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Abstract 

The majority of research related to automated analysis of music presupposes human 
partitioning of the input into segments corresponding to significant harmonic or melodic 
chunks. In this paper, we analyze the difficulty of the partitioning problem in a formal 
manner. We then describe HarmAn, a system that partitions tonal music into 
harmonically significant segments corresponding to single chords and labels these 
segments with the proper chord labels. Input to the system consists of standard MIDI files 
and the output is both an annotated piano-roll style display and a text file with 
partitioning and chord-name information. Chord labels for segments are determined 
through template matching in the space of pitch-class with conflict resolution between 
equal scoring templates resolved through simple default preference rules. Our system’s 
results are compared with the results described in papers by Winograd (Winograd 1968), 
Maxwell (Maxwell 1992), and Temperley and Sleator (Temperley and Sleator 1999). 

1 Introduction 

Since the 18th century, the vast majority of widely recognized pieces of music written in 
both the art and popular traditions of Western Europe and North America have used 
tonality and tonal chord structures based on triadic harmonies as a basic structural feature 
of the music. Central to the understanding of any tonal or tonal-based piece of music is an 
understanding of what harmonies are used in the piece. To determine which harmonies 
are used, one must be able to temporally partition the music into segments that divide the 
music at points where the harmonies change and label the segments appropriately. We 
call this the partitioning problem. 

Previous work in the area of automated harmonic analysis of music (Winograd 1968; 
Smoliar 1980; Maxwell 1992; Widmer 1992; Smaill, Wiggins et al. 1993), with the 
notable exception of recent work by Temperley and Sleator (Temperley and Sleator 
1999), has either avoided the issue of generating a good partitioning by taking partitioned 
input or has been unclear in how the issue is resolved. Further we are unaware of any 
published work that clearly lays out a complexity analysis of partitioning and labeling a 
piece of tonal music. We address this by creating a theoretical framework that allows the 
problem to be formally analyzed. 

Finding a good partitioning requires a metric for determining the “goodness” of a 
partitioning. We describe a concise template matching algorithm, related to the work of 
both Ulrich (Ulrich 1977) and Wakefield (Wakefield 1999; Wakefield and Pardo 1999) 
that quickly labels a partitioning’s segments and generates a score for the partitioning. 
Our approach decouples labeling a single partitioning from finding the best one. This 
allows the use of a variety of generic search methods to find a good partitioning. 

We show that a piece of music with n notes may have up to 22n –2 possible partitionings 
and then fully describe a method to arrive at a good partitioning of the music by 
searching only O(n) partitionings. The combination of our template matching and method 
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for search through the space of partitioning produces results that compare well to systems 
comprised of hundreds of production rules. 

The following section describes the theoretical framework for harmonic analysis of tonal 
music used in the remainder of the paper. 

2 Notation and Terminology 

2.1 The Note 

Let a note, n, be defined as a 4-tuple of the form <start, end, pitch class, octave>  where 
n: 

start is a real number giving the number of seconds between the start of note n and 
the start of the first note in the piece. 

end is a real number giving the number of seconds between the end of note n and the 
start of the first note in the piece. 

pitch_class is an integer from 0 through 11 representing the pitch class of note n 

octave is an integer from 0 through 11 representing the octave in which note n 
occurs. 

The first “C” in Figure 1 is an example of a note and is represented as the tuple 
<0, 1, 0, 4>.  

When referring to an element in a note tuple the field is referred to by name and the 
identity of the note is denoted by a subscript. For example, the pitch class of note n is 
referred to as pitch_classn. If n is the first “C” in Figure 1, then pitch_classn = 0. 

Rests are not explicitly represented in the manner of notes. A rest is a segment of time 
where no notes sound, and is defined as such in Section 2.6. 

2.2 The Piece of Music 

A piece of music, M, is defined as a set of notes. 

Identical notes are allowed by this definition of a piece. For example, it may be that there 
is a unison note between two voices. In this case, there would be two identical notes in 
the set M. 

Mx denotes a particular performance of a piece of music, where x is the label for the 
performance.  

Consider the Beethoven excerpt in Figure 1. Assume that the tempo is one quarter note 
per second.  We will use this tempo as the default for all examples relating to the 
Beethoven excerpt.  It is assumed, unless otherwise stated, that the tempo remains 
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constant throughout the piece. Let the performance Mbeethoven1 be defined as the first 
measure of the piece when played at one quarter note per second. 

Mbeethoven1 =  {<0, 1, 0, 4> ,  <0, 0.25, 9, 3> , <0, 1, 9, 2>, <0.25, 0.5, 3, 3> , 
<0.5 ,0.75, 9, 3> , <0.75, 1, 3, 3> , <1, 2, 11, 3> , <1, 2, 1, 3> , 
<1, 1.25, 7, 3> , <1.25, 1.5, 3, 3> , <1.5, 1.75, 7, 3> , <1.75, 2, 3, 3>} 

2.3 Time and Meter 

In this paper, beats are often used in order to refer to the written notation of an example. 
Note, however, that there is no explicit reference to beats or metrical information in the 
definition of a note. Nor is there any explicit reference to metrical information in any 
structure based on notes. This allows music lacking a basic metrical pulse to be 
represented and manipulated as easily as more rhythmic music. 

All timing information is defined in terms of the number of seconds since start of the 
earliest sounding note of the piece. The minimum value for time is 0 and the maximum 
value is the end of the final note to sound in the piece. Since real times are used, the 
definition of a piece of music is tied to a particular performance of that piece. Different 
performances may result in timing variations that will change the definition of the piece. 

 Time is assumed to be continuous and represented by a real number. The choice of 
continuous rather than discrete time was made to avoid basing the theoretical treatment 
on an arbitrary underlying quantization. The closest we come to a quantum of time in our 
treatment of music is the minimal segment (defined in Section 2.6), which has a duration 
that varies with the tempo and density of notes. 

2.4 The State of the Piece 

The state of the music at time t, Statet, is the subset of notes from a piece of music, M, 
that is sounding at time t.   

Statet = �(n�M) | [(startn < t ) � (endn > t)] 

Taking Mbeethoven1 as the piece of music, the state at time 0.3 is a set of four notes. 

State0.3 = {<0, 1, 0, 4> , <0, 1, 9, 2>, <0.25, 0.5, 3, 3>} 

HarmAn, the music analysis program described later in this paper, uses only the pitch 
class of the notes sounding at time t. For this reason, HarmAn represents state as a 12 
element array indexed by pitch class number (0 through 11). Each element, i, gives the 
count of notes of pitch class i that are sounding at time t. In this representation, State0.3 is 
represented by the following array. 

State0.3 = [1,0,0,1,0,0,0,0,0,1,0,0] 
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2.5 Partition Points and Partitionings 

Each time where the state changes is a partition point. This occurs when a note either 
starts or ends. From this, it is clear that each partition point, p, corresponds to the start or 
end of one or more notes.  

The set of all partition points, Pall, may be derived from the notes in M by finding all 
startn and endn and removing any duplicates.  Since each note has a start time and an end 
time, the size of Pall can be no more than twice the size of M. This means that Pall is finite 
and countable as long as M is finite and countable (a reasonable assumption for a piece of 
music). 

2|M| � |Pall| 

Given Mbeethoven1 as the piece of music, the set of partition points, Pall,  is  

Pall  =  {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} 

Each partition point, pi, in Pall represents a unique time. An ordering can be imposed on 
Pall through sorting its elements by value. Let the partition point with the earliest time be 
p1 and the point with the latest time be p|Pall|. The ordering relation for Pall is expressed as 
follows. 

�(i, j) :  (pi < pj) iff ( i < j) 

If Pall = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}, then p1 is 0, p3 is 0.5 and p|Pall| is 2.  

Figure 1 shows a passage from Beethoven’s Sonata Pathetique. Figure 2 represents the 
same passage in a piano-roll style notation, where each note is represented by a line. 
Vertical position represents the height of the note, length represents the duration and 
horizontal position represents time since the beginning of the piece of music. A vertical 
line is placed at each partition point.  

Figure 1: Beethoven, Sonata Pathetique, Op 13, Second Movement, mm 1-2 
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Figure 2: Beethoven, Sonata Pathetique, Op 13, Second Movement, mm 1-2 

Although the example in Figure 2 has partition points occurring every quarter of a 
second, this is strictly a result of the even tempo of the performance. If the performance 
were to vary in tempo, then the length of the minimal segment would vary as well. This 
can also occur in a piece with an even tempo, but with notes of varying length. Consider 
the Debussy excerpt in Figure 3. Assume a constant tempo of one quarter note per second  
and that each note begins the exact instant the previous note ends. In this case, 

Pall = {0, 1.5, 1.75, 2, 2.5, 2.666, 2.833, 3, 3.5, 4, 6.5, 6.75, 7, 8}. 

 

 

Figure 3: Debussy, The Little Shepherd, mm 1-2 

Note that in the Debussy example, partition points are spaced anywhere from roughly 
0.166 to 2.5 seconds apart. 

A partitioning, P, of a piece of music is a subset of the set of partition points, Pall, 
including elements p1 and p|Pall|.  

Since the elements of Pall are sorted in temporal order, a partitioning may be represented 
by a binary number where bit i indicates whether partition point i should be used to 
partition two segments. We assign “0” (for “not in partitioning”) or “1” (for “in 

n o t e
p a r t i t i o n
p o i n t

m i n i m a l 
s e g m e n t

m i n i ma l
s e g m e n t

p a r t i t i o n
p o i n t
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partitioning”) to each bit and the resulting binary number uniquely identifies a 
partitioning of the music.  

Every partitioning includes the first and last elements of Pall. The first and last elements 
of Pall will always have their bits set to “1” and the bits that uniquely identify a 
partitioning are those for partition points p2 through p|Pall|-1. Thus, any partitioning can be 
uniquely identified by a number with |Pall| – 2 bits. 

There are nine partition points in the first measure of the Beethoven example. The set of 
all partition points for this measure, Pall, can thus be represented by the seven digit binary 
number “1111111.” The digits in this number represent partition points p2 through p|Pall|-1. 

Two example partitionings of the first measure of the Beethoven example are shown in 
Figure 4. Each vertical line corresponds to a partition point. Thick lines correspond to 
“1”s and represent the partition points that are in both Pall, the set of all partition points, 
and P, the partitioning. Thin lines correspond to “0”s and represent members of Pall that 
are not in P.  Partitioning 0001000 in Figure 4 divides the measure into two equal 
segments. Partitioning 0001011 divides the measure into four segments of varying 
duration.  

A good partitioning is one consisting of only the elements in Pall that correspond to 
harmonically significant changes in the state of the music. Partitioning 0001000 in Figure 
4 is a good partitioning. The second partitioning in Figure 4 is not a good partitioning. 

 

 

Figure 4: Two partitionings of Beethoven, Sonata Pathetique, Op 13, 2nd Mvmt., measure 1 

Points of harmonically significant change are those partition points where the chord name 
that a human would assign to the current state changes. The problem of finding a good 
partitioning for a piece of music is determining which partition points are harmonically 
significant.  

p a r ti t i o n i n g  0 0 0 1 0 0 0 p a r ti t i o n i n g  0 0 0 1 0 1 1
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2.6 Segments and Segmentations 

A segment, s, is the interval between partition points, pi and pj. Define s as a duple, 
<start, end> where (start, end) � Pall and start < end. 

A rest is a segment in which no notes sound.  

A minimal segment is a segment between two sequential partition points in Pall, pi and 
pi+1. Figure 2 identifies a minimal segment, as does Figure 3. The state does not change 
for the duration of a minimal segment. The duration of a minimal segment depends only 
on how long the state remains constant and may vary between minimal segments in the 
same piece of music. Figure 3 is an example of this.  

All rests are minimal segments. 

Any segment between partition points pi and pj, where j > i + 1 incorporates at least one 
change of state is not minimal and can be decomposed into minimal segments.  

The length of a segment is the number of minimal segments into which the segment may 
be decomposed.  This can be derived from the number of partition points encompassed 
by the segment. If a segment s is defined by <pi, pj>, the length of s is given by j – i + 1. 

A partitioning, P, defines a set of segments, S, called a segmentation. If the elements of P 
are ordered by increasing time, then each segment in S is defined as a duple <pi, pi+1>.  
The size of set S is |P| - 1. 

Given a constant tempo of one quarter note per second, partitioning 0001011 from Figure 
4 contains the set of partition points {0, 1, 1.5, 1.75, 2}. This defines a segmentation 
{<0,1>, <1,1.5>, <1.5,1.75>, <1.75,2>}. 

The set of all possible segments, Sall, for a piece of music, M, contains every duple 
<pi, pj> where i < j  , drawn from the set of all partition points, Pall. The size of this set is 
|Pall| choose 2, or |Pall|(|Pall| - 1) / 2. 

|Sall| = |Pall| choose 2 = |Pall|! / 2(|Pall| - 2)! = |Pall|(|Pall| - 1) / 2 � |Pall|
2/2 

With Mbeethoven1, Sall is shown in Section 6, Table 4. 

3 Complexity Analysis of the Partitioning Problem 

Given a piece of music, M, and its set of partition points, Pall, the partitioning problem is 
that of finding a good partitioning, Pgood � Pall, that contains only the partition points 
corresponding to harmonically significant changes in the state of the music. 

Since any piece of music has no more than 2|M| partition points, each represented by a 
binary digit, the maximum number of ways to partition a piece of music is bounded by 
22|M|. This upper bound may be tightened by using the fact that p1 and p|Pall| correspond to 
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the beginning and end of the piece and are always members of every partitioning. Thus, 
any partitioning can be uniquely represented by a binary number of at most 2|M| – 2  
digits. This gives a maximal number of 22|M| – 2 possible partitionings for any piece of 
music. 

22|M| – 2  �  2|Pall| – 2  ways to partition M 

A monophonic piece of music is one where no two notes sound at the same time This can 
be expressed in terms of the states of a piece, M,  at time t. 

IsMonophonic(M) ���t : |Statet| 	�
�

An unaccompanied melody is an example of monophonic music. Even a very simple 
melody such as “Happy Birthday” contains 25 notes, giving a maximum 248 ways to 
partition the melody. This number is greatly reduced if one assumes that note i begins at 
the exact moment note i-1 ends. This brings the number of partition points to |M|+1 and 
the number of ways to partition the piece to 2|M|-1, or 224 in the case of “Happy Birthday.” 

The value of  2|M|-1 is a lower bound on the number of possible partitionings for any 
monophonic melody. This can be seen by noting that for a monophonic piece of music 
the minimum number of states is equivalent to the number of notes.  If one separates two 
notes by a rest, then an additional state is introduced and the number of partition points is 
increased. If two notes sound at the same time, then the music is no longer monophonic. 
As can be seen from this analysis, there are a prohibitively large number of ways to 
partition even a short monophonic melody.  

Not all music is monophonic and the number of different ways to partition a non-
monophonic piece of music can be significantly lower than even 2|M|-1. This is because 
number of possible ways to partition a piece is not determined by the number of notes, 
but by the number of partition points, |Pall|. When many notes start or end concurrently, 
the number of partition points is reduced. An example is a piece consisting of block 
chords, with the extreme case being one in which all notes in the piece start and end at 
the same time. Such a situation is rare. A more typical example is that of the Beethoven 
fragment in Figure 2. The fragment has 24 notes, but only 17 partition points, due to 
concurrent start and end times for multiple notes. This results in many fewer ways to 
partition the fragment but the number of partitionings is still 215. 

Out of the 2|Pall| – 2 ways into which a piece M may be partitioned, relatively few 
partitionings will correspond to how a human analyst would partition the piece on basis 
of the harmony. Presuming that a good partitioning, Pgood, is somehow found, the 
problem of labeling the segments defined by the partitioning remains. Given that there 
are c different labels that may be used and that the chosen partitioning has |Pgood|-1 
segments, then there are roughly c|Pgood|-1 ways of labeling the partitioning. Taken in light 
of the number of possible partitionings, one can see that an already enormous set of 
possible variations becomes even more immense when one takes into account labeling 
the segments in each partitioning. 
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The size of this set of variations can be reduced by noting two different partitionings may 
contain one or more segments in common.  The constraint of locality states that each 
segment can be labeled in isolation, without reference to other segments. When searching 
through the partitionings of a piece to find a good partitioning, the same segment will be 
encountered more than once. If the constraint of locality holds, context does not matter 
and there is no need to re-calculate the label of a segment the second time it is 
encountered. This can be achieved by labeling segments with jazz-style chord symbols, 
such as “A minor 7,” that do not reference their function within the key. 

Given the constraint of locality, one need label only the set of all possible segments, Sall, 
for a piece of music. All segments associated with any partitioning are subsets of Sall and 
thus no additional segments must be labeled once Sall is labeled. 

Let c be the number of possible chord labels. Given that |Sall| = |Pall|(|Pall|-1) / 2, labeling 
all possible segments involves making no more than c|Pall|(|Pall|-1) / 2 comparisons. 

Once all possible segments in a piece are labeled and placed in a lookup table, the size of 
the space to be searched in the course of generating a labeled good partitioning can again 
be considered to be 2|Pall|-2. We use this value as the size of the search space for the 
problem of finding a good partitioning of a piece of music.  

4 Templates for Segment Labeling  

In order to label segments, there must be a way to evaluate the significance of the notes in 
a segment so as to be able to categorize it. This section discusses the general framework 
we use to approach labeling sets of notes. 

The music we are concerned with is based on a set of 12 pitch classes in the chromatic 
scale. The common labels for the pitch classes, along with their numeric equivalents, are 
given in Table 1. 

Table 1: Pitch Class Number and Name Correspondences 

C C# / D� D D# / E� E F F# / G� G G# / A� A A# / B� B 

0 1 2 3 4 5 6 7 8 9 10 11 

In the audio domain, a pitch class represents a set of harmonic sounds whose 
fundamental frequencies are related by a power of 2.  An example is the set of “A”s . 
Assume a sound with a fundamental frequency of 440 Hz is an “A.” All harmonic sounds 
whose fundamental is (2n)*440, where n is an integer, are also in the pitch class “A.” 
Thus, sounds at 110, 220, 440, 880 and 1660 Hz are all members of the pitch class “A.”  

Each time the frequency of a pitch doubles, the octave increases by one. In equal-
tempered tuning (the most common tuning in use today), the pitch classes divide an 
octave into 12 steps, which are equally spaced in the log2 of the frequency. Once the 
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frequency has doubled, the pitch class label wraps around to the name used one octave 
below. This repeating 12-step structure is called the chromatic scale. 

The chromatic scale and its associated 12 pitch classes form the basic set of items used to 
generate the structures associated with most Western music. Using the integer 
representations of the pitch classes and modulo 12 arithmetic, structures such as chords 
and scales, can be represented as n-tuples representing positive displacements in the 
space of pitch classes in relation to a root pitch class. These tuples form templates that are 
useful for describing musical structures and are related to those used in atonal set theory 
(Forte 1973), the chromagram (Wakefield 1999; Wakefield and Pardo 1999), and the 
work of Ulrich (Ulrich 1977). 

An example of the template representations is the following. Given a root (pitch) class, r, 
the tuple <0,4,7> represents the pitch class relations to r embodied in a major triad. 
Letting r = 2, this results a chord given by mod12(r +0, r+ 4, r+7) = {2,6,9}. Looking at 
Table 1, it is easy to verify that these numbers correspond to {D, F#,A}, the pitch classes 
in the D major triad. Examples of some of the more common tonal structures and their 
template representations are given in Table 2. These templates are central to the approach 
we take to chord labeling in the work described in this paper. 

Table 2: Common Tonal Structure Representations 

NAME OF TONAL 
STRUCTURE 

EXAMPLES OF WRITTEN 
NOTATION ASSUMING 
THE ROOT NOTE IS “C” 

TEMPLATE 
REPRESENTATION 

major triad  C, C Maj, C major, C:I  mod12( r +0, r+4, r+7) 

minor triad    C min, C minor, c:i mod12( r +0, r+3, r+7) 

augmented triad C+, C augmented, c:I+ mod12( r +0, r+4, r+8) 

diminished triad C dim, C diminished, c:io mod12( r +0, r+3, r+6) 

major-minor (dominant) 
7th chord 

C7, C dom 7, C dominant, 
F:V7  

mod12( r +0, r+4, r+7, r+10) 

major scale C major scale mod12(r +0, r+2, r+4, r+5, 
r+7, r+9, r+11) 

5 HarmAn 

Using the theoretical framework described in the previous sections, we have developed 
HarmAn, a system that partitions tonal music into harmonically significant segments and 
labels these segments with the proper chord labels. Input to HarmAn consists of standard 
MIDI files and the output is both an annotated piano-roll style display and a text file with 
partitioning and chord-name information. Chord labels for segments are determined 
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through template matching in the space of pitch-class with conflict resolution between 
equal scoring templates resolved through simple default preference rules. 
 
HarmAn searches the space of 2|Pall| – 2 partitionings of the music through the examination 
of only |Pall|�1 partitionings and returns results that compare well to both to the results 
generated by other automated systems for harmonic analysis and the results returned by a 
human expert.  

Figure 5 shows the three main processing steps HarmAn takes in generating an analysis 
of the harmonies of a piece of music. In Step 1, MIDI2PallSm, the system generates the 
set of all partition points Pall, and the set of all minimal segments Sm. In Step 2, HarmAn 
searches through possible partitionings, and returns the best one found, Pgood, and the 
associated labeled segmentation, Sgood. Step 3 is where HarmAn outputs the results of the 
harmonic analysis to both the screen and an output file. 

GIVEN :   a piece of music represented as an input stream of MIDI note events.  
Each note event is of the form <deltaTime, keyNumber, velocity, eventType > 

RETURN: Pgood,  an ordered set of partition points representing a good partitioning of the music 

 
  Sgood  an ordered set of segments associated with Pall 

Each s� Sgood is of the form < pi-1, pi, label, score, state>, begins at pi-1 and ends at pi  
where pi-1 ,pi  are partition points i-1 and i in Pgood 

METHOD  

1. [Pall,Sm] = MIDI2PallSm(MIDI_STREAM) 
 
2. [Pgood, Sgood] = FindGoodPartitioning(Pall,Sm) 
 
3. OutputResults(Pgood, Sgood) 
 

Figure 5: HarmAn 

The remainder of Section 5 describes and analyzes Steps 1 and 2 (functions 
“MIDI2PallSm” and “FindGoodPartitioning”) in detail. Note that 
“FindGoodPartitioning” calls “LabelAndScoreSegment ” and that 
“LabelAndScoreSegment ” calls “FindBestRoot.” Each of these lower-level functions is 
also described in detail. Step 3 is not described, as it contains code for display and file 
creation, and is not central to HarmAn’s processing. 

5.1 Generating the Initial Partitioning: MIDI2PallSm 

To find a good partitioning for a piece of music, M, one must first find the set of all 
partition points. In the case of HarmAn, M is represented by a standard MIDI file.  The 
system reads note events from the file and generates  the set of all partition points, Pall 
and a set, Sm, containing the state of the piece in each minimal segment.  Pseudo code for 
this is given in Figure 6. Note that the pseudo code assumes “well formed” MIDI where 
there is each “note on” is followed by a corresponding “note off.” 
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GIVEN :   an input stream of MIDI note events.  
Each note event is of the form <deltaTime, keyNumber, velocity, eventType > 

 
RETURN: Pall ,  an ordered set of all partition points. 

Each pi�Pall is a real number corresponding to the time of a “note on” or “note off” event 
 

  Sm  an ordered set of  minimal segments associated with Pall 
  Each s< pi-1, pi>� Sm is of the form < pi-1, pi, label, score, state>, begins at pi-1 and ends at pi 

METHOD  
 
1. integer array state[0,11] := 0 % the count of notes of pitch class 0 through 11 currently sounding 
2. real  pi , pi-1 , time := 0,  
3. integer keyNumber, velocity, i 
 
4. Pall := {pi-1} 

 
5. [deltaTime,keyNumber, eventType] := getNoteEvent(MIDI_STREAM) 

 
6. WHILE eventType = “note on” OR eventType = “note off” 

 
7.  time := time + deltaTime 
8.  pi := time 

 
9.  pitchClass = mod12(keyNumber) 

 
10.  IF pi <> pi-1 
11.   Pall := Pall � {  pi}  
12. s< pi-1, pi> = < pi-1, pi, ”no label”, 0, state> 
13. Sm := Sm �  {  s< pi-1, pi>}    
14. END 
 
15.  IF eventType = “note on” THEN state[pitchClass] := state[pitchClass] + 1 END 
16.  IF eventType = “note off” THEN state[pitchClass] := state[pitchClass] – 1 END 
 
17.  pi-1 := pi 
 
18.  [deltaTime,keyNumber,velocity eventType] := getNoteEvent(MIDI_STREAM) 
19. END 

Figure 6: MIDI2PallSm 

For the purpose of this paper, a MIDI note event is defined to consist of a deltaTime, 
which is the absolute time since the previous note event, a keyNumber, which is a value 
from 0 to 127 specifying the key on a piano style keyboard which was struck, a velocity, 
which is a value from 0 to 127 defining the velocity (usually associated with volume) 
with which the key was struck, and an eventType, which is either “note on” or “note off.”  

The lowest possible “C” on a MIDI keyboard is represented by 0, “C sharp” is 1 and so 
on Every 12 keys, the octave increases by one. Thus, pitch class (see Table 1 for the 
correspondence of pitch class and number). can be derived from keyNumber by taking 
mod12(keyNumber).  
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MIDI2PallSm begins by initializing variables in Steps 1 through 4. The variable state is  a 
12 element array indexed by pitch class number (0 through 11) that represents the state of 
the music. Each element, i, gives the count of notes of pitch class i at sounding time t. 

  

Figure 7: An Example in Piano Roll Notation  

Step 5 calls getNoteEvent. The function getNoteEvent finds the next note event from the 
input MIDI stream. The MIDI stream is currently an input file and getNoteEvent reads 
the file until the next “note on” or “note off” is encountered. It then returns deltaTime, 
keyNumber, velocity and eventType for the event. If no note event is found, getNoteEvent 
returns “-1.” 

To understand, MIDI2PallSm from Steps 5 through 19, consider the generation of Pall 
and Sm from the example music in Figure 7. 

The first “note on” event is read in Step 5. The function getNoteEvent returns 
deltaTime = 0, keyNumber = 48, eventType = “note on.” HarmAn then sets time and pi to 
0. The pitchClass for the event is event is 0. Since pi  = pi-1, no new entries are made to 
Pall or Sm. To show a “C” is currently sounding, element 0 of the state array is then 
incremented by 1, making state = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. 

The next note event read in is also a “note on,” and getNoteEvent returns deltaTime = 1, 
keyNumber = 43, eventType = “note on.” The variables time and pi are set to 1 in steps 7 
and 8. Now, pi  <> pi-1, so the code to add elements to Pall and Sm is run. Pall is set to 
{0, 1}. Segment s< pi-1, pi> is set to <0, 1, “no label”, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] > and 
Sm to {s< pi-1, pi>}. Now that the segment ending at pi has been generated, state is updated 
to [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] to show a “G” is sounding. 

The next note event read is deltaTime = 1, keyNumber = 48, eventType = “note off.” The 
variables time and pi are set to 2. Since pi  <> pi-1, Pall is set to {0, 1, 2}. Segment s is set 
to <1, 2, “no label”, [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] > and Sm to Sm � {  s< pi-1, pi>}. Since, 

0 sec 2 sec1 sec 2.8 sec

C4 (key number 48) G3 (key number 43)

D3 (key number 38)
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pitchClass is 0 and eventType = “note off”, state is updated to 
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]. 

The next note event read is deltaTime = 0, keyNumber = 38, eventType = “note on.” The 
variables time and pi are set to 2. Since pi = pi-1, no new elements of Pall or Sm are 
generated. The pitchClass is 2, so state is updated to [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]. 

The next note event read is deltaTime = 0.8, keyNumber = 43, eventType = “note off.” 
The variables time and pi are set to 2.8. Since pi  <> pi-1, Pall is set to {0, 1, 2, 2.8}. 
Segment s is set to <2, 2.8, “no label”, [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]> and Sm to 
Sm � {s< pi-1, pi>}. Since, pitchClass is 7 and eventType = “note off”, state is updated to 
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]. 

The final event read is deltaTime = 0, keyNumber = 38, eventType = “note off.” The 
variables time and pi are set to 2.8. Since pi = pi-1, the sets Pall or Sm are not updated. The 
pitchClass is 2 and eventType = “note off”, so state is updated to 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. 

The final output MIDI2PallSm generates on the example in Figure 7 is as follows. 

Pall = {0, 1, 2, 2.8} 

Sm =  {<0, 1, “no label”, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] >,     
<1, 2, “no label”, [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] >, 
<2, 2.8, “no label”, [0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]>} 

The time required to generate Pall and Sm is linear with respect to the number of notes. 
This can be seen by noting that for any “note on” or “note off” event, a fixed number of 
steps are taken in the code. Each of these steps requires a fixed amount of time. Thus, the 
maximum number of steps taken in the process of generating Pall and Sm is related to the 
number of notes by a constant factor. 

5.2 Finding a Good Partitioning 

Once the initial partitioning, Pall, is created, it is assumed to be a good partitioning, unless 
another partitioning is proven to be better.  To find a better partitioning, HarmAn goes 
through the partition points of Pall in order and determines whether the overall score of 
the piece would be increased by the removal of each partition point.  

Let Pgood = Pall and i = 2. Let pi be the partition point in Pgood under consideration. 
HarmAn compares the current best partitioning, Pgood, with  Pgood - pi . If the scoring 
algorithm determines that Pgood - pi is a better partitioning than Pgood, then pi is removed 
from Pgood. The system then gets a new pi, and repeats the process. Figure 8 contains 
pseudo code describing this step in greater detail.  

As can be seen from Figure 8, HarmAn scores the segment on either side of partition 
point pi. It then sums the states of the two segments by adding state<pi-1,pi>[j] to 
state<pi, pi+1>[j]. Note that the values in state<pi-1,pi> + state<pi, pi+1> may not actually 
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represent the count of notes of each pitch class found in the segment <pi-1, pi+1>. 
Consider the case where a single note is held while a note changes in another voice. The 
first two minimal segments (i.e. the first half-beat) of the Beethoven example in Figure 2 
show this situation. The piece begins with two “A flats” and one “C.” These are the notes 
playing in segment <p1, p2>. Then, one of the “A flats” moves to an “E flat” in the next 
quarter-beat (i.e. segment <p2, p3>).  The union of these two segments, <p1, p3>, contains 
two “A flats”, one “C” and one “E flat.” HarmAn represents the states for these segments 
as follows.  

state<p1,p2>  = [1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0] 

state<p2,p3>  = [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0] 

 state<p1,p3>  = state<p1,p2>  + state<p2,p3>  = [2, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0] 

The state that results from this addition clearly does not represent the number of notes of 
each pitch class occurring during the segment <p1, p3>. In fact, for any non-minimal 
segment, a note will be represented by the number of minimal segments it spans within 
the segment in question. Thus, the held “C” in the example is represented by a value of 2 
in state<p1,p3>. Similarly, the slot for “A flat” has the value 3 in state<p1,p3> because the  
“A flat” held across minimal segments <p1, p2> and <p2, p3> receives a point for each of 
the minimal segments in which it is present, and the sixteenth note “A flat” is receives a 
point for being in <p2, p3>. Note that, although the low “A flat” is actually held for a total 
of four minimal segments, it only has a value of two in the state array, since the interval 
under consideration only includes two minimal segments of the four in which the “A flat” 
sounds. 

This system for counting note weight by the number of minimal segments spanned gives 
more importance to held sonorities and ensures that the segment labeling generates higher 
scores when notes spanning several minimal segments are present. This causes two 
adjacent segments which spell out the same chord and share a held note (such as 
segments <p1, p2> and <p2, p3> from the Beethoven example) to receive a score at least 
as high when joined as they do when separate. This is important due to the way HarmAn 
searches for a good partitioning. 

If the score of the sum of two adjacent segments is equal to or higher than the sum of 
their individual scores, then HarmAn deems it has found a label that better explains the 
notes in the two segments as a single unit and partition point separating them, pi, is 
removed from Pgood. Similarly, the segments <pi-1, pi > and <pi, pi+1> are replaced by a 
single segment <pi-1, pi+1> in Sgood. 
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GIVEN :  Pall ,  an ordered set of all partition points. 
Each pi�Pall is a real number corresponding to the time of a “note on” or “note off” event 
 

  Sm  an ordered set of  minimal segments associated with Pall 
Each si� Sm is of the form < pi-1, pi, label, score, state>, begins at pi-1 and ends at pi  

RETURN: Pgood,  an ordered set of partition points representing a good partitioning of M. 
Pgood � Pall 

 
  Sgood  an ordered set of  minimal segments associated with Pall 

Each si� Sgood is of the form < pi-1, pi, label, score, state>, begins at pi-1 and ends at pi  
where pi-1 ,pi  are partition points i-1 and i in Pgood 

METHOD  
 
1. Pgood  := Pall 

2. Sgood  :=  Sm 
3. i  := 2 
4. si  := LabelAndScoreSegment (si) 
5. WHILE  i <  |Pgood| 
6.  si+ 1 := LabelAndScoreSegment (si+1) 
7.  snew := < pi-1, pi+1,”no label”, 0, statei+ 1 + statei> 
8.  snew := LabelAndScoreSegment (snew) 
9.  IF scorenew �� (scorei-1  + scorei)  
10.   remove pi from Pgood 

11.   remove si+1 from Sgood 

12.   si : = snew 

13.  ELSE 
14.   i := i  + 1 
15.  END 
16. END 

Figure 8: FindGoodPartitioning 

The pseudo code in Figure 8 shows that the partition points p2 through p|Pall|-1 are 
evaluated by HarmAn in the course of generating the final good partitioning. Evaluation 
of each partition point, pi, requires the scoring of three segments, <pi-1, pi>, <pi, pi+1> and 
< pi-1, pi+1>. Once the initial partition point, p2, is evaluated, only two new segments need 
to be scored and labeled to evaluate each partition point, since the segment <pi-1, pi> can 
be reused from the previous step. Thus, the total number of segments scored and labeled 
by HarmAn is expressed by the following formula. 

2(|Pall|-2)+1 = 2|Pall|-3 = number of segments scored by HarmAn 

The function “LabelAndScoreSegment ” (called in Steps 6 and 8 of 
“FindGoodPartitioning”) is described in Section 5.3. There, we show that HarmAn labels 
a segment s in c steps, where c is a constant. This allows us to express the number of 
steps required to generate a good partitioning, Pgood, as follows. 
 

c(2|Pall|-3) = the number of note evaluations. 
 
At most, each note generates two partition points, one for the start and one for the end of 
the note. Thus, there can be no more than 2|M| partition points. 
 

2|M| >= |Pall| 
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Substituting 2|M| for |Pall| results in the following limit on the maximum number of steps 
needed to generate Pgood 
 

O(c(4|M| -3)) 

The maximum number of steps required to analyze any piece of music is related by a 
constant to the number of notes. 

A lower bound for the number of steps that take place in the course of labeling M is given 
by the case in which all notes in M start and end together. In this case, the piece has only 
one segment with |M| notes in it and the number of steps required for the scoring of a 
single segment, c, becomes the number of steps required for the whole piece.  

5.3 Segment Labeling and Scoring 
HarmAn’s method for labeling segments uses the templates described in Table 2 to find 
the best-matching label for the set of notes in a particular segment. In the current 
implementation, templates for “major”, “minor”, “augmented” and “diminished” triads 
are used, as well as a template for the “major-minor” (a.k.a. “dominant”) 7th chord. These 
templates are matched against the set of notes present in a particular segment <i, j>  as 
represented by the state array for that segment and the template whose root pitch-class 
and chord quality best match the notes has its name returned as the label for the segment. 
The score for a particular combination of template and state is calculated by performing 
the steps in Figure 9. 

 

1. If all elements in state<i, j>  are 0, then the segment is a rest. Give one point and quit. 

2. Sum the values of the elements of state<i, j> whose index number matches a template 
element 

3. Subtract the values in the elements of state<i, j> whose index number does not match any 
element of the template. 

4. Add ½ the value of the element of state<i, j> whose index number is the root class of the 
template. 

5. Multiply the result by the number of template elements that correspond to the index of an 
element of state<i, j> containing a value greater than 0. 

Figure 9: Calculating a Template’s Score 

Step 1 gives a positive point value to segments containing only rests. Assigning a positive 
value to segments containing only rests prevents the removal of the partition points 
defining the rest segment, since unifying any segment with a rest segment lowers the 
overall score. Rests often form a natural division point between phrases. Due to this we 
deemed it undesirable to unify segments across rests. 
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Steps 2 and 3 give the initial score for the segment through a count of the number of 
template matches minus the number of template misses.  

Step 4 causes the system to favor labels that use one of the pitches in the segment as the 
root of the chord. Without Step 4, a segment containing “A” and “C” would return a label 
of “F major” rather than “A minor”, due to HarmAn’s preference for major chords over 
minor (see Figure 11). 

Step 5 enables the unification of arpeggiated chords through giving higher values to 
templates that have several of their elements matched by the data. Take the example of 
two segments containing “C” and “E”, respectively.  HarmAn labels them “C major” and 
“E major” with scores of 1.5 and 1.5. Without Step 5, the union of the two segments 
would be have a score of only 2.5, and unification would not take place, since the unified 
segment has a lower score than the sum of the two individual segments. Step 5 doubles 
the score of the unified segment since two elements in the template for “C major” are 
matched. The resulting score of 5 is higher than the sum of the separate scores, and the 
two segments are unified.   

Consider an example application of the steps in Figure 9 on the template for an F minor 
triad. Let the segment be <p1, p3> from the Beethoven example in Figure 2. This segment 
has the following state (derived in Section 5.2). 

state<p1,p3>= [2, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0] 

The root, r, is an “F” (pitch class 5) and the template for a minor triad is 
mod12(r+0, r+3, r+7). The elements of the state array which match the template are 
state<p1,p3>[5], state<p1,p3>[8], and state<p1,p3>[0].  

Step 1 does not apply, since there are elements in state<p1,p3> with a value  > 0. 

Steps 2 and 3 sum the values of template elements minus those not matching the 
template. 

score = sum(state<p1,p3>[5,8,0]) � sum(state<p1,p3>[1,2,3,4,6,7,9,10,11]) The root class is 
5, which is empty, so there is nothing to add in Step 4.  

There are two template elements with positive values in the state array, so Step 5 is 

score = score * number of template elements matched = 4 * 2 = 8 

Thus, the score for an F minor triad on the segment <p1, p3> is 8.  

In practice, all combinations of template and root class must be scored in order to 
determine the best (i.e. highest scoring) label for a particular segment. The remainder of 
this section outlines how this is done. 
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GIVEN :  state , an integer array of size 12 indexed from 0 to 11.  
 The value of an element, i, of state corresponds to the number of notes of pitch class i present 

in the segment times the number of minimal segments during the current segment in which 
each note sounds. 

template,  an array of integers from 0 through 11 representing distances in pitch-class space from a 
root class. A template may have from 1 to 12 elements in the array, given only 12 possible 
pitch classes. 

 
RETURN: bestRoot,  an integer from 0 to 11 corresponding to the pitch class of the highest scoring root 

bestScore, a real number corresponding to the confidence in the root choice 
 

METHOD  
 
1. bestScore := -100 
2. bestRoot := 0 
 
3. FOR root := 0 to 11 
4.     score := 0    
   
5.     myTemplate := mod12(root + template)   % set template relative to the root 
    
6.    score := sum(state(myTemplate))    % sum the values in elements  
            % that match the template  
7.     score := score + state(root)/2      % add extra 50% for roots 
8.  score = score - sum(state(notInTemplate))  % subtract the sum of the 
            % values not in the template 
9.  numberOfElementsMatched =  sum(state(myTemplate) > 0) 
10.  score = score * numberOfElementsMatched 
 
11.  IF  score > bestScore 
12.   bestScore := score 
13.   bestRoot := root 
14.  END  
15. END 

Figure 10: FindBestRoot 

Given a template for a chord-quality has been determined, the best root and score for that 
root are found using a method outlined by the pseudo code in Figure 10. This algorithm 
takes as input a template similar to those described in Table 2 and the state array of the 
current segment. It returns the highest scoring root pitch class and a score for that 
combination of template and root class. 

Note that the number of steps taken in Figure 10 depends on the number of elements in 
the template rather than the number of notes present in the input segment. Since no 
template may have more than 12 elements (one for each pitch class), the number of steps 
taken in the course of finding the best root is bounded by a constant value, O(c). 

Ties between the scores generated for two templates are resolved through the application 
of the preference rules described in Figure 11. Preferences are transitive. Thus, major 
triads are preferred to minor triads and minor triads are preferred to augmented ones, so 
major triads are preferred to augmented triads. 

The chord quality preference rules in Figure 11 are intended to capture the relative 
likelihoods of the chord qualities (“minor,” “augmented,” etc.) in tonal music. Of course, 
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the likelihood of a particular chord quality will vary with the kind of music analyzed, but 
the preferences we have selected form a good general rule of thumb for tie resolution. 
The pitch class preference rule is essentially arbitrary and is intended to provide a simple, 
predictable tie resolution method when there is no other way of choosing between two 
labels. 

Prefer major triad to minor triad  

Prefer minor triad to major-minor 7th 

Prefer major-minor 7th to diminished triad 

Prefer diminished triad to augmented triad 

Prefer lower pitch-class numbers to higher pitch-class numbers 

Chord-quality preferences take precedence over pitch-number preferences 

Figure 11: Preference Rules for Template Tie Resolution 

The function “LabelAndScoreSegment ”, shown in Figure 12, outlines the steps HarmAn 
takes in labeling and scoring a segment. If the segment is empty, then it returns a score of 
one and reports that there is no chord in the segment. Otherwise, the program goes 
through each combination of root and template, comparing their scores and returning the 
highest scoring root and label. Computing best root and score for an individual template 
is performed by “FindBestRoot,” described in Figure 10. Ties are resolved by the 
function “IsPreferredTemplate”, which compares the best template so far with the current 
one, using the preferences in Figure 11. This function is not written out in pseudo code, 
since it is simply a set of “if – then” statements embodying the preferences in Figure 11. 

Note that nothing in this approach limits templates to triadic harmonic structures. 
Pentatonic scales, constructions based on fourths or any other structure can be searched 
for simply by introducing a template for the structure in question and establishing a rule 
for resolving ties between the new template and existing ones. 
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GIVEN :   A segment, si, of the form < pi-1, pi, label, score, state>, beginning at pi-1 and ending at pi 
 
RETURN: A segment, sout, of the form < pi-1, pi, label, score, state>, beginning at pi-1 and ending at pi 
 
METHOD  
 
1. MajIntervals := [0 4 7] 
2. minIntervals := [0 3 7] 
3. dimIntervals := [0 3 6] 
4. AugIntervals := [0 4 8] 
5. Dom7Intervals := [0 4 7 10] 
6. template := [dimIntervals , AugIntervals , Dom7Intervals, minIntervals , MajIntervals ]; 
 
7. topIndex := 0, 
8. topScore := 0, 
9. topRoot := 0 
 
10. IF all elements of statein = 0 
11.  sout := < pi-1, pi,’rest’, 1, statein> 
12. ELSE 
13.  FOR templateIndex := 1 to 5 
14.   newBestTemplate := FALSE 
15.   myTemplate := template(templateIndex) 
16.   [root, score] := FindBestRoot (statein, myTemplate) 

 
17. IF score > topScore  
18.   newBestTemplate := TRUE 
19.   ELSEIF ( score =  topScore )  AND IsPreferredTemplate(templateIndex, topIndex) 
20.    newBestTemplate := TRUE 
21.   END 

 
22.   IF newBestTemplate = TRUE 
23.    topScore := score 
24.    topIndex := index 
25.    topRoot  := root 
26.   END 
27.  END 
28.  score := topScore 
29.  label := MakeLabel(topRoot, topIndex) 
30.  sout := < pi-1, pi,label, score, statein> 
31. END 

Figure 12: LabelAndScoreSegment  

The approach for labeling a segment outlined in Figure 12 takes a fixed amount of time 
for each step save step 16, which calls FindBestRot. It was shown earlier that the 
maximum number of steps taken by FindBestRoot is limited to a fixed amount as well.  
Thus, the maximum number of steps required to label a segment is also fixed. 

LabelAndScoreSegment returns a result in constant time 
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6 An Example: Beethoven Sonata Pathetique, 2 nd Movement, 
Measure 1 

To better understand the HarmAn approach to finding a good partitioning, consider an 
analysis of the first measure of the second movement of Beethoven’s Sonata Pathetique. 
Figure 13 shows the first measure of the Beethoven example with its partition points 
labeled. 

 

p8 p9 p1 p2 p3 p4 p5 p6 p7 

 
Figure 13: Beethoven, Sonata Pathetique, Op 13, 2nd Mvmt., measure 1 

Recall that the partition points are sorted in temporal order, so a partitioning is 
represented by a binary number where bit i indicates whether partition point i should be 
used to partition two segments. Recall, also, that only the bits for the second through the 
penultimate partition points are needed to uniquely identify a partitioning for a piece of 
music. There are nine partition points in the first measure of the Beethoven example, 
making |Pall| = 9. Thus, the initial partitioning generated by HarmAn is represented by 
“1111111.”  

 

Table 3 : Partitionings Considered in Analysis of Example 

 Round 1 Round 2 Round 3 Round 4  Round 5  Round 6 Round 7 

Current 1111111 0111111 0011111 0001111 0001111 0001011 0001001 

New 0111111 0011111 0001111 0000111 0001011 0001001 0001000 

Table 3 shows the series of partitionings considered by HarmAn in the analysis of the 
Beethoven example. There are seven rounds of comparison. For each round, the best 
partitioning found so far is in the Current row. The new partitioning under consideration 
is in the New row. The bit representing the partition point under consideration in the 
current round is shown in a larger font than the rest of the bits. The higher-scoring 
partitioning in each round is highlighted with a gray background.  To see how the binary 
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numbers in Table 3 map onto partitionings, consult Figure 4, which shows two 
partitionings from Table 3 in standard notation. 

Table 4 shows the label and score for every possible segment in the first measure of the 
Beethoven example. The vertical key gives the starting partition point for each segment. 
The horizontal key gives the ending partition point for each segment.  

Table 4 : Segment Labels and Scores 

 p2 p3 p4 p5 p6 p7 p8 p9 

p1 A� Maj 8 A� Maj 22.5 A� Maj 34.5 A� Maj 45 A� Maj 36 A� Maj 33 A� Maj 24 E� Dom 24 

p2 - A� Maj 10.5 A� Maj 22.5 A� Maj 33 A� Maj 24 A� Maj 21 E� Dom 22 E� Dom 36 

p3 - - A� Maj 8 A� Maj 22.5 A� Maj 13.5 E� Dom 12 E� Dom 24 E� Dom 38 

p4 - - - A� Maj 10.5 E� Dom 10 E� Dom 24 E� Dom 36 E� Dom 50 

p5 - - - - G dim 10.5 E� Dom 26 E� Dom 38 E� Dom 52 

p6 - - - - - E� Dom 10.5 E� Dom 26 E� Dom 40 

p7 - - - - - - G dim 10.5 E� Dom 26 

p8 - - - - - - - E� Dom10.5 

As stated previously, HarmAn considers partition points in the order in which they occur 
in the music. In the first round of comparison, the partitioning 1111111 (Pall) is compared 
to partitioning 0111111 (Pall – p2). This is done by comparing the scores of segments 
<p1, p2>, < p2 , p3> and <p1 , p3>. Here, the score of <p1 , p3> is 22.5 and the sum of the 
scores for <p1, p2> and < p2 , p3> is  18.5. Since the unified segment has a higher score, 
partition point p2 is discarded (i.e. its bit is set to 0) from the partitioning for this reason. 

In Round 2, HarmAn compares partitioning 0111111 with partitioning 0011111. This is 
done by comparing segments <p1 , p3>, < p3 , p4> and <p1 , p4>. As in the previous round, 
the unified segment scores higher than the sum of the scores of the two component 
segments and p3 is discarded from the partitioning. 

In Round 3, HarmAn compares <p1 , p4> + <p4 , p5> vs. <p1 , p5>. In this case, the values 
are equal, but the system chooses to remove the partition point due to a preference for 
longer segments over shorter ones. This is done whenever the sum of the two separate 
scores equals the unified score.  

Round 4 finds HarmAn comparing partitionings 0001111 and 000011 by looking at 
segments <p1, p5>, < p5 , p6> and <p1 , p6>. The sum of the scores of <p1, p5> and 
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<p5, p6> is 55.5, while the score of the segment <p1 , p6> is only 36. Removing the 
partition point p6 would reduce the score, so the partition point remains (is assigned a 1) 
and the system moves on to the next round. 

In Round 5, HarmAn chooses between partitionings 0001111 and 0001011 by comparing 
<p5, p6> + < p6, p7> with <p5, p7>. On basis of this, p6 is deemed to not to be 
harmonically relevant and is removed from the partitioning.  

In the final two rounds, HarmAn considers the partition points p7 and p8. In both cases, 
the score for the unified segment is higher than the sum of the two seperate segments’ 
scores. Due to this, both p7 and p8 are removed from the final partitioning. 

Since the initial and final partition points are always in every partitioning, the system is 
done once it has considered points p2 through p8, leaving partitioning 0001000 (illustrated 
in Figure 4) as the final winner, with the first segment labeled as “A flat major” and the 
second segment labeled “E flat dominant.” 

7 Evaluation of HarmAn 

7.1 Time Complexity of the HarmAn approach  

Section 5.1 shows that HarmAn generates initial partitioning Pall, and segmentation Sm in 
a number of steps proportional to the number of notes in a piece of music, M. 

Steps to generate Pall and Sm = c|M|, for some constant c 

Section 5.2 shows that the maximum number of steps required to generate the final 
partitioning, Pgood, from Pall is given by the following expression, where d is a constant. 

d(4|M| � 3) � maximum number of steps to generate Pgood 

Adding the time required for each of these steps results in the following limit on the 
number of steps HarmAn requires to create a final partitioning with labeled segments. 

k|M| � c|M| + d(4|M| � 3) � steps to parse a piece of music, where k = c + 4d 

7.2 The Number of Partitionings Searched by HarmAn 

HarmAn generates a final partitioning in time k|M|. The full space of possible 
partitionings is 2|Pall|-1

, which is at most 22|M| – 2. This provides an indication that HarmAn 
does not search the entire space of partitionings in the course of generating a result. In 
fact, it does not search the entire space. 

2|M| – 1 � |Pall| – 1 = the number of partitionings searched by HarmAn 

Each partition point is considered in order of its occurrence in the music. Once a partition 
point has been deemed relevant or not, it is not reconsidered later. The number of 
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partitionings considered by the system is equal to |Pall|-1, since two partitionings are 
considered for partition point p2 and one new partitioning is considered for each 
subsequent partition point up through p|Pall|-1. 

This number is quite a bit smaller than the full space of 2|Pall|-1
 possible partitionings. This 

great reduction in the number of partitionings considered is a key element in HarmAn’s 
ability to analyze a piece of music in tractable manner. One may ask whether it is 
reasonable to prune the space of partitionings and segments in the way HarmAn does. We 
think that it is reasonable to do so. 

Assume that a higher-scoring template corresponds to one closer to a human expert’s 
choice of label for a segment of the music. HarmAn’s processing of the partition points in 
Pall results in a monotonically non-decreasing overall score. This can be seen from the 
algorithm for finding a good partitioning in Figure 8, where a partition point pi is only 
removed from Pgood if score(< pi-1, pi+1>) � score(< pi-1, pi>) + score(<pi, pi+1>). Thus, a 
partition point is removed only if the resulting score is not decreased. This guarantees 
that the final segmentation Sgood, will have at least as high a total score as the initial 
segmentation of minimal segments, Sm. This does not assure that Sgood has the highest 
possible score, only that it is at least as good as when the process begins. 

From this, we can say that HarmAn’s final partitioning, Pgood, and its labeled 
segmentation, Sgood, are no further from a human expert’s partitioning and labeling of a 
piece than are Pall and Sm.  

Of course, this does nothing to guarantee that the parse resulting from the start-to-finish 
approach used by HarmAn generates an answer anywhere near the highest scoring one. 
The argument in favor of this approach is that music is an art form that unfolds in time 
from start to finish. A composer who wishes to write pieces that are decipherable by the 
listener must create structures that can be understood in a start-to-finish way with limited 
backtracking to reconsider previously heard passages. Also, the expectation for what 
comes next is determined by what has just been heard and it seems reasonable to assume 
that the set of likely partitionings under consideration by a human is greatly constrained 
by what has already transpired in the music. A good composer knows this at some level 
and writes music accordingly. From this, it seems likely that much music is written so 
that one can partition it in a start-to-finish way with no backtracking. 

7.3 Evaluation of HarmAn on Various Pieces 

If it is true that much tonal music was written to be analyzed in a start-to-finish way, and 
that the template scoring algorithm in Figure 9 is a good one, then HarmAn should 
perform well on a variety of pieces. In order to compare our results to existing work on 
automated analysis of harmony, we analyzed a set of pieces by Bach, Beethoven, and 
Schubert used in other papers. We also analyzed a number of other pieces of various 
textures from various periods. What follows are several examples taken from previously 
published papers showing our system’s analysis along side the published results and one 
more difficult piece by Debussy, showing HarmAn’s analysis of a tonally ambiguous 
passage.  
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7.3.1 Winograd : Schubert. Deutsche Tanze, Op. 33, No. 7 

Winograd (Winograd 1968) approached the harmonic analysis of music through the use 
of generative grammars. Winograd’s work was successful in correctly labeling the 
harmonies, roman-numeral style, in pieces of music composed of block chords but did 
not address the issue of how to partition a piece into segments (i.e., likely chords) upon 
which to perform the harmonic analysis. This partitioning was performed by a human 
operator and the results of the human’s parsing were passed to the program as input. This 
contrasts with HarmAn’s automatic partitioning of the music. 

In order to test HarmAn on music with block chord figuration and to compare our results 
to Winograd’s, the same pieces analyzed in Winograd’s paper were analyzed by 
HarmAn. An example of HarmAn’s analysis of the first eight measures of one such piece 
is shown in Figure 14. The results generated by HarmAn for this passage generally agree 
with Winograd’s analysis, with the only major disagreement being in the placement of 
the “F7” (F dominant) chord in the second half of the sixth measure. Winograd’s system 
placed this chord’s beginning at the start of the seventh measure. Interestingly, a nearly 
identical musical situation presents itself in the second measure and here Winograd’s 
system agrees with our analysis.  

 

V 
 4 

I 
 4  4 

I6 
 4 

Winograd,  
orig. notation 

I6 I6 I6 I I I V V7 V7 

Winograd,  
Jazz notation 

B� Maj B� Maj F7 F Maj B� Maj F Maj F7 

HarmAn 

 

Figure 14 Schubert. Deutsche Tanze, Op. 33, No. 7 

7.3.2 Temperley and Sleator : Beethoven Sonata Pathetique, 2nd Movement 

Temperley and Sleator’s (Temperley and Sleator 1999) system takes a piece of music as 
input and first does beat finding in a manner strongly reminiscent of Lerdahl and 
Jackendoff (Lerdahl and Jackendoff 1983). These beats are then used to help determine 
the partitioning of the piece into time spans, which are labeled as likely chords. The exact 
method used to determine the initial partitioning is not given in the paper except to say 
that segments should begin on subdivisions of the beat and should be “short” (in the 
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range of 100-300 ms).  A root is then chosen for each segment.  Roots are chosen so as to 
prefer giving the same root name to successive chords if possible, and to prefer root-
names related by a fifth, otherwise. Their system is limited to labeling the root of each 
segment rather than providing the full chordal spelling. The full history of preceding root 
names is used, along with the intervals present in the current segment, to determine the 
choice of the root name of each segment. The system is described as a set of preference 
rules, and is strongly tied to an explicit model of functional tonal harmony in its approach 
to analysis.  

Figure 15 shows the results of analysis of the first eight measures of the second 
movement of Beethoven’s Sonata Pathetique (Temperley and Sleator only reported the 
analysis of the first five measures in their paper). As can be seen from the figure, 
HarmAn successfully captured the correct chord roots and qualities in this passage, with 
the possible exception of the first half of the fifth measure. HarmAn’s choice of chord in 
the first half of the fifth measure, while a reasonable harmonization given the context, 
might not be as good as a label of “G diminished” or possibly “E flat dominant”. The 
harmonic rhythm was also captured accurately without need to infer meter or beat. 

 

A� E� A� E� A� E� F B� E� 

G B� E� A� 

HarmAn 

T & S 

 
Figure 15: Beethoven. Sonata Pathetique. 2nd Movement. 

The Temperley and Sleator system did about as well as HarmAn on root finding in this 
example, although HarmAn also correctly identifies chord quality. Both systems agree on 
root spellings through the first four measures, diverging on the fifth measure. Their 
system finds four roots in this measure, namely “G”, “B flat”, “E flat” and “A flat.” 
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HarmAn reports only two. Interestingly, HarmAn gets closer to capturing the actual 
harmonic rhythm of this measure even though it does not explicitly represent rhythm.  

7.3.3 Maxwell : J. S. Bach,  1st French Suite, D minor Sarabande 

Maxwell (Maxwell 1992) built a system that performed harmonic analysis using 
hundreds of preference rules for analysis of individual notes and intervals between notes. 
An example rule is: “RULE 22: If a vertical is unaccented AND it is tertian AND the 
previous vertical is tertian AND they both have the same root, THEN the vertical is 
subordinate to the previous vertical.”   

A strength of Maxwell’s work is that it addressed determining which sets of notes should 
be labeled as chords. Unfortunately, the paper describing the work lists only a small 
subset of the preference rules, and is unclear on how the rules are weighted or what 
control structure mediates between these rules. Maxwell did not explicitly address the 
issue of the computational complexity of the partitioning problem, nor what portion of 
the space was actually searched. 

HarmAn 

Maxwell, 
Jazz notation 

Maxwell, 
orig. notation 

d: i iio4-2 iio V6 V4-2/iv V/iv 

D min E dim 7  A7 D7 D 

HarmAn 

Maxwell, 
Jazz notation 

Maxwell, 
orig. notation 

V7 iv6 i6-4 iv viio4-2 V 

G min A7 D min G min 
C# dim7 

A 

E dim 

Figure 16: J. S. Bach, 1st French Suite, D minor Sarabande 
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Maxwell’s system analyzed a number of pieces, generating results in roman numeral-
style notation. One such piece is the D minor Sarabande from J. S. Bach’s First French 
Suite. Both HarmAn’s and Maxwell’s analysis of the first eight measures of the 
Sarabande is shown in Figure 16. In general, our system was successful, correctly 
capturing the correct chord-quality and root in each measure.  
 
HarmAn differed from the Maxwell system in the second measure because a diminished 
7th chord is not one of HarmAn’s templates. Thus, it chose a label of “G minor.” The 
pitch classes in “G minor” form a subset of those in “E diminished 7” so the labeling 
difference between the two systems on this measure is small.  
 
The penultimate measure shows a more significant difference. Here, HarmAn labeled the 
last two beats of the measure as a single “E flat dominant.” Maxwell’s system broke the 
measure into three chords and labeled them as a progression that is more typical of tonal 
music of the period. The difference may be accounted for in the spelling of the pitches. 
HarmAn takes input in the MIDI format, which gives the same value to both “D flat” and 
“C sharp.” Written music, however, often varies the spelling of the note to give an 
indication of its function. The written music has a “C sharp” in the third beat of the 
measure. Such a spelling precludes using this note as part of an “E flat dominant” chord 
and forces a different interpretation.  
 
HarmAn’s analysis generated a couple of spurious “glitch” chords lasting an eighth-note 
each. The “A major” on the second half of the first beat of measure two is an example of 
just such a chord. This chord is actually two passing tones and neither Maxwell’s system 
nor most human analysts would chose to identify either the “A major” in the second 
measure or the “G major” in the fourth measure as structurally significant harmonies. The 
generation of such individually labeled short segments is a direct result of the local nature 
of the HarmAn approach.  
 
The issue of context is a tricky one, however.  Consider the first beat of measures five 
and eight. In both measures, Maxwell’s system ignores what we consider to be a 
significant chord on the first beat of the measure, which HarmAn detects and correctly 
labels. In general, though, both systems generated correct analyses of the passage. This is 
notable given the fact that the number of rules used by HarmAn in determining the 
harmonic structure of a piece is far smaller than the number of rules used in Maxwell’s 
system. 

7.3.4 A Tonally Ambiguous Example : Debussy, The Little Shepherd  

To this point, all the music analyzed in this paper has clearly outlined triadic tonal 
harmonies with few non-chord tones. However, much late Romantic and early 20th 
century music is much more ambiguous in its statement of tonal harmonies. The music of 
Debussy is a good example of this. Many Debussy pieces are loosely tonal. Cadences still 
exist but are obscured or led up to in ways based on non-tonal structures, such as 
pentatonic and whole tone scales. Given the more ambiguous nature of Debussy’s 
harmonies, his music is good for testing the limits of a harmonic analysis program. 
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Figure 17 shows HarmAn’s analysis of the first eleven measures of Debussy’s  
“The Little Shepherd.” In this figure, there is an arrow from each segment label to the 
note in which the segment begins. We selected “The Little Shepherd” because it 
contained several interesting properties. First, the piece begins with an initial 
unaccompanied melody of ambiguous tonality. We were interesting in seeing the analysis 
HarmAn would generate of this passage. This tonal ambiguity continues when other 
voices are introduced in the fifth measure. The additional voices provide neither a clear 
tonal center nor do they clearly outline triadic harmonies. This ambiguity clears up in the 
second half of the sixth measure, where the music resolves to a “B major” triad.  

 

 

Figure 17: Claude Debussy, The Little Shepherd, mm 1-11 
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Measures seven and eight show another interesting feature of this piece. The melody of 
measures five and six is repeated with new, tonal, harmonies outlining what may be 
alternating “D minor” (or possibly “B diminished”) and “A major” chords in the 
accompaniment. This allows a direct comparison of HarmAn’s analysis of a non-tonal 
accompaniment with a more tonal accompaniment of the same melody. 

The final three measures outline a “B minor 7” chord moving to an “E dominant 7” and 
resolving on an “A major” triad, providing a clear spelling out of these harmonies with 
relatively few non-chord tones. 

HarmAn’s analysis of the single note line in the first four measures of the piece is 
interesting in that, due to the templates used, it imposes a tonal harmonization upon a 
possibly non-tonal melodic line. The harmonization intersperses root movement by fifth 
(a typical tonal device) with a repeated E chord. Thus, the system infers an obscured 
tonal root movement pattern, a typical feature of late tonality. Unfortunately, HarmAn’s 
selection of when to change chords is questionable, as it sometimes happens during a 
grace note or in the middle of a 16th note triplet.  

The analysis of measure five is a bit more confused and the system repeatedly changes 
chord at places that a human is unlikely to. This, however, is understandable given the 
confusing nature of the tonal structures in the measure, and since HarmAn makes no use 
of metrical information in determining locations for chord changes. 

The system does better on the sixth measure, coming up with a reasonable parsing of the 
chords as “C sharp diminished” moving to “E minor” and then to “B major.” 

The seventh measure of the piece shows a repeat of the melodic material in measure five 
with clearer harmonization in the accompaniment. HarmAn performs better on this 
measure than it did on measure five, correctly placing chord changes on each beat. The 
chords it chooses are “B diminished” and “A major” in alternation. A human might have 
chosen “D minor” instead of “B diminished,” due to the movement of the lowest voice, 
but there is evidence to support “B diminished” as well, so we deemed this a good parse. 

HarmAn interprets measure eight as moving from a “B diminished” to a “B major” triad 
and then to an “A major.” Given this interpretation of measure seven, then the choice of a 
“B diminished” in measure seven seems good in that it makes the “B diminished” triad 
part of a repeated pattern extending across both measures. 

HarmAn misreads the first chord of measure nine as a “D major” triad instead of a “B 
minor 7”. This is because no template was provided for the “minor 7” chord, making the 
system incapable of producing it as a response. Since all notes in “D major” are in the “B 
minor 7” chord, we deem it an acceptable error.  

The final cadence of the passage is correctly captured by HarmAn as an “E dominant 7” 
moving to “A major.” The quick run in the last beat of measure nine is ignored in favor 
of the held notes and the harmonic rhythm is parsed correctly. 
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All in all, given the intentionally obscure nature of the harmonies in the piece and 
HarmAn’s limitation hypothesizing from only five tonal chord types, the system did quite 
well. 

8 Conclusions and Directions for future work 

The work described in this paper provides a clear formal framework upon which to build 
a system for harmonic analysis of music. HarmAn is based upon this theoretical 
framework and provides a good first approximation of the harmonic structures in a 
typical piece of tonal music. HarmAn does this in a clearly explained and analyzable 
manner, using a relative small set of rules, which do not require an understanding of the 
tonal context nor any metrical information to perform the analysis. The results achieved 
by this system compare well to those achieved by much more complex systems reported 
in the literature. 

There are three areas for improvement of HarmAn: increasing the number of harmonic 
structures which HarmAn recognizes; refining the scoring method used to determine the 
best label for a segment; and dealing with rests. 

HarmAn has only five templates for tonal structures, namely major triads, minor triads, 
diminished triads, augmented triads and the major-minor 7th chord. Many other obvious 
structures, such as minor-minor 7th chords, ninth chords, and various scales can easily be 
added to the set of templates in use This issue is a bit more complex than it appears at 
first, because the addition of a new template requires a rethinking of both the preference 
rules for choosing between templates and the scoring method for a single template. 

The scoring method (see Figure 9) for a single combination of template and root was 
designed for current set of five tonal templates and may not provide the appropriate 
weightings for all kinds of template. For example, it may not be appropriate to add extra 
weight to a “root” class for some kinds of non-tonal structures. Tied in with this issue is 
the simplistic set of preference rules for selecting between templates. Currently, the result 
is winner-take-all, but it may be more appropriate to report the top two or three choices in 
ambiguous situations where, for example, it is unclear whether a segment expresses an 
“A minor” or a “C major” chord. We are currently investigating a variety of template 
scoring methods for various contexts and levels of ambiguity. 

At present, HarmAn treats all rests as “iceburgs,” in that rest segments are never unified 
with adjacent ones. This is not an ideal approach since very short rests may not signal 
natural divisions within the music. It would be better to consider the possibility of 
unifying segments across rests in a way that reflects the length (and thus, relative 
importance) of the rest. This can be done by producing an initial partitioning of the music 
which does not attempt to join segments across rests and then going back through the 
music and considering the removal of partition points around rest segments in order of 
the length of the rest. In this way, the system will tend to remove short rest segments 
before long ones, giving greater weight to longer rests. We are currently enhancing 
HarmAn to do so. 
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