
1

Self-Organizing Network Services
Hani Jamjoom, Sugih Jamin, Kang Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109

fjamjoom, jamin, kgshing@eecs.umich.edu

Abstract— There is a proliferation of application-level
servers that offer enhanced network services beyond the
simple packet forwarding provided by the underlying net-
work infrastructure. Examples of such servers range
from Web server mirrors, Web caches, Web page distill-
ing proxies, video transcoders, and application-level mul-
ticast routers, to application-level load-adaptive multipath
routers. A fundamental question arising from the deploy-
ment of such servers is where to place them within a net-
work. This paper explores technical issues related to the cre-
ation of an infrastructure to allow self-organization of net-
work service placement based on observed demand for each
service. In so doing, we propose a framework, called Sor-
tie, whereby services are allocated on network nodes based
on a set of very simple rules independently executed by each
node. The distributed nature of allocation decisions ensures
the scalability of the framework. We also present simula-
tion results confirming the stability and efficiency of the pro-
posed framework.

Keywords—Network services, self-organization, demand-
triggered

I. INTRODUCTION

Along with the growth of the Web and the increasingly
prevalent use of the Internet as an infrastructure to support
multimedia applications, there is an increasing demand for
distributing application-level services across the Internet.
This ranges from mirroring of Web content and multi-
player game servers to deployment of distilling proxies
and video transcoders. Assuming there is a network of
nodes that are willing to host such services, a natural ques-
tion arises: where and how many replicas of these services
should be made available? A non-trivial answer to this
question would ensure that a minimal amount of network
resources is consumed by the resulting service allocation.

Self-organization has been proposed as a scalable means
of distributing and managing these services. We de-
fine self-organizationas the ability of a service to repli-
cate and remove instances of itself based on dynamically-
fluctuating demand. The use of self-organization has been
explored in managing video transcoders [1–3], web con-
tent mirrors [4], and web caches [5, 6]. Each of these ef-

forts explores the use of self-organization in itsspecific
application context. In contrast, we propose ageneralser-
vice whereby application services are automatically repli-
cated and strategically placed at participating nodes in a
network based on usage patterns. Such a service should
(i) provide relatively fast adaptivity in replica demography
when usage pattern shifts, (ii) prevent oscillation when us-
age pattern is not at equilibrium, and (iii) maintain stability
when usage pattern is at equilibrium.

Specifically, we propose and evaluate a framework for
self-organizing network services which we callSortie
(Self-ORganizing acTIve sErvices). Sortie running at each
participating network node measures the local demand for
each network service independently of all other nodes.
When demand for a service reaches a high watermark, the
service becomes a candidate for local replication; should
demand drops below a low watermark, the service may be
removed. We will in Section III-D describe an exponen-
tial back-off scheme to dampen oscillation in replica pop-
ulation when usage pattern is not at equilibrium or when
usage pattern oscillates around the equilibrium. While our
work is intended for intranets, the distributed nature of its
allocation decision makes it extendable to the Internet.

Aside from replica placement, such a framework must
also provide a protocol for the advertisement and discov-
ery of service replicas. We do not propose such protocol.
Instead, we adopt recent work on an intentional naming
architecture [7] or on resource discovery [8–10] for pro-
viding the necessary functionality.

We elaborate on the goals of Sortie in the next section.
Section III zooms on the underlying design principles and
architecture of Sortie. In Section IV we present results
from simulations we conducted to assess the effectiveness
of the architecture. Aside from providing initial confir-
mation on the stability of service replica population man-
aged by Sortie, the results also indicate that the service
allocation is efficient in its network resource consumption.
Since finding the optimal solution to the placement prob-
lem reduces to the NP-complete bin-packing problem, Sor-

2

tie cannot hope to achieve optimal placement.1 As the re-
sults show, however, Sortie does provide a tuning parame-
ter to trade off the efficiency of various resource consump-
tions. After presenting related work in Section V, we close
this paper with a conclusion and a set of open issues in
Section VI.

II. SORTIE GOALS

Different applications may have different needs from a
self-organizing framework such as Sortie. Instead of try-
ing to provide an exhaustive list of all encompassing goals,
we discuss below only a handful of goals we consider fun-
damental to all self-organizing frameworks.

Stable Adaptability.The first issue to consider is whether
the demography of services managed by Sortie is stable.
When node resources are abundant, replicating a service
may be simple; if resources are scarce, on the other hand,
activating a service at a node may require downloading
a copy of the service from a remote site, which will it-
self consume network resources. In either case, there is
an overhead to activating a service, at the very least there
is the time lag between service activation and its use: the
service must first be advertised and packets routed to the
node where the service resides. A desirable behavior is
that replica demography will reach an equilibrium where
few further replications are required. Unstable replica de-
mography is comparable to the virtual-memory thrashing
problem found on single-node systems.

Since Sortie’s decision to keep or remove a replica is
based on measured demand for the service, two factors de-
termine the stability of the system. The first is the length
of demand history. The longer the history is kept, the more
stable the system may be. However, if the demand pattern
changes rapidly, the longer the history is kept, the slower
Sortie will converge to the new set of services required
by the new demand pattern. The second factor determin-
ing the stability of the system is the demand pattern itself.
If the demand pattern is very bursty, or if demand oscil-
lates around equilibrium, there could be some oscillation
in replica demography. A self-organizing framework must
thus have a second-level control mechanism to adjust its
adaptivity and dampen oscillation. Ideally, this second-
level control mechanism could automatically adjust to ob-
served behavior of replica demography; at the very least it
must provide tuning knobs network administrators can set
manually.

To ensure stability when resources are scarce, or in the
presence of oscillating demand patterns, Sortie may opt

1Optimal placement for closed small-size networks may be com-
putable in bounded time.

to maintain the replicas of only a subset of services. We
assume that each service will have a “home” node where
the service will always be available. Hence if the service
cannot be replicated across the network, packets request-
ing the service will have to be routed towards the services’
home node. This will maintain stability at the cost of de-
creased route efficiency.

Route Efficiency.We call the path a packet takes when it
doesn’t require any application-level service thepacket’s
original path.2 In the ideal case, a packet that requires a
service will find the service along its original path. If a
large percentage of packets must deviate from their orig-
inal paths in search of the required services, the service
placement is said to have poorroute efficiency. When re-
sources are abundant, route efficiency may be kept high by
liberal replication of services. When resources are scarce,
Sortie may have to trade off route efficiency for stability.
Viewed another way, inefficient routing may be indicative
of the need to add more resources on the network. Since
Sortie measures service demand at each participating net-
work node, it can help pinpoint resource bottlenecks.

Placement Efficiency.In evaluating the efficiency of a
given service placement, we make a distinction between
route efficiency and placement efficiency. We defined the
route efficiency in terms of deviation from the original
path. In contrast, to evaluate placement efficiency, we take
application-level semantics into account. That is, factor-
ing aside route efficiency,placement efficiencyconsiders
the question: where along a chosen route should a re-
quested service be applied? We take factors such as band-
width requirements before and after service application
and node resource availability intoaccount when answer-
ing this question.

For the purpose of illustration, let us consider web
page distilling and multicast delivery as two example
application-level services. Web page distilling reduces the
amount of bandwidth required for transmission of a Web
page by reducing the amount of information contained in
the page. It achieves the maximum amount of bandwidth
reduction if applied at the source, either at the original web
server or one of its mirrors. If the source does not support
distilling, then the closer to the source distillingcan be per-
formed, the larger the potential bandwidth saving. On the
other hand, multicast delivery increases bandwidth usage
at multicast dispersion points,3 hence to reduce bandwidth
demand, this service should be applied as close to the des-
tinations as possible.

2The original path may not be the shortest path, due to policy routing.
3Only a single copy of the packet needs be sent on broadcast net-

works.

3

To achieve scalability, a general self-organizing frame-
work cannot hope to evaluate the data-handling semantics
of every service. Take web caching for example. To reduce
download latency and bandwidth usage, one may want to
place caches as close to clients as possible. This, unfortu-
nately, lowers the aggregation of requests each cache sees.
Hence caches placed some distance away from clients may
actually result in a higher hit rate, providing lower latency
and bandwidth usage overall. Instead of building in intel-
ligence to learn data-handling semantics of every service,
our approach in Sortie is to associate arate transforma-
tion factor (�) with each service. How a service provider
can use this service attribute to control Sortie’s behavior is
examined in the next section.

With these goals in mind, we now discuss the design
principles and architecture of Sortie in greater details.

III. FRAMEWORK DESIGN

The authors of [11–13] have observed that complex, and
often unintended, dynamics can arise from seemingly in-
nocent behavior of algorithms deployed on the Internet.
To avoid such unintended dynamics, we have followed a
design principle in Sortie whereby each node running Sor-
tie executes only a small set of well-defined rules. Re-
searchers studying natural and biological systems, cellular
automata, and artificial life have also noted how sustain-
able large complex systems often arise from simple, regu-
lar components, each executing a small set of simple rules.
By following a similar design precept, we show that the set
of simple rules we have designed for Sortie will lead to a
sustainable self-organizing network.

A. Self-Organizing Algorithms

This section outlines five different approaches to build-
ing a network of self-organizing service replicas. The
approaches considered are required to satisfy some well-
known principles of scalable design such as decentral-
ized decision-making based on local information, use of
soft states, being robust to unreliable information on net-
work states, being adaptive to changing network condi-
tions, etc. Hence in all of the approaches studied, each
network node measures onlylocal demand for each ser-
vice and makesindependentreplication decisions based
on its own network observations. As we mentioned in
the Introduction, the replication algorithm aside, a frame-
work for self-organizing network services must also in-
corporate a protocol whereby service replicas can be ad-
vertised to all participating nodes. Each node must also
have an underlying packet-forwarding substrate that can
differentiate between packets not requiring services other

than fast packet forwarding from those that require addi-
tional network services.4 In our description of the five
self-organizing replication algorithms below, we assume
the availability of such service-advertisement protocol and
packet-forwarding substrate in all cases.

We define a taxonomy of self-organizing algorithms
along two dimensions: (1) when to replicate a service, and
(2) where to apply a service. A service can be replicated as
soon as there is a demand for it, or it can be replicated only
if the demand level reaches a high watermark. We call the
formerGreedyreplication and the latterMiser replication.
Orthogonal to the demand level, a service can be replicated
at a node close to the source, or it can be replicated close
to the destination. We call the formerEager replication,
and the latter,Lazyreplication. Hence there are four pos-
sible algorithms: (1) Greedy/Eager, (2) Greedy/Lazy, (3)
Miser/Eager, and (4) Miser/Lazy.

Finally, Sortie uses a Miser algorithm that takes the
application-level rate transformation factor (�) into ac-
count when deciding where to replicate a service. The
replication rules that Sortie uses are: (1) a service is repli-
cated locally only if demand for it reaches a high water-
mark, and (2) replication decisions consider the service’s
rate transformation factor (�). We describe in the follow-
ing section the second rule in more detail.

When a service is first introduced on the network, it is
assumed to reside only on itshomenode(s). We require
each service to have one or more home nodes from which it
cannot be automatically removed. The home node(s) must
be participants in the self-organizing framework. The ex-
istence of a new service will be advertised to other nodes
running Sortie. Each node then monitors local demand
for the new service and executes Sortie’s replication al-
gorithm. Once a node acquires a replica of the service, it
proceeds to advertise the availability of the service. The
node continues advertising the availability of the service
periodically until the replica is removed (presumably to
make room for a replica of another service).

B. Service Application

Two mechanisms work in conjunction with each other
to achieve self-organization. The first is deciding whether
to apply the requested service locally or forward packets to
another switch for service. The second is deciding when
to replicate a service. These decisions, while made inde-
pendently by each switch, impact the demand for services
that is seen by other switches and can thus affect replica
placement in the network. In this subsection we describe

4In the former case, packets should be forwarded along the forward-
ing code’s fast path and not suffer additional performance degradation.

4

Is
service

resident?

Should
service be

applied at the
current
node?

Apply
service

Update
DEMAND
counter

Forward
to next hop

N

0

(0,1]

Y

Fig. 1. Service application flowchart. The returned value from
the top-left decision box is used to affect the demand for the
service.

the service application process; we defer description of the
replication process to the next section.

In general, once a packet is determined to require an ad-
ditional network service other than fast packet-forwarding,
it is passed from the underlying forwarding substrate to
Sortie. Sortie first determines if the required service is
best applied at the current node or not. If the service is
not best applied at the current node, it looks up the ser-
vice’s “routing table,” determines the “next hop” towards
the destination, and forwards the packet to the next hop.

Miser/Eager:
returnDd

k=(D
k
s +Dd

k)

Miser/Lazy:
r = Dk

s=(D
k
s +Dd

k)
if (: (9 downstream node that can

participate in self-organization))
return 1.0

else if (: (9 service on shortest path))
returnr

else
return 0.0

Sortie:
if � < 1

use Miser/Eager
else if� > 1

use Miser/Lazy

where:

Dj
i : distance between nodei and nodej,
s: source node,
d: destination node,
k: current node,
�: rate transform factor,
�: tunable parameter,� 2 (0,1).

Fig. 2. Algorithm to determine if a service should be locally
replicated for Miser replications.

The five self-organizing algorithms differ in deciding
when to apply the service. We only focus on Miser replica-
tions since the Greedy ones have a trivial decision process.
The three Miser replication algorithms share a common
decision process summarized in Figure 1. The fractional
value is used to affect the demand for the service. A higher
value implies that the service is more suited in the current
switch, and vice versa (more on this will be discussed in
the next section).

The three Miser algorithms differ in deciding where to
apply the service. Figure 2 outlines this decision process
for the Miser replications. Miser/Eager depends on the ra-
tio of the distance (Dd

k
) between the current node (k) and

the destination (d) of the packet and the path length (Dd
s
)

from source (s) to destination (d). The definition of “dis-
tance” is specific to each application-level service. In the
simplest case, the distance is the number of hops stored
in the routing table of the network. Services requiring ac-
curate distance may have to consult network topology ser-
vices [14, 15]. Multicast application may define “distance”
as a function of the number of outgoing interfaces a packet
must be delivered through.

In contrast to Miser/Eager, Miser/Lazy depends on the
ratio ofDk

s to Dd
s . Furthermore, Miser/Lazy depends on

the availability of service in downstream nodes. Only
when the service is not available on the original path,
Miser/Lazy returns a non-zero value. This tries to concen-
trate the demand at the nodes where packets deviate from
the original path and eventually causes the replication of
services at these nodes.

Sortie uses anadaptivecombination of the two algo-
rithms. If the service is best suited near the source (desti-
nation) it uses Miser/Eager (Miser/Lazy). It relies on ser-
vices’ rate transformation factor (�) to decide which algo-
rithm to use. This rate transformation factor is a service-
specific attribute. It specifies the expected rate change after
a data stream has been transformed by the application of
the service. A service with� < 1 reducesthe data rate
after transformation. Web distilling services, for example,
have� < 1 and should be placed as close to the source
as possible. In contrast, a service with� > 1 should be
applied near the destination(s). For some other services,
� may be unity, i.e., the data rate after transformation is
the same as before the application of the service. Place-
ment of such services does not affect network bandwidth,
and thus these services could be placedanywherealong
the path where demand for that service is high. By using
� to switch between Miser/Eager and Miser/Lazy, Sortie
combines the benefits of both algorithms while improving
the placement of services.

5

C. Service Replication and Removal

The decision of the algorithm in Figure 2 is given as a
fractional value (r) between 0 and 1. A value of 0 means
the service is not to be applied at the current node. When
the value is non-zero, Sortie keeps track of user demand
for services that would benefit from being located at the
current node. User demand is estimated by keeping an
exponential moving average of the service request inter-
arrival times:

ainew = waiold + (1� w)r�it; (1)

wherew is the exponential averaging weight,v is the frac-
tional value returned by the decision process described in
the previous section,�i

t
is the inter-arrival time of requests

for servicei, ainew is the new average inter-arrival time of
requests for servicei, andai

old
is the old average inter-

arrival time of requests for servicei.
Based on the demand for each service, Sortie decides

whether to replicate the service or not. When the demand
exceeds a threshold watermark, the service becomes a can-
didate for replication. To better utilize switch resources,
Sortie tries to replicate services that would maximize the
total number of served packets and at the same time mini-
mize the total number of packets deviating from the short-
est path. To do so, the watermark is adjusted dynamically
according to the demand of other services. It is set to
the lowest demand of services that are currently allocated.
The Sortie’s replacement policy can be thought of asleast-
frequently-usedreplacement.

In describing a node’s management of replicas, we use
the terms “remove” and “delete” to mean “stop adver-
tising” and “physically delete from node,” respectively.
When a node removes a replica, it does not immediately
delete the replica. If there is no contention for a node’s
resources, it retains the replica but discontinues the adver-
tisement of its existence. Hence, if it ever becomes neces-
sary for the node to host the service again, a replica will
already be resident in the node. A replica is deleted only
when there is contention for the resources it holds.

D. Exponential Back-off

One of Sortie’s main goals is to minimize oscillation in
replica population. Oscillation can occur even under con-
stant traffic patterns. This is especially true for Greedy
algorithms when switch resources are lower than those re-
quired by the demanded services. Miser algorithms offer
better stability against oscillation since they give a high-
demand stream priority over lower-demand ones. How-
ever, the switch may falsely interpert traffic bursts as an
indication for high service demand causing it to replicate

if (service removed longer thanIth duration ago and
there has been no requests duringIth)

Replicate service
Ri = 1
Zth = Ith

else if (service frozen)
if (frozen for more thanZi period)

Replicate service
Ri++

else service is not frozen and was recently removed
Freeze service
Zi = 2Ri * Zmin

if (Zi > Zth)
Zth *= 1.5
Ri = 0

where:

Ith: idle time threshold
Ri: replication count of servicei
Zi: servicei’s freeze duration

Zmin: minimum freeze duration
Zth: freeze duration threshold

Fig. 3. Exponential back-off algorithm to reduce oscillation in
replica population.

the service.
When the demand pattern changes rapidly, one way

to dampen oscillation in service replication is to keep a
longer demand history, or equivalently, raise the high wa-
termark. Raising the high watermark, however, reduces
the adaptivity of Sortie since it only considers high de-
mand patterns. To improve Sortie’s responsiveness, we
could set the high watermark based on observed frequency
of demand pattern changes. Or we could use the observed
frequency of replication requests directly in the replication
decisions. We chose to do the latter in Sortie by freezing
service replication when the demand pattern is too bursty.
This is anexponential back-off (EB)algorithm since the
freezing period is exponentially increased for each repli-
cation request during an oscillation period.

Figure 3 formally defines the exponential back-off al-
gorithm of the freeze duration. Each servicei has asso-
ciated with it a freeze duration (Zi). A service is frozen
if a request for its replication arrives earlier than a pre-
configured idle time threshold (Ith) since its last removal.
Ith is used to approximate the idle time between two
streams. A frozen service cannot be replicated until its
freeze duration expires. Every time a service is frozen, its
freeze duration is exponentially increased. To ensure Sor-
tie’s responsiveness once the demand pattern is no longer
oscillating, we resetZi to the minimum value if it becomes
larger than a threshold (Zth). The threshold (Zth) itself is

6

Network Characteristics

of nodes 91
AGGvg. hop count 5.2
Network diameter 9

of switches 15
Avg. degree of switch connectivity 3

of edge nodes 10
Avg. # of nodes per edge switch 6.6

of services 10

TABLE I
Characteristics of the simulated network.

Characteristics High Traffic Low Traffic

Peak rate (Kbps) 28.8 14.4
Avg. on time 10 10

Peak/avg. ratio 2.0 2.0
On shape 1.1 1.1
Off shape 1.1 1.1

Packet size (bytes) 1500 1500

TABLE II
Characteristics of Pareto sources.

increased by half again every timeZi reaches it. We will
analyze the effects ofZmin andIth in Section IV-B.5.

IV. EXPERIMENTAL EVALUATION

We focus our evaluation on the placement and stability
of service replicas. This section is divided into two parts.
We first describe the simulation environment, evaluation
metrics, and underlying assumption; we then discuss our
findings in greater detail.

A. The Simulation Environment

We focus our attention on a single autonomous system
(AS) since it contains a tractable number of switches, and
hence it is easier to demonstrate the key features of Sor-
tie. (Interactions between multiple ASs will be addressed
in our future work.) In an AS, each switch will be in-
formed of the replication and removal of every service in
the system. This way, each switch can keep track of exist-
ing services and can quickly forward a packet to the clos-
est switch when the service required by the packet is not
available locally.

To focus on our primary objective, we simplify the al-
location problem by only considering resources of equal
constraints. This transforms the problem into a tractable
operation of swapping one service with another. Other-
wise, it is NP-Complete since it easily maps to the well-
known bin-packing problem.

The performance of the five placement algorithms in

Section III-A is evaluated using simulations. Two main
assumptions are made to simplify the implementation pro-
cess. First, that service advertisement is implicit. That is,
there is zero propagation delay between when a service is
advertised or removed at a switch and the time the infor-
mation reaches other switches. We do this to avoid insta-
bilities caused by the lag time between removing a service
and informing other routers of this action. We also do not
model the process of replicating a service. Instead, we
keep track of the number of replication requests. As a way
of relaxing the second assumption, in Section IV-B.4 we
separately evaluate the effects of replication delay on the
performance of the five algorithms.

The network used for our simulation study is randomly
generated. Table I summarizes the characteristics of the
network. The core switches are randomly connected using
Waxman’s [16] model. In our simulations, a source sends
requests for certain services using a Pareto distribution.
The (source, sink) pair of each connection are chosen at
random, using uniform distribution. We model two traffic
levels, high and low, as described in Table II. We choose to
use Pareto distribution with a high variance (i.e., the shape
values are close to 1) to better approximate the behavior
of host traffic. Because of the large number of performed
simulation trails and to allow our simulation to complete
in reasonable time, we only choose to mimic hosts with
low rates, similar to those connected via modems.

For each of the five placement algorithms studied, we
ran each experiment 50 times for 600 seconds of simula-
tion time. Each run is parameterized by (1) service re-
quested by sources, (2) the amount of resources at each
switch, (3) the rate-transformation factor of each service,
(4) the demand level of each connection, and (5) the delay
of replicating a service. The following subsections present
and analyze the results of our simulation.

B. Simulation Results

Three metrics are used to compare the five placement
algorithms: stable adaptability, route efficiency, and place-
ment efficiency. We then discuss the effects of replication
delay, and finally the effectiveness of exponential back-off.

B.1 Stable Adaptability

We measure system stability in terms of the rate of repli-
cation requests because a stable system will reach a point
where no further replication requests are issued for a stable
demand pattern. As discussed earlier, the burstiness of the
sources may result in continual replication requests caus-
ing replica oscillation. So, AlgorithmA is said to be more
stable thanB if it generates fewer replication requests.

7

0.001

0.01

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 r

ep
lic

at
io

ns
/s

ec

Switch capacity (services)

Sortie
Miser/Eager
Miser/Lazy

Greedy/Eager
Greedy/Lazy

Fig. 4. Rate of replica requests. This figure plots theaverage
rate of replication as a function of switch capacity. The ver-
tical drops are due to the logarithmic scale of the y-axis. It
should be read as the function having zero value after the
drop.

Figure 4 shows the rates of replication requests that
are generated by all switches for the five placement al-
gorithms. In each case, an edge switch gets requests for
an average of 7 different services from the sources that
are connected to it. When switch resources are varied
from accommodating 10 services to only 1 service, Miser
replications, which includes Sorite, showed substantial im-
provements in system stability over the other non-self-
organizing, Greedy, techniques. Once switch capacity can
accommodate 7 services, all of the algorithms have enough
resources to host all of the requested services and are thus
stable.

Figure 4 also shows that Sortie is less stable than the
other Miser algorithms. This is because Sortie attempts to
place services according to their rate-transformation fac-
tor, thus focusing on a smaller subset of switches and mak-
ing it more susceptible to oscillation.

B.2 Route efficiency

We measure route inefficiency by counting the number
of packets that deviated from their original paths at each
switch over the total number of packets forwarded by the
switch. A large percentage of packets not following their
original paths will result in poor utilization of network re-
sources. Figure 5(a) shows the long-term average route in-
efficiency as a function of switch capacity. As the amount
of resources decreases, route efficiency deteriorates. This
routing inefficiency experienced by the Miser algorithms
is offset by the improved stability of service replica.

To complement our route efficiency measurements, we
compute the degradation in the average hop count that

is experienced by each of the five replication algorithms.
This computation reflects the amount of deviation that
packets make. That is, as the amount of deviation in-
creases, so does the degradation in the average hop count.
Our simulation showed that Miser replications suffer less
than 5% degradation when switches can accommodate
more than 2 services. Greedy replications have perfect
route efficiency because packets do not deviate from their
original paths. However, as we have seen in Section IV-
B.1, they are less stable than the Miser algorithms.

Since our simulation does not model the concept of
home switches, when the requested services require more
switch resources than what is available, packets request-
ing a service may not get served by any of the switches
they traverse. We call thisservice starvation. In Miser
replication, services with low demand are more prone to
starvation since high-demand ones are given higher prior-
ity in replicating services. From the standpoint of individ-
ual packets, service starvation is undesirable since in re-
ality packets must be forwarded to the home switch, thus
reducing route efficiency. However, denying requests for
services with low demand maximizes the total utilization
of the network since a greater number of packets will be
serviced. Figure 5(b) shows that Miser replications starve
less than 1.5% of the traffic when switches have a moder-
ate amount of resources. Section IV-B.4 shows that stream
starvation becomes a more critical issue when the replica-
tion delay is considered.

B.3 Placement Efficiency

From the above analysis, ignoring the rate-transformation
factor (Miser/Lazy replication) seems to perform best all
the time. This is not the case, especially when we analyze
the efficiency of service allocation for the five algorithms.
We measured replica placement efficiency with an average
number of hops a service is placed away from the traf-
fic source (destination) if the service’s rate-transformation
factor is< 1 (> 1). Since we are averaging over all ser-
vices, we can compute placement efficiency using the fol-
lowing equation:

Placement Efficiency=
1

n

nX

k=1

h(k) (2)

wheren is the number of packets, andh(k) is the number
of hops after packetk got served if� > 1, or before packet
k gets served if� < 1.

We plot placement efficiency along two dimensions: (1)
as a function of switch capacity and (2) as a function of
service distribution according to�. Figure 6(a) plots the
average placement efficiency of the five algorithms as a

8

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

%
 T

ra
ffi

c
de

vi
at

in
g

Switch capacity (services)

Sortie
Miser/Eager

Miser/Lazy
Greedy/Eager

Greedy/Lazy

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

%
 T

ra
ffi

c
no

t s
er

ve
d

Switch capacity (services)

Sortie
Miser/Eager

Miser/Lazy
Greedy/Eager

Greedy/Lazy

(a) (b)

Fig. 5. Route efficiency: (a) plots the percent of traffic deviating from the original path; (b) plots the percentage of traffic not
served as a function of switch resources.

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

1 2 3 4 5 6 7 8 9 10

H
op

s

Switch capacity (services)

Sortie
Miser/Eager

Miser/Lazy
Greedy/Eager

Greedy/Lazy
1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10

H
op

s

i

Sortie
Miser/Eager

Miser/Lazy
Greedy/Eager

Greedy/Lazy

(a) (b)

Fig. 6. Placement efficiency. (a) shows the relative distance of services as a function of switch capacity. Services are distributed
such that 50% of services have� < 1 and 50% have� > 1. (b) shows the relative distance of services according to�. i (on
the x-axis) is the number of services (out of 10) that have� > 1 and(10� i) is the number of services that have� < 1.

function of switch capacity while assuming 50% of ser-
vices have� < 1 and the remaining 50% have� > 1.
The figure shows that Sortie’s placement decisions are im-
proved with the increase of switch resources. The other
algorithms have placement efficiency close to the center
of the network. This is expected because of the uniform
distribution of the (source, destination) pairs. The small
differences between the five placement algorithms are due
to the relatively small diameter of the network.

In Figure 6(b) we fix switch capacity to accommodate 3
services and change the distribution of services according
to �. The figure shows that the performance of the five
algorithms is a function of such distribution. When all ser-

vices are best applied near the source, Greedy/Eager pro-
duces the best result since it always serves packets at the
first router from the sources. In contrast, since Miser/Lazy
tries to delay application of the service as late as possible,
it performs worst. In nearly all cases Sortie outperforms
the other four algorithms.

B.4 Effects of Service Replication Delay

In the previous analysis we have assumed that replica-
tion of a service incurs negligible cost. In reality replicat-
ing a service can incur a significant delay. This section
analyzes the effect of replication delay on the performance
of the five placement algorithms.

9

Delay (sec)
Algorithm 0.0 0.1 1.0 10.0

Sortie (%) 1.1 0.7 1.4 32.4
Miser/Eager (%) 0.004 0.7 1.5 35.5
Miser/Lazy (%) 0.003 0.6 1.3 27.4

Greedy/Lazy (%) 0.0 21.9 49.3 62.6
Greedy/Eager (%) 0.0 47.6 69.7 82.8

TABLE III
Effect of replication delay on starved packets.

Delay (sec)
Algorithm 0.0 0.1 1.0 10.0

Sortie (%) 3.0 5.7 7.2 52.2
Miser/Eager (%) 1.3 9.4 12.3 56.6
Miser/Lazy (%) 0.2 2.8 4.9 42.2

Greedy/Lazy (%) 0.0 0.0 0.0 0.0
Greedy/Eager (%) 0.0 0.0 0.0 0.0

TABLE IV
Effect of replication delay on route efficiency.

We only model the time delay in replicating a service
and not any additional network traffic generated by it. We
also do not buffer packets at switches primarily because of
the wide variation of replication delay. Instead, we assume
that the switch will forward packets to the closest switch
that has the desired service. Buffering packets is suitable
for small replication delays or slow traffic sources. It has
the advantage of improved network utilization, i.e., a fewer
number of packets deviating from their original paths. On
the other hand, it will cause packet loss when buffers over-
flow. In our simulation, we use the forwarding technique
for two reasons. First, it simplifies resource allocation at
each switch. Second, we can observe the effects of various
time delays on our performance metrics.

Table III shows that replication delay has a direct ef-
fect on the percentage of starved packets, especially for the
Greedy algorithms. This is mainly due to the high number
of requests that both Greedy algorithms issue at the same
time without considering an alternative location while the
desired service is being replicated. Replication delay also
has an effect on route efficiency (Table IV) which is es-
pecially apparent in the Miser algorithms since they route
packets to the closest alternative switch when the desired
service is not available.

What is important is that having large oscillations will
cause switches to be under-utilized. Depending on the ra-
tio of time spent replicating a service to the time serving
packets, switches can spend a large portion of time repli-
cating services instead of serving packets.

One interesting result is that when the delay is very

large, all of the algorithms become unstable. The insta-
bility is caused by slow reaction to demand fluctuations.
There are two important points to make about this re-
sult. First, the need for exponential back-off is more pro-
nounced when the delay is large. The second is that this
result emphasizes the importance of stability even at the
expense of less than optimal routing efficiency. Because
of the poor stability of the Greedy algorithms, once we in-
corporated replication delay, they produced a large number
of starved packets rendering them highly undesirable.

B.5 Exponential Back-off (EB)

In this section we analyze the effectiveness of the EB
algorithm as well as the effects of the tuning parameters
on its performance. As we will show, exponential back-off
dramatically reduces the amount of oscillation in the sys-
tem. Its effectiveness depends on the level of oscillation as
well as on its two tuning parametersZmin andIth. What
is important about this technique is that it has minimal im-
pact on Sortie’s placement efficiency while still being re-
sponsive to demand fluctuations. Because EB maintains
a history of the replication of a service, it is both more
responsive and just as effective as having a long demand
history.

To thoroughly evaluate EB, we focus on a small network
composed of a single router with multiple sources sending
data to a single sink. We vary the number of sources in the
network to change the amount of oscillation experienced
by the router. The Greedy replacement policy is used since
it is the least stable of all algorithms making it easier to
observe the effects of EB.

EB provided approximately two orders-of-magnitude
reduction in number of replications in the case of 5, 10,
and 20 sources. While it dramatically reduces the amount
of oscillation, it also reduces the number of packets that
are served by the router. In the case of 10 sources for ex-
ample, 70% of the traffic is not served, which is expected
since only 3 of the 10 requested services will be available
at the router. Of course, the EB algorithm can be tuned
to be more or less aggressive at reducing the amount of
oscillation depending on the cost of replication.

There are two tunable values that EB algorithm uses:
Ith andZmin. The long-term effects of both values can
be observed directly from the actual algorithm in Figure 3.
Zmin has minimal effect on the long-term performance of
the algorithm. However,Zmin does have an effect on the
responsiveness to changing traffic patterns. While a large
Zmin will reduce the amount of oscillation very quickly, it
will also react slowly to changing demands for services.

The idle threshold value, on the other hand, has a larger
effect on the performance of the EB algorithm. This value,

10

which is used to reset the freeze duration after an idle pe-
riod, is a heuristic for distinguishing between the start and
end of different flows (a flow in this context is defined as
the traffic generated by an application, e.g., video confer-
encing session). When it is small, the algorithm assumes
any idle period as a sign for a new flow and thus resets
the freeze value. On the other hand, if this value is large
then the algorithm will slowly respond to changes in user
traffic.

Good values for these two parameters depend on the na-
ture of the services and user traffic. The minimum freeze
period should approximate the burstiness of the sources
while the idle threshold should be chosen to reflect the ex-
pected length of a communication session.Zmin should
also be larger than the expected replication time for a ser-
vice. This way, once a service is replicated it will be kept
for some time before being removed to improve the uti-
lization of router resources.

V. RELATED WORK

We are not aware of any effort on protocols to automati-
cally replicate and distribute new general-purpose in-flight
services on a network. Reference [1] provides a general
framework for deploying services in the network. Their
approach still relies on a client/server approach in which
a client instantiates a service request from the Host Man-
agers (HMs) for an application-level service agent, called
servent. The request is submitted to the HMs using multi-
cast which in turn causes a HM to create a servent on its
local host. The HMs use multicast damping to avoid re-
dundant instantiation of the same servant. The HMs are
generally deployed within a cluster environment in which
they use a birth-death process to control their population.
While their framework is a novel attempt to incrementally
incorporate services in local area networks, we focus on
creating a global framework for service allocation. We
also concentrated on optimal placement within a network
for state-less services. This way, reordering service can be
achieved to maximize network utilization as well as packet
delivery delay.

Recent work by [7] presented a design of an intentional
naming architecture in which applications describe what
they are looking for, not where to find it. Their design
consists ofIntentional Name Resolvers (INR)that resolve
intentional names and route messages. An application
expresses the characteristics of the information or nodes
they want to reach usingname-specifiersin the message
header instead of traditional source and destination ad-
dresses. When an INR receives a message, it performs
the a lookup on the destination name-specifier in its name-
trees (which stores the mapping between names and next-

hop information) and forwards the message accordingly.
This complements our work by providing the necessary
functionality for implementing the service advertisement
and discovery protocol.

Work on resource discovery includes distributed name
server such as DNS and X.500 [8, 9, 17, 18]. More re-
cently, there has been activity in the IETF to define proto-
col for locating services such as printers, disk server, etc.,
on local area networks. The Network Self managemenT &
ORganization (NESTOR) project at Columbia University
[10] is an example of a directory-based resource discovery
project aimed for active networks. Success of this project
would enable resource vendors and operations staff to code
configuration information of arbitrary resources and use it
to fully automate configuration changes and assure consis-
tency and recoverability of network configurations.

Three programmable switch projects are being indepen-
dently pursued by three research groups: MIT’s ANTS
[19], Georgia Tech’s CANEs [20], and UPenn/Bellcore’s
SwitchWare [21]. Sortie takes the programmable switch
concept to the next level of self-organizing networks.
While programmable switch projects focus on solving the
hard questions on how to support active services at a
switch, Sortie focuses on how to design algorithms and
protocols that allow network services to self-organize to
improve the efficiency of routing and replica placement
across the whole network.

Finally, Caching of Web objects such asftp files and
web pages [22–26] relates to our work in the sense that
cached Web objects are dynamically replicated across the
network to reduce both the network traffic and response
time. The Harvest Project [23] organizes proxy server in
a hierarchical fashion. When a server is queried for an
object, it tries to satisfy the request locally. If that fails, it
uses the Internet Cache Protocol (ICP) [27] to forward the
request to its siblings and parent caches.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented Sortie which provides a
framework for self-organizing network services based on
very simple rules independently executed by each switch.
Sortie uses demand-triggered replication and considers the
rate-transformation factor to improve the placement of ser-
vices. To enhance the stability of the system, it comple-
ments its placement technique with an exponential back-
off algorithm.

Our results show that Sortie offers a balance between
all the performance metrics considered. It achieves higher
placement efficiency while maintaining reasonable stabil-
ity even at low resource constraints. While our simulation
makes some simplifying assumptions, it does not compro-

11

mise the general conclusion of our results. Monitoring the
demand for services is proven to be very useful for achiev-
ing a distributed placement of services.

There are still several issues that warrant further investi-
gation. We should extend the results to larger, hierarchical
networks that subsume multiple ISPs. The initial distri-
bution of home switches constitutes an interesting prob-
lem. We have ignored their effect on the amount of devi-
ation from the original path. From our analysis, we saw
that as replication delay is increased, the amount of devia-
tion from the original path is also increased. Thus, poorly-
placed home switches can have a large effect on network
performance. Strategic placement of such switches is thus
desired.

Our discussion in the paper has assumed that each
packet requires only one service to be applied to it. It is
not inconceivable that a packet may require more than one
service. For example, packets carrying video data in a tele-
conference may need the services of a video transcoder as
well as that of a multicast delivery router. From a routing
efficiency point of view, it is undesirable if packets that re-
quire multiple services must trace back their paths to locate
the next service. We will explore two techniques to deal
with theservice compositionproblem. The first isservice
layering in which services are classified into one of sev-
eral layers that impose functional ordering between them.
A multicast service, for example, would be classified to
be executed last to minimize resource consumption. The
second isclustered routingin which services of the same
layer are combined into a logical “supernode” made up of
several nodes in close proximity to each other that together
provide the requested combination of services.

REFERENCES

[1] E. Amir, S. McCanne, and R. Katz, “An active service framework
and its application to real-time multimedia transcoding,”Proc. of
ACM SIGCOMM ’98, Sep. 1998.

[2] I. Kouvelas, V. Hardman, and J. Crowcroft, “Network adaptive
continuous-media applications through self organised transcod-
ing,” Proc. of the Int’l Workshop on Network and Operating Sys-
tems Support for Digital Audio and Video, Jul. 98.

[3] S. Ratnasamy and S. McCanne, “Inference of multicast rout-
ing trees and bottleneck bandwidths using end-to-end measure-
ments,”Proc. of IEEE INFOCOM, 1999.

[4] A. Technologies, “Freeflow.” url: http://www.akamai.com, 1998.
[5] S. Bhattacharjeeet al., “Application-layer anycasting,”Proc. of

IEEE INFOCOM ’97, Apr. 1997.
[6] L. Zhanget al., “Adaptive web caching: Towards a new global

caching architecture,”Computer Networks and ISDN Systems,
Nov. 1998.

[7] W. Adjie-Winoto, E. Schwartz, and H. Balakrishnan, “An archi-
tecture for intentional name resolution and application-level rout-
ing,” Feb. 1999.

[8] G. W. Neufeld, “Descriptive names in X.500,” inProceedings of
ACM SIGCOMM, pp. 64–70, 1989.

[9] L. L. Peterson, “The profile naming service,”ACM Transactions
on Computer Systems, vol. 6, pp. 341–364, November 1988.

[10] Y. Yemini and S. Trito, “Nestor: Technologies and pro-
tocols for self-managed and self-organizing networks.” url:
http://www.cs.columbia.edu/dcc/nestor, 1998.

[11] A. Khanna and J. Zinky, “The revised arpanet routing metric,”
Proc. of ACM SIGCOMM ’89, pp. 45–56, Sep. 1989.

[12] L. Zhang, S. Shenker, and D. Clark, “Observations on the dy-
namics of a congestion control algorithm: The effects of two-way
traffic,” Proc. of ACM SIGCOMM ’86, pp. 133–147, Sep. 1991.

[13] S. Floyd and V. Jacobson, “The synchronization of periodic rout-
ing messages,”ACM/IEEE Transactions on Networking, vol. 2,
no. 2, pp. 122–136, Apr. 1994.

[14] P. Franciset al., “An architecture for a global internet host
distance estimation service,”Proc. of IEEE INFOCOM ’99,
Mar. 1999.

[15] C. Huitemaet al., “Project felix: Independent monitoring for net-
work survivability.” url: ftp://ftp.bellcore.com/pub/mwg/felix/,
Sep. 1997.

[16] B. M. Waxman, “Routing of multipoint connections,”IEEE Jour-
nal on Selected Areas in Communications, vol. 6, pp. 1617–1622,
December 1988.

[17] P. Mockapetris and K. Dunlap, “Developmentof the domain name
system,”Proc. of ACM SIGCOMM ’88, pp. 123–133, 1988.

[18] T. Brisco, “DNS support for load balancing,” April 1995. RFC-
1794.

[19] J. Guttag et al., “From internet to activenet.” url:
http://www.sds.lcs.mit.edu/activeware/, 1998.

[20] E. Zegura, K. Calvert, and E. Trevena, “Canes:
Composable active network elements.” url:
http://www.cc.gatech.edu/projects/canes/, 1998.

[21] W. Sincoskie et al., “Accelerating network evolu-
tion with a software switch for active networks.” url:
http://www.cis.upenn.edu/ switchware, 1998.

[22] P. B. Danzig, R. S. Hall, and M. F. Schwartz, “A case for caching
file objects inside internetworks,” Tech. Rep. CU-CS-642-93,
University of Colorado, Boulder, March 1993.

[23] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and
M. F. Schwartz, “The Harvest information discovery and access
system,” Proceedings of the Second International World Wide
Web Conference, pp. 763–771, October 1994. Available from
ftp://ftp.cs.colorado.edu/pub/cs/techreports/
schwartz/Harvest.Conf.ps.Z .

[24] S. Glassman, “A caching relay for the world wide web,”Com-
puter Networks and ISDN Systems, vol. 27, pp. 165–173, Novem-
ber 1994.

[25] S. Bhattacharjee, K. Calvert, and E. Zegura, “Self-organizing
wide-area network caches,” Tech. Rep. GIT-CC-97/31, Georgia
Institute of Technology, 1997.

[26] L. Fanet al., “Summary cache: A scalable wide-area web cache
sharing protocol,”Proc. of ACM SIGCOMM ’98, pp. 254–265,
Sep. 1998.

[27] D. Wessels and K. Claffy, “Internet cache protocol (icp), version
2,” tech. rep., Internet Engineering Task Force, May 1997. draft-
wessels-icp-v2-03.txt.

