  a1, 0x20, a1
[56] 0x120002150: beq  t2, 0x1200020f0
[56] 0x120002154: addl  t1, 0x1, t1
[56] 0x120002158: cmpeq t1, 0x1, t3
[56] 0x12000215c: beq  t3, 0x120001fe8
[59] 0x120002160: ldq  t12, -32608(gp)
[59] 0x120002164: ldah  a0, -1(gp)
[59] 0x120002168: lda  a0, 30528(a0)
[59] 0x12000216c: bsr  ra, puts
[59] 0x120002170: bis zero, zero, zero
[61] 0x120002174: ldq  ra, 0(sp)
[61] 0x120002178: bis  zero, zero, v0
[59] 0x12000217c: ldq_u zero, 0(sp)
[61] 0x120002180: lda  sp, 16(sp)
[61] 0x120002184: ret  zero, (ra), 1
[61] 0x120002188: bis  zero, zero, zero
[61] 0x12000218c: ldq_u zero, 0(sp)

Figure 5.13     Second portion of the main() function from the STREAM benchmark
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5.2 Register file effects

We were also interested in finding out which registers and instructions were used during

runahead episodes to generate prefetches and to keep the processor on the right path. If the

processor typically only uses a small subset of the instruction set and register file during

runahead, then it may be practical to design a very simple runahead co-processor that can

pre-process the instruction stream in parallel with a more advanced processor that actually

executes applications.

In our preliminary runahead studies described in [35] we presented some early register

file statistics. Unfortunately, we only measured the average number of VALID registers that

were in the register file over the course of the average runahead episode. While this data was

interesting, it left quite a bit to be desired as one would expect that some registers would be

more useful during runahead than others.

We added code to the simulator that examines all of the instructions in a given runahead

episode every time that a register value is used to perform a task of interest. Every instruc-

tion in a given runahead episode is saved in a linked list. When a register is used to generate

a prefetch address, for example, the simulator scans backwards through the linked list to

determine which instructions and registers contributed to computing the that register’s

value. When we find an instruction that computes a value that is needed to compute this

final result, we record the instruction type and destination register number in an array:

prefetch_regs[INSTR_TYPE][INSTR_DEST_REG]++;

Similar counters are used to record the instruction and register information used to

resolve conditional and indirect branches. In order to keep the statistics meaningful, we

divide the ALPHA instructions that can update registers into several classes:
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• load

• load-address (these compute an address and place it in the destination register)

• unconditional_branch (the return address is written to a register)

• indirect_branch (the return address is written to a register)

• add_sub (add, sub, etc.)

• compare (cmpeq, cmple, etc.)

• logical (and, or, eqv, etc.)

• conditional_move (cmoveq, etc.)

• byte_manipulation (shift, mask, insert, extract, zap, etc.)

• multiply

This approach captures register values that are computed during runahead episodes,

however many register values used during runahead are computed during normal operation.

These values are covered by adding a non_runahead instruction category.

Suppose, for example, that we have a runahead episode as depicted in Figure 5.14. In

this example runahead is initiated with a load miss (instruction a). After preprocessing a

number of instructions, the processor generates a data stream prefetch using register r3 after

detecting a load miss (instruction h). When the prefetch is generated the simulator scans

backwards through the linked list containing the instructions in the runahead episode up to

that point to determine how the value in register r3 was computed. The immediately preced-

ing instruction (g) is a load-address instruction that computes r3 using r4 as an operand. The

simulator records this information by incrementing prefetch_regs[load_address][3]. At this

point the simulator needs to find the source of the register r4, which as it turns out is the des-

tination of instruction f, an add instruction. The simulator then increments

prefetch_regs[add_sub][4]. Instruction f needs r1 and r2 as sources, which are provided by

instructions e and d respectively. This process continues until the simulator finds the

runahead initiating instruction, which is the first instruction in the linked list containing the
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runahead instructions. At this point the register sources r5, r6, and r7 are still unaccounted

for. As these register values were not computed during the runahead episode, they must

have been computed during normal operation. The simulator records this by incrementing

pre fe tch_regs[non_runahead] [5 ] ,  p re fe tch_regs[non_runahead] [6 ] ,  and

prefetch_regs[non_runahead][7]. Note that r31 is hard-wired to the value zero. We do not

trace uses of r31 for this reason. Compiler register usage conventions are provided in Table

5.5.

load r0, 0(r2)

lda r3, 32(r4)

sll r1, r4, r5

add r4, r1, r2

mult r2, r6, r7

and r4, r6, r7

. . .

. . .

load r21, 32(r3)

load miss

found r3, need r4 prefetch_regs[load_address][3]++

need to find r3 sources

found r4, need r1 r2 prefetch_regs[add_sub][4]++

found r1, need r2 r4 r5 prefetch_regs[byte_manip][1]++

prefetch_regs[multiply][2]++found r2, need r4 r5 r6 r7

found r4, need r5 r6 r7 prefetch_regs[logical][4]++

load r9, 0(r1) (not an r3 source)

still need r5 r6 r7 prefetch_regs[non_runahead][5, 6, 7]++
Normal

Runahead

Prefetch

Initiated

Generated

Operation

Figure 5.14

Instr

a

b

c

d

e

f

g

h

Comments Counter action
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5.2.1  Data stream prefetch address computation

The technique described in the previous section was used to record the sources of data

stream prefetch addresses. We have chosen to present these statistics using 3D bar charts,

which are shown in figures 5.15 through 5.19. The height of each bar in the figures repre-

sents the number of times that an instruction from a particular class (x-axis) wrote a value to

its destination register (y-axis) that was used to compute a load or store address that gener-

ated a data stream prefetch.

The prefetch register statistics for the GO benchmark are shown in Figure 5.15. Note

that for the GO benchmark most of the register values are computed by either load-address

instructions during runahead or by non-runahead instructions. These load-address and non-

runahead instructions tend to write to either r29 (the stack pointer) or r30 (the global

From “Alpha Architecture Reference Manual,” Part III p 1-1,
Digital Equipment Corporation 1992.

Table 5.5     DEC OSF/1 Alpha Register Usage

Register Name
Software

Name
Use and Linkage

r0 v0 Used for expression evaluations and to hold integer function results.

r1 .. r8 t0 .. t7 Temporary registers; not preserved across function calls.

r9 .. r14 s0 .. s5 Saved registers; their values must be preserved across function calls.

r15 FP or s6 Frame pointer or a saved register.

r16 .. r21 a0 .. a5 Argument registers; used to pass the first 6 integer type arguments;
their values are not preserved across procedure calls.

r22 .. r25 t8 .. t11 Temporary registers; not preserved across procedure calls.

r26 ra Contains the return address; used for expression evaluation.

r27 pv or t12 Procedure value or a temporary register.

r28 at Assembler temporary register; not preserved across procedure calls.

r29 GP Global pointer.

r30 SP Stack pointer.

r31 zero Always has the value 0.
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pointer). Virtually all of the remaining register values are provided by add_sub, load, or

non_runahead instructions.

The VORTEX benchmark register usage, shown in Figure 5.16, is similar to that of the

GO benchmark. Many of the register values used are produced by non_runahead instruc-

tions, of which VORTEX tends to use the stack pointer (r30) by far the most. Many of the

values that are computed during runahead are load-address instruction updates of either the

global pointer (r29) or the stack pointer (r30).

The PERL benchmark prefetch register usage, shown in Figure 5.17 is similar to that for

GO and VORTEX. Many of the register values used are produced by non-runahead instruc-

tions, with the stack (r30) and global (r29) pointers being by far the most updated registers.

The register usage for the IJPEG benchmark, shown in Figure 5.18, is rather different

than that for GO and VORTEX. By far the bulk of the prefetch addresses are computed with

register values that are not modified during runahead. Of these registers, the one that is

employed the most is r16, an argument register. Other non-runahead updated registers that

see frequent use are the integer function result register (r0), saved registers (r9-r13), argu-

ment registers (r17-r21), return address register (r26), and the stack pointer (r30).

The register usage for the STREAM benchmark, shown in Figure 5.19, uses far fewer

instruction and register resources than the other benchmarks. About two-thirds of the

prefetch calculations are performed with add-subtract instructions that update either a tem-

porary (r16 and r17), or r0, which in this case is used to hold expression results instead of

function results. The remainder of the register values are obtained from non-runahead

instructions that update the same registers. Note that it is easy to verify the information in

Figure 5.19 by examining the STREAM instructions in Figures 5.12 and 5.13.
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Figure 5.15
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Figure 5.17
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5.2.2  Branch condition computation

The branch condition source registers for the GO benchmark are shown in Figure 5.20.

Note that most of the branch conditions are computed using runahead loads or non-

runahead instructions. The remaining values are supplied primarily by add_sub, compare,

and load_address instructions. The rest of the SPEC benchmarks use a similar mix of

instruction types, with some variation in the registers used. These results are provided in

Figures 5.21 through 5.23. Note that IJPEG uses relatively few loads during runahead to

compute branch conditions. The correspondingly fewer load misses during runahead

increase the likelihood that branches can be resolved with VALID registers, which in turn

makes it more likely that the processor will stay on the proper path during runahead.

The branch conditions for the STREAM benchmark are shown in Figure 5.24. As with

the prefetch registers, the branch condition calculations require relatively few registers.

Add_sub and compare instructions perform most of the work, while the remaining values

Figure 5.19
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are provided by non_runahead instructions. The information in Figure 5.24 can be verified

by examining the instructions in Figures 5.12 and 5.13.
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5.2.3  Indirect branch target computation

Measurements of the instructions and registers that were used to compute indirect

branch targets were performed, the results of which are shown in Figures 5.25 through 5.28.

The STREAM benchmark is not shown as it does not contain any indirect branches. The

behavior of the GO benchmark, shown in Figure 5.25, is representative of all of the SPEC

benchmarks. Load instructions that update r26 (the return address register) or r27 (integer

function result register) provide the bulk of the values that are computed during runahead

episodes. These are supplemented by non-runahead instructions that provide values already

in r26 and r27 at the initiation of runahead. The remainder of the values are largely obtained

using r29 (global pointer) or r30 (stack pointer).
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5.2.4  Data stream prefetch base address registers

The data stream prefetch address information provided in Figures 5.15 through 5.19 do

not provide a complete picture of how prefetch addresses are formed. Instead, they provide

a global view of how prefetch addresses are computed. This can confuse the issue as the 3-

D plots place all registers which contribute towards address computation on an equal foot-

ing, in which load and store prefetch base address registers are mixed in with other registers

that are only indirectly involved in the computation.

We addressed these concerns by recording the number of times each register was used

as a runahead load or store prefetch base address register. The counts for each register in the

register file is presented in a series of stacked bar charts shown in Figures 5.29 through 5.38.

These bars are divided up into usage counts for both useless and useful prefetches.
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It is apparent from the plots that the global (r29) and stack pointers (r30) are typically

the most commonly used base registers for load prefetches during runahead. The stack

pointer is the most commonly used base register for store prefetches, while the global

pointer is never used for stores in the benchmarks. These results indicate that the stack and

global pointers are the most commonly used base registers for runahead prefetches overall,

and that they are not merely used indirectly for prefetch address computation. Registers

other than the global and stack pointers are used to hold pointer and array addresses.

From the plots, and from our examination of the benchmark source code, it appears that

for most of the benchmarks prefetches are generated for an approximately equal mix of

array/pointer, global, and stack references. The IJPEG and STREAM benchmarks are an

exception to this rule, as most of their prefetches are generated for array references. The

load and store instructions that generate the most prefetches per instruction (i.e. the most

efficient instructions) tend to generate prefetches for array or pointer accesses. The global

and stack prefetches are generated by less efficient instructions, however this low efficiency

per instruction is offset by the large number of instructions in this category.
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5.3 Summary and Conclusions

We have shown that much of the work that is performed during runahead is confined to

a subset of the instruction set and register file. Load and store prefetch addresses are almost

entirely computed with a combination of load, load_address and add_sub instructions. The

resolution of most indirect branches can also be performed with the above combination of

instructions. Conditional branches require only the addition of compare instructions to the

above mix. The registers that are needed to compute results during runahead are also largely

segregated to a subset of the register file. These results imply that it would be possible to

perform runahead with a very simple coprocessor that would only implement a small por-

tion of the instruction set. Instructions that are not implemented can simply be treated as

NOPs, and their destination registers marked as INV.

We have also shown that for most of the benchmarks prefetches are generated for an

approximately equal mix of array/pointer, global, and stack references. The IJPEG and

STREAM benchmarks are an exception to this rule, as most of their prefetches are gener-

ated for array references. The load and store instructions that generate the most prefetches

per instruction (i.e. the most efficient instructions) tend to generate prefetches for array or

pointer accesses. The global and stack prefetches are generated by less efficient instructions,

however this low efficiency per instruction is offset by the large number of instructions in

this category.
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Chapter  6

Probing the Limits of the Baseline Technique

The baseline runahead processor model that was used in the preceding chapters suffers

from a variety of effects that can reduce performance. We address these effects in this chap-

ter in an attempt to determine the maximum data stream performance gains that can be had

when runahead is employed.

6.1 Instruction cache misses during runahead

Instruction cache misses can affect the performance of a runahead processor in several

ways. The most obvious effect is that they can cause the processor to suffer from a dearth of

instructions to pre-process. If the processor can find other instruction cache lines to pre-pro-

cess, then it can continue the runahead episode. Unfortunately, dependences upon the

instructions that are not pre-processed can cause the processor to generate useless

prefetches. These dependences can also cause the processor to incorrectly resolve condi-

tional branches, sending the processor down an incorrect path. Wrong path effects also

occur when the processor cannot pre-process taken branches in the skipped instruction

cache lines.

Eliminating the effects of instruction cache misses is simple enough for the purposes of

this study: simply simulate a processor that has a perfect L1 instruction cache.
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6.2 Increasing the length of the average runahead episode

The length of the average runahead episode is approximately equal to the average access

time to off-chip memory. Increasing this access time may allow the processor to increase the

number of prefetches that are generated per runahead episode, and may even lead to an

improvement in performance. The simplest way to increase the length of the average

runahead episode is to simply eliminate the L2 data cache from the memory hierarchy.

Unfortunately, eliminating the L2 data cache from the baseline processor can cause

other problems. The high bandwidth and store coalescing effect of the write-back L2 data

cache kept the store-through policy of the L1 data cache from inhibiting performance. Elim-

inating the L2 data cache can make the store-queue a bottleneck, causing the processor to

stall. One solution is to modify the store queue such that it can coalesce requests, allowing

store-through requests that map to the same line to be collapsed into a single request. We

also consider increasing the bandwidth of the main memory interface in order to alleviate

bandwidth effects.

6.3 Wrong path effects during runahead

Unresolvable conditional branches during runahead episodes will send the processor

down the wrong path if they are mispredicted. This can result in the generation of useless

prefetches, as well as in missed opportunities for the generation of useful prefetches.

These effects can be eliminated in simulation if an oracle conditional branch predictor is

used during runahead episodes. This can be done by saving a trace of conditional branch

outcomes during a training run, and then using this trace as an oracle predictor during sub-

sequent simulation runs. Unresolvable indirect branches also limit performance gains by
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forcing the processor to stall during runahead. This problem can be solved in a similar man-

ner by using a trace of indirect branch targets during runahead.

6.4 Runahead Models

We created several new runahead processor models based upon the modifications

described in the preceding sections.

Runahead Processor (RA)

This is the same as the runahead processor used in Chapter 4, with the addition of a coa-

lescing store queue and a perfect L1 instruction cache. There is also a non-runahead version

of this processor (NORA).

Runahead + No L2 Data Cache (NOL2)

This is the same as the above RA processor, only with the deletion of the L2 data cache.

This reduces the minimum access time to off chip memory to 102 cycles from 132 cycles

for the RA processor model (assuming an L2 data cache miss). See Figures 3.5 and 3.6 for

more details of the timing of the memory hierarchy. There is also a non-runahead version of

this processor (NORA_NOL2).

Runahead + No L2 Data Cache + High Bandwidth Main Memory (HIGHBW)

This is the same as the NOL2 processor, only with the main memory interface modified

such that it can accept a new fetch, prefetch, or store-through request every processor cycle.

This corresponds to a main memory with a peak bandwidth of 32 GB/s as compared to the

1.6 GB/s assumed for all other simulations. The latency of main-memory accesses is

unchanged. This extremely high figure is unattainable in a practical implementation at the

present time, but we wanted to see what would happen if this was not the case. There is also

a non-runahead version of this processor (NORA_HIGHBW).
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Runahead + No L2 Data Cache + High Bandwidth Main Memory + Perfect Control (PERFECT)

This is the same as the HIGHBWprocessor, with the addition of perfect condi-

tional and indirect branch resolution during runahead episodes. Note that the pro-

cessor only uses the branch traces during runahead episodes: it has to use the two-

bit counters and RBR to predict branches during normal operation. As this proces-

sor model only employs oracle prediction during runahead its non-runahead

equivalent is the same as that for HIGHBW (NORA_HIGHBW).

6.5 Simulation Results

6.5.1  CPI

The CPI results for the processor models described in the previous section are provided

in Figures 6.1 through 6.5. As before, the CPI for each simulation is represented as a

stacked bar, which is broken down into its component contributions by instruction class.

The overall CPI for each configuration is provided as a number on top of each bar, while the

percentage reduction in load and store CPI (not counting cycles in which loads and stores

are retired) is provided to the right of each bar. These percentage reductions in CPI are rela-

tive to that of the equivalent non-runahead processor, which is indicated with a diagonal

line.

We had hoped initially to show that deleting the L2 data cache would improve perfor-

mance by providing the processor with more opportunities to pre-process instructions. This

is true for the STREAM benchmark for one configuration shown in Figure 6.1. It turns out

that a runahead processor without an L2 data cache and with a very high bandwidth main

memory (HIGH_BW) does indeed have a CPI (3.28) significantly lower than that of the

runahead processor with an L2 data cache (RA) (4.35). Unfortunately this improved perfor-
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mance is largely due to the higher bandwidth main memory interface of the HIGH_BW pro-

cessor. When a standard bandwidth main memory interface is employed, the CPI of a

runahead processor without an L2 data cache (NOL2) is high enough (5.19) to make its per-

formance somewhat worse than that of the runahead processor with an L2 data cache (RA).

As virtually all off-chip memory requests for this benchmark have to go out to main mem-

ory the L2 data cache simply gets in the way. The RA processor forces off-chip accesses to

check the L2 data cache for a hit before starting main memory accesses. This means that for

the STREAM benchmark having an L2 data cache increases the latency of off-chip memory

accesses by 30 cycles. This increases the average runahead episode length for the RA pro-

cessor relative to that of the NOL2 processor, resulting in more opportunities to prefetch

and a correspondingly lower CPI. Paradoxically, the latency increasing effect of the L2 data

cache for STREAM worksagainst the non-runahead processor (NORA), causing it to have

a higher CPI than its counterpart that does not (NORA_NOL2). Note that the runahead pro-

cessor with perfect branch and jump prediction during runahead (PERFECT) achieves

exactly the same performance as its counterpart that employs conventional conditional

branch prediction and indirect branch resolution during runahead (HIGHBW). This is a

consequence of the highly predictable conditional branches and lack of indirect branch

instructions in the STREAM benchmark.

The results for the VORTEX benchmark, shown in Figure 6.2, are more interesting than

those for STREAM. The percentage reduction in overall CPI is significantly greater for the

runahead configurations that do not have L2 data caches. The RA processor has an overall

CPI of 1.90, 21% lower than its non-runahead counterpart (NORA). A runahead processor

without an L2 data cache (NOL2) has a CPI of 4.27, 38% less than that of its non-runahead
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counterpart (NORA_NOL2). Unfortunately the NOL2 CPI is significantly greater than that

of either the RA or NORA processors. Increasing the bandwidth of the main memory leads

to a significant reduction in overall CPI, with the HIGHBW runahead processor coming in

with a CPI of 3.24, but this is only a 39% reduction over that of the equivalent non-runahead

processor (NORA_HIGHBW). Adding perfect conditional branch prediction and indirect

branch resolution during runahead improves performance somewhat (PERFECT) with an

overall CPI of 2.98, 44% less than its non-runahead counterpart (NORA_HIGHBW). The

CPI results for the GO and PERL benchmarks, shown in Figures 6.3 and 6.4 respectively,

are similar to those reported for VORTEX. Note that we were unable to simulate the

HIGHBW and PERFECT processor models for PERL due to the extremely large amount of

memory required to record runahead episode information for this benchmark.

The CPI results for the IJPEG benchmark are shown in Figure 6.5. As with the VOR-

TEX benchmark, the percentage reductions in CPI for the runahead processors without L2

data cache are significantly greater than those that have L2 data caches. The RA processors

has an overall CPI of 1.27, 12% less than its non-runahead counterpart (NORA). The equiv-

alent processor without an L2 data cache (NOL2) has a CPI of 1.93, 35% less than its non-

runahead counterpart (NORA_NOL2). Interestingly, the NOL2 CPI is only 34% greater

than that of the NORA processor. Increasing the main memory bandwidth led to modest

improvements in CPI, with the non-runahead NORA_HIGHBW processor obtaining a CPI

of 2.65, only 10% less than its normal bandwidth counterpart NORA_NOL2. The high

bandwidth runahead processor HIGHBW achieved a CPI of 1.66, 37% less than

NORA_HIGHBW. This is only slightly better percentage-wise than the 35% reduction that

the NOL2 processor obtained. Note that the runahead processor with perfect conditional
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branch prediction and jump resolution during runahead (PERFECT) obtained only slightly

better performance than its HIGHBW counterpart. This is a consequence of the high proba-

bility that the processor will stay on the proper path during runahead episodes, as can be

seen in Figure 6.14. Finally, note that deleting the L2 data cache made runahead signifi-

cantly more effective for IJPEG, even though the data cache miss rate for IJPEG is rela-

tively low.
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Figure 6.3
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6.5.2  Prefetching utility over the course of runahead episodes

The ability of runahead to generate useful prefetches over the course of the average

runahead episode is of particular interest. This information is provided in Figures 6.6

through 6.10. We have included the prefetch utility for the baseline runahead processor

model used for the studies described in Chapter 4. This model (BASELINE_RA) differs

from the RA model used in this chapter in that it has a real, as opposed to perfect, L1

instruction cache, as well as a non-coalescing store queue.

The results for the GO benchmark are shown in Figure 6.6. Note that the cumulative

number of useful prefetches for the BASELINE_RA processor is virtually identical to that

of the RA processor for about the first 10-15 instructions into the average runahead episode.

This is a result of the relatively few instruction cache misses that occur early in the average

Figure 6.5
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BASELINE_RA runahead episode. This makes it more likely that the BASELINE_RA pro-

cessor will stay on the right path and have instructions to pre-process. As expected, the RA

processor is more effective than the BASELINE_RA processor, producing slightly more

useful prefetches and slightly fewer useless prefetches. The processor configurations that do

not include L2 data cache (NOL2, HIGHBW, and PERFECT) are more interesting. These

processors generate about 50% more useful prefetches than the RA and BASELINE_RA

processors. This is due to the increased length of the average runahead episode, providing

more opportunities to prefetch. We had hoped that the useful prefetch curves for the proces-

sors without L2 data cache would have the same slope as the early portion of the

BASELINE_RA and RA curves, but without a drop off in the number of prefetches gener-

ated due to L2 data cache hits. Unfortunately this was not the case: the no-L2 processors

have only produced about half as many useful prefetches as the with-L2 processors 25

cycles into the average runahead episode. This is a consequence of increased overlap

between runahead episodes. Overlap comes about when runahead episodes are initiated on

load or store misses whose instructions have already produced a runahead prefetch in a pre-

ceding runahead episode. These episodes spend a great deal of time pre-processing instruc-

tions that were already pre-processed in preceding episodes, and may only be able to

generate useful prefetches towards the end of the episode where there is little or no overlap.

This explains the lower slope of the useful prefetch curves for the no-L2 processors. The

PERFECT processor curves are particularly interesting. The total number of useful

prefetches is nearly the same as those of the NOL2 and HIGHBW processors, while the

number of useless prefetches for PERFECT is less than half of that of NOL2 and HIGHBW.

This is a result of the perfect conditional branch prediction and indirect branch target resolu-
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tion of the PERFECT processor during runahead episodes. Interestingly, the useful prefetch

curve for the PERFECT processor appears to be nearly linear. The perfect branch prediction

increases the amount of overlap between episodes, resulting in fewer prefetches being gen-

erated during the early portion of the average episode. This is compensated for later in the

average episode, where there is less overlap, and the other processor configurations are less

likely to be on the proper path. The plots for the VORTEX, PERL, and IJPEG benchmarks,

shown in Figures 6.7 through 6.9, are very similar to that for GO.

The plot for the STREAM benchmark, shown in Figure 6.10, is particularly interesting.

By design STREAM does not benefit to any meaningful extent from an L2 data cache. This

can be seen in the plot for the STREAM benchmark, in which the useful-prefetch plots for

all of the runahead processors are very similar.
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Figure 6.8
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6.5.3  Probability of remaining on the correct path during runahead

We present here plots that illustrate the probability that the processor is on the right path

at a given distance into the average runahead episode. An instruction is on the proper path if

all of the instructions in the runahead episode up to and including the instruction in question

are executed during normal operation at the conclusion of the runahead episode, starting

with the first instruction in the episode. We do not include RA processor model results as

they are virtually identical to those for the BASELINE_RA model presented in Chapter 4.

These similar results indicate that instruction cache misses during load and store miss initi-

ated runahead episodes are not a significant source of wrong path effects. The plots in Fig-

ures 6.11 through 6.14 are for the runahead processor models without L2 data cache and

with perfect L1 instruction cache (NOL2 and HIGHBW). For most of the plots the
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HIGHBW and NOL2 processors exhibit nearly identical behavior. We will refer to both

models together unless stated otherwise. We do not present STREAM results as the proces-

sor always stays on the right path during runahead. Note that the plots can exhibit erratic

behavior near the x = 100 position on the x-axis. Prefetching reduces the average memory

latency on a miss during normal operation, resulting in a relatively small number of long-

latency episodes. The smaller number of episodes contributing towards the average creates

the seemingly erratic behavior.

The first plot is for the GO benchmark, and is shown in Figure 6.11. As was reported in

Chapter 4, the probability of remaining on the correct path drops off rather precipitously for

load-miss initiated runahead. The drop off for store-miss initiated runahead is less severe,

however both runahead episode types have only about a 20% chance of being on the correct

path after pre-processing 100 instructions. Fortunately, most of the wrong path prefetches

generated by GO are useful.

The plot for the VORTEX benchmark, shown in Figure 6.12, exhibits a fairly high prob-

ability of remaining on the correct path even after 100 instructions. Store-miss initiated

runahead has about an 80% probability of remaining on the correct path, while load-miss

has about a 60% probability. The plot for PERL, shown in Figure 6.13, is similar to that for

VORTEX, only with the probability of remaining on the correct path about 50% after 100

instructions.

As was noted in Chapter 4, IJPEG has a high probability of remaining on the proper

path during runahead. This can be seen in Figure 6.14. Note that the probabilities remain

high throughout the life of the typical episode, and that the values are nearly identical for

both load- and store-miss initiated runahead.
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6.5.4  Number of runahead episodes

The number of load- and store-miss initiated runahead episodes for each benchmark and

runahead processor configuration are provided in Figure 6.15. Generally speaking, the num-

ber of runahead episodes decreases when runahead is more effective due to the elimination

of instruction cache misses, deletion of the L2 data cache, addition of a higher bandwidth

main-memory, or the elimination of wrong path effects. This is true for all of the bench-

marks, with the exception of the NOL2 configuration for PERL, which has a slightly larger

number of episodes than either the RA-BASE or RA configurations. The larger number of

prefetches that are generated when the L2 data cache is deleted can increase the total num-

ber of runahead episodes if the prefetches are not serviced by the time that the processor

actually executes the prefetch-generating instructions. Also, note that the rather low number

of runahead episodes for STREAM is due to the lower number of instructions that were

simulated for this benchmark: 10M vs. 100M for the others. STREAM spent by far the larg-

est fraction of its execution time pre-processing instructions.
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6.5.5  Average number of prefetches generated per runahead episode

Figures 6.16 and 6.17 provide the average number of instruction, load, and store

prefetches that are generated during each type of runahead episode for all of the processor

configuration and benchmark combinations. Note that the average number of prefetches

generally increase as we make runahead more effective by adding a perfect instruction

cache, deleting the L2 data cache, increasing main-memory bandwidth, and eliminating

wrong path effects. The only exception to this rule is the STREAM benchmark, where the

average number of load prefetches falls instead of rising for the NOL2 processor. It turns

out that the runahead processors were dropping about 75% of all prefetch requests for

STREAM due to a full prefetch queue, as can be seen in Figure 4.76. This, plus the fact that

STREAM does not benefit from the L2 data cache, indicate that the main-memory band-
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width is the performance bottleneck for STREAM. This was expected due to the nature of

the benchmark. The HIGHBW and PERFECT processor models simulate a much higher

main-memory bandwidth, 32 GB/s vs. 1.6 GB/s, allowing the processor to handle more

prefetches. This shows up as a significant increase in the average number of prefetches gen-

erated per runahead episode. These additional prefetches lower the L1 data cache miss rate,

resulting in a significant drop in the number of runahead episodes. This offsets the increase

in the average number of prefetches generated to some extent.

Note that load-miss initiated episodes generally generate fewer prefetches per-episode

than store-miss initiated episodes. Load misses immediately seed the RF with INV values,

reducing the ability of the processor to compute prefetch addresses. This is offset by the sig-

nificantly larger number of load-miss episodes, as can be seen in Figure 6.15. Also note that

load-miss initiated episodes tend to generate more load than store prefetches, indicating that

load-misses tend to be clustered. Store-miss initiated episodes behave in a similar manner,

as we expected.



205

0

1

2

3

4

RA-BASE

RA NOL2
HIGHBW

PERFECT

Number o f Prefetches Generated dur ing the
Average Load-Miss Initiated Runahead Episode

A
ve

ra
ge

 N
um

be
r 

of
 P

re
fe

tc
he

s 
G

en
er

at
ed

Instruction Prefetches
Store Prefetches
Load Prefetches

RA-BASE

RA NOL2
HIGHBW

PERFECT

RA-BASE

RA NOL2
HIGHBW

PERFECT

RA-BASE

RA NOL2
HIGHBW

PERFECT

RA-BASE

RA NOL2
HIGHBW

PERFECT

GO IJPEG VORTEX PERL STREAM

Figure 6.16

(u
na

bl
e 

to
 s

im
ul

at
e)

(u
na

bl
e 

to
 s

im
ul

at
e)

Number of Prefetches Generated during the
Average Store-Miss Initiated Runahead Episode

Instruction Prefetches
Store Prefetches
Load Prefetches

0

1

2

3

4

A
ve

ra
ge

 N
um

be
r 

of
 P

re
fe

tc
he

s 
G

en
er

at
ed

RA-BASE

RA NOL2
HIGHBW

PERFECT

RA-BASE

RA NOL2
HIGHBW

PERFECT

RA-BASE

RA NOL2
HIGHBW

PERFECT

RA-BASE

RA NOL2
HIGHBW

PERFECT

RA-BASE

RA NOL2
HIGHBW

PERFECT

GO IJPEG VORTEX PERL STREAM

Figure 6.17

(u
na

bl
e 

to
 s

im
ul

at
e)

(u
na

bl
e 

to
 s

im
ul

at
e)



206

6.5.6  Off-chip fetch and prefetch traffic

The total off-chip data stream fetch and prefetch traffic is provided for each benchmark

in Figure 6.18. A stacked bar is used to represent the individual contributions of prefetches

and demand fetches towards the total traffic. Note that off-chip traffic refers to all prefetch

and fetch requests from the L1 data cache to either the L2 data cache or main memory.

In all cases the amount of demand fetch traffic is reduced as runahead is made more

effective by adding a perfect L1 instruction cache, deleting the L2 data cache, increasing

main-memory bandwidth, or eliminating wrong path effects. Note that the runahead proces-

sor models without L2 data cache replace more than half of their demand fetch requests

with prefetch requests. Virtually all of the demand fetch traffic is replaced with prefetches in

the STREAM simulations. Also, the total data stream traffic generally increases to some

extent when runahead is employed. There is a small jump in overall traffic for the NOL2

processor: this is due to an increase in wrong path prefetching during the longer runahead

episodes. The PERFECT model eliminates most of this increase.
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6.6 Summary and Conclusions

We had hoped that by extending the length of the average runahead episode by deleting

the L2 data cache we would be able to achieve runahead processor performance that would

surpass that of a runahead processor that had an L2 data cache. This was not the case, even

though the effectiveness of runahead is typically significantly increased by removing the L2

data cache. Failing at this, we hoped that at the very least we would be able to match the

performance of non-runahead processors that incorporated L2 data cache. This was not true,

even when we eliminated wrong path effects during runahead by using a trace of condi-

tional branch outcomes and indirect branch targets, in addition to dramatically increasing

the bandwidth of the main memory interface.
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The runahead processor models without L2 data cache are competitive in the sense that

they do achieve performance that is reasonably close to their non-runahead counterparts that

include L2 data cache, yet at a considerably lower cost to the user. The cost of implementing

runahead is certainly much lower than the cost of purchasing large off-chip L2 data cache

SRAMS and the requisite interface, even with the potentially expensive cost of integrating

the BRF with the architected register file. This last concern is addressed in Chapter 7.

We have also demonstrated that the probability of the processor remaining on the cor-

rect path during load- and store-miss initiated runahead episodes is fairly high, even when

the average runahead episode length is significantly increased by deleting the L2 data cache.

The GO benchmark is a notable exception to this rule, however this is mitigated by the large

fraction of wrong path prefetches that are useful rather than useless. We have also shown

that instruction cache misses are not a significant source of wrong path effects during load-

and store-miss initiated runahead episodes.
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Chapter  7

Simplifying the Runahead Processor

The runahead processor models that have been used thus far achieve good performance,

but this comes at a cost. There are a number of modifications that may lead to a significant

reduction in the implementation cost and complexity of runahead. We address these con-

cerns in this chapter.

7.1 Eliminating the register file save and restore operation

The runahead processor implementations that were used in the previous chapters all

assumed that the sequential state of the architected register file could be checkpointed by

saving the contents of the RF in the BRF at the initiation of runahead, and restoring the con-

tents at the resumption of normal operation. These operations were assumed to take place in

a single cycle, which may be unrealistic.

However, the register file save and restore operation is not needed to guarantee proper

program execution during normal operation. All the processor has to do is guarantee that the

sequential state of the architected register file and memory hierarchy are not corrupted dur-

ing runahead. No other guarantees (other than not causing exceptions) have to be made, as

runahead episodes are entirely speculative and all results computed during runahead are dis-

carded.
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One way to simplify the register file checkpoint operation is to simply do away with the

register file save and restore operations, while retaining the BRF. The RF is then used to

hold the sequential state of the architected register file, while the BRF is used during

runahead episodes. The processor directs register reads to only the RF during normal opera-

tion. Writes are committed to both the RF and BRF during normal operation. When the pro-

cessor is in runahead mode registers are only read from and written to the BRF. Thus the

sequential state of the architected register file in the RF is protected, while allowing

runahead instructions to have access to a register file.

The drawback with this approach is that the BRF will typically contain some number of

stale values at the conclusion of each runahead episode. These stale values are generated by

writing runahead instruction results to the BRF, which will almost always differ from their

checkpointed counterparts in the RF. If these stale values in the BRF are overwritten with

fresh results during normal operation before the next runahead episode begins, then the per-

formance of this register file configuration will be on a par with that of the baseline

runahead register file configuration. Any stale values are not overwritten will be INV at the

start of the next runahead episode. This can affect performance by reducing the number of

load and store addresses that can be computed during runahead, as well as introducing

wrong path effects. The generation of additional erroneous prefetches can be prevented by

adding a “stale” bit to every register in the BRF. These extra bits are contained in a vector,

which we call the SRV, or Stale Register Vector, which is similar to the IRV. The exact oper-

ation of this new interface to the register files, which we refer to as RA_NOCOPY, is

described using pseudo-code in Figure 7.1.
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1. When runahead is initiated:
for(X = 0; X < 31; X++) {

if(SRV[X] == STALE)

IRV[X] = INV; // stale values in the BRF show up as INV here

// at the start of the runahead episode

else

IRV[X] = VALID;

SRV[X] = NOT_STALE;

}

SRV[31] = NOT_STALE; // r31 is hardwired to zero

IRV[31] = VALID;

2. Instruction I writes Result R to register X:
if(I->runahead == TRUE) {

SRV[X] = STALE; // BRF[X] is only stale after end of RA episode

IRV[X] = R->valid;

BRF[X] = R->value; // BRF value is now “ahead” of seq state in RF

}

else {

SRV[X] = NOT_STALE;

BRF[X] = R->value;// previously stale values get fresh data now

RF[X] = R->value;

}

SRV[31] = NOT_STALE;

IRV[31] = VALID;

3. Instruction I reads operand O from architected register X in the register set:
if(I->runahead == TRUE) {

O->value = BRF[X];

O->valid = IRV[X];

}

else {

O->value = RF[X];

O->valid = TRUE;

}

Figure 7.1 Operation of the RA_N OCOPY register file implementation
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7.2 Eliminating the BRF altogether

It is possible to further reduce the cost of implementing runahead by eliminating the

BRF. Checkpointing the sequential state of the RF can then be accomplished by simply pre-

venting runahead instructions from updating the sequential state of the architected register

file in the RF, and relying upon the pipeline forwarding paths to supply runahead instruc-

tions with the results of prior runahead instructions.

A drawback of this approach is that register updates during runahead, that are not for-

warded before their instruction exits the pipeline, are forever lost to any subsequent RAW

dependent instructions in that runahead episode. Since these instructions do not update the

RF, any attempt to read the destination register in the RF by the dependent runahead instruc-

tion will result in the reading of a stale value. The processor should keep track of these stale

values in order to keep the number of erroneous prefetches to a minimum. This can be done

by adding a “stale” bit to every register in the RF, which as with the RA_NOCOPY imple-

mentation is referred to as the SRV, or Stale Register Vector. If a register is the target of an

attempted update during runahead, then its stale bit is set to the STALE state. Runahead

instructions treat operands marked STALE in the same way that INV register operands were

in the previous runahead processor models. Note that register file valid bits are not needed

as INV values are a proper subset of STALE values. The operation of this register file imple-

mentation, which we refer to as RA_NOBRF, is described using pseudo-code in Figure 7.2.
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7.3 Simulation Results

We have performed a number of runahead simulations to evaluate our new register file

implementations. These were performed with perfect L1 instruction caches and coalescing

store queues, as was done for the studies in Chapter 6. We also decided to perform these

simulations both with and without the L2 data cache. Eliminating the L2 data cache

increases the length of the average runahead episode. This will increase the number of stale

1. When runahead is initiated:
for(X = 0; X < 32; X++) {

SRV[X] = NOT_STALE;

}

2. Instruction I writes Result R to register X
if(I->runahead == TRUE) {

SRV[X] = STALE;// This bit also indicates that the RF[X] is INV

// The value in the RF is now “stale” for all subsequent instrs

// during this runahead episode

SRV[31] = NOT_STALE; // r31 is hardwired to zero

}

else {

RF[X] = R->value;

}

3. Instruction I reads operand O from architected register X in the register set
if(I->runahead == TRUE) {

O->value = RF[X];

if(SRV[X] == STALE)

O->valid= FALSE;

else

O->valid= TRUE;

}

else {

O->value = RF[X];

O->valid = TRUE;

}

Figure 7.2     Operation of the RA_NOBRF register file implementation
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registers in the BRF at the initiation of runahead for the RA_NOCOPY model, and will

cause the RA_NOBRF model to rapidly run out of VALID registers.

7.3.1  CPI

The CPI for each of the benchmarks is provided in Figures 7.3 through 7.7. The CPI for

each processor configuration is given via a stacked bar, which illustrates the CPI contribu-

tion of each instruction class. The overall CPI of each configuration is provided as a number

on top of each stacked bar, along with a percentage reduction in overall CPI over that of the

non-runahead processor. The percentage reduction in CPI for loads and stores over that of

the equivalent non-runahead processor is provided to the right of each stacked bar. Proces-

sor configurations that include an L2 data cache are on the right side of each figure, while

those that do not include an L2 data cache are to the left.

The CPI figures for the GO benchmark are shown in Figure 7.3. The simplified register

file models do not drastically affect performance for this benchmark as long as the processor

has an L2 data cache. The runahead processor that does not perform the register save and

restore operation between the RF and BRF (RA_NOCOPY) incurs only a slight increase in

CPI (1.5%) over the runahead processor that does perform the save and restore operation

(RA). When the BRF is eliminated (RA_NOBRF) the CPI increases over that of the base-

line runahead processor by 6%. However this is still a 9% improvement over the CPI of the

non-runahead (NORA) processor. These relatively good performance numbers for the sim-

plified register file runahead processors worsen significantly when the L2 data cache is

eliminated. This reduces the ability of the RA_NOCOPY processor to generate useful

prefetches. This can be seen in Figure 7.3, where the RA_NOCOPY processor without an

L2 data cache has a CPI that is 16% greater than that of the RA runahead processor. Note
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that this is still a 28% reduction in CPI over the non-runahead (NORA) processor. The

RA_NOBRF processor performs even worse, with a 29% increase in CPI over the RA pro-

cessor, corresponding to a 20% reduction in CPI over the NORA processor. A prefetch util-

ity plot for GO is provided in Figure 7.8. Note that the RA_NOCOPY processor generates

almost as many useful prefetches as the RA processor, unfortunately this is offset by a dou-

bling in the number of useless prefetches. As we expected, the RA_NOBRF processor gen-

erates most of its prefetches very early in the average episode. These prefetches are

generated early enough to keep wrong path effects to a minimum, as relatively few useless

prefetches are generated. Unfortunately RA_NOBRF only generates about half as many

prefetches as the other processor models.

The performance of the simplified register file runahead processors for the PERL bench-

mark, shown in Figure 7.4, is similar to that for GO. For the processors with L2 data cache,

eliminating the BRF save and restore operation (RA_NOCOPY) results in a 5% increase in

CPI over the baseline runahead processor (RA), while eliminating the BRF completely

(RA_NOBRF) results in a 12% increase in CPI. Eliminating the L2 data cache worsens per-

formance considerably, with the RA_NOCOPY processor increasing CPI by 14%, and the

RA_NOBRF processor increasing CPI by 31% over the RA processor. A prefetch utility

plot for PERL is provided in Figure 7.9. Note that RA_NOBRF produces very few useless

prefetches. Other than that, the plot is similar to that for GO.

The performance for the IJPEG benchmark, shown in Figure 7.5, was similar in some

respects to that obtained for the GO and PERL benchmarks. There was virtually no penalty

for either of the simplified register file models as long as an L2 data cache was included in

the processor models. Eliminating the L2 data cache led to a modest gap in performance,
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with the RA_NOCOPY model incurring a 6% penalty, and the RA_NOBRF model incur-

ring a 10% penalty over that of the RA processor. A prefetch utility plot for IJPEG is pro-

vided in Figure 7.10. As with PERL, RA_NOBRF produces very few useless prefetches.

Other than that, the plot is similar to those for GO and PERL.

Interestingly, the RA_NOCOPY configurations were able to achieve virtually identical

performance to the RA processors for the VORTEX benchmark. This can be seen in Figure

7.6. The RA_NOCOPY incurred a CPI penalty of approximately 2% over that of the RA

processor, even when the L2 data cache was eliminated. The performance of the

RA_NOBRF processors was not as impressive, with a 32% penalty for the processor model

without L2 data cache, and a 12% penalty for the processor model with an L2 data cache. A

prefetch utility plot for VORTEX is provided in Figure 7.11. As with PERL and IJPEG,

RA_NOBRF produces very few useless prefetches.

As usual the performance of the STREAM benchmark, as shown in Figure 7.7, is partic-

ularly interesting. Eliminating the RF save and restore operation, while retaining the BRF,

leads to an 8% reduction in CPI for RA_NOCOPY over RA without the L2 data cache, and

a 10% reduction when the L2 data cache is included in the processor models. The reason for

this is rather subtle. All other things being equal, stale registers in the BRF delay the onset

of prefetching in the average runahead episode for RA_NOCOPY, as stale registers must be

overwritten with fresh data before they can be used to generate VALID prefetch addresses.

This can be seen in Figure 7.12, which illustrates the prefetch utility for the RA,

RA_NOCOPY, and RA_NOBRF processors. Note that many of the RA_NOCOPY

prefetches are generated late in the average runahead episode, and that both processor con-

figurations produce virtually the same number of prefetches (note the spikes at the x = 100
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point for the RA_NOCOPY and RA useful prefetch curves). Delaying the onset of prefetch-

ing makes it more likely that the prefetches that are generated will be serviced by the time

that the processor actually executes the prefetch-generating instructions during normal

operation. A problem with this is that it is highly dependent upon the processor staying on

the correct path late into the average runahead episode, which is especially difficult to do

when runahead is initiated with stale values in the register file. This is not a problem for

STREAM, which has a 0% branch misprediction rate during both runahead and normal

operation. Finally, note that the RA_NOBRF model is able to produce nearly as many

prefetches as the other processor models. The performance gap is due to two factors. First,

there are not quite as many prefetches generated, accounting for some of the gap. Second,

the prefetches that are generated are generated early in the episode. These prefetches are

less likely to be serviced by the time the processor actually needs the data. At first glance it

appears that it should not matter at what point a prefetch is generated in the episode. How-

ever, overlap between runahead episodes makes it more likely that prefetches generated late

in a given episode will be serviced before their corresponding prefetch generating instruc-

tion is executed during normal operation.

In general, the worsening relative performance of the RA_NOBRF processor when the

L2 data cache is removed is a result of the increased length of the average runahead episode.

As this register file configuration does not allow register file updates during runahead, the

number of stale registers in the RF increases dramatically the longer the processor remains

in runahead mode. This is of particular importance when the L2 data cache is removed, as

the increased length of the average runahead episode increases the degree of overlap with

prior episodes. This increased overlap moves the bulk of the prefetches generated with the
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RA processor model farther into the average runahead episode. Unfortunately, when the

processor is prevented from updating the register file during runahead it is more likely to be

unable to compute prefetch addresses at this increased distance into the average episode,

resulting in many missed opportunities to prefetch and a corresponding decrease in

runahead effectiveness for the RA_NOBRF scheme.

Similarly, the performance of RA_NOCOPY relative to RA generally worsens when the

L2 data cache is removed. This is again the result of the longer average runahead episode

length, which means that more registers are updated in the BRF on average during

runahead, resulting in more stale values in the BRF at the conclusion of the average

runahead episode than there would be if the processor had an L2 data cache. The presence

of stale registers in the BRF at the initiation of runahead also makes it less likely that the

RA_NOCOPY processor will stay on the correct path, further lowering performance.

Interestingly, there is a subtle advantage to not having a BRF in that when register file

writes are not allowed during runahead, ALL of the registers in the RF are non-stale until

they are the target of a retired runahead instruction, at which point they become stale. This

is not true for the RA_NOCOPY scheme, in which on average several registers in the BRF

are stale when runahead is initiated. This means that eliminating the L2 data cache will typ-

ically result in worsened performance for RA_NOCOPY scheme relative to the RA scheme.
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Figure 7.3
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Figure 7.5
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Figure 7.7
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7.3.2  Stale Registers

As was mentioned earlier, the RA_NOCOPY processor configuration relies upon regis-

ter file writes to both the RF and the BRF during normal operation to keep the state of the

two register files coherent enough to allow the processor to generate useful prefetches dur-

ing runahead episodes using only the values in the BRF. Any registers in the BRF that have

been updated during a given runahead episode are considered stale during normal operation

until they have been overwritten with fresh values. Stale values in the BRF at the start of the

next runahead episode can cause the processor to go down the wrong path, generate useless

prefetches, or miss opportunities to generate useful prefetches.

In order to get an idea of how effective register file updates during normal operation are

at keeping the RF and BRF contents coherent, we recorded which registers in the BRF were

stale at both the conclusion and initiation of runahead episodes. This gives us a stale count

at runahead initiation and conclusion for each register in the BRF. Combining this informa-

tion with the number of runahead episodes allowed us to compute the probability that a

given register in the BRF is stale at both the conclusion and initiation of runahead episodes

for the RA_NOCOPY processor configuration.

This information is provided in Figures 7.13 through 7.17. The bars on the top half of

each figure represent the probability that each register is stale at the conclusion of the aver-

age runahead episode, while the bars on the lower half of each figure represent the probabil-

ity that each register remains stale at the initiation of the next runahead episode. The lower

bars are always of a lower magnitude than the upper bars due to the fact that BRF registers

cannot become stale during normal operation. The average probability that a register in the

BRF is stale is provided to the right of each collection of bars. Note that this average is for
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only 31 registers, since r31 can never become stale as it is hard wired to the value zero.

Finally, these figures provide data for two processor configurations: one with an L2 data

cache, and one without. Removing the L2 data cache dramatically increases the length of

the average runahead episode for most programs, which should also increase the probability

that BRF registers are stale.

The stale value probabilities for the GO benchmark are provided in Figure 7.13. Note

that, as predicted, the probability that the average register is stale at the conclusion of

runahead is significantly higher for the processor that does not have an L2 data cache. These

registers are also more likely to remain stale at the initiation of the next runahead episode,

delaying the onset of prefetching. The plots for the rest of the SPEC benchmarks are simi-

lar; we do not discuss them here for this reason. Note that the data cache behavior of the

STREAM benchmark is such that the probabilities are essentially unchanged when the L2

data cache is removed. This can be seen in Figure 7.17.
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Improving the performance of the RA_NOCOPY processor configuration

The stale registers in the BRF at the initiation of runahead for the RA_NOCOPY

scheme can be compensated for as their counterparts in the RF are, by definition, not stale.

As the processor knows which registers are stale in the BRF, it is a relatively simple matter,

in theory, for the processor to provide a non-stale value from the RF when its counterpart in

the BRF is stale during runahead. This can be done by providing yet another set of bits to

the BRF on a per-register basis, which we can call the REVERSE bits. These new bits are

used to hold the state of the SRV bits at the initiation of runahead (recall that the SRV bits

are set to the NOT_STALE state after using their values to modify their counterparts in the

IRV). The REVERSE bits now indicate whether or not a particular register in the BRF is

stale as a result of a write during the previous runahead episode. When a register is the tar-

get of a write during runahead its REVERSE bit is cleared, and its SRV bit is set (as before).

1.0

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1.0

Probability of Stale Values in BRF for STREAM

WITHOUT L2 DATA CACHEWITH L2 DATA CACHEP
ro

ba
bi

lit
y 

B
R

F
 V

al
ue

 is
 S

ta
le

 a
t:

without RF <-> BRF save and restore operation

S
ta

rt
 o

f R
un

ah
ea

d
C

on
cl

us
io

n 
of

 R
un

ah
ea

d

r0 r5 r10

r15

r20

r25

r30

average

r0 r5 r10

r15

r20

r25

r30

average

Figure 7.17



229

If a register in the BRF contains a stale value from the last episode, and its REVERSE bit is

set, then a non-stale value can be read from the RF instead of the BRF. This complicates the

RA_NOCOPY scheme somewhat, and as a result we did not simulate this approach. Even

so, it would be much easier to implement the REVERSE bits than the RF-BRF save and

restore operation used in the baseline runahead register file configuration.

7.4 Eliminating the L1 data cache runahead valid bits

The L1 data cache valid bits that were employed in all of the runahead processor config-

urations considered up to this point are another source of potential savings. Requiring every

word in the L1 data cache to have a dedicated runahead valid bit can require a significant

amount of storage: 2K bits of storage for the 8KB L1 data cache that we assumed for our

simulations. This is twice the number of bits required to implement a 32x32 register file,

ignoring implementation details of course.

Eliminating the runahead valid bits in the L1 data cache also simplifies the pipeline to

some extent, as the validity of load results during runahead is now a function of only the

validity of the load address register and the presence of the target line in the L1 data cache:

the status of the non-existent runahead valid bit is removed from this logic. Of course, this

simplification does not come without potential problems. Removing the L1 data cache

runahead valid bits means that there is now no way for the processor to detect dependencies

between runahead stores and subsequent RAW dependent loads during the same runahead

episode. This cannot cause improper program execution, but it can cause a degradation in

the performance gains obtainable via runahead.

In order to evaluate the potentially negative effects of eliminating the runahead valid bits

from the L1 data cache we simulated two different runahead processor configurations,
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referred to as RA_NOVALID. Neither have runahead valid bits in their L1 data cache. They

assume that all data read from the L1 data cache on a cache hit during runahead is VALID

and free of dependencies with any stores that may have preceded the load in the runahead

episode. As before, we also wanted to see what effect increasing the average runahead epi-

sode length has on performance. We use the non-runahead (NORA) and baseline runahead

(RA) processor configurations, with and without the L2 data cache, as our basis of compar-

ison. Note that the RA_NOVALID processor is identical to the RA processor in every

respect except its lack of L1 data cache runahead valid bits.

7.4.1  CPI

The CPI figures for these simulations are provided in Figures 7.18 through 7.22. Our

results indicate that eliminating the L1 data cache runahead valid bits results in virtually no

change in performance. The only exception to this rule is the PERL benchmark, which suf-

fered a modest reduction in performance when the L2 data cache was removed (Figure

7.20). These results indicate that eliminating the L1 data cache runahead valid bits can save

a significant amount of hardware, without affecting performance.
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7.5 Summary and Conclusions

This chapter addresses concerns about the implementation cost of runahead. Our pri-

mary concern, was that the register file save and restore operation used to copy the contents

of the architected register file between two register files in a single cycle at both the initia-

tion and completion of runahead, was too complex to implement in a reasonable fashion.

We have demonstrated that there is little effect on performance if the register file save

and restore operation is eliminated by having the processor write to both the BRF and RF

during normal operation, while using only the BRF during runahead. This eliminated the

save and restore operation, but it requires the addition of a STALE bit to each BRF register

to indicate which values in the BRF are stale at the initiation of runahead.
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We also considered a runahead processor implementation that did not employ a second

register file (the BRF) for use during runahead episodes. This implementation prevents

runahead instructions from updating the RF, which checkpoints the architected register file

state. The drawback with this approach is that the only way that would-be register file

updates during runahead can communicate their values to dependent instructions is by using

the forwarding paths. If a value is forwarded during runahead, then it can be used by a sub-

sequent dependent instruction. If however, the source instruction retires before a dependent

runahead instruction can forward the value, the value is lost. We found that this scaled back

approach generally achieved slightly better than half of the runahead performance gains that

are possible with the baseline runahead register file implementation.

As the sequential state of the memory hierarchy is checkpointed during runahead by

preventing pre-processed stores from modifying the contents of memory, it is possible for

pre-processed loads to read stale values from the data cache. Our baseline runahead proces-

sor appended a runahead valid bit to every word in the L1 data cache, which allows the pro-

cessor to detect when a load has placed a stale value into the RF during runahead. This

information is used to reduce the number of erroneous prefetches that are generated. We

found that there was virtually no change in processor performance when these valid bits

were eliminated. This is a significant result, as 2Kb of storage is required to implement the

runahead valid bits for an 8 KB cache.

These results indicate that it is possible to use the runahead technique to good effect,

while reducing the amount of hardware required to implement runahead to a very small

amount.
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Chapter  8

Summary and Conclusions

We have proposed a collection of processor modifications, collectively referred to as

runahead, that can significantly improve processor performance. The basic idea is to use the

processor pipeline to pre-process instructions during instruction and data cache miss cycles,

instead of stalling. This allows a processor to generate accurate instruction and data stream

prefetches by detecting many demand cache misses before they would otherwise occur. All

pre-processed instruction results are discarded when normal operation resumes, as we are

only interested in generating prefetches: this allows us to obtain a form of very aggressive

speculation with a simple in-order pipeline.

The most important result of our experiments is that it is possible to achieve good per-

formance with a simple in-order pipeline when runahead is employed. The implementation

cost of runahead is low, with the majority of the hardware cost consisting of a means of

checkpointing the sequential state of the architected register file. Checkpointing the state of

the memory hierarchy is performed by preventing pre-processed store instructions from

modifying the contents of memory.

Some highlights of our results are as follows. These results are for a five stage pipeline

with two levels of split instruction and data caches: 8KB each of L1, and 1MB each of L2.
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• Instruction and data stream prefetches generated during runahead episodes led to a

significant reduction in CPI for all of the benchmarks that were examined. The

reduction in CPI attributable to runahead ranges from 16% for IJPEG to 77% for

STREAM.

• About 2 to 3 prefetches are generated during the average runahead episode.

Increasing the length of the average runahead episode by eliminating the L2 data

cache typically doubles the number of data stream prefetches that are generated

during the average runahead episode.

• Data stream prefetches generated during load and store miss initiated runahead

episodes are highly likely to be useful: typically at least 90% of prefetched lines

are accessed at least once during normal operation. Data stream prefetches gener-

ated after an instruction cache miss is detected are less likely to be useful, however

very few of these are generated.

• Instruction stream prefetches generated during runahead episodes are highly likely

to be useful: typically about two-thirds of prefetched lines are accessed at least

once during normal operation.

• Runahead can improve conditional branch prediction accuracy to some extent for

some benchmarks. Our results indicate that attempting to save pre-processed

branch outcomes for use during normal operation as predictors will not signifi-

cantly improve performance in most cases.

• The price of these improvements is an increase in the bandwidth that the L2 caches

and main memory must supply. Fortunately most of the bandwidth dedicated to

prefetching is useful.

Some additional highlights from our studies are as follows:

Improving the effectiveness of runahead

We had hoped that by extending the length of the average runahead episode, by deleting

the L2 data cache, we would be able to achieve runahead processor performance that would

surpass that of a more expensive runahead processor that included an L2 data cache. This
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was not the case, even though the longer runahead episodes significantly increased the

effectiveness of runahead.

Failing at this, we hoped that at the very least we would be able to match the perfor-

mance of non-runahead processors that included L2 data cache. This was not the case, even

when we eliminated wrong path effects during runahead by using a trace of conditional

branch outcomes and indirect branch targets, in addition to dramatically increasing the

bandwidth of the main memory interface. The runahead processor models without L2 data

cache are competitive in the sense that they do achieve performance that is reasonably close

to their non-runahead counterparts that include L2 data cache, yet at a considerably lower

cost.

Reducing the implementation cost of runahead

Our baseline runahead processor used a rather simplistic method of checkpointing the

sequential state of the architected register file during runahead episodes, in which the RF

contents are copied in a single cycle to a backup register file, or BRF, at the initiation of

runahead, then restored when normal operation resumes. We found that there is little perfor-

mance degradation if the register file save and restore operation is eliminated by having the

processor write to both the BRF and RF during normal operation, while using only the BRF

during runahead. Writing to both register sets during normal operation helps to keep the

BRF contents coherent with their counterparts in the RF, however some number of stale val-

ues are typically in the BRF at the initiation of runahead.

We also considered an even simpler implementation that did not employ a second regis-

ter file (the BRF) for use during runahead episodes. This implementation does not allow

runahead instructions to update the RF, which checkpoints the architected register file state.
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A drawback of this approach is that the only way that would-be register file updates during

runahead can communicate their values to dependent instructions is by using the forwarding

paths. If a runahead instruction retires before a dependent runahead instruction can forward

the value, the value is lost. We found that this scaled back approach generally achieved

slightly better than half of the runahead performance gains that are possible with the base-

line runahead register file implementation.

Since the sequential state of the memory hierarchy is checkpointed during runahead by

preventing pre-processed stores from modifying the contents of memory, it is possible for

pre-processed loads to read stale values from the data cache. Our baseline runahead proces-

sor appended a runahead valid bit to every word in the L1 data cache, which allows the pro-

cessor to detect when a pre-processed load has placed a stale value into the RF. This

information is used to reduce the number of erroneous prefetches that are generated. We

found that there was virtually no change in processor performance when these valid bits

were not used. This is a significant result, as 2Kb of storage is required to implement the

runahead valid bits for an 8 KB cache.
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Chapter  9

Future Work

There are a number of areas in which the performance of runahead can be enhanced. We

address some of these areas in this chapter.

9.1 Pre-process more than one instruction per cycle

We have seen that increasing the average latency to off-chip memory can significantly

improve the effectiveness of runahead, by increasing the number of instructions that are pre-

processed during the average runahead episode. Unfortunately, the increased effectiveness

of runahead is not enough to completely offset the loss of the L2 data cache. Increasing the

number of instructions that are pre-processed during the average runahead episode can also

be accomplished by pre-processing more than one instruction per cycle. The best way of

doing this would be to use runahead with an in-order multiple issue processor: an out-of-

order runahead processor would be unnecessarily complex.

One of the problems with in-order multiple issue processors is the inflexibility of the in-

order model: instruction issue stalls once an instruction in the window cannot issued, which

can occur for a variety of reasons. Since runahead episodes are entirely speculative, and all

results are discarded, a multiple-issue runahead processor could relax its instruction issue

policies during runahead episodes by turning instructions that would otherwise stall the

issue logic into NOPs in order to keep the issue rate as high as possible. This, plus the fact
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that runahead processors do not stall on cache misses, could keep the runahead IPC signifi-

cantly higher than it would be during normal operation. This increased IPC during runahead

episodes may allow the processor to generate enough additional prefetches to dramatically

improve performance, perhaps even enough to provide superior performance when the L2

data cache is deleted.

Finally, cache misses affect conventional in-order multiple issue processors more than

their single-issue counterparts due to the insertion of multiple NOPs per cache miss cycle.

This implies that a multiple-issue runahead processor may extract more benefit from pre-

processing than a single-issue processor.

9.2 Runahead Co-processors

One of the problems with the runahead technique is that it relies upon demand cache

misses during normal operation to initiate runahead. This is acceptable for low cost imple-

mentations, as the pipeline is productively employed during cache miss cycles. However, it

may be possible to obtain superior performance by using co-processors to continually pre-

process the instruction stream in parallel with a conventional processor.

It might be practical to place very simple runahead processors physically close to the L2

caches or main memory, perhaps even implementing them on the same die. As these proces-

sors would only be used for pre-processing, much of the logic associated with a conven-

tional processor, even a rather simple one, could be discarded. For example, a large fraction

of the instruction set could be omitted, with any occurrence of the missing instructions

treated as NOPs. Similarly, interrupt and exception support can be deleted.
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9.3 Compiler Interaction

Allowing the compiler to influence the behavior of the processor during runahead epi-

sodes appears to be very promising. An approach similar to that used with the IA-64 archi-

tecture [40] could be used to transmit a great deal of runahead-specific information from the

compiler to the processor hardware. Some of the ideas that we have in this area are

described in the following sub-sections.

Selectively enable prefetching or runahead for individual load and store instructions

We have seen that some types of prefetching may be inappropriate depending upon the

type of runahead that the processor is engaged in. For example, data stream prefetching with

loads or stores may be inappropriate during instruction cache miss initiated runahead epi-

sodes. We have also shown that prefetching for some load and store instructions may be sig-

nificantly more effective than for others.

This implies that providing the processor with the ability to selectively enable or disable

prefetching on a per-instruction basis may improve performance. This could be done by

profiling an application and recording per-instruction runahead statistics. Instruction word

bits can then be used to selectively enable or disable prefetching for each load or store

instruction based upon the profiling statistics. The initiation of runahead could also be dis-

abled on a per-instruction basis.

Provide prefetch hints to individual load and store instructions

Similarly, it may be possible to use profiling information to append prefetch hints to

individual instructions in a benchmark. These hints could be used to specify the number and

stride of additional prefetches that can be generated in addition to the line addressed by a

specific load or store instruction, allowing the processor to generate multiple runahead

prefetches per load or store miss.
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Disable the pre-processing of certain instructions

A detailed profile of application behavior may indicate that certain instructions may not

be useful during runahead episodes. In particular, long-latency instructions such as multi-

plies and divides may be of little use during runahead episodes. Also, treating some O/S

calls as NOPs during runahead instead of stalling the processor may improve performance.

The efficiency of runahead may be improved by disabling the pre-processing of these

instructions on a per-instruction basis. This could be done by appending a pre-processing-

enable bit to each instruction word.

Skip over uninteresting code

One way of improving the performance of runahead would be to have the processor skip

over entire sections of code during runahead that are uninteresting. Suppose, for example,

that an inner-loop contains both a load instruction and a function call. The load instruction

generates useful prefetches on a regular basis, while the function call is merely a distraction

that generates few, if any, prefetches. Performance could be increased by disabling the func-

tion call itself. This could be done by treating the branch instruction that performs the func-

tion call as a NOP during runahead. As with the previous section, this can be accomplished

by appending a pre-processing-enable bit to each instruction.

Another possibility would be to append a skip-count to each instruction word. These

could be used to specify a small branch offset for each instruction, allowing the processor to

rapidly jump over small sections of code during runahead episodes.

Finally, a runahead-branch instruction could be added to the instruction set. This

instruction could be used to direct the processor to an interesting section of code during

runahead episodes. The compiler could even generate special runahead-only code for

prefetching. Two versions of each function in a program could be generated: one to com-
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pute results, and another dedicated to the efficient prefetching of data. The processor would

treat runahead-branch instructions as NOPs during normal operation, and the compiler

would have to insert them sparingly in order to keep code bloat to a minimum.
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