AUTOMATED PARTITIONING OF TONAL MusIC

BRYAN PARDO
WILLIAM P. BRMINGHAM

ELECTRICAL ENGINEERING AND COMPUTERSCIENCE DEPARTMENT
THE UNIVERSITY OF MICHIGAN

20 AUGUST, 1999

TECHNICAL REPORT

CSE-TR-396-99

Abstract

The majority of research related to automated analysis of music presupposes human
partitioning of the input into segments corresponding to significant harmonic or melodic
chunks. In this paper, we analyze the difficulty of the partitioning problem in a formal
manner. We then describe HarmAn, a system that partitions tonal music into
harmonically significant segments corresponding to single chords and labels these
segments with the proper chord labels. Input to the system consists of standard MIDI files
and the output is both an annotated piano-roll style display and a text file with
partitioning and chord-name information. Chord labels for segments are determined
through template matching in the space of pitch-class with conflict resolution between
equal scoring templates resolved through simple default preference rules. Our system’s
results are compared with the results described in papers by Winograd (Winograd 1968),
Maxwell (Maxwell 1992), and Temperley and Sleator (Temperley and Sleator 1999).

1 Introduction

Since the 18 century, the vast majority of widely recognized pieces of music written in

both the art and popular traditions of Western Europe and North America have used
tonality and tonal chord structures based on triadic harmonies as a basic structural feature
of the music. Central to the understanding of any tonal or tonal-based piece of music is an
understanding of what harmonies are used in the piece. To determine which harmonies
are used, one must be able to temporally partition the music into segments that divide the
music at points where the harmonies change and label the segments appropriately. We
call this the partitioning problem.

Previous work in the area of automated harmonic analysis of music (Winograd 1968;
Smoliar 1980; Maxwell 1992; Widmer 1992; Smaill, Wiggins et al. 1993), with the
notable exception of recent work by Temperley and Sleator (Temperley and Sleator
1999), has either avoided the issue of generating a good partitioning by taking partitioned
input or has been unclear in how the issue is resolved. Further we are unaware of any
published work that clearly lays out a complexity analysis of partitioning and labeling a
piece of tonal music. We address this by creating a theoretical framework that allows the
problem to be formally analyzed.

Finding a good partitioning requires a metric for determining the “goodness” of a
partitioning. We describe a concise template matching algorithm, related to the work of
both Ulrich (Ulrich 1977) and Wakefield (Wakefield 1999; Wakefield and Pardo 1999)
that quickly labels a partitioning’s segments and generates a score for the partitioning.
Our approach decouples labeling a single partitioning from finding the best one. This
allows the use of a variety of generic search methods to find a good partitioning.

We show that a piece of music witmotes may have up t6"2° possible partitionings
and then fully describe a method to arrive at a good partitioning of the music by
searching only Q) partitionings. The combination of our template matching and method

for search through the space of partitioning produces results that compare well to systems
comprised of hundreds of production rules.

The following section describes the theoretical framework for harmonic analysis of tonal
music used in the remainder of the paper.

2 Notation and Terminology
2.1 The Note

Let anote n, be defined as a 4-tuple of the formstart, end, pitch classctave> where
n:

startis a real number giving the number of seconds between the start ofarate
the start of the first note in the piece.

endis a real number giving the number of seconds between the end ofaratehe
start of the first note in the piece.

pitch_clasdgs an integer from 0 through 11 representing the pitch class ofinote

octaveis an integer from 0 through 11 representing the octave in whiclnnote
occurs.

The first “C” in Figure 1 is an example of a note and is represented as the tuple
<0, 1,0, 4>.

When referring to an element in a note tuple the field is referred to by name and the
identity of the note is denoted by a subscript. For example, the pitch class ofisiote
referred to apitch_class. If nis the first “C” in Figure 1, thepitch_clasg = 0.

Restsare not explicitly represented in the manner of notes. A rest is a segment of time
where no notes sound, and is defined as such in Section 2.6.

2.2 The Piece of Music

A piece of musidV, is defined as a set of notes.

Identical notes are allowed by this definition of a piece. For example, it may be that there
IS a unison note between two voices. In this case, there would be two identical notes in
the seiM.

My denotes a particular performance of a piece of music, wheithe label for the
performance.

Consider the Beethoven excerpt in Figure 1. Assume that the tempo is one quarter note
per second. We will use this tempo as the default for all examples relating to the
Beethoven excerpt. Itis assumed, unless otherwise stated, that the tempo remains

constant throughout the piece. Let the performaggimnoventoe defined as the first
measure of the piece when played at one quarter note per second.

Mbeethoven1: {<01 1! O! 4> 1 <O! 0'25! 91 3> 1 <O! 11 91 2>! <0'251 0-51 3) 3> ’
<0.5,0.75,9,3>,<0.75,1, 3,3>,<1, 2,11, 3> ,<1, 2, 1, 3>,
<1,1.25,7,3>,<1.25,15,3,3>,<15,1.75,7,3>,<1.75, 2, 3, 3>}

2.3 Time and Meter

In this paper, beats are often used in order to refer to the written notation of an example.
Note, however, that there is no explicit reference to beats or metrical information in the
definition of a note. Nor is there any explicit reference to metrical information in any
structure based on notes. This allows music lacking a basic metrical pulse to be
represented and manipulated as easily as more rhythmic music.

All timing information is defined in terms of the number of seconds since start of the
earliest sounding note of the piece. The minimum value for time is 0 and the maximum
value is the end of the final note to sound in the piece. Since real times are used, the
definition of a piece of music is tied to a particular performance of that piece. Different
performances may result in timing variations that will change the definition of the piece.

Time is assumed to be continuous and represented by a real number. The choice of
continuous rather than discrete time was made to avoid basing the theoretical treatment
on an arbitrary underlying quantization. The closest we come to a quantum of time in our
treatment of music is thminimal segmen(defined in Section 2.6), which has a duration
that varies with the tempo and density of notes.

2.4 The State of the Piece

Thestateof the music at timg State, is the subset of notes from a piece of mudic,
that is sounding at time

State= V(neM) | [(start,<t) A (end, >1)]
TakingMpeethovenidS the piece of music, the state at time 0.3 is a set of four notes.
State ;= {<0, 1, 0, 4>, <0, 1, 9, 2>, <0.25, 0.5, 3, 3>}

HarmAn, the music analysis program described later in this paper, uses only the pitch
class of the notes sounding at timEor this reason, HarmAn represents state as a 12
element array indexed by pitch class number (0 through 11). Each elergemeis the
count of notes of pitch classhat are sounding at tinteln this representatiogtate sis
represented by the following array.

Statge 3= [1,0,0,1,0,0,0,0,0,1,0,0]

2.5 Partition Points and Partitionings

Each time where the state changesparition point. This occurs when a note either
starts or ends. From this, it is clear that each partition pmiogrresponds to the start or
end of one or more notes.

Theset of all partition pointsP,;, may be derived from the noteshhby finding all

start, andend, and removing any duplicates. Since each note has a start time and an end
time, the size 0Py can be no more than twice the sizé/bfThis means thd; is finite

and countable as long Bkis finite and countable (a reasonable assumption for a piece of
music).

2|M| > |Pa|||
GivenMpeethoveni@S the piece of music, the set of partition poisg, is
Pai = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}

Each patrtition pointp;, in Py represents a unique time. An ordering can be imposed on
Pai through sorting its elements by value. Let the partition point with the earliest time be
p: and the point with the latest time .. The ordering relation fd?, is expressed as
follows.

V(i) 0 (@ <p)iff (i <j)
If Pay = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}, thmns 0,ps is 0.5 angpjpay is 2.

Figure 1 shows a passage from Beethoven’s Sonata Pathetique. Figure 2 represents the
same passage in a piano-roll style notation, where each note is represented by a line.
Vertical position represents the height of the note, length represents the duration and
horizontal position represents time since the beginning of the piece of music. A vertical
line is placed at each partition point.

;)
Sir}:g’wb% : F_LF_P_P ————+———

Yy ey R (R R

Figure 1: Beethoven, Sonata Pathetique, Op 13, Second Movement, mm 1-2

partition _|—»
- point

NOt¢

\U

Figure 2: Beethoven, Sonata Pathetique, Op 13, Second Movement, mm 1-2

Although the example in Figure 2 has partition points occurring every quarter of a

second, this is strictly a result of the even tempo of the performance. If the performance
were to vary in tempo, then the length of the minimal segment would vary as well. This

can also occur in a piece with an even tempo, but with notes of varying length. Consider
the Debussy excerpt in Figure 3. Assume a constant tempo of one quarter note per second
and that each note begins the exact instant the previous note ends. In this case,

Pai = {0, 1.5, 1.75, 2, 2.5, 2.66@.833 3, 3.5, 4, 6.5, 6.75, 7, 8}.

o — IR IR e —
| | | F

F . 1]] IF IF
{;‘D Il b W Ll | —
M| | b= < — | P
partition minima
point segment

Figure 3: Debussy, The Little Shepherd, mm 1-2

Note that in the Debussy example, partition points are spaced anywhere from roughly
0.166 to 2.5 seconds apart.

A patrtitioning, P, of a piece of music is a subset of the set of partition pdints,
including elementp; andppai|.

Since the elements &% are sorted in temporal order, a partitioning may be represented
by a binary number where bitndicates whether partition poinshould be used to
partition two segments. We assign “0” (for “not in partitioning”) or “1” (for “in

partitioning”) to each bit and the resulting binary number uniquely identifies a
partitioning of the music.

Every partitioning includes the first and last element8,pf The first and last elements
of Py will always have their bits set to “1” and the bits that uniquely identify a
partitioning are those for partition poirgsthroughpean-1. Thus, any partitioning can be
uniquely identified by a number witR|| — 2 bits.

There are nine partition points in the first measure of the Beethoven example. The set of
all partition points for this measury;, can thus be represented by the seven digit binary
number “1111111.” The digits in this number represent partition ppiritsoughpipaiy-1.

Two example partitionings of the first measure of the Beethoven example are shown in
Figure 4. Each vertical line corresponds to a partition point. Thick lines correspond to
“1"s and represent the partition points that are in Bjhthe set of all partition points,
andP, the partitioning. Thin lines correspond to “0”s and represent membBggthat

are not inP. Partitioning 0001000 in Figure 4 divides the measure into two equal
segments. Partitioning 0001011 divides the measure into four segments of varying
duration.

A good partitioningis one consisting of only the element$j that correspond to
harmonically significant changes in the state of the music. Partitioning 0001000 in Figure
4 is a good partitioning. The second partitioning in Figure 4 is not a good partitioning.

T ‘)g ol % LI ‘)g *
(=== Ses 2t Fi. e | e Fi. e
e et) —
H % L i T L>] T H M 1 1 T L] T
X Il.Jlb F-7 | Y X IlJlb ") | Y
o F— i’ S r— i’
partitioning 0001000 partitioning 0001011

Figure 4: Two partitionings of Beethoven, Sonata Pathetique, Op 13, 2nd Mvmt., measure 1

Points ofharmonically significanthange are those partition points where the chord name
that a human would assign to the current state changes. The problem of figdod) a
partitioning for a piece of music is determining which partition points are harmonically
significant.

2.6 Segments and Segmentations

A segments, is the interval between partition poinpsandp;. Defines as a duple,
<start, end> where §tart, end € P, andstart< end

A restis a segment in which no notes sound.

A minimal segmeris a segment between two sequential partition poirgirp; and

pi+1. Figure 2 identifies a minimal segment, as does Figure 3. The state does not change
for the duration of a minimal segment. The duration of a minimal segment depends only
on how long the state remains constant and may vary between minimal segments in the
same piece of music. Figure 3 is an example of this.

All restsareminimal segments

Any segment between partition poiptsandp;, wherej > i + 1 incorporates at least one
change of state is not minimal and can be decomposed into minimal segments.

Thelength of a segmeid the number of minimal segments into which the segment may
be decomposed. This can be derived from the number of partition points encompassed
by the segment. If a segmexis defined by i, p>, the length o is given byj —i + 1.

A partitioning, P, defines a set of segmen$ called asegmentationlf the elements d?
are ordered by increasing time, then each segm&isidefined as a dupleps pi+1>.
The size of seBis|P| - 1.

Given a constant tempo of one quarter note per second, partitioning 0001011 from Figure
4 contains the set of partition points {0, 1, 1.5, 1.75, 2}. This defines a segmentation
{<0,1>, <1,1.5>, <1.5,1.75>, <1.75,2>}.

Theset of all possible segmeng, for a piece of musidyl, contains every duple
<pi, P> wherei <j , drawn from the set of all partition poinBy. The size of this set is
|Pai| choose 20r Pai|(Pan| - 1) / 2.

|Sa||| = |Pa||| choose 2 = |a||! /2(|Pa||| - 2)! = Pa”l(lpa”l - 1) | 2= |Pa|||2/2
With Mpeethovens Sanl IS shown in Section 6, Table 4.

3 Complexity Analysis of the Partitioning Problem

Given a piece of musi®/, and its set of partition point8y, the partitioning problem is
that of finding a good partitioningeca = Pai, that contains only the partition points
corresponding to harmonically significant changes in the state of the music.

Since any piece of music has no more tRjh| partition points, each represented by a
binary digit, the maximum number of ways to partition a piece of music is bounded by
2°Ml This upper bound may be tightened by using the facptratdppay correspond to

the beginning and end of the piece and are always members of every partitioning. Thus,
any partitioning can be uniquely represented by a binary number of a2kipst 2

digits. This gives a maximal number2* =2 possible partitionings for any piece of

music.

22MI=2 5 lPall=2 \yays to partition M

A monophoni@iece of music is one where no two notes sound at the same time This can
be expressed in terms of the statea pfeceM, at timet.

IsMonophonic{l) < Vt : [State] < 2

An unaccompanied melody is an example of monophonic music. Even a very simple
melody such as “Happy Birthday” contains 25 notes, giving a maxinitimays to
partition the melody. This number is greatly reduced if one assumes thabegias at
the exact moment not€l ends. This brings the number of partition pointfvpr 1 and
the number of ways to partition the piece #§% or Z%in the case of “Happy Birthday.”

The value of P is a lower bound on the number of possible partitionings for any
monophonic melody. This can be seen by noting that for a monophonic piece of music
the minimum number of states is equivalent to the number of notes. If one separates two
notes by a rest, then an additional state is introduced and the number of partition points is
increased. If two notes sound at the same time, then the music is no longer monophonic.
As can be seen from this analysis, there are a prohibitively large number of ways to
partition even a short monophonic melody.

Not all music is monophonic and the number of different ways to partition a non-
monophonic piece of music can be significantly lower than ed&h Zhis is because
number of possible ways to partition a piece is not determined by the number of notes,
but by the number of partition pointBg||. When many notes start or end concurrently,

the number of partition points is reduced. An example is a piece consisting of block
chords, with the extreme case being one in which all notes in the piece start and end at
the same time. Such a situation is rare. A more typical example is that of the Beethoven
fragment in Figure 2. The fragment has 24 notes, but only 17 partition points, due to
concurrent start and end times for multiple notes. This results in many fewer ways to
partition the fragment but the number of partitionings is stil 2

Out of the2”~2ways into which a piede! may be partitioned, relatively few
partitionings will correspond to how a human analyst would partition the piece on basis
of the harmony. Presuming that a good partitionfygsqs is somehow found, the

problem of labeling the segments defined by the partitioning remains. Given that there
arec different labels that may be used and that the chosen partitionitigghas1

segments, then there are rougty°°? ways of labeling the partitioning. Taken in light

of the number of possible partitionings, one can see that an already enormous set of
possible variations becomes even more immense when one takes into account labeling
the segments in each partitioning.

The size of this set of variations can be reduced by noting two different partitionings may
contain one or more segments in common. ddrestraint of localitystates that each

segment can be labeled in isolation, without reference to other segments. When searching
through the partitionings of a piece to find a good partitioning, the same segment will be
encountered more than once. If the constraint of locality holds, context does not matter
and there is no need to re-calculate the label of a segment the second time it is
encountered. This can be achieved by labeling segments with jazz-style chord symbols,
such as “A minor 7,” that do not reference their function within the key.

Given the constraint of locality, one need label onlysiteof all possible segmen&y,
for a piece of music. All segments associated with any partitioning are subSgtsuod
thus no additional segments must be labeled 8nas labeled.

Let c be the number of possible chord labels. Given|®gt= [Pai|(Pai|-1) / 2, labeling
all possible segments involves making no more tan|(|Pail-1) / 2 comparisons.

Once all possible segments in a piece are labeled and placed in a lookup table, the size of
the space to be searched in the course of generating a labeled good partitioning can again
be considered to bd"?'2, We use this value as the size of the search space for the
problem of finding a good partitioning of a piece of music.

4 Templates for Segment Labeling

In order to label segments, there must be a way to evaluate the significance of the notes in
a segment so as to be able to categorize it. This section discusses the general framework
we use to approach labeling sets of notes.

The music we are concerned with is based on a set of 12 pitch classes in the chromatic
scale. The common labels for the pitch classes, along with their numeric equivalents, are
given in Table 1.

Table 1: Pitch Class Number and Name Correspondences

C |cuin| P |p#/ig| E F F#1G G G#IA A A# 1B, B

0 1 2 3 4 5 6 7 8 9 10 11

In the audio domain, pitch classrepresents a set of harmonic sounds whose
fundamental frequencies are related by a power of 2. An example is the set of “A”s .
Assume a sound with a fundamental frequency of 440 Hz is an “A.” All harmonic sounds
whose fundamental is |#440, wheren is an integer, are also in the pitch class “A.”

Thus, sounds at 110, 220, 440, 880 and 1660 Hz are all members of the pitch class “A.”

Each time the frequency of a pitch doubles,dt&veincreases by one. In equal-

tempered tuning (the most common tuning in use today), the pitch classes divide an
octave into 12 steps, which are equally spaced in thefdfe frequency. Once the

10

frequency has doubled, the pitch class label wraps around to the name used one octave
below. This repeating 12-step structure is calleccttematic scale

The chromatic scale and its associated 12 pitch classes form the basic set of items used to
generate the structures associated with most Western music. Using the integer
representations of the pitch classes and modulo 12 arithmetic, structures such as chords
and scales, can be represented-agles representing positive displacements in the

space of pitch classes in relation to a root pitch class. These tuples form templates that are
useful for describing musical structures and are related to those used in atonal set theory
(Forte 1973), the chromagram (Wakefield 1999; Wakefield and Pardo 1999), and the

work of Ulrich (Ulrich 1977).

An example of the template representations is the following. Given a root (pitchy class,

the tuple <0,4,7> represents the pitch class relationentbodied in a major triad.

Lettingr = 2, this results a chord given by mod120, r+4,r+7) = {2,6,9}. Looking at

Table 1, it is easy to verify that these numbers correspond to {D, F#,A}, the pitch classes

in the D major triad. Examples of some of the more common tonal structures and their
template representations are given in Table 2. These templates are central to the approach
we take to chord labeling in the work described in this paper.

Table 2: Common Tonal Structure Representations

NAME OF TONAL EXAMPLES OF WRITTEN TEMPLATE
STRUCTURE NOTATION ASSUMING REPRESENTATION

THE ROOT NOTE IS “C”
major triad C, C Maj, C major, C:l mod12(r +0, r+4, r+7)
minor triad C min, C minor, c:i mod12(r +0, r+3, r+7)
augmented triad C+, C augmented, c:l+ mod12(r +0, r+4, r+8)
diminished triad C dim, C diminished,®:i mod12(r +0, r+3, r+6)

major-minor (dominant) C7, C dom 7, C dominant, mod12(r +0, r+4, r+7, r+10
7" chord F:V7

major scale C major scale mod12(r +0, r+2, r+4, r+5,
r+7, r+9, r+11)

5 HarmAn

Using the theoretical framework described in the previous sections, we have developed
HarmAn, a system that partitions tonal music into harmonically significant segments and
labels these segments with the proper chord labels. Input to HarmAn consists of standard
MIDI files and the output is both an annotated piano-roll style display and a text file with
partitioning and chord-name information. Chord labels for segments are determined

11

through template matching in the space of pitch-class with conflict resolution between
equal scoring templates resolved through simple default preference rules.

HarmAn searches the space26fl =2 partitionings of the music through the examination

of only |P4y|-1 partitionings and returns results that compare well to both to the results
generated by other automated systems for harmonic analysis and the results returned by a
human expert.

Figure 5 shows the three main processing steps HarmAn takes in generating an analysis
of the harmonies of a piece of music. In Step 1, MIDI2PallSm, the system generates the
set of all partition point®y;, and the set of all minimal segmefts In Step 2, HarmAn
searches through possible partitionings, and returns the best oneRgydndind the
associated labeled segmentatijzes Step 3 is where HarmAn outputs the results of the
harmonic analysis to both the screen and an output file.

GIVEN: a piece of music represented asrgout stream of MIDI note events.
Each note evens of the form deltaTime, keyNumber, velocity, eventType

RETURN: Pgoos @n ordered set of partition points representing a good partitioning of the music
Syood an ordered set of segments associated Ryjth

Eachse Sy0qis Of the form <4, p, label, score, statg begins api.; and ends ap;
wherep,., ,p; are partition points 1 andi in Pggeq

METHOD

1. [Pai,Sv = MIDI2PallSm(MIDI_STREAM)
2. [Pgoos Syood = FindGoodPartitionindx,Sy)
3. OutputResult®oos Syood

Figure 5: HarmAn

The remainder of Section 5 describes and analyzes Steps 1 and 2 (functions
“MIDI2PallSm” and “FindGoodPartitioning”) in detail. Note that

“FindGoodPartitioning” calls “LabelAndScoreSegment ” and that
“LabelAndScoreSegment ” calls “FindBestRoot.” Each of these lower-level functions is
also described in detail. Step 3 is not described, as it contains code for display and file
creation, and is not central to HarmAn'’s processing.

5.1 Generating the Initial Partitioning: MIDI2PallSm

To find a good patrtitioning for a piece of musit, one must first find the set of all

partition points. In the case of HarmAMW,is represented by a standard MIDI file. The
system reads note events from the file and generates the set of all partitiorPgpints,

and a setSy, containing the state of the piece in each minimal segment. Pseudo code for
this is given in Figure 6. Note that the pseudo code assumes “well formed” MIDI where
there is each “note on” is followed by a corresponding “note off.”

12

GIVEN: an input stream of MIDI note events.
Each note everns of the form deltaTime, keyNumber, velocity, eventType

RETURN: Pair » an ordered set of all partition points.
Eachp,e P, is a real number corresponding to the time of a “note on” or “note off” event

S an ordered set of minimal segments associatedRyjth
Eachs. pi.1, pi-€ Snis of the form g4, p, label, score, statg begins ap.; and ends b

METHOD

1. integer array stat¢0,11]:=0 % the count of notes of pitch class 0 through 11 currently sounding
2. real pi, P ,time:=0,

3 integer keyNumber, velocity, i

4. Pa = {pra}

5. [deltaTime,keyNumber, eventType getNoteEvent(MIDI_STREAM)

6. WHILE eventType = “note on'OR eventType = “note off”

7. time:=time + deltaTime

8. pi :=time

9. pitchClass = mod1RéyNumber)

10. IF pi <>pia

11 Pai :=Par U { p}

12. S pi-t, pi> = < Pr1, Pi, "no label”, O,state>

13. S =S { i, pist

14. END

15. IF eventType = “note onTHEN statdpitchClas$:= statgpitchClas$ + 1 END
16. IF eventType = “note off THEN statd pitchClas$:= statdpitchClas$ — 1 END
17. Pi1 =P

18. [deltaTime,keyNumber,velocity eventTypegetNoteEvent(MIDI_STREAM)
19. END

Figure 6: MIDI2PallSm

For the purpose of this paper, a MIDI note event is defined to consisietthdime

which is the absolute time since the previous note evéet/umberwhich is a value
from 0O to 127 specifying the key on a piano style keyboard which was struelociy,
which is a value from 0 to 127 defining the velocity (usually associated with volume)
with which the key was struck, and eventTypgwhich is either “note on” or “note off.”

The lowest possible “C” on a MIDI keyboard is represented by 0, “C sharp” is 1 and so
on Every 12 keys, the octave increases by one. Thus, pitch class (see Table 1 for the
correspondence of pitch class and number). can be deriveddsdvumbeby taking
mod12keyNumber.

13

MIDI2PallSmbegins by initializing variables in Steps 1 through 4. The var&hbteis a
12 element array indexed by pitch class number (0 through 11) that represents the state of
the music. Each elememtgives the count of notes of pitch clasg sounding time.

C4 (key number 48) G3 (key number 43)

D3 (key number 38)

0 sec 1 sec 2 sec 2.8 sec

Figure 7: An Example in Piano Roll Notation

Step 5 callgetNoteEventThe functiorgetNoteEventinds the next note event from the
input MIDI stream. The MIDI stream is currently an input file getNoteEventeads

the file until the next “note on” or “note off” is encountered. It then retdal®Time
keyNumber, velocitgndeventTypdor the event. If no note event is fouggtNoteEvent
returns “-1.”

To understandylIDI2PallSmfrom Steps 5 through 19, consider the generatidtyof
andS; from theexample music in Figure 7.

The first “note on” event is read in Step 5. The funcgetNoteEventeturns
deltaTime= 0, keyNumber 48 eventType “note on.” HarmAn then setesneandp; to
0. ThepitchClassfor the event is event is 0. Singe= pi.;, N0 new entries are made to
Pai or Sn. To show a “C” is currently sounding, element O ofdtaearray is then
incremented by 1, makirgjate=[1, 0,0, 0,0, 0,0, 0, 0, 0, O, Q].

The next note event read in is also a “note on,”getloteEventeturnsdeltaTime= 1,
keyNumber 43 eventType “note on.” The variablesmeandp; are setto 1 in steps 7
and 8. Nowp; <>pi1, so the code to add elementftpandS,is run.Pyy is set to

{0, 1}. Segment i1, pi> IS set to<0, 1, “no label”, [1, 0, 0, 0, 0, 0, 0, 0, O, 0, 0, 0] > and
Sn to {s<pi-1, pis}- Now that the segment ending@thas been generatestateis updated
to[1,0,0,0,0,0,0,1,0,0,0, 0] to show a “G” is sounding.

The next note event readdsltaTime= 1, keyNumber 48 eventType “note off.” The
variablesime andp; are set to 2. Singg <> pi.1, Paiis set to {0, 1, 2}. Segmesstis set
to <1, 2, “no label”, [1, 0,0, 0, 0,0, 0, 1, 0, O, 0, 0] > &do Sy U { S pi-1, pi>}- Since,

14

pitchClassis 0 andeventType: “note off”, stateis updated to
[0,0,0,0,0,0,0,1,0,0,0, 0]

The next note event readdsltaTime= 0, keyNumber 38 eventType “note on.” The
variablegime andp; are set to 2. Singg = pi.1, ho new elements &%, or S, are
generated. ThpitchClassis 2, sostateis updated to [0, 0, 1,0, 0,0, 0, 1, O, O, O, 0].

The next note event readdsltaTime= 0.8 keyNumber 43 eventType “note off.”
The variablesime andp; are set to 2.8. Singg <> p;.1, Pais set to {0, 1, 2, 2.8}.
Segmensis set to<2, 2.8, “no label”, [0, 0, 1,0, 0, 0,0, 1, 0, 0, O, 0]> &do

Sn U {S i, pist- Since, pitchClassis 7 andeventTypes “note off”, stateis updated to
[0,0,1,0,0,0,0,0,0,0,0,0].

The final event read ®deltaTime= 0, keyNumber 38 eventType “note off.” The
variablegime andp; are set to 2.8. Singg= pi.1, the setd,, or S, are not updated. The
pitchClassis 2 andeventType= “note off”, sostateis updated to
[0,0,0,0,0,0,0,0,0,0,0,0].

The final outpuMIDI2PallSmgenerates on the example in Figure 7 is as follows.
Pa|| = {O, 1, 2, 28}

Sn= {<0, 1, “no label’, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] >,
<1, 2, *no label’, [1, 0, 0,0, 0, 0, 0, 1, 0, 0, 0, 0] >,
<2,2.8,“no label’, [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]>}

The time required to generd®g andS; is linear with respect to the number of notes.

This can be seen by noting that for any “note on” or “note off” event, a fixed number of
steps are taken in the code. Each of these steps requires a fixed amount of time. Thus, the
maximum number of steps taken in the process of genemjirandS, is related to the

number of notes by a constant factor.

5.2 Finding a Good Partitioning

Once the initial partitioningRa, is created, it is assumed to be a good partitioning, unless
another partitioning is proven to be better. To find a better partitioning, HarmAn goes
through the partition points &%y in order and determines whether the overall score of
the piece would be increased by the removal of each partition point.

Let Pyood= Pan@andi = 2. Letp; be the partition point iRy.0qUnder consideration.
HarmAn compares the current best partitionfgoq With Pgooq- pi . If the scoring
algorithm determines th&ooq- i is a better partitioning thayooq thenp; is removed
from Pyooa The system then gets a npwand repeats the process. Figure 8 contains
pseudo code describing this step in greater detail.

As can be seen from Figure 8, HarmAn scores the segment on either side of partition

pointp;. It then sums the states of the two segments by adtite,.1 pis[j] to
statey;, pi+15[j]. Note that the values istatey;.1 pi- + Statep;, pi+1> may not actually

15

represent the count of notes of each pitch class found in the segmem.<>.

Consider the case where a single note is held while a note changes in another voice. The
first two minimal segments (i.e. the first half-beat) of the Beethoven example in Figure 2
show this situation. The piece begins with two “A flats” and one “C.” These are the notes
playing in segmentps, p>. Then, one of the “A flats” moves to an “E flat” in the next
guarter-beat (i.e. segmerp<ps>). The union of these two segmentg;, s>, contains

two “A flats”, one “C” and one “E flat.” HarmAn represents the states for these segments
as follows.

statepip>- =[1,0,0,0,0,0,0,0,2,0,0,0]
stateprpz- =[1,0,0,1,0,0,0,0,1,0,0,0]
statep; pz> = Statep; p2> + stateps ps> =[2,0,0,1,0,0,0,0,3,0,0,0]

The state that results from this addition clearly does not represent the number of notes of
each pitch class occurring during the segm@at gs>. In fact, for any non-minimal

segment, a note will be represented by the number of minimal segments it spans within
the segment in question. Thus, the held “C” in the example is represented by a value of 2
in statep: p3-. Similarly, the slot for “A flat” has the value 3 state,; p3- because the

“A flat” held across minimal segmentps: p> and ., ps> receives a point for each of

the minimal segments in which it is present, and the sixteenth note “A flat” is receives a
point for being in g, ps>. Note that, although the low “A flat” is actually held for a total

of four minimal segments, it only has a value of two insta¢earray, since the interval

under consideration only includes two minimal segments of the four in which the “A flat”
sounds.

This system for counting note weight by the number of minimal segments spanned gives
more importance to held sonorities and ensures that the segment labeling generates higher
scores when notes spanning several minimal segments are present. This causes two
adjacent segments which spell out the same chord and share a held note (such as
segments gy, P> and P, ps> from the Beethoven example) to receive a score at least

as high when joined as they do when separate. This is important due to the way HarmAn
searches for a good partitioning.

If the score of the sum of two adjacent segments is equal to or higher than the sum of
their individual scores, then HarmAn deems it has found a label that better explains the
notes in the two segments as a single unit and partition point separating;them,
removed fronPye0q Similarly, the segmentspg,, pi > and i, pi+1> are replaced by a
single segmentpii, Piv1> IN Syo0d

16

GIVEN: Pai , an ordered set of all partition points.
Eachp;e P, is a real number corresponding to the time of a “note on” or “note off” event

Sn an ordered set of minimal segments associatedRyjth
Eachse S, is of the form <4, p, label, score, state begins ap;.; and ends gb;

RETURN: Pgos @n ordered set of partition points representing a good partitionig of
F)goodg Pai

Syood an ordered set of minimal segments associatedRyjth
Eachse Sy0qis Of the form <4, p, label, score, statg begins ap;.; and ends b
wherep,.; ,p; are partition points 1 andi in Pggeq

METHOD

1. Pgood =P

2. Sgood = ST]

3. i =2

4. S := LabelAndScoreSegmerg Y

5. WHILE i < |Pgood

6. S+1 := LabelAndScoreSegmerg.()
7. Shew := < pi.1, Pz, NO label”, O,state, ; + state>
8. Shew := LabelAndScoreSegmers.§,)
9. IF scorgen.=> (scorg, +scorg)

10. removep; from Pyqoq

11. removes.,; from Syoq

12. S ! = Shew

13. ELSE

14. i=i+1

15. END

16. END

Figure 8: FindGoodPartitioning

The pseudo code in Figure 8 shows that the partition pmitisoughpipa-1 are

evaluated by HarmAn in the course of generating the final good partitioning. Evaluation

of each partition poinfy;, requires the scoring of three segmengs, 9>, <pi, p+1> and

< p.1, Pi+2>. Once the initial partition poinpy, is evaluated, only two new segments need

to be scored and labeled to evaluate each partition point, since the segmegnt<an

be reused from the previous step. Thus, the total number of segments scored and labeled
by HarmAn is expressed by the following formula.

2(|Pan|-2)+1 = 2P4i]-3 = number of segments scored by HarmAn

The function “LabelAndScoreSegment ” (called in Steps 6 and 8 of
“FindGoodPartitioning”) is described in Section 5.3. There, we show that HarmAn labels
a segmens in c steps, where is a constant. This allows us to express the number of
steps required to generate a good partitiorfigghq as follows.

C(2|Pan]-3) = the number of note evaluations.

At most, each note generates two partition points, one for the start and one for the end of
the note. Thus, there can be no more thisth 2frtition points.

2M| >= P

17

Substituting 2Y1| for Pay| results in the following limit on the maximum number of steps
needed to generalood

O(c(4M] -3))

The maximum number of steps required to analyze any piece of music is related by a
constant to the number of notes

A lower bound for the number of steps that take place in the course of laidabngjven

by the case in which all noteshhstart and end together. In this case, the piece has only
one segment wittM| notes in it and the number of steps required for the scoring of a
single segment, becomes the number of steps required for the whole piece.

5.3 Segment Labeling and Scoring

HarmAn’s method for labeling segments uses the templates described in Table 2 to find
the best-matching label for the set of notes in a particular segment. In the current
implementation, templates for “major”, “minor”, “augmented” and “diminished” triads

are used, as well as a template for the “major-minor” (a.k.a. “domindhthard. These
templates are matched against the set of notes present in a particular segmers <
represented by tretatearray for that segment and the template whose root pitch-class

and chord quality best match the notes has its name returned as the label for the segment.
The score for a particular combination of template and state is calculated by performing

the steps in Figure 9.

1. If all elements irstate; ;> are 0, then the segment is a rest. Give one point and quit.

2. Sum the values of the elementstaite; ;. whose index number matches a template
element

3. Subtract the values in the elementstafe; ;. whose index number does not match any

element of the template

4, Add % the value of the elementstéte; ;. whose index number is the root class of the
template.
5. Multiply the result by the number of template elements that correspond to the index of an

element obtate; ;. containing a value greater than 0.

Figure 9: Calculating a Template’s Score

Step 1 gives a positive point value to segments containing only rests. Assigning a positive
value to segments containing only rests prevents the removal of the partition points
defining the rest segment, since unifying any segment with a rest segment lowers the
overall score. Rests often form a natural division point between phrases. Due to this we
deemed it undesirable to unify segments across rests.

18

Steps 2 and 3 give the initial score for the segment through a count of the number of
template matches minus the number of template misses.

Step 4 causes the system to favor labels that use one of the pitches in the segment as the
root of the chord. Without Step 4, a segment containing “A” and “C” would return a label
of “F major” rather than “A minor”, due to HarmAn’s preference for major chords over
minor (see Figure 11).

Step 5 enables the unification of arpeggiated chords through giving higher values to
templates that have several of their elements matched by the data. Take the example of
two segments containing “C” and “E”, respectively. HarmAn labels them “C major” and
“E major” with scores of 1.5 and 1.5. Without Step 5, the union of the two segments
would be have a score of only 2.5, and unification would not take place, since the unified
segment has a lower score than the sum of the two individual segments. Step 5 doubles
the score of the unified segment since two elements in the template for “C major” are
matched. The resulting score of 5 is higher than the sum of the separate scores, and the
two segments are unified.

Consider an example application of the steps in Figure 9 on the template for an F minor
triad. Let the segment b@s ps> from the Beethoven example in Figure 2. This segment
has the following state (derived in Section 5.2).

statep pz-=[2, 0,0,1,0,0,0,0,3,0,0, 0]

The rooty, is an “F” (pitch class 5) and the template for a minor triad is
mod12¢+0,r+3,r+7). The elements of ttetatearray which match the template are
stateps p3-[5], stateps p3-[8], andstatep p3-[0].

Step 1 does not apply, since there are elemeststi@, p3- with a value > 0.

Steps 2 and 3 sum the values of template elements minus those not matching the
template.

score =sumétatep p3-[5,8,0]) — sumétate, p3-[1,2,3,4,6,7,9,10,11]) The root class is
5, which is empty, so there is nothing to add in Step 4.

There are two template elements with positive values in the state array, so Step 5 is
score= score* number of template elements matchetl* 2 = 8
Thus, the score for an F minor triad on the segmpntps> is 8.

In practice, all combinations of template and root class must be scored in order to
determine the best (i.e. highest scoring) label for a particular segment. The remainder of
this section outlines how this is done.

19

GIVEN: state ,an integer array of size 12 indexed from 0 to 11.
The value of an elemerit,of statecorresponds to the number of notes of pitch dlpsssent
in the segment times the number of minimal segments during the current segment in which
each noteaunds.

template, an array of integers from 0 through 11 representing distances in pitch-class space from a
root class. Aemplatemay have from 1 to 12 elements in the array, given only 12 possible
pitch classes.

RETURN: bestRoot,an integer from 0 to 11 corresponding to the pitch class of the highest scoring root

bestScorea real number corresponding to the confidence in the root choice

METHOD

1. bestScore=-100

2. bestRoot=0

3. FORroot:=0to 11

4, score:=0

5. myTemplate= mod12(oot + templat¢ % set template relative to the root

6. score:= sumétatgmyTemplatp % sum the values in elements
% that match the template

7. score:= score+ statgroot)/2 % add extra 50% for roots

8. score=score- sumétatgnotinTemplat® % subtract the sum of the
% values not in the template

9. numberOfElementsMatched sumétatdmyTemplatg> 0)

10. score= score* numberOfElementsMatched

11. IF score>bestScore

12. bestScore= score

13. bestRoot=root

14. END

15. END

Figure 10: FindBestRoot

Given a template for a chord-quality has been determined, the best root and score for that
root are found using a method outlined by the pseudo code in Figure 10. This algorithm
takes as input a template similar to those described in Table 2 astdtderray of the

current segment. It returns the highest scoring root pitch class and a score for that
combination of template and root class.

Note that the number of steps taken in Figure 10 depends on the number of elements in
the template rather than the number of notes present in the input segment. Since no
template may have more than 12 elements (one for each pitch class), the number of steps
taken in the course of finding the best root is bounded by a constant value, O(c).

Ties between the scores generated for two templates are resolved through the application
of the preference rules described in Figure 11. Preferences are transitive. Thus, major
triads are preferred to minor triads and minor triads are preferred to augmented ones, so
major triads are preferred to augmented triads.

The chord quality preference rules in Figure 11 are intended to capture the relative
likelihoods of the chord qualities (“minor,” “augmented,” etc.) in tonal music. Of course,

20

the likelihood of a particular chord quality will vary with the kind of music analyzed, but
the preferences we have selected form a good general rule of thumb for tie resolution.
The pitch class preference rule is essentially arbitrary and is intended to provide a simple,
predictable tie resolution method when there is no other way of choosing between two
labels.

Prefer major triad to minor triad

Prefer minor triad to major-minor 7"

Prefer major-minor 7" to diminished triad

Prefer diminished triad to augmented triad

Prefer lower pitch-class numbers to higher pitch-class numbers

Chord-quality preferences take precedence over pitch-number preferences

Figure 11: Preference Rules for Template Tie Resolution

The function “LabelAndScoreSegment ”, shown in Figure 12, outlines the steps HarmAn
takes in labeling and scoring a segment. If the segment is empty, then it returns a score of
one and reports that there is no chord in the segment. Otherwise, the program goes
through each combination of root and template, comparing their scores and returning the
highest scoring root and label. Computing best root and score for an individual template

is performed by “FindBestRoot,” described in Figure 10. Ties are resolved by the

function “IsPreferredTemplate”, which compares the best template so far with the current
one, using the preferences in Figure 11. This function is not written out in pseudo code,
since it is simply a set of “if — then” statements embodying the preferences in Figure 11.

Note that nothing in this approach limits templates to triadic harmonic structures.
Pentatonic scales, constructions based on fourths or any other structure can be searched
for simply by introducing a template for the structure in question and establishing a rule
for resolving ties between the new template and existing ones.

21

GIVEN: A segments, of the form <p.4, p, label, score, state beginning ap;.; and ending ap;

RETURN: A segments,, of the form <p.3, p, label, score, state beginning ap;.; and ending ap;
METHOD

1. MajIntervals:=[0 4 7]

2. minintervals:= [0 3 7]

3. dimintervals:= [0 3 6]

4, Auglntervals:= [0 4 8]

5. Dom7Intervals=[0 4 7 10]

6. template= [dimIntervals , AugintervalsDom7Intervals, minintervals , Majintervals
7. topindex:= 0,

8. topScore= 0,

9. topRoot:= 0

10. IF all elements o$tatg, =0

11. Sout:= < Pi.1, P, rest, 1, statg,>

12. ELSE

13. FOR templatelndex :=1 to 5

14. newBestTemplate FALSE

15. myTemplate= templaetemplatelndex

16. [root, scoré := FindBestRootgtatg,, myTemplate
17. IF score > topScore

18. newBestTemplate TRUE

19. ELSEIF (score = topScorg AND IsPreferredTemplatefmplatelndex, topindgx
20. newBestTemplate TRUE

21. END

22. IF newBestTemplate TRUE

23. topScore=score

24, topIndex:= index

25. topRoot :=root

26. END

27. END

28. score:= topScore

29. label := MakeLabelfopRoot, topIndéx

30. Sout:= < Pi1, p,1abel, score, state>

31. END

Figure 12: LabelAndScoreSegment

The approach for labeling a segment outlined in Figure 12 takes a fixed amount of time
for each step save step 16, which calls FindBestRot. It was shown earlier that the
maximum number of steps taken by FindBestRoot is limited to a fixed amount as well.
Thus, the maximum number of steps required to label a segment is also fixed.

LabelAndScoreSegment returns a result in constant time

22

6 An Example: Beethoven Sonata Pathetique, 2 nd Movement,
Measure 1

To better understand the HarmAn approach to finding a good partitioning, consider an

analysis of the first measure of the second movement of Beethoven’s Sonata Pathetique.
Figure 13 shows the first measure of the Beethoven example with its partition points

labeled.
= i | LI] 4 - g

L} E T
. e R e =

= 1 | L3]
o
Ll K

P P2 P Pa Ps P Pr Ps P9

Figure 13: Beethoven, Sonata Pathetique, Op 13, 2nd Mvmt., measure 1

Recall that the partition points are sorted in temporal order, so a partitioning is
represented by a binary number where bit i indicates whether partition point i should be
used to partition two segments. Recall, also, that only the bits for the second through the
penultimate partition points are needed to uniquely identify a partitioning for a piece of
music. There are nine partition points in the first measure of the Beethoven example,
making |Ry| = 9. Thus, the initial partitioning generated by HarmAn is represented by
“1111111.”

Table 3 : Partitionings Considered in Analysis of Example

Round1 Round2 Round3 Round4 Round5 Round6 Round?

Current 1919111 ola1111 ooliaza ooolazs ooofliz ooordls ooozod

New O1111112 0011111 0001111 0000111 0001011 00021 00010d)

Table 3 shows the series of partitionings considered by HarmAn in the analysis of the
Beethoven example. There are seven rounds of comparison. For each round, the best
partitioning found so far is in th@urrentrow. The new partitioning under consideration

is in theNewrow. The bit representing the partition point under consideration in the
current round is shown in a larger font than the rest of the bits. The higher-scoring
partitioning in each round is highlighted with a gray background. To see how the binary

23

numbers in Table 3 map onto partitionings, consult Figure 4, which shows two
partitionings from Table 3 in standard notation.

Table 4 shows the label and score for every possible segment in the first measure of the
Beethoven example. The vertical key gives the starting partition point for each segment.
The horizontal key gives the ending partition point for each segment.

Table 4 : Segment Labels and Scores

P2 P3 Pa Ps Ps Pz Ps P9
P1 | AMaj8 AMaj225 AMaj345 AMaj45 A Maj 36 A Maj 33 AMaj24 EDom24
P2 |- A,Maj105 AMaj225 A Maj33 A Maj 24 A Maj 21 EDom22 EDom 36
P3| . A, Maj 8 A Maj 22.5 A Maj 13.5 E Dom 12 E Dom 24 E Dom 38
Pa]” . ° A, Maj 10.5 E Dom 10 i Dom 24 i Dom 36 & Dom 50
Ps |-) ; - Gdim105 g pom26 EDom38 EDom 52
Ps |~)) ; - E,Dom10.5 EDom26 EDom 40
p7 |- - - - - - Gdim105 g pom 26
Ps |~) -) - - - E, Dom10.5

As stated previously, HarmAn considers partition points in the order in which they occur
in the music. In the first round of comparison, the partitioning 1111R]1i6 compared

to partitioning 0111111R;, —p2). This is done by comparing the scores of segments

<p1, P>, <Pz, P> and P21, p>. Here, the score ofpg, p> is 22.5 and the sum of the
scores for g1, P> and <p,, p> is 18.5. Since the unified segment has a higher score,
partition pointp, is discarded (i.e. its bit is set to 0) from the partitioning for this reason.

In Round 2, HarmAn compares partitioning 0111111 with partitioning 0011111. This is
done by comparing segments: < ps>, <ps, P> and 91, ps>. As in the previous round,
the unified segment scores higher than the sum of the scores of the two component
segments angs is discarded from the partitioning.

In Round 3, HarmAn compareps ps> + <4, P> VS. 1, P> In this case, the values

are equal, but the system chooses to remove the partition point due to a preference for
longer segments over shorter ones. This is done whenever the sum of the two separate
scores equals the unified score.

Round 4 finds HarmAn comparing partitionings 0001111 and 000011 by looking at
segments By, ps>, <ps, Ps> and 1, ps>. The sum of the scores ob ps> and

24

<ps, ps> is 55.5, while the score of the segmept, s> is only 36. Removing the
partition pointps would reduce the score, so the partition point remains (is assigned a 1)
and the system moves on to the next round.

In Round 5, HarmAn chooses between partitionings 0001111 and 0001011 by comparing
<ps, Ps> + <Pe, P> With <ps, p>. On basis of thigyes is deemed to not to be
harmonically relevant and is removed from the partitioning.

In the final two rounds, HarmAn considers the partition pgpntndps. In both cases,
the score for the unified segment is higher than the sum of the two seperate segments’
scores. Due to this, both andpg are removed from the final partitioning.

Since the initial and final partition points are always in every partitioning, the system is
done once it has considered poiptshroughps, leaving partitioning 0001000 (illustrated
in Figure 4) as the final winner, with the first segment labeled as “A flat major” and the
second segment labeled “E flat dominant.”

7 Evaluation of HarmAn
7.1 Time Complexity of the HarmAn approach

Section 5.1 shows that HarmAn generates initial partitioRggand segmentatid®, in
a number of steps proportional to the number of notes in a piece of Music,

Steps to generat®y andS, = c|M|, for some constaiat

Section 5.2 shows that the maximum number of steps required to generate the final
partitioning,Pyo0q from Py is given by the following expression, whetés a constant.

d(4M] - 3) > maximum number of steps to genem@jgyq

Adding the time required for each of these steps results in the following limit on the
number of steps HarmAnN requires to create a final partitioning with labeled segments.

K|M| > c|M| +d(4]M| — 3) > steps to parse a piece of music, wherec + 4d
7.2 The Number of Partitionings Searched by HarmAn

HarmAn generates a final partitioning in tifki®|. The full space of possible

partitionings is 2" which is at mos2®™! =2 This provides an indication that HarmAn
does not search the entire space of partitionings in the course of generating a result. In
fact, it does not search the entire space.

2IM| =1 > |Py| — 1 = the number of partitionings searched by HarmAn

Each partition point is considered in order of its occurrence in the music. Once a partition
point has been deemed relevant or not, it is not reconsidered later. The number of

25

partitionings considered by the system is equiPig-1, since two partitionings are
considered for partition poimk and one new partitioning is considered for each
subsequent partition point up througlpai-1.

This number is quite a bit smaller than the full spaceé™8f2possible partitionings. This

great reduction in the number of partitionings considered is a key element in HarmAn’s
ability to analyze a piece of music in tractable manner. One may ask whether it is
reasonable to prune the space of partitionings and segments in the way HarmAn does. We
think that it is reasonable to do so.

Assume that a higher-scoring template corresponds to one closer to a human expert’s
choice of label for a segment of the music. HarmAn'’s processing of the partition points in
P41 results in a monotonically non-decreasing overall score. This can be seen from the
algorithm for finding a good patrtitioning in Figure 8, where a partition gwistonly

removed fronPyqoqif SCOrek pi.1, piv1>) > score(< p1, pi>) + score(<p, pi:1>). Thus, a
partition point is removed only if the resulting score is not decreased. This guarantees
that the final segmentatidioos Will have at least as high a total score as the initial
segmentation of minimal segmer, This does not assure ti8t.q has the highest

possible score, only that it is at least as good as when the process begins.

From this, we can say that HarmAn'’s final partitioniRgyoq and its labeled
segmentation$yeos are no further from a human expert’s partitioning and labeling of a
piece than ar@y andS,.

Of course, this does nothing to guarantee that the parse resulting from the start-to-finish
approach used by HarmAn generates an answer anywhere near the highest scoring one.
The argument in favor of this approach is that music is an art form that unfolds in time
from start to finish. A composer who wishes to write pieces that are decipherable by the
listener must create structures that can be understood in a start-to-finish way with limited
backtracking to reconsider previously heard passages. Also, the expectation for what
comes next is determined by what has just been heard and it seems reasonable to assume
that the set of likely partitionings under consideration by a human is greatly constrained
by what has already transpired in the music. A good composer knows this at some level
and writes music accordingly. From this, it seems likely that much music is written so
that one can partition it in a start-to-finish way with no backtracking.

7.3 Evaluation of HarmAn on Various Pieces

If it is true that much tonal music was written to be analyzed in a start-to-finish way, and
that the template scoring algorithm in Figure 9 is a good one, then HarmAn should
perform well on a variety of pieces. In order to compare our results to existing work on
automated analysis of harmony, we analyzed a set of pieces by Bach, Beethoven, and
Schubert used in other papers. We also analyzed a number of other pieces of various
textures from various periods. What follows are several examples taken from previously
published papers showing our system’s analysis along side the published results and one
more difficult piece by Debussy, showing HarmAn’s analysis of a tonally ambiguous
passage.

26

7.3.1 Winograd : Schubert. Deutsche Tanze, Op. 33, No. 7

Winograd (Winograd 1968) approached the harmonic analysis of music through the use
of generative grammars. Winograd’s work was successful in correctly labeling the
harmonies, roman-numeral style, in pieces of music composed of block chords but did

not address the issue of how to partition a piece into segments (i.e., likely chords) upon
which to perform the harmonic analysis. This partitioning was performed by a human
operator and the results of the human'’s parsing were passed to the program as input. This
contrasts with HarmAn’s automatic partitioning of the music.

In order to test HarmAn on music with block chord figuration and to compare our results
to Winograd’s, the same pieces analyzed in Winograd’s paper were analyzed by
HarmAn. An example of HarmAn'’s analysis of the first eight measures of one such piece
is shown in Figure 14. The results generated by HarmAn for this passage generally agree
with Winograd's analysis, with the only major disagreement being in the placement of

the “F7” (F dominant) chord in the second half of the sixth measure. Winograd’s system
placed this chord’s beginning at the start of the seventh measure. Interestingly, a nearly
identical musical situation presents itself in the second measure and here Winograd’s
system agrees with our analysis.

nol | 1 N ¢] g| EILNI!I'!
. el prleeleel Pl 20 g0l e
JTFL'”%-::H:!'—?‘ o H":H:HJ.&FJ. i
— N S S S S S S el S
- L
HarmAn — pgluai F7 Bt aj F7 B aj
Winograd, B,Maj F7 FMaj B|, Maj FMaj FB, Maj
Jazz notation
Winograd, 16 V7 V I 16 1 16 V.o oVv7Zle |
orig. notation 4 4 4 4

Figure 14 Schubert. Deutsche Tanze, Op. 33, No. 7

7.3.2 Temperley and Sleator : Beethoven Sonata Pathetique, 2" Movement

Temperley and Sleator’s (Temperley and Sleator 1999) system takes a piece of music as
input and first does beat finding in a manner strongly reminiscent of Lerdahl and
Jackendoff (Lerdahl and Jackendoff 1983). These beats are then used to help determine
the partitioning of the piece into time spans, which are labeled as likely chords. The exact
method used to determine the initial partitioning is not given in the paper except to say
that segments should begin on subdivisions of the beat and should be “short” (in the

27

range of 100-300 ms). A root is then chosen for each segment. Roots are chosen so as to
prefer giving the same root name to successive chords if possible, and to prefer root-
names related by a fifth, otherwise. Their system is limited to labeling the root of each
segment rather than providing the full chordal spelling. The full history of preceding root
names is used, along with the intervals present in the current segment, to determine the
choice of the root name of each segment. The system is described as a set of preference

rules, and is strongly tied to an explicit model of functional tonal harmony in its approach
to analysis.

Figure 15 shows the results of analysis of the first eight measures of the second
movement of Beethoven’s Sonata Pathetique (Temperley and Sleator only reported the
analysis of the first five measures in their paper). As can be seen from the figure,
HarmAn successfully captured the correct chord roots and qualities in this passage, with
the possible exception of the first half of the fifth measure. HarmAn’s choice of chord in
the first half of the fifth measure, while a reasonable harmonization given the context,
might not be as good as a label of “G diminished” or possibly “E flat dominant”. The
harmonic rhythm was also captured accurately without need to infer meter or beat.

4 d

il
i+
i
i
—u |
H |

BEms = SESESEsE
7 I
2 lr'}:llr,l.:L; 2 IF
Abhaj i | N
HarmAn Abwai Eb7 abmaj Eb7 Ebwa Bb7 Eb7

E. A B F B B

P
:FE'-L,J&&F Fr #?###%ﬁ:

e [=== (B

- -

Bbrrin Eb7 abmai F7 Bbrin b7 Alaimiaj
G B E A

Figure 15: Beethoven. Sonata Pathetique"2Movement.

The Temperley and Sleator system did about as well as HarmAn on root finding in this
example, although HarmAn also correctly identifies chord quality. Both systems agree on
root spellings through the first four measures, diverging on the fifth measure. Their
system finds four roots in this measure, namely “G”, “B flat”, “E flat” and “A flat.”

28

HarmAn reports only two. Interestingly, HarmAn gets closer to capturing the actual
harmonic rhythm of this measure even though it does not explicitly represent rhythm.

7.3.3 Maxwell : J. S. Bach, 1% French Suite, D minor Sarabande

Maxwell (Maxwell 1992) built a system that performed harmonic analysis using

hundreds of preference rules for analysis of individual notes and intervals between notes.
An example rule is: “RULE 22: If a vertical is unaccented AND it is tertian AND the
previous vertical is tertian AND they both have the same root, THEN the vertical is
subordinate to the previous vertical.”

A strength of Maxwell's work is that it addressed determining which sets of notes should
be labeled as chords. Unfortunately, the paper describing the work lists only a small
subset of the preference rules, and is unclear on how the rules are weighted or what
control structure mediates between these rules. Maxwell did not explicitly address the
issue of the computational complexity of the partitioning problem, nor what portion of
the space was actually searched.

~) =

2 %
I il |
i |5
|

L7 TN
B F

T
T
e

L8] Bl 7
e ——_ S = =
= i i i —_—H . . f — i.._]
Al aj GMaj
HarmAn Cirmin Gmin Grrin AT D7 D7
Maxwell, D min E dim 7 E dim A7 D7 D
Jazz notation
Maxwell, d:i ii°4-2 i° V6 V4-2[iv Viiv

orig. notation
(SF T
e e

1A\
1
]
A
i]j
14

2 5 J . -"'-I CJ
LA | >)
Dlsuug | r Aarug F L F—
HarmAn Gmin AT AT Dmin EbT Drmin AT
Maxwell, G min A7 D min G min A
Jazz notation C# dim7
Maxwell, iv6 V7 i6-4 v Vii%4-2 V

orig. notation
Figure 16: J. S. Bach, T French Suite, D minor Sarabande

29

Maxwell's system analyzed a number of pieces, generating results in roman numeral-
style notation. One such piece is the D minor SarabfmogeJ. S. Bach’s First French
Suite. Both HarmAn’s and Maxwell’s analysis of the first eight measures of the
Sarabande is shown in Figure 16. In general, our system was successful, correctly
capturing the correct chord-quality and root in each measure.

HarmAn differed from the Maxwell system in the second measure because a diminished
7" chord is not one of HarmAn's templates. Thus, it chose a label of “G minor.” The
pitch classes in “G minor” form a subset of those in “E diminished 7” so the labeling
difference between the two systems on this measure is small.

The penultimate measure shows a more significant difference. Here, HarmAn labeled the
last two beats of the measure as a single “E flat dominant.” Maxwell’s system broke the
measure into three chords and labeled them as a progression that is more typical of tonal
music of the period. The difference may be accounted for in the spelling of the pitches.
HarmAn takes input in the MIDI format, which gives the same value to both “D flat” and
“C sharp.” Written music, however, often varies the spelling of the note to give an
indication of its function. The written music has a “C sharp” in the third beat of the
measure. Such a spelling precludes using this note as part of an “E flat dominant” chord
and forces a different interpretation.

HarmAn'’s analysis generated a couple of spurious “glitch” chords lasting an eighth-note
each. The “A major” on the second half of the first beat of measure two is an example of
just such a chord. This chord is actually two passing tones and neither Maxwell’'s system
nor most human analysts would chose to identify either the “A major” in the second
measure or the “G major” in the fourth measure as structurally significant harmonies. The
generation of such individually labeled short segments is a direct result of the local nature
of the HarmAn approach.

The issue of context is a tricky one, however. Consider the first beat of measures five

and eight. In both measures, Maxwell’'s system ignores what we consider to be a
significant chord on the first beat of the measure, which HarmAn detects and correctly
labels. In general, though, both systems generated correct analyses of the passage. This is
notable given the fact that the number of rules used by HarmAn in determining the
harmonic structure of a piece is far smaller than the number of rules used in Maxwell’s
system.

7.3.4 A Tonally Ambiguous Example : Debussy, The Little Shepherd

To this point, all the music analyzed in this paper has clearly outlined triadic tonal
harmonies with few non-chord tones. However, much late Romantic and €arly 20

century music is much more ambiguous in its statement of tonal harmonies. The music of
Debussy is a good example of this. Many Debussy pieces are loosely tonal. Cadences still
exist but are obscured or led up to in ways based on non-tonal structures, such as
pentatonic and whole tone scales. Given the more ambiguous nature of Debussy’s
harmonies, his music is good for testing the limits of a harmonic analysis program.

30

Figure 17 shows HarmAn'’s analysis of the first eleven measures of Debussy’s

“The Little Shepherd.” In this figure, there is an arrow from each segment label to the
note in which the segment begins. We selected “The Little Shepherd” because it
contained several interesting properties. First, the piece begins with an initial
unaccompanied melody of ambiguous tonality. We were interesting in seeing the analysis
HarmAn would generate of this passage. This tonal ambiguity continues when other
voices are introduced in the fifth measure. The additional voices provide neither a clear
tonal center nor do they clearly outline triadic harmonies. This ambiguity clears up in the
second half of the sixth measure, where the music resolves to a “B major” triad.

. r=1 @

o m P
. il || r* | | | | | ‘r'
_@_n_\.u_h.._g_ T e | !
al it

A A ﬁ
Al 4
o Wi \
F A = - - \ = -
[L] I w \
Sl \
ul \
G# E C# F# E G
Dom?7 Dom7 Dom7 Dom7 Dom7 Dom?7

' S —
‘J T T
| ? \ | \ gﬁm? ___Hj? U L—i
D C# G# D C# E B B A B A
Mai

dim Dom7 Dom7 dim dim min Maj dim

Ay o — —
e - Jel- —
Sl | Lt = Fe =
al =L | d - - T
A0
TS Eone S e —
et 1 — B~ 8. ~ v
2l LN Tg)
tHo —
B B A D E A
dim min Maj Maj Dom7 Maj

Figure 17: Claude Debussy, The Little Shepherd, mm 1-11

31

Measures seven and eight show another interesting feature of this piece. The melody of
measures five and six is repeated with new, tonal, harmonies outlining what may be
alternating “D minor” (or possibly “B diminished”) and “A major” chords in the
accompaniment. This allows a direct comparison of HarmAn’s analysis of a non-tonal
accompaniment with a more tonal accompaniment of the same melody.

The final three measures outline a “B minor 7” chord moving to an “E dominant 7” and
resolving on an “A major” triad, providing a clear spelling out of these harmonies with
relatively few non-chord tones.

HarmAn'’s analysis of the single note line in the first four measures of the piece is
interesting in that, due to the templates used, it imposes a tonal harmonization upon a
possibly non-tonal melodic line. The harmonization intersperses root movement by fifth
(a typical tonal device) with a repeated E chord. Thus, the system infers an obscured
tonal root movement pattern, a typical feature of late tonality. Unfortunately, HarmAn'’s
selection of when to change chords is questionable, as it sometimes happens during a
grace note or in the middle of a™Bote triplet.

The analysis of measure five is a bit more confused and the system repeatedly changes
chord at places that a human is unlikely to. This, however, is understandable given the
confusing nature of the tonal structures in the measure, and since HarmAn makes no use
of metrical information in determining locations for chord changes.

The system does better on the sixth measure, coming up with a reasonable parsing of the
chords as “C sharp diminished” moving to “E minor” and then to “B major.”

The seventh measure of the piece shows a repeat of the melodic material in measure five
with clearer harmonization in the accompaniment. HarmAn performs better on this
measure than it did on measure five, correctly placing chord changes on each beat. The
chords it chooses are “B diminished” and “A major” in alternation. A human might have
chosen “D minor” instead of “B diminished,” due to the movement of the lowest voice,

but there is evidence to support “B diminished” as well, so we deemed this a good parse.

HarmAn interprets measure eight as moving from a “B diminished” to a “B major” triad
and then to an “A major.” Given this interpretation of measure seven, then the choice of a
“B diminished” in measure seven seems good in that it makes the “B diminished” triad
part of a repeated pattern extending across both measures.

HarmAn misreads the first chord of measure nine as a “D major” triad instead of a “B
minor 7”. This is because no template was provided for the “minor 7” chord, making the
system incapable of producing it as a response. Since all notes in “D major” are in the “B
minor 7” chord, we deem it an acceptable error.

The final cadence of the passage is correctly captured by HarmAn as an “E dominant 7”
moving to “A major.” The quick run in the last beat of measure nine is ignored in favor
of the held notes and the harmonic rhythm is parsed correctly.

32

All'in all, given the intentionally obscure nature of the harmonies in the piece and
HarmAn'’s limitation hypothesizing from only five tonal chord types, the system did quite
well.

8 Conclusions and Directions for future work

The work described in this paper provides a clear formal framework upon which to build
a system for harmonic analysis of music. HarmAn is based upon this theoretical
framework and provides a good first approximation of the harmonic structures in a
typical piece of tonal music. HarmAn does this in a clearly explained and analyzable
manner, using a relative small set of rules, which do not require an understanding of the
tonal context nor any metrical information to perform the analysis. The results achieved
by this system compare well to those achieved by much more complex systems reported
in the literature.

There are three areas for improvement of HarmAn: increasing the number of harmonic
structures which HarmAn recognizes; refining the scoring method used to determine the
best label for a segment; and dealing with rests.

HarmAn has only five templates for tonal structures, namely major triads, minor triads,
diminished triads, augmented triads and the major-mii@h@rd. Many other obvious
structures, such as minor-mind? hords, ninth chords, and various scales can easily be
added to the set of templates in use This issue is a bit more complex than it appears at
first, because the addition of a new template requires a rethinking of both the preference
rules for choosing between templates and the scoring method for a single template.

The scoring method (see Figure 9) for a single combination of template and root was
designed for current set of five tonal templates and may not provide the appropriate
weightings for all kinds of template. For example, it may not be appropriate to add extra
weight to a “root” class for some kinds of non-tonal structures. Tied in with this issue is
the simplistic set of preference rules for selecting between templates. Currently, the result
is winner-take-all, but it may be more appropriate to report the top two or three choices in
ambiguous situations where, for example, it is unclear whether a segment expresses an
“A minor” or a “C major” chord. We are currently investigating a variety of template
scoring methods for various contexts and levels of ambiguity.

At present, HarmAn treats all rests as “iceburgs,” in that rest segments are never unified
with adjacent ones. This is not an ideal approach since very short rests may not signal
natural divisions within the music. It would be better to consider the possibility of
unifying segments across rests in a way that reflects the length (and thus, relative
importance) of the rest. This can be done by producing an initial partitioning of the music
which does not attempt to join segments across rests and then going back through the
music and considering the removal of partition points around rest segments in order of
the length of the rest. In this way, the system will tend to remove short rest segments
before long ones, giving greater weight to longer rests. We are currently enhancing
HarmAn to do so.

33

9 References

Forte, A. (1973). The Structure of Atonal Must¥ale University Press.

Lerdahl, F. and R. Jackendoff (1983). A Generative Theory of Tonal Mtiaiabridge,
Mass, MIT Press.

Maxwell, J. H. (1992). An Expert System for Harmonizing Analysis of Tonal Music.
Understanding Music with Al: Perspectives on Music Cognition

Smaill, A., G. Wiggins, et al. (1993). “Hierarchical Music Representation for
Composition and Analysis.” Computers and the Humagffe3-17.

Smoliar, S. (1980). “A Computer Aid for Schenkerian Analysis.” Computer Music
Journal(2).

Temperley, D. and D. Sleator (1999). “Modeling Meter and Harmony: A Preference-Rule
Approach.” Computer Music Journ2B(1): 10-27.

Ulrich, J. W. (1977). The Analysis and Synthesis of Jazz by Comreeedings from
the 5th 1IJCAI.

Wakefield, G. H. (1999). Chromagram Visualization of the Singing Vanternational
Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications,
Firenze, Italia.

Wakefield, G. H. and B. Pardo (1999). Signal Classification using Time-Pitch-Chroma
Representationg he Intl. Symp. on Opt. Sci., Eng., and Instr., SPIE'99, Denver,
Colorado, USA.

Widmer, G. (1992). “Perception Modeling and Intelligent Musical Learning.” Computer
Music Journall6(2).

Winograd, T. (1968). “Linguistics and the Computer Analysis of Tonal Harmony.” The
Journal of Music Theor§2: 2-49.

34

