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Abstract: Systemandapplicationfailuresareall too com-
mon. In this paper we arguethat operatingsystemsshould
provide the abstractiorof failure transpareng—theillusion
that systemsand applicationsdo not fail. We constructa
theoryof consistentecovery thatis usefulfor systemghat
wantto provide failuretranspareng Thetheorydefinespre-
cisely what constitutesconsistentrecovery and provides a
simpleinvariantthatall applicationamustupholdto guaran-
teethey getit. Thetheoryunifiesthevariousrecovery proto-
cols for achiering consistentrecovery; existing protocols
can be viewed as differentways of upholdingour theory’s
invariant. We usethe theoryto designnew recovery proto-
cols andanalyzeexisting protocols.We concludeby evalu-
ating performancefor a suite of recovery protocols. We
focus our study on interactve programs,an application
domainfor which it is challengingto provide failure trans-
pareng. Our resultsindicatethat it is possibleto provide
failure transpareng for generalapplicationswith overhead
of 1-2% for systemswith reliable main memory and 10-
40% for disk-based systems.

1. Intr oduction

The primary goal of operatingsystemsand middle-
wareis to provide abstractiongo the userandprogrammer
that hide the shortcomingsof the underlying system.For
example,threadscreatethe abstractiorof more CPUs,and
virtual memory createsthe abstractionof more memory
While today’s operating systemsprovide mary powerful
abstractionsthey do not hide oneof the mostcritical short-
comingsof today’s systemspamely thatoperatingsystems
and user applicationsfail. Rather operatingsystemshave
beencontentto provide a low degreeof fault tolerance For
example, popular operating systemsare concernedonly
with saving unstructuredile data(andevenin this limited
domainthey acceptthe lossof the lastfew secondf new
file data),andnon-file statein the systemis lost completely
during a crash.In particular the stateof runningprocesses
is lost during a crash,andthis lossexposedailuresto users
and application writers.

Losing processstateincorveniencesboth application
writersandusers Application writers mustbearthe burden
of hiding failuresfrom usersby using ad hoc techniques
suchasauto-saes.Thesead hoctechniquesequireconsid-
erablework on the part of the applicationwriter, because
recovery codeis extremelytricky to getright. Losing pro-
cessstatealsoincorvenienceshe user becausenostappli-
cations lose significant state during a crash. Application
recovery oftenlosesrecentchangedo a users file andalso
losesthe stateof the users interactionwith the application
(e.g. editing mode, cut-and-pastéduffers, cursor position,

etc.).As aresult,recovering from afailure involvessignifi-
cant user intervention and incorvenience—considepeo-
ple’s vehement reaction when their operating system
crashes.

We believe operating systems should present the
abstractionto usersand applicationwriters that operating
systemsandapplicationgdo notfail. We call this abstraction
failure transparency. ldeally, failure transparenc would
provide a perfectillusion that operatingsystemsand appli-
cationsdo not fail; they merelypauseandresume As with
all abstractionsit may not be possibleto provide a perfect
illusion of failure transpareng—we explore someof the
limits to failure transparelydn this paper

We define consistent recovery as recovering from
crashesn away thatmakesfailurestransparento the user
For an operatingsystemto provide failure transpareny it
mustprovide consistentecovery on behalfof applications,
and do so without requiring programmer assistance.

The notion of recovery is hardly new. Many tech-
niques have been proposedthat enable applicationsto
recover from failures [Koo87, Johnson87, Strom85,
Elnozaly92]. A few isolated techniqueshave even been
implementedn operatingsystemghat provide someflavor
of failure transparenc [Bartlett81, Pawell83, Borg89,
Baker92, Bressoud95].Despite the maturity of the field
however, recovery researcherfiave not proposeda single
rule for attainingconsistenrecovery thatis independenbf
all recovery protocols,andthatrelatesthe variousclasseof
applicationeventswith eventsneededo supportrecovery.
As aresult,the spaceof possiblerecovery protocolshasnot
beenexploredsystematicallyandit is difficult to discernthe
relationship betweerxesting protocols.

Our goal in this paperis to provide a definition and
theoryof consistentecovery. Whatis the theorygoodfor?
Handlingfailuresis tricky businessparticularlywhenmary
processesre interacting. The theory provides the funda-
mentalinvariant that every distributed or local application
mustupholdin orderto guaranteeonsistentecovery. The
theory also provides a unified way of viewing all existing
recovery protocols elucidatingtherelationshipbetweerdis-
parateprotocols,and exposingnew ones.We will explore
all theseapplicationsof thetheoryin this paper Finally, we
will shav the theory in action by examining the perfor-
mancetradeofs of sevenrecovery protocolsthatarisenatu-
rally from the theory Along the way, we will shov the
feasibility of providing failure transpareng for a difficult
class of applications.

2. Theory of Consistent Receery

This sectiondescribesnformally our theoryof consis-
tent recovery. For a formal version of the theory and its
proof, please see [uell99].



2.1. Definition of consistent ecovery

For our purposes,a computation consistsof one or
more processesvorking togetheron a task. Each process
computeshy executinga sequencef events.Visible events
areeventswhoseresultsareobsenableto someoneutside
the computation(e.g. the user). Visible events have also
been called “output events” or “output messages’
[EInozaly92]. Examplesof visible eventsare writes to the
screen and messages sent to printers.

Given a computationin which some subsetof pro-
cessesasfailed,thegoalof consistentecoveryis to recon-
structthecomputatiorsoit cancontinueto executein away
thathidesthefailurefrom theuser Recorery is consistentf
the userseesoutputfrom the computationcorrespondingo
a correct gecution of the program, despite itsl@ire.

There are someinterestingimplications of this user
centricview of consistentecovery. First of all, a computa-
tion that doesnt produceary output seenby the external
obsener can never be inconsistentSecond,in this defini-
tion of consistentecovery, messagearenotthe curreny of
consisteng; only eventsvisible to the obsenrer can affect
consisteng. It is true thatmessagearerelatedto theinter-
nal correctnessf thecomputationBut incorrectnessesult-
ing from messagdandlingduringrecovery is only relevant
once it afects the visible output of the application.

This view differs from classicalrecosery research,
which hasoperatedrom the premisethat, to ensurecorrect
execution after failures, computationsmust recover their
failedprocesseto a“consistentut” [Chandy85K0087].A
consistentutis aglobalstateof the computatiorwhere for
eachmessagem whosereceiptis reflectedin a process
local state,the sendof m is reflectedin the senders local
state.In our usercentric view, recosery may be consistent
even if the computationdoesnot recover a consistentcut.
For example,the computationmay not executeary visible
events and thus grrecovered state will stice.

Let usnow make the definition of consistentecovery
more precise.

Definition: Consistent Recoery

Recaoreryis consistentf andonly if thereexistsa
failure-free execution of the computationthat
would result in a sequenceof visible events
equialentto the sequencef visible eventsactu-
ally seen by thexdernal obserer.

By this definition,recovery is consistenaislong asthe
sequencef outputsfrom thefailedandrecoseredcomputa-
tion is equivalent to thosethat would be output by some
legal (i.e. kilure-free) gecution of the process [Strom85].

This definition of consistentrecavery establisheswo
constraintson how computationsrecover: a constraintof
safety anda constraintof liveness. In orderto meetthe defi-
nition’s safetyconstrainta computatioomustbe surenot to
executea visible eventafterafailurethatcouldappeatn no
legal sequencewith the computations pre-failure visible
events.Thelivenessonstraintfollows from the obseration
that the definition evaluatesthe consisteng of recovery by
comparingtheoutputof arecoreredcomputatiorwith those
of completeexecutions.If a computationrecovers but is
unableto outputa completesequencef visible events,its
recovery cannotbe consistentln otherwords,a singlefail-
ure cannot prevent a consistentlyrecovered computation
from executingto completion.Of course,continuousfail-
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Figure 1. Recwoery consistent assuming an identity
equivalence function.

urescan always prevent a computationfrom executing to
completion.

Theequivalenceof outputsequenceis governedby an
equivalence function. This functiontakesasa parametethe
sequencef visible eventsgeneratedy an executionof the
computationandreturnstrue if they areequialentto some
failure-freeexecution,andfalse if not. This functionis an
application-specifiencapsulatiorof constraintson recor-
ery.

For example,an applicationmay requirethatthe visi-
ble eventsoutputby the computationbe exactly thoseexe-
cutedby a failure-freeexecutionof the computation.This
requirementcan be expressedas the identity equivalence
function. Or instead the applicationmay allow recovery to
causethe duplicationof just the last visible event—anokay
to duplicate last visible equivalencefunction (seeFigure2).
An applicationmay evenbe happy with anany permutation
equialencefunctionthataccepts visible eventsequencé
it is some permutation of adal sequence.

Consideran applicationthat outputsthe alphabetand
definesandusestheidentity equivalencefunction. Figure1
depictsthe output from this application both before and
after a failure andsubsequentecovery. Clearly thereexists
a failure-freeexecutionof the processthat would resultin
the output seen,namely its normal executionin which it
outputsthe completealphabet.Sincethe outputis equiva-
lent to this failure-freeexecution,the depictedrecovery is
consistent.

What would a computationhave to do to guarantee
consistentrecovery accordingto some equivalencefunc-
tion? Processesan execute commit events to aid later
recovery. By executinga commit event, a processguaran-
teesthatit canrecover the stateof the processat thetime of
the commit. How the commitis carriedout is notimportant
to our discussionalthoughtypically committinga process
statewill involve taking a checkpoint or writing a commit
record to stable storage.

A wide variety of equialencefunctionsare possible.
Eachvariesin tractability the constraintst placeson recor-
ery, andthe usefulnesof its recorered computationsFor
example,the identity equivalencefunction requiresa proto-
col that commitsthe applicationatomicallywith eachvisi-
ble event. Since making the commit and visible events
atomicrequiresspecialpurposehardwarehowever, we con-
cludethat the identity equivalencefunction is not tractable
on mainstreamsystems.On the other hand, the okay to
duplicate last visible equialencefunction is tractable,but
restrictve: it requiresa commit immediatelybefore every
visible event.Much lessrestrictive would bethe any permu-
tation equivalencefunction, althoughit is almostuselessn
practice:self-respectingpplicationsare typically not con-
tent with failures causing scrambled output.

1. Notethatwe usetheterm“checkpointto referto saving a pro-
cesss state.This usediffers from the databaséerm “checkpoint”,
which refers to the truncation of a redo log [Lomet98].
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Figure 2: Analysis of two recoveries of the alphabel
program.Thefirst recovery is consistenassumingan okay
to duplicate last visible equivalencefunction. The seconc
recovery is not consistent by this egalence function.

All discussionof consistentrecorery occurs either
implicitly or explicitly in the context of a specificequiva-
lencefunction. Although in generalequialencefunctions
areapplicationspecific,we would lik e to fix anequvalence
function that provides a standardof recovery with which
most applicationswould be happy. With an equivalence
function establishedwe will be free to describein detail
how generalapplicationscan achieve consistentrecovery.
For therestof this paperwe will assuméhata sequencef
visible eventsV outputby a computationis equivalentto a
sequence/' outputby a failure-freeexecutionof the com-
putationif eitherV andV' areidentical,or thoseeventsin V
that differ from eventsin V' are repeatsof earlier events
from V. Suchan equivalencefunction that allows duplicate
visible events gives a greatdeal of flexibility in how we
guaranteeconsistentrecovery andis closely relatedto the
oneimplicitly assumedby existing recovery protocolsMost
importantly it is areasonabl@neto usein practice:typical
userscanoverlook the duplicationof earliervisible events
while the system is regering from a &ilure.

For a more detaileddiscussionof equivalencefunc-
tions, please see [le@ll99].

2.2. Assumptions ér general application recovery

Providing failure transpareng asan operatingsystem
abstractionimplies the ability to recover generalapplica-
tions without application-specificecovery code. This sec-
tion describeghe recovery primitives that are availablein
this domainandthe natureof faultsfrom which it is possi-
ble to recoer using them.

Recawering generalapplicationsinvolves two primi-
tives:rollbackof afailed procesdo a prior committedstate,
and re-execution from that state. Two generalconstraints
arisefrom theseprimitives.First, eventsthatarerolled back
andnot re-executedmustbe undoable Second eventsthat
arere-executedmustbe redoablewithout causinginconsis-
teng.

The constraintof eventundoabilityfor rollbackrecor-
ery is not too challengingto meetsince most application
eventsare changedo local statethat are easily undoable.
Other events,suchasvisible events,can be hardto undo.
However, applicationsthat strive for consistentrecovery
will not have to undoa visible eventwithout re-executingit
as doing so wuld likely male recwery inconsistent.

The redoability constraintof re-executionrecovery is
more challengingto meet, becausdt cantake significant
work to make someeventsredoable For example,for mes-
sagesendeventsto be redoablethe systemmusteithertol-
erateor filter duplicate messagesSimilarly, for message
receive eventsto be redoable receved messagesnust be
savedeitheratthesenderor recever sothey canbere-delv-
ered after a failure. Note that thesere-execution require-
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Figure 3: A portion of a state machine shaving non:
deterministic eente and its siblings.

ments are similar to the demandsmade of systemsthat
transmitmessagesn unreliablechannelge.g.UDP)—such
systemanustalreadywork correctlyevenwith duplicateor
lost messaged-or mary recovery protocols,thesesystems’
normal filtering and retransmissionmechanismswill be
enoughto supportthe needsof re-executionrecovery. For
otherprotocols,messagewill have to be savedin arecov-
ery buffer at the senderor recever sothey canbe re-deliv-
ered should a reoeat eent be re-gecuted.

Recwery involving re-executionalsorequiresthatvis-
ible events be redoable.As a result, generalrollback+re-
executerecovery requiresan equivalencefunction suchas
the one we have assumedhat toleratesduplicate visible
events.

We next describethe natureof faultsfrom which it is
possibleto recover using theserecovery primitives. There
aretwo constrainton the typesof faultsfrom which appli-
cationscanrecover: the fault mustobey the fail-stopmodel
[Schneider84], and thadilt must be non-deterministic.

First, the fault mustbe fail-stop. Specifically the sys-
temmustdetectthe errorandstopbeforecommittingbuggy
state.If it fails to do so, recavery will startfrom a buggy
state.As with mostexisting work, we assumehatfaultsare
fail-stop.

Second,the fault must be non-deterministic(a so-
called Heisenlig [Gray86]). Otherwiserecovery will sim-
ply re-execute the bggy code and the program will raf

This paperis relevantfor all faultsthatobey thesetwo
constraints regardlessif the fault occursin the hardware,
operatingsystem,or application.For example,if the hard-
warefails, thefaultmustbetransient(non-deterministic)or
a backupsystemmustbe usedthat doesnot suffer from the
samefault. If the operatingsystemcrashesthe crashmust
be non-deterministi@and mustnot commit buggy operating
systemstate(or corruptandcommitapplicationstate) If the
applicationcrashesthe applicationand fault mustbe non-
deterministicand not commit buggy applicationstate.For-
tunately mostfaults (thoughnot all) are non-deterministic
and obg the fil-stop model [Gray86, Chandra98].

Section3.2 unifiesthesetwo constraintsand explores
theinteractionof differentrecovery protocolswith the fail-
stop model.

2.3. Achieving consistent ecovery

We next turn our attentionto the problemof achiesing
consistentecovery. In this paperwe areconcernedvith the
actionsneededo ensureconsistentecosery andthe effect
of those actionson failure-free performanceWe do not
addresssecondary(though still important) issuessuch as
recovery time and stable storage space.

We first definesometerminology We modelprocesses
asstatemachinesEachstatetransitionis calledanevent. A
non-deterministic event is a transitionfrom a statethat has
multiple next stategossibleduringrecovery. Theotherpos-
sible eventsout of thatstatearecalledsibling events.Figure



3 depictsa portion of a processs statemachinein which a
non-deterministi@vente andits siblingsappearin realsys-
tems, non-deterministicevents correspondo suchactsas
readinguserinput, receving a messagetaking a signal, or
executing certain system calls suchgast i neof day.
Eventscanrelateto one anotherthrough “causeand
effect”. We say eente; causally precedes evente, if:

e, ande, are &ecuted in that order by a single
process,

or e, isthesendof amessagande, is its correspond-
ing receve by another process,

or e, causally precedesande causally precedes,.

We may also say event e, causally depends on e;.
This notion of causality correspondgo Lamports “hap-
pened before” relation [Lamport78]. Under our model,
computationproceedsasynchronously. That is, there exist
no boundson eithertherelative speed®f processesr mes-
sagedelivery time. In an asynchronousystem,the only
way to order events is through causal precedence
[Lamport78].

Computationsrecaorer from failures by restarting
failedprocessefrom their mostrecentlycommittedstate If
processesommit judiciously, they can ensureconsistent
recovery no matter when crasheshappen.The following
theoremdefineswhen and how computationsshouldcom-
mit to guarantee consistent reeoy.

Theorem

Recaorery of a computationis guaranteedo be
consistentif and only if eachprocessthat exe-
cutesa non-deterministi@ventthatcausallypre-
cedesvisible or commitevente laterexecutesa
commit event that itself causally precedes

The theoremstatesthatto guaranteesonsistentecor-
ery, a computationmust meetthree requirementsFirst of
all, thecomputatiormustensurehateachnon-deterministic
event that causallyprecedesa visible event is committed.
Secondthe commit preservinghatnon-deterministievent
mustcausallyprecedehe visible eventin question Finally,
the computation must ensure that no commit causally
dependson an uncommittednon-deterministicevent. We
call these requirements the theoreogmmit invariant.

Recall that our definition of consistentrecovery has
both safetyandlivenesscomponentsThe theoremas writ-
ten guaranteedoth safetyand livenessalthoughit canbe
decomposedhto separateheoremsfor each.Wherevente
in the theoremis a visible event, the theoremguarantees
only safety Whene is acommitevent,thetheoremguaran-
tees only Neness.

For the purposef this paper we make two assump-
tions aboutthe behaior of generalcomputationgo assure
the necessity of the theorem.

Assumption 1
Each non-deterministicevent that causally pre-
cedesa visible event e; may have a sibling that
causallyprecedes differentvisible evente,, and
thate, ande, arenot both containedn ary fail-
ure-free gecution.

Thisassumptiorstateghatif aprocesexecutesaanon-
deterministiceventthatleadsto a visible event, executinga

sibling of that non-deterministie@vent during recovery will
causeinconsisteng. This assumptions reasonableincein
real systemspathsof executionthroughnon-deterministic
eventsdo not usuallyjoin up with pathsthroughsiblingsof
those gents.

Assumption 2

Oncea computatiorexecutesacommiteventein

someexecution,every completionof thatexecu-
tion will execute a visible event that causally
depends oe.

Let’s call a procesawvhoseeventscausallydependon
an abortednon-deterministievent an orphan. Assumption
2 implies that orphanswill always cause problems for
recovery by attemptingto executevisible eventsthat caus-
ally follow lost non-deterministicvents.

The alternatve to making Assumptionsl and2 is to
exhaustiely analyzewhich non-deterministicand commit
eventswill causallyprecedduturevisible events,andwhich
will not. Although we can conceve of statemachinesin
which this analysisis not hard,mostreal statemachinesare
far too comple to analyzecompletely If one canperform
this analysisthenthetheoremis merelya suficientguaran-
tor of consistentrecovery. Applications that uphold the
commit invariant are still guaranteedconsistentrecovery,
althoughthey may commitmoreoftenthanis strictly neces-
sary We explore the implications of not making these
assumptions more fully in [veell99].

Thistheoremhasacorollaryconcerninghepossibility
of recovery in the presenceof eventsthat are both non-
deterministic and visible.

Corollary

Consistentecovery is impossibleto guaranteef
ary processn a computationexecutesan event
thatis both non-deterministi@andvisible, unless
theeventcanbe executedatomicallywith acom-
mit.

This resultfollows naturallyfrom the theorem,asthe
theorems invariant is impossible to uphold for thesemets.

For the proof of the theorem, please see the Appendix.

2.4. Upholding the commit irvariant
As mentionedabove, the commitinvariantcanbe bro-
ken up into three separate requirements:

1. Every non-deterministicevent that causally pre-
cedesavisible evente is committedby somecom-
mit evente”.

2. € causally precedes

3. No commit event causallydependson an uncom-
mitted non-deterministicvent.

There are mary ways an applicationcan uphold the
commitinvariantin orderto guaranteeonsistenrecovery,
eachwith a differentsetof trade-ofs betweencommit fre-
queny and implementation fefrt.

A protocolthatforcedeachprocesdo executea com-
mit immediatelyafter every non-deterministicavent would
clearly upholdthe commitinvariant. This protocoltrivially
satisfiesrequirementl since it immediately commits all
non-deterministicevents, a set that includes those non-
deterministicevents that causally precedevisible events.
This protocol also satisfiesrequirement2: if a non-deter-



ministic eventcausallyprecedes visible event,the commit
eventimmediatelyfollowing mustaswell (sincethevisible
eventcannotcomebetweenthe non-deterministieventand
its commit). Finally, sinceno uncommittedhon-determinis-
tic eventsexist underthis protocol,no commit candepend
onone,meetingrequiremensB. Sincethis protocolmeetsall
three of the commit invariants requirementswe can be
assuredt guaranteesonsistentecovery. We call this proto-
col commit after non-deterministic (CAND).

Since application non-determinismcan manifestin
mary forms, identifying which eventsan applicationexe-
cutesarenon-deterministicanbe challenging Ratherthan
perform this identification, an application may instead
chooseto uphold the commit invariant by committing
immediatelybeforeevery visible or sendevent.By commit-
ting immediatelybeforeeachvisible event, a procesguar-
anteesa commit after ary of its non-deterministicevents
that causallyprecedethe visible event. Each processalso
commits immediately before every messagesend event,
ensuringa commitafterary of its non-deterministievents
thatmay causallyprecede downstreanvisible event. Thus,
this protocol upholdsrequirementl. Since, eachcommit
immediatelybefore a visible event causallyprecedeshat
visible event, and eachcommit immediatelybeforea send
event must also causally precedeary downstreamvisible
events,this protocolalsomeetsrequiremen®. By commit-
ting immediately before every messagesend event, each
processensuresthat it will not passa dependeng on an
uncommittechon-deterministi@ventto the messageecipi-
ent. Thus, every commit executedby the messageecipient
will not dependon ary of the senders uncommittednon-
deterministicevents. Furthermore since the commit event
beforeeachvisible eventcommitsall of thatprocess non-
deterministicevents, this protocol upholdsrequirement3.
We call this protocol commit prior to visible or send
(CPVS).Onecanview CPVSastreatingsendseventsasif
they were visible events, since they can lead to visible
events on other processes.

If anapplicationis willing to identify bothvisible and
non-deterministicvents,it canusea protocolin which it
commitsbetweenevery non-deterministieventandvisible
or send event. Under this protocol, a processcommits
immediatelybeforea visible or sendevent if that process
hasexecuteda non-deterministieventsinceits lastcommit.
In so doing, this protocol ensuresa commit after a non-
deterministiceventif it causallyprecedes visible eventon
the sameprocesslt also ensuresa commit after the non-
deterministiceventif it causallyprecedesilocal sendevent,
in casethatsendleadsto the executionof a visible eventby
anotherprocessThusthis protocolmeetsrequirementL. It
also meets requirement2 since each commit executed
beforea visible event causallyprecedeghat visible event,
andeachcommitbeforea sendeventmustcausallyprecede
ary downstreanvisible events.Finally, this protocolmeets
requirement3 following the samereasoningas in CPVS.
We call this protocolcommit between non-deterministic and
visible or send (CBNDVS). Notethatit will alwaysexecute
the sameor fewer number of commits than CAND or
CPVS.

CAND, CPVS,andCBNDVS canleadto alargenum-
ber of commits,aswe will seein Section4.4. Sincecom-
mits can be slow, it may make sensefor performance
reasongo reducecommitfrequeng. Therearetwo orthogo-
nal classef techniqueghat can help reducecommit fre-
gueng: treatingas few eventsas possibleas visible, and

corverting non-deterministic events into deterministic
events.

As mentionedabore, we canthink of the CPVSproto-
col astreatingsendeventsasvisible sincethey mayleadto
visible eventson the receving process.To reducecommit
frequeng while still guaranteeingconsistent recovery,
applicationsmay seekto treatonly the truly visible events
asvisible. For example,applicationscanavoid treatingsend
eventsasvisible if the applicationusesanagreemenproto-
col to commit all processestomically beforeary process
executesavisible event. Committingin this mannerensures
thatall processeshon-deterministiceventsare committed,
including thosethat causallyprecedevisible events. Thus,
this protocol meetsrequirementl of the commitinvariant.
Furthermorethe agreemenprotocolwill add messageso
the computationto force eachvisible eventto causallyfol-
low every commit it initiates, meeting requirement2.
Finally, sinceall processesommittogetherunderthis pro-
tocol, no processs commit can causally dependon an
uncommittechon-deterministi@vent. Thereforethis proto-
col also meetsrequirement3, and guaranteesconsistent
recovery. If visible eventsarelessfrequentthannon-deter-
ministic events or messagesends,such an approachcan
result in faver commits than CAND, CPVS, or CBNIS.

Applicationsmayalsoreducecommitfrequenyg under
the CAND or CBNDVS protocolsby ende&oring to con-
vert mary non-deterministieventsinto deterministicones.
Thereexist generaltechniquedor performingthis corver-
sion, suchas logging [Gray78]. In a logging system,the
resultof a non-deterministieventis appendedo a persis-
tentlog. Thelog canthenbe usedduringrecovery to ensure
thatthe eventhasthe sameresultduringrecovery thatit had
pre-crash.The typical application of logging is to make
messageaeceves deterministic,althoughlogging can also
be used for other events such as signals and interrupts
[Bressoud95Slye96].Somerecovery protocolsendeaor to
upholdthe commitinvariantby makingall non-determinis-
tic eventsdeterministic,avoiding all commits.We call such
protocolscomplete logging protocols.

The commitinvariantnot only informsthe questionof
whenprocessemustcommitto recover consistentlylt also
addressethe question*how long cana procesghatis con-
verting non-determinismeave an event non-deterministic
without forcing a commit?” The answer:up until the next
causallydependentisible event. Hence the commitinvari-
ant suggests kind of lazy logging in which the resultsof
non-deterministieventsare queuedin a volatile buffer, to
be flushedjust beforethe executionof a causallydependent
visible event[Elnozaly92]. For someworkloads,alazy pro-
tocol could reducelogging overheadsignificantly by amor-
tizing the cost of writes to stablestorage without making
ary optimistic assumptionsApplications can also use a
simplerversionof lazy loggingthatdoesnotrequiredepen-
dengy tracking betweenprocessesin this slightly more
eagerprotocol, processesvould simply flush their log tails
to stablestoragebefore sendinga messager executinga
visible event.

Applicationscanachiese the lower boundon commit
frequeng by implementinghe commitinvariantdirectly. In
this scenarioprocessA would piggybackinformationonits
outgoingmessage inform downstreanprocessesf their
dependencen ary non-deterministicvent executedby A.
When someprocessB later executesa visible or commit
evente, it first asksthe processeshat have executedcaus-
ally precedingnon-deterministicevents to commit their
state,upholdingrequirementd and3 of the commitinvari-



ant. It waits for confirmation of each process commit
beforeexecutinge to ensurehatall otherprocesss commits
causally precede, upholding requirement 2.

3. Applying the Theory

Thetheoryhasa numberof practicaluses As we have
seen,it helpsmake evidentnew recovery protocols.To our
knowledge, CPVS and CBNDVS (and two protocols
describedin Section4.2, CBNDVS-LOG, CBNDV-2PC)
have never beenproposedrimplementedWe next turn our
attentionto discusshow the theory can be usedto unify
existing recovery protocols,and explore interactionswith
the fail-stop model.

3.1. Unifying existing recovery protocols

All existing recovery protocolresearcttanbeenseen
asproviding differenttechniquedor upholdingthe commit
invariant. Eachvariesin its approachto identifying non-
deterministicandvisible events,cornverting events,tracking
causaldependenciesand initiating commits. In order to
shav how a numberof theseprotocolsfit into our theoryof
consistentecovery, we will usethe theoryto describethe
workings of seeral representaté protocols.

3.1.1. Rssimistic logging

Pessimistic logging protocols ende&or to greatly
reduceor eliminateapplicationnon-determinismallowing
them to uphold the commit invariant without committing
beforemostvisible events.For the applicationgraditionally
consideredmostof theseprotocolsfocus on making mes-
sage rec®e events deterministic [Reell83, Bog89].

In Targon/32, messagedata and receive order are
loggedin the input queueof a backupprocessrunningon
anothemprocessofBorg89]. Sincethe backupprocesss the
one that will be usedfor recovery, its receve eventsare
guaranteedo executewith the sameresultduring recovery
asthey did for the primary processheforeits failure. Thus
messageeceie eventsaremadedeterministic After a fail-
ureby aprocessthe systenrecoversthe procesdy activat-
ing its backupandlettingit roll forwardthroughits queueof
receved messagesSince Targon/32 ende&ors to recover
general Unix applications,it also has to contend with
sourcesof non-determinismother than messagereceve
events,suchas signals.When a processreceves a signal,
thesystemensuresonsistentecovery by checkpointinghe
processto the memory of the backupprocessorafter the
delivery of the signal, as mandated by the commitiiant.

Bressoudand Schneides hypervisorbased system
extendsthe classof non-deterministieventsthat are made
deterministicfrom messageaeceves to generalinterrupts
[Bressoud95]The hypervisormakesinterruptsdeterminis-
tic by delivering them at the end of fixed intervals called
epochsandloggingthemto a backupprocessqgrwhich will
also deler them at the end of the epoch.

3.1.2. Sendebased logging

Sendetbased logging (SBL) allows applications
whoseonly non-deterministicevents are messageeceves
to survive the failure of a single processin the system
[Johnson87]lt works by making all receve eventsdeter-
ministic to avoid ever having to commit. Receve eventsare
madedeterministicby logging messagesnd the orderin
which they were deliveredin the volatile memory of the
senderAfter a procesdails, surviving processesesendhe
loggedmessagesndinform the recovering processof the
orderin which to processhem, guaranteeingleterministic
re-executionof receive eventsduring recovery. Thus,appli-

cationswith no othersourcesof non-determinisnmeednot
commit before xecuting visible eents.

3.1.3. Causal logging

Like otherlogging protocols,causallogging protocols
uphold the commit invariant by corverting all non-deter-
ministic eventsinto deterministicones,avoiding ever hav-
ing to commit.

Considera messagen sentfrom process to process
g. In Family-BasedLogging (FBL) and in Manetho,the
contents of m are logged at the sender [Alvisi93,
Elnozaly92]. However, the orderin which mis deliveredto
g (the true non-determinisnin the messagelelivery) is not
logged until the last possible moment.

For FBL, that momentcomesonceq next executesa
sendevent. SinceFBL triesto survive thefailure of ary sin-
gle process,it sufiices for q to piggyback the receve
sequenc@aumber(rsn) for monits next send.Therecipient
of that messages then responsiblefor addingthe piggy-
bacledrsn to its log beforeprocessinghe messageOncea
processasrecevedconfirmationthatall its rsn’s have been
loggedby other processegtheseconfirmationsare piggy-
bacledon otherapplicationmessages)t cansafelyexecute
a visible &ent.

The situationis a bit trickier for Manetho,becauset
aimsto survive the simultaneoudailure of all processe#n
the computation.Each processkeepstrack of the relative
order of all non-deterministicevents on which its state
depends(acrossall processes)n an antecedence graph
(AG). Whena processendsa messagéeo anotherit piggy-
backsits AG on the messageo aid maintenanceof the
recipients AG. Beforeary processxecutesa visible event,
it must simply write its current AG to stable storageto
uphold the commit wariant.

Oncea procesdails undereitherprotocol,the surviv-
ing processeandstablestoragecanprovide the failed pro-
cesswith the messageg receved pre-crashandthe order
in which to process them (either&S’s orrsn’s).

3.1.4. Optimistic logging

Optimistic logging upholdsthe commit invariant by
makingall an applications non-deterministieventsdeter-
ministic. Underthis protocol, eachprocessarites periodic
checkpointsand a messagdog asynchronousiyto stable
storage[Strom85]. Each processmaintainsa vector clock
which summarizeghe state of every process asynchro-
nousloggingefforts. Beforeexecutingavisible event,a pro-
cesscaninspectits vectorclock to determinaf the commit
invariantis currentlyupheld.If not,the processimply waits
until it is.

3.1.5. Coordinated checkpointing

Coordinatedcheckpointingprotocolsupholdthe com-
mit invariantby committing right before eachtrue visible
eventin the system.They emplgy anagreemenprotocolto
avoiding treatingsendeventsasvisible, andto forcethecor-
rectcausalorderingof commitsandvisible events.Suchan
approachcan reducecommit frequeng without requiring
processedo track their causaldependenciesWhen some
processvantsto executea visible event, it first coordinates
with the otherprocessem the applicationto ensurethatall
processesommit atomically [Koo87]. If ary processcan-
not performits commit, all processesre abortedbackto
their last committed state.

3.1.6. Pocess pairs

Processpair systems, such as Tandem NonStop,
upholdthe commitinvariantby committingbeforeeachvis-
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Figure 4: ProtocolspaceWe canparameterizéhe spaceof all recovery protocolsby effort madeto identify andcorvertnon-
deterministiceventsand effort madeto identify and corvert visible events.This plot shavs the point in sucha spaceeact
protocolfrom Section3.1 mightoccupy. For referencewe alsoshav the CPVS,CBNDVS, andCAND protocolsdescribedn

Section 2.4.

ible event[Bartlett81,Gray86].Procesgairs(andprimary-

backupsystemsn generaljareusuallydiscussedn thecon-

text of aclient-sener systemjn which the maintype of vis-

ible events are a sener’'s responsemessagedo client

requestsin processpairs,the primary processcheckpoints
its stateto a backup processbefore each visible event.

Multi-processseners can extend this checkpointto be a

coordinatedcheckpointfrom the primary processeso the

backup processes.

3.1.7. \istagrams

As mentionedin Section2.4, applicationscanuphold
the commitinvariantby committing before every message
sendor visible event.Vistagramgakesa similar approacho
achieving consistentecovery [Lowell98]. Ratherthancom-
mitting state before every send, however, Vistagrams
upholdsthe commitinvariantby deferringsendeventsuntil
after the next naturally occurringcommit executedby the
application. Applications are responsiblefor committing
their current transaction before doing a visiblerg.

3.1.8. Potocol space

Eachof theserecovery protocolsrepresents different
techniqueor upholdingthe commitinvariant.Eachto vary-
ing degreestradesoff programmereffort and systemcom-
plexity for reduced commit frequengy (and hopefully
overhead).

Someprotocolsfocustheir efforts on the problemof
identifying and reducingnon-determinismOtherswork to

defer commitsas late as possible.Still othersdo someof
each.Eachprotocolcanbe seenasrepresenting pointin a
two-dimensionakpaceof protocols.One axis in the space
representseffort made to identify and possibly convert
application non-determinism.The other axis represents
effort madeto identify and possiblyconvert visible events.
Figure 4 shavs how the protocolsof Section3.1 might
appear in such a space.

Theorigin of this plot represents protocolthatatomi-
cally commitsevery eventin anapplication.A protocolthat
falls closeto the origin on the horizontalaxis treatsalmost
all eventsasnon-deterministicwhetherthey areor not. Pro-
tocols that fall further and further out on this axis exert
increasingeffort to identify a progressiely larger portion of
the non-deterministicevents, eventually committing only
the events that truly are non-deterministic.Beyond this
point on the axis, protocolsbegin to exert effort to convert
non-deterministiceents into deterministic ones.

Similarly, a protocolthatfalls closeto theorigin onthe
vertical axiscommitsalmostall eventsin casethey arevisi-
ble events.As protocolsfall further up the axis they exert
more effort to treatfewer eventsasvisible. At somepoint,
protocolstreat only sendeventsand true visible eventsas
visible. Beyond that point, protocols exert further effort
(suchasusingan agreemenprotocol)to allow themnot to
treat sendents as visible.

The distancefrom the origin in this planeis inversely
proportionalto commitfrequeng. Thatis, thefarthera pro-
tocol is from the origin, the lessfrequently most applica-



tions using that protocol will have to commit. Thus the

farthera protocolis from the origin, the moreit canmain-

tain good performance,even with a slov commit. Con-

versely a fast commit allows a programmerto guarantee
consistentecovery with lesseffort, i.e. usea protocolthat

would fall closer to the origin in this plane.

Note thatin Figure4 mostexisting protocolsfall very
closeto the axes (Manethoand optimistic logging being
exceptions).This is mostlikely dueto the historicalsepara-
tion betweencheckpointingand logging-basedistributed
recovery researchWe believe thereis significantpotential
for efficient recovery protocolsin the middle of the plot,
however. We explore several of them in Section4.2, and
mary more are possible.

3.2. Exploring interactions with the fail-stop model

Of centralconcernin examiningthe fail-stopproperty
is the point of executionat which commitsoccurrelative to
when buggy code pathsare initiated. Commit eventshave
traditionallybeenviewedasaway to presere the pastwork
of aprocesaipto the point of thecommit. Usingthetheory
commit events can also be seenas committing all future
work executedup until the next non-deterministievent. We
call this view that commit events presere later execution
forward commit. Unfortunately forward commit increases
the chanceghat failuresare not fail-stop by increasingthe
probability that buggy stateis committed.In fact,for some
applicationsrecovery protocols,andfailure types,forward
commitcanrule out the possibility of applicationsever fail-
ing in a fil-stop manner

Failuresof applicationswith no non-determinisnwill
always violate fail stop. This obsenation follows naturally
from forward commit: in such applications,all statesare
always committed, including buggy ones. Thus recovery
protocolsthat eagerly make all of an applications non-
deterministiceventsdeterministicalsoensurethatall appli-
cation failureswill not be fail-stop. Similarly, a recovery
protocol that upholdsthe commit invariant by committing
after every non-deterministicevent (the CAND protocol
describedin Section2.4) is guaranteedo commit buggy
application state,and all application failures will violate
fail-stop. Therefore,systemsthat use eager completelog-
ging (e.g. Tagon/32 and sendetbasedlogging) or CAND
cannotrecover from applicationfailures.Of courseapplica-
tions canstill survive hardware and operatingsystemdail-
ures using eagey completelogging or CAND as long as
thosefailuresarefail-stop(i.e. they don't corruptcommitted
or logged application state).

There are two general stratgies for increasingthe
likelihoodof failuresbeingfail-stop.Oneway is to enhance
the errordetectioncode (e.g. voting among independent
replicas [Schneider84])so that the faulty system stops
sooner The secondway is to deferthe commit of possibly
buggy state; this deferral gives the errordetection code
moretime to catchthe error Thetheoryhelpswith this sec-
ond methodby shaving how long it is possibleto defer
committing state or defer corverting a non-deterministic
eventinto a deterministicone,while still guaranteeingon-
sistent recovery. Committing or logging can only be
deferredup until the next causallydependenvisible event.
Protocolsthat deferthesewrites to stablestorage,suchas
CPVS, CBNDVS, lazy logging, and coordinatedcheck-
pointing,all increasehelik elihoodthatfailureswill befail-
stop.

4. Practice of Rilure Transparency

Thefirst threesectionsof this paperhave beenprima-
rily theoretical. We developed a definition of consistent
recovery, provedtheinvariantthata programmustmaintain
to perform consistentrecovery, and shaved how existing
recovery protocols maintain thevariant.

This next sectionof the paperillustratesthe practical
applicationof thetheoryanddemonstratethe feasibility of
providing failure transpareng on a variety of challenging
applications. W design seen recoery protocols that main-
tain the commitinvariantin differentwaysandmeasurghe
performanceof theserecovery protocolson a variety of real
applicationsWe have verified that all applicationsusedin
this section recover consistentlyfrom induced operating
system and application crashes using atseprotocols.

4.1. Discount Checking

We built a userlevel checkpointingsystemcalledDis-
count Checkingthat can commit and recover processstate
as neededfor consistentrecovery. Discount Checkingis
built on the reliablemain memoryprovided by the Rio File
Cache[Chen96]and the fasttransactiongrovided by the
Vista lightweight transactionlibrary [Lowell97]. In this
paper we alsousea variantcalled DiscountChecking-disk
that doesnot assumethe presenceof Rio’s reliable main
memory

While the design of Discount Checkingis not the
focusof this paper we do wantto point out several unique
aspectsof Discount Checking (see [Lowell99] for more
details).

First, Discount Checkings architecturediffers from
othercheckpointingsystemdecausét is optimizedfor reli-
ablemainmemoryandis layeredontop of fasttransactions.
Corventionalcheckpointingsystemsassumenemoryis lost
during operatingsystemcrashesand mustcopy the process
stateto a separatestablestore[Plank95].In contrast,Dis-
countCheckingloadsthe processaddresspaceanto Vista's
recoverablememoryandexecuteshe procesdirectly from
this space DiscountCheckingusesVista’s atomictransac-
tions to transitionthe committed processstate atomically
from one checkpointto the next. DiscountCheckingis, to
ourknowledge thefirst systento usereliablemainmemory
in this direct mannerandis the first checkpointingsystem
built on top of a general-purpose transaction system.

Second,Discount Checking saves a more complete
stateof the procesghanmostothercheckpointingsystems.
Checkpointingsystemdave focusedraditionally on recor-
ering long-running,scientific computationghat have little
kernelstateassociateavith the processin contrastwe seek
to provide failure transpareng for interactve applications
(e.g.editors,spreadsheet& AD tools, games)to hide fail-
ures from ordinary users. These interactve applications
have significantkernel statethat mustbe committedbefore
the crashandrecoveredafter the crash.DiscountChecking
savesthe processaddresspaceby mappingit into Vista's
memory as describedabore. DiscountCheckingsavesthe
processos register contentsby copying the registers(e.g.
stack pointer programcounter general-purposeegisters)
into Vista’s memoryat eachcheckpoint.Our basicstratey
for saving kernelstateis to interceptsystemcallsthatmod-
ify kernelstate(by wrappingl i bc calls), save the updated
kernel statevaluesin Vista’s memory and directly restore
thatkernelstateduringrecovery by redoingthe systemcalls
as needed.

The following aresomeexamplesof the typesof ker-
nel statesaved andrecoveredby DiscountChecking:open



files andfile positions,opensoclets,boundand connected
soclets,signalhandlerstimers, TCP protocolstack,process
IDs, and userlevel page protections(e.g. those usedin

copy-on-write systems).Discount Checking also undoes
uncommittedfile modifications[Wang95].In general,sav-

ing all relevant kernel staterequiresthat the checkpointing
systembe part of the kernel. However, we were surprised
thatit waspossiblefor a userlevel checkpointingsystemto

be madecompleteenoughto recover a large classof com-

plex, real applications.

Discount Checking-diskusesthe samecode baseas
DiscountCheckingbut is modifiedto write outaredolog to
disk ateachcommit. This redodataincludesthe nevestver-
sionof ary applicationdatachangediuringthe lastinterval
andary additionallogs usedby the recovery protocol. We
useDiscountChecking-disko measureapproximatelyhow
our recovery protocolsperformwithout reliablemainmem-
ory. Discount Checking-diskdoes not yet have the code
neededto recover applicationsafter failures (unlike Dis-
count Checking, which successfullyrecovers all applica-
tions in this paper).

4.2. Recwoery Protocols

Thereare mary waysto maintainthe commit invari-
ant, asdescribedn Section2.4. We designseven different
recovery protocolsto illustrate the breadthof protocolsto
which ourtheoremgivesrise,andto studywhich workloads
perform bestwith which protocols.Each protocol guaran-
teesconsistentecovery, but doesso usinga differentnum-
ber of commitsandwith varying compleity andoverhead.
We implementeachprotocol as an option that can be set
when using Discount Checking.

As mentionedabove, DiscountCheckingtrapssystem
callsin orderto presere kernelstate.In the samemannerit
can also trap systemcalls correspondingo visible, non-
deterministic,or sendevents for specialhandling by the
recovery protocolin use.By trappingtheseevents,eachpro-
tocol canbe sureto upholdthe commitinvarianton behalf
of the application.

Several protocolsneedto speciallyhandlean applica-
tion’s non-deterministievents,suchasreadinguserinput,
checkingthereal-timeclock, taking a signal,or receving a
messageTo supportthese protocols, Discount Checking
trapscallstorecv, recvfrom recvnsg, read, getti m
eof day, sel ect, bi nd, andthe applications signal han-
dlers.For the protocolsthat needto handlean applications
visible events, DiscountCheckingtrapsthewri t e system
call. Finally, someprotocolswantto speciallyhandlemes-
sagesendevents. For theseprotocols,Discount Checking
traps calls t&end, sendnsg, sendt o, andwri t e.

The protocols are:

Commit prior to visible event or send(CPVS): Dis-
count Checkingforces each processto take a checkpoint
immediately before executing a visible or sendevent by
trappingthe appropriatesystemcalls. As describedn Sec-
tion 2.4, doing soupholdsthe commitinvariantandguaran-
tees consistent regery.

Commit after non-deterministic event (CAND): As
describedin Section2.4, Discount Checkingforces each
processto checkpointimmediatelyafter executing one of
the ab@e non-deterministicvents.

Commit betweennon-deterministic event and visi-
ble event or send(CBNDVS): As describedn Section2.4,
eachprocessommitsbetweenexecutinga non-determinis-
tic eventandexecutingavisible eventor sendinga message.
To implementthis protocol, DiscountCheckingsetsa flag
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Figure 5:Recaovery protocols measured in Section 4.

whena processexecutesoneof the abose non-deterministic
events.Whenthatprocesdaterattemptgo executea visible
or sendeventwhile theflag is set,it first takesa checkpoint
and clearsthe flag. This protocol will always executethe
same or fever commits as CPVS or CAND.

Commit after non-deterministic event, with logging
(CAND-LOG): This protocolis identicalto CAND, with
loggingaddedo corvert somenon-deterministi@ventsinto
deterministiconesin an attemptto reduce commit fre-
gueng. Discount Checkingimplementsthis protocol by
writing the resultsof read, recv, recvfrom recvnsg,
andsel ect to alog in orderto make messageeceve and
user input events deterministic. After the remaining non-
deterministicevents(get t i neof day andsignals)this pro-
tocol simply forces a checkpoint.

Commit betweennon-deterministic event and visi-
ble event or send, with logging (CBNDVS-LOG): This
protocol is identical to CBNDVS, with the samelogging
logging usedin CAND-LOG employed to cornvert some
non-deterministiceents into deterministicvents.

Commit prior to visible event with two-phasecom-
mit (CPV-2PC). Under this protocol, ary time a process
wantsto executea visible event, it asksall the processe
the computationto commit their state using a two-phase
commit protocol (2PC)[Gray78]. Doing so ensuresa com-
mit after ary non-deterministiceventsthat might causally
precede the visiblevent.

Commit betweennon-deterministic event and visi-
ble event (CBNDV-2PC): In this protocol, if a process
wantsto executea visible eventthatdependsn anuncom-
mitted non-deterministi@vent, it first asksall processeso
commit using 2PC. Ratherthan tracking causaldependen-
cies on non-deterministicevents between processeswe
implement this protocol using the simple flag-setting
approachof CBNDVS by assumingall messageaeceves
causea dependencen a non-deterministicevent executed
by the sender

Figure5 placestheserecovery protocolsin the proto-
col spacedevelopedin Section3.1.8. Note that we do not
combinelogging with two-phasecommit. Logging receve
events to make them deterministicassumeghe receved
messagawill not be aborted.Hencethe receving process
cannotparticipateproperlyin a subsequernvo-phasecom-



mit if the senderasksit to abortthe loggedreceve event. A
protocol that loggedforms of non-determinisnother than
messageeceie eventscould take advantageof two-phase
commit.

4.3. Applications

Recaorery hasfocusedraditionallyonrecoveringlong-
running, scientific computations.For our study we will
focus instead on recovering interactve applications.We
chooseheseapplicationshecauseeal usersaredemanding
andimportantcustomersof recovery, andbecauseecover-
ing theseapplicationgs particularlychallenginginteractve
applicationstypically maintain large amountsof kernel
state,andthey executevisible andnon-deterministi@vents
frequently As a result, theseapplicationscan stressary
recovery protocol.

We useour checkpointingsystemsandrecovery proto-
cols to recover five applications:vi, oleo, magic, Tread-
Marks, andxpilot.

vi is oneof theearliertext editorsfor Unix (theversion
we useis nvi); oleo is aspreadshegirogram;andmagic is a
graphicalVLSI layouteditor. We make the executionof nvi,
oleo, and magic repeatablédy having themreaduserinput
from ascript.For nvi andoleo, we simulatea very fasttypist
by delaying100 millisecondseachtime the programasks
for a character For magic, we delay 1 secondbetween
mouse-generatedommands.vi, oleo, and magic are all
local applicationsj.e. thereareno messageends(magic's
messages to the X senare considered visibleents).

TreadMarks is a distributed sharedmemory system
[Keleher94].We run an N-body simulationcalled Barnes-
Hut in the sharedmemory ervironment TreadMarks pro-
vides,with the simulationconfiguredto run on four proces-
sors.We chooseBarnes-Hutbecausat is the largestof the
example applications shipped wiliheadMarks.

xpilot is a distributed, graphical,real-time game.We
run xpilot with threeclientsanda gamesener (all on sepa-
ratecomputerspndplay the gamewith a continuousstream
of input at all clients.

Applicationsneedonly two minor modificationgo use
Discount Checkingand becomefully recoverable (imple-
mentingrecovery in the operatingsystemwould requireno
modificationsto the application).First, we inserta call to
dc_i ni t atthe beginning of eachprograms mai n() and
include dc. h in this file. Second,we link the application
with | i bdc. a, which containghe DiscountCheckingcode,
including codeto interceptmary | i bc functions.Discount
Checkingtransparentlyinserts checkpointsand logs non-
deterministiceventsasrequiredby eachrecovery protocol.

It also recoers a process when it is restarted after a crash.

4.4. Results

All experimentswere conductedon 400 MHz Pen-
tium-1l computerseachwith 128 MB of memory(100 MHz
SDRAM). EachmachinerunsFreeBSD2.2.7with Rio and
is connectedto a 100 Mb/s switched Ethernet.Rio was
turnedoff whenusing DiscountChecking-disk Eachcom-
puterhasasingle|IBM UltrastarDCAS-34330Wultra-wide
SCsSl disk. All points representthe averageof five runs.
Standardeviation for eachapplicationwaslessthan1% of
the meanfor DiscountChecking,and lessthan 4% of the
mean for Discount Checking-disk.

Figures6 and7 displaythe resultsof runningthe five
applicationsusing both Discount Checking and Discount
Checking-diskto implementall seven recovery protocols.
Sincewe usethe two-phasecommit protocolto coordinate
commits betweenprocessesn messagepassingapplica-
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tions, we show the resultsfor CP\A2PC and CBNDV-2PC
only for applicationgthat sendmessaged-or eachapplica-
tion we shav a plot of the protocolsin the protocol space
describedn Section3.1.8.At eachpoint onthe plot, we list

thenameof theprotocolthatpointrepresentghe numberof

commitsexecutedin therun of theapplication,andtherun-

time ratiosfor DiscountCheckingand DiscountChecking-
disk. Therun-timeratio is the runningtime of the recover-

ableversionof the applicationdivided by the runningtime

of the baseline,non-receerableapplication.Baselinerun-

ning timesare 798 seconddor nvi, 54 seconddgor oleo, 89

secondsfor magic, and 15 secondsfor TreadMarks.

Becausepilot is areal-time,continuousprogramwe report
its performanceasthe framerateit cansustainratherthan
run-timeexpansionHigherframeratesindicatebetterinter-

actiity, with full speedbeing15 framespersecondCheck-
points for xpilot are given as the largest number of

checkpointsper secondamongall clients and the sener,

measured at 15 frames per second.

We can make a number of interestingobsenations
aboutthe resultsin Figures6 and7. As expected the num-
ber of commits generallydecreasegor protocolsthat are
fartherfrom theorigin. As adesigneexpendsmoreeffort to
defer commits or corvert non-deterministicevents into
deterministicones heor sheusuallyis rewardedwith fewer
commitsandbetterperformanceThe soleexceptionto this
rule is xpilot. In xpilot, using two-phasecommit increases
the numberof commits. This increaseis becauseall pro-
cessegnustcommitwheneer ary of themexecutesa visi-
ble event(i.e. sendingoutputto the X sener). Thisincrease
in commitfrequeng is greaterthanthe decreasén commit
frequeng that resultsfrom not needingto commit before
sending a message.

Second note that DiscountCheckingaddsnegligible
(< 1-2%) overheadto all the applicationsbut TreadMarks,
even for recovery protocolsthat generatemary commits
(suchas CAND and CPVS). BecauseDiscount Checking
takes adwantageof reliable main memoryand fasttransac-
tions, it is able to take checkpointsvery quickly: under2
millisecondsper checkpointfor theseapplications.While
DiscountChecking-diskcannotmatchthis level of perfor-
mance|t is nonethelesableto provide failuretranspareng
with acceptableverheadfor somerecovery protocols.For
example,DiscountChecking-diskexpandsthe runningtime
of nvi by aslittle as12%, oleo by 39%,andmagic by 27%.
xpilot can sustaina rate of 9 framesper secondwhich is
40% lower thanthe full framerate.As expected,Discount
Checking-disk is much more sensitve than Discount
Checkingto the numberof commitsgeneratedby arecovery
protocol,becauset commitsstateby writing to disk rather
thanmemory Overheador TreadMarks is higherthanother
applicationsbecauselreadMarks has a large working set
and is compute-bound rather than dsennd.

Third, notethatdifferentrecovery protocolsbenefitthe
various applicationsin differentways. For nvi, logging is
the most effective way to reducecommit frequeng. Log-
ging keyboard input is sufiicient to eliminate most non-
determinism imwi.

For oleo and magic, hawever, logging doesnot help
appreciably becausehere are other sourcesof non-deter-
minism that are not logged. get t i meof day is the major
source of non-determinismin oleo, and signals are the
major sourceof non-determinisnin magic. For theseappli-
cationsi,it is mosthelpfulto upholdthe commitinvariantby
treatingas few eventsas possibleas visible. By so doing,
theseapplicationscan commit beforeevery visible or send
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Figure 6: Performancef differentrecovery protocolsfor local applicationsThefirst line belon eachprotocollabelgivesthe
numberof commitsin the run. The secondline belon eachprotocol label gives run-time ratios (running time of the
recoverableprogramdivided by runningtime of the baseline hon-recaeerableapplication)for two checkpointingsystems

Discount Checking and Discount Checking-disk.

event, rather than after each of the more numerousnon-
deterministic eents.

The bestrecovery protocolsfor TreadMarks arethose
that use two-phasecommit to defer commits beyond the
point of sendinga messagelTreadMarks sendsmessages
and executesnon-deterministicevents (signals) very fre-
guently which resultsin a high commitfrequeng for most
protocols.However, TreadMarks executesvery few visible
events(just a handfulof writesto the screen)soonly afew
coordinated commits are needed.

Note that different applicationsachieve the lowest
overheadwith differentprotocols.Thusno one protocolis
appropriatdor all workloads.In generalprotocolsthatboth
defer commits and identify and corvert non-deterministic

events yield more robust performanceacrossa range of
applications.

5. Related Work

A few researcherbave attemptedo provide a general
view of recovery research.

Elnozaly etal. provide athoughtfuloverview of exist-
ing rollback recovery protocols for distributed systems
[EInozaly96]. Their main contrikution is to describeand
compareghegreatvariety of protocolsin therecovery litera-
ture.

Alvisi et al. provide a theory of recovery specificto
causallogging protocols[Alvisi95]. Their theoryis useful
primarily in elucidatingthe relationshipbetweendifferent
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(e) xpilot

Recovery Protocols

CPVS: commit prior to visible or send

CAND: commit after non-deterministic

CBNDVS: commit between non-deterministic and visi-
ble event or send.

CBNDVS-LOG: commit between non-deterministic and
visible or send, with messages and keyboard input
logged.

CAND-LOG: commit after non-deterministic with mes-
sages and keyboard input logged.

CPV-2PC: commit prior to visible, using two-phase com-
mit to commit multiple processes together.

CBNDV-2PC: commit between non-deterministic and
visible, using two-phase commit to commit multiple
processes together.

Figure 7: Performancef differentrecovery protocolsfor distributed applications.Thefirst line belonv eachprotocollabel
givesthe numberof commitsin therun. The secondine belov eachprotocollabel givesrun-timeratios(runningtime of the
recoverableprogramdivided by runningtime of the baseline nhon-rece@erableapplication)for two checkpointingsystems
Discount Checking and Discount Checking-disk. Becausexpilot is a real-time, continuous program, we report its
performanceasthe framerateit cansustainin frames-peisecond(fps) ratherthan run-time expansion.Higher fps values
indicatea betterrate of interactvity, with full speedbeing15 fps. Checkpointdor xpilot aregivenasthe highestnumberof
checkpoints per second (ckps) among all clients and thersemwasured at 15 fps.

causallogging protocols;it is lessusefulfor otherrecovery
techniques.

A numberof researcherbave pointedout components
of our theory Our work builds on that of these other
researcherin a few importantways. First of all, classical
researchhasrelied on a setof separateulesfor achieving
consistentecovery: onerule definesconsistenglobal states
[Chandy85],onerule defineswhenanapplicationmustpre-
sene suchaglobalstate[Strom85,EInozaly92], andafinal
rule relates non-determinismto commits [Johnson88,
Elnozaly92]. In comparisonwe provide a single invariant
that captureshe exact relationshipbetweenthe non-deter-
ministic, commit, and visible eventsat the heartof consis-
tentrecovery. Although our singleinvariantis equivalentto
the confluenceof the existing rules, viewing recovery
through the lens of our invariant has several advantages.
Firstof all, we areableto analyzeall existing recovery pro-
tocolsin light of this singleinvariant, unifying the various
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approacheso achiezing consistentrecovery, and elucidat-
ing the relationshipbetweenhistorically unrelatedproto-
cols. Second,we are able to expose the existenceof a
protocol spacein which all recovery protocolsfall. Third,
we malke explicit a numberof assumptiondurking behind
all recorery protocolresearchpursandothers’. For exam-
ple, other researchersll assumean equvalencefunction
like ours, and all must make assumptionsequialent to
Assumptionsl and 2, althoughtheseassumptionsre usu-
ally not stated.Fourth, we are ableto explore the implica-
tions of our invariantfor the fail-stopassumptionsnadeby
mostrecovery systemsFinally, we areableto prove the suf-
ficiengy andnecessityof our singleinvariantfor guarantee-
ing consistentecovery, somethingthat, to our knowledge,
no researcher hasex done.

Several researcherbave built systemghat attemptto
provide someflavor of failure transpareng For example,
the TandemNonStop[Bartlett81], Publishing[Powell83],



Targon/32[Borg89], and Hypervisor[Bressoud95kystems
all provide recovery serviceghatallow processefo survive
hardware filures.

Traditional checkpointingsystemsprovide a tool that
applicationscanuseto helpthemsurvive softwareandhard-
ware failures [Plank95]. Thesecheckpointingsystemsare
targetedfor scientific applicationswith little kernel state,
and that rarely>ecute visible gents.

6. Contributions

This paper mads a number of conttitions:

» Provides and proves a theory of consistentrecovery
that is relevant acrossall recovery protocols, and
shaws that upholdinga simple invariantis necessary
and suficient to guarantee consistent reeny.

» Unifies the variousapproacheso consistentrecovery
and clarifies ha they uphold the imariant.

» Suggest® numberof new recovery protocols(CPVS,
CBNDVS, CBNDVS-LOG, CBNDV-2PC) and
exposesthe potential for more protocols that both
defer commits and coart non-determinism.

» Arguesfor failure transpareng as an OS abstraction
and demonstrates its feasibility

7. Conclusion

Computerusersknow thatsystemandapplicationfail-
uresare all too common.With this paper we argue that if
we have to live with failures,the leastthe computercould
do is try to lkeep them a secret.

Providing failure transparenc as a fundamental
abstractiorof the operatingsystemhasthe potentialto make
computergar morepleasanto use.Doing soinvolvesguar-
anteeingconsistentecovery on behalfof local anddistrib-
utedapplicationswhich canbetricky businessparticularly
for comple, distributed applications.

With this paper we have provided a framework for
reasoningaboutconsistentrecovery. Our theory of consis-
tent recovery provides a simple invariant that all applica-
tionsmustupholdto maskfailuresfrom users Exposingthe
commitinvariantbehindrecovery protocolsenablesystem
designergo think moresystematicallyaboutwhatrecovery
protocol to use for each application.

Our study hasshown that providing failure transpar-
eng is feasiblefor a difficult classof applicationswithout
modifying those applications and without significantly
degradingperformanceFor someapplicationsandrecovery
protocols,it is evenpossibleto provide failuretranspareng
usingdisk insteadof reliablemainmemory This resultsug-
geststhe importanceof new researchinto providing disk-
based, full-process checkpointersthat are optimized for
small checkpoints, and that pide timeliness guarantees.

Our hopeis thatthiswork will encouragaew research
into the problemof providing failuretransparengasa fun-
damentabbstractiorof modernoperatingsystemsWe also
hope it will direct recorery researchtoward interactve
applications.In this domain, recovery researchcan do a
greatdealto improve therelationshippeoplehave with their
computers.
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Universe of possible partial executions for C

Redo

NoFail

Hidden | Exposed

Figure 8: Partitioned &ecution unverse.

9. Appendix

We presenhereaninformal proof of the theorem For
a more formal approach, please seeneido9].

Theorem

Recwery of a computationis guaranteedo be
consistentif and only if eachprocessthat exe-
cutesa non-deterministi@ventthatcausallypre-
cedesavisible or commitevente laterexecutesa
commit eent that itself causally precedes

As mentionedn Section2, the definition of consistent
recovery provides both safetyand livenessconstraints We
will split thetheoreminto two componentswheneventein
thetheoremis avisible eventthetheoremguaranteesafety
whene is a commit event the theoremguarantee$iveness.
We will prove the necessityandsufficiencgy of eachcompo-
nent separately

Proof of sufficiency for Safety component We want
to prove thatall partial executionsof a computationC will
be equivalentto afailure-freepartial executionof C despite
failures,if eachprocessthat executesa non-deterministic
eventthatcausallyprecedes visible evente laterexecutesa
commit e/ent that itself causally precedes

Considerthe universeof possiblepartial executionsof
C, includingexecutionsn whichit hasfailedandrecovered.
We canthink of eachmemberof the universebeinga setof
events partially ordered by causal precedenceWe can
divide theuniverseinto two regions.Oneregion containsall
the executionsin which no procesdails. We call this region
NoFail The region containsthe executionsof C in which at
leastoneprocesdails. We call this region Fail. We canfur-
ther divide the Fail region into two parts.The first part we
call Redo. It containsthe executionin Fail in which all
failed processesxactly redo their pre-failure pathsduring
recovery. In otherwords,thefailedprocessesxecuteduring
recovery no siblings of pre-failures non-deterministic
events.The secondportion of Fail we call Deviate. It con-
tainsthe executionsin Fail in which at leastonefailed pro-
cesdeviatesfrom its pre-failure pathby executinga sibling
of a pre-failure non-deterministicevent. Finally, we can
divide Deviate into two sub-rgions: Hidden and Exposed.
Exposed containghoseexecutionswherethe non-determin-
istic eventat the point of recovery’s deviation causallypre-
cedesa visible event. Hidden containsthosewhereit does
not. We shaw the relevant portions of this partitioning in
Figure 8.

With the universe of partial executionsthus parti-
tioned,we canmake a numberof obsenations.First of all,
each execution in Redo has an equialent execution in
NoFail: theexecutionfrom Redo is thesameasanexecution
in NoFail exceptthat the Redo execution re-executesthe



eventsbetweerits lastcommitandfailure which is allowed
by our equivalencefunction. Thus all executionsin Redo
have consistent recery.

Next, obsene that eachexecutionE in Hidden hasan
equialent execution E' in Redo. E' is the executionin
which the computatiorfailedimmediatelybeforeexecuting
thedeviating non-deterministi@ventin E, andexecutedthe
sibling of thateventduringrecovery. Sincetheexecutionsn
Redo have consistentecovery, it follows the executionsin
Hidden do as well.

By processof elimination, it follows that all execu-
tions with inconsistentrecorery must fall in the Exposed
region of the universe.Note however that sinceC commits
accordingto our premise,no executionof C canfall in the
Exposed region. Thus,the sufliciency of the safetycompo-
nent of the theorem is pred.

Proof of necessityfor the Safety component We
intendto prove thereexistsa partialexecutionof acomputa-
tion C thatis notequivalentto ary failure-freepartialexecu-
tion of C if someprocessexecutesa non-deterministie@vent
that causallyprecedes visible event e and doesnot later
execute a commitwvent that itself causally precedes

We'll call the non-deterministicevent eNP that caus-
ally precede®. We know from Assumptioni that eNP has
a sibling that causallyprecededlifferenta visible event €' .
Fromour premisewe know thatthe procesg thatexecuted
eNP did not executea commit event after it. Therefore,if
process fails immediatelyafter the computationexecutes
g, it could executethroughthe sibling of e"P duringrecor-
ery, causinge' to beexecutedHowever, we alsoknow from
Assumptionl thate and € arenotbothin ary legal execu-
tion of C. Thuswe have describedaninconsistentecovery
thatis possibleasa resultof C's not committing correctly
andthe necessityof the safetycomponenbf thetheoremis
proved.

Proof of sufficiencyfor the Li venesscomponent We
wantto prove thata singlefailure cannotpreventa process
from executinga visible eventif eachprocesghatexecutes
a non-deterministicevent that causallyprecedesa commit
event e later executesa commit event that itself causally
precedee.

We needto showv that whenever a processwantsto
execute a visible event but determinesthe event would
dependon an abortednon-deterministieevent, it canabort
to its lastcommitandbe assuredhatall eventsit executes
from that point on will not causallydependon the aborted
non-deterministicvent. By our premise ,we know that no
commitcausallydepend®n anuncommittechon-determin-
istic event. Therefore ary procescanalwaysabortbackto
its last committo aborta dependeng on a lost non-deter-
ministic event (an event that could not have beencommit-
ted). To ensurethat it never regainsits dependeng on the
lost event, the abortingprocesamay have to askotherpro-
cessedo abortbackto their lastcommits.If sufiicient pro-
cessesreabortedall processesvill permanentljosetheir
dependeng on the lost non-deterministicevent, since no
processs lastcommitcausallydependnit. Thuswe have
provedthe sufiiciengy of thelivenesomponenbdf thethe-
orem.

Proof of necessityfor the Livenesscomponent We
intendto prove thata singlefailure canpreventindefinitely
someprocesy from executinga visible eventif somepro-
cessq that executesa non-deterministi@vent that causally
precedesommitevent e, (which is executedby p) never
executes a commitvent that itself causally precedeg.
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Imagine processq fails immediately after processp
executesavent e, . We know e, preseresadependencen
procesgy's now lost non-detefministievent. When process
p later attemptsto executea visible event (which it will do
by Assumptior), it will notbeableto do sowithoutviolat-
ing the safetycomponentof the theoremsincethe visible
event would causally follow the lost non-deterministic
event. Evenworse,it will never be ableto abortits depen-
deng onthelostnon-deterministi@ventsinceits lastcom-
mit preseres the dependenc Thus we have proved the
necessity of thedeness component of our theorem.

Sincewe have proved the sufficiency andnecessityof
both the safety and livenesscomponentswe have proved
thatupholdingthe theoremis both necessarandsuficient
to guaranteeonsistentrecovery underthe assumptionsve
have madeQED
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