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Abstract: Systemandapplicationfailuresareall too com-
mon. In this paper, we arguethat operatingsystemsshould
provide theabstractionof failuretransparency—theillusion
that systemsand applicationsdo not fail. We constructa
theoryof consistentrecovery that is usefulfor systemsthat
wantto providefailuretransparency. Thetheorydefinespre-
cisely what constitutesconsistentrecovery and provides a
simpleinvariantthatall applicationsmustupholdto guaran-
teethey getit. Thetheoryunifiesthevariousrecoveryproto-
cols for achieving consistentrecovery; existing protocols
canbe viewed asdifferentwaysof upholdingour theory’s
invariant.We usethe theoryto designnew recovery proto-
colsandanalyzeexisting protocols.We concludeby evalu-
ating performancefor a suite of recovery protocols.We
focus our study on interactive programs,an application
domainfor which it is challengingto provide failure trans-
parency. Our resultsindicatethat it is possibleto provide
failure transparency for generalapplicationswith overhead
of 1-2% for systemswith reliable main memory, and 10-
40% for disk-based systems.

1. Intr oduction
The primary goal of operatingsystemsand middle-

wareis to provide abstractionsto theuserandprogrammer
that hide the shortcomingsof the underlying system.For
example,threadscreatethe abstractionof moreCPUs,and
virtual memory createsthe abstractionof more memory.
While today’s operatingsystemsprovide many powerful
abstractions,they do not hideoneof themostcritical short-
comingsof today’s systems,namely, thatoperatingsystems
and userapplicationsfail. Rather, operatingsystemshave
beencontentto provide a low degreeof fault tolerance.For
example, popular operating systemsare concernedonly
with saving unstructuredfile data(andeven in this limited
domainthey acceptthe lossof the last few secondsof new
file data),andnon-filestatein thesystemis lost completely
during a crash.In particular, the stateof runningprocesses
is lost duringa crash,andthis lossexposesfailuresto users
and application writers.

Losing processstateinconveniencesboth application
writersandusers.Applicationwritersmustbeartheburden
of hiding failures from usersby using ad hoc techniques
suchasauto-saves.Theseadhoctechniquesrequireconsid-
erablework on the part of the applicationwriter, because
recovery codeis extremely tricky to get right. Losing pro-
cessstatealsoinconveniencestheuser, becausemostappli-
cations lose significant state during a crash.Application
recovery often losesrecentchangesto a user’s file andalso
losesthe stateof the user’s interactionwith the application
(e.g. editing mode,cut-and-pastebuffers, cursor position,

etc.).As a result,recovering from a failure involvessignifi-
cant user intervention and inconvenience—considerpeo-
ple’s vehement reaction when their operating system
crashes.

We believe operating systems should present the
abstractionto usersand applicationwriters that operating
systemsandapplicationsdonot fail. Wecall thisabstraction
failure transparency. Ideally, failure transparency would
provide a perfectillusion that operatingsystemsandappli-
cationsdo not fail; they merelypauseandresume.As with
all abstractions,it may not be possibleto provide a perfect
illusion of failure transparency—we explore someof the
limits to failure transparency in this paper.

We define consistent recovery as recovering from
crashesin a way thatmakesfailurestransparentto theuser.
For an operatingsystemto provide failure transparency, it
mustprovide consistentrecovery on behalfof applications,
and do so without requiring programmer assistance.

The notion of recovery is hardly new. Many tech-
niques have been proposedthat enable applications to
recover from failures [Koo87, Johnson87, Strom85,
Elnozahy92]. A few isolated techniqueshave even been
implementedin operatingsystemsthatprovide someflavor
of failure transparency [Bartlett81, Powell83, Borg89,
Baker92, Bressoud95].Despite the maturity of the field
however, recovery researchershave not proposeda single
rule for attainingconsistentrecovery that is independentof
all recovery protocols,andthatrelatesthevariousclassesof
applicationeventswith eventsneededto supportrecovery.
As a result,thespaceof possiblerecovery protocolshasnot
beenexploredsystematically, andit is difficult to discernthe
relationship between existing protocols.

Our goal in this paperis to provide a definition and
theoryof consistentrecovery. What is the theorygoodfor?
Handlingfailuresis tricky business,particularlywhenmany
processesare interacting.The theory provides the funda-
mental invariant that every distributed or local application
mustupholdin orderto guaranteeconsistentrecovery. The
theory also provides a unified way of viewing all existing
recoveryprotocols,elucidatingtherelationshipbetweendis-
parateprotocols,and exposingnew ones.We will explore
all theseapplicationsof thetheoryin this paper. Finally, we
will show the theory in action by examining the perfor-
mancetradeoffs of sevenrecovery protocolsthatarisenatu-
rally from the theory. Along the way, we will show the
feasibility of providing failure transparency for a difficult
class of applications.

2. Theory of Consistent Recovery
Thissectiondescribesinformally our theoryof consis-

tent recovery. For a formal version of the theory and its
proof, please see [Lowell99].
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2.1. Definition of consistent recovery
For our purposes,a computation consistsof one or

more processesworking togetheron a task. Eachprocess
computesby executinga sequenceof events.Visible events
areeventswhoseresultsareobservableto someoneoutside
the computation(e.g. the user). Visible events have also
been called “output events” or “output messages”
[Elnozahy92]. Examplesof visible eventsarewrites to the
screen and messages sent to printers.

Given a computationin which somesubsetof pro-
cesseshasfailed,thegoalof consistentrecovery is to recon-
structthecomputationsoit cancontinueto executein away
thathidesthefailurefrom theuser. Recovery is consistentif
theuserseesoutputfrom thecomputationcorrespondingto
a correct execution of the program, despite its failure.

Thereare someinterestingimplicationsof this user-
centricview of consistentrecovery. First of all, a computa-
tion that doesn’t produceany output seenby the external
observer can never be inconsistent.Second,in this defini-
tion of consistentrecovery, messagesarenot thecurrency of
consistency; only eventsvisible to the observer can affect
consistency. It is true thatmessagesarerelatedto the inter-
nal correctnessof thecomputation.But incorrectnessresult-
ing from messagehandlingduringrecovery is only relevant
once it affects the visible output of the application.

This view differs from classical recovery research,
which hasoperatedfrom thepremisethat,to ensurecorrect
execution after failures, computationsmust recover their
failedprocessesto a“consistentcut” [Chandy85,Koo87].A
consistentcut is aglobalstateof thecomputationwhere,for
eachmessagem whosereceipt is reflectedin a process’s
local state,the sendof m is reflectedin the sender’s local
state.In our user-centricview, recovery may be consistent
even if the computationdoesnot recover a consistentcut.
For example,the computationmay not executeany visible
events and thus any recovered state will suffice.

Let usnow make thedefinitionof consistentrecovery
more precise.

Definition: Consistent Recovery
Recovery is consistentif andonly if thereexistsa
failure-free execution of the computationthat
would result in a sequenceof visible events
equivalentto thesequenceof visible eventsactu-
ally seen by the external observer.

By this definition,recovery is consistentaslong asthe
sequenceof outputsfrom thefailedandrecoveredcomputa-
tion is equivalent to thosethat would be output by some
legal (i.e. failure-free) execution of the process [Strom85].

This definition of consistentrecovery establishestwo
constraintson how computationsrecover: a constraintof
safety anda constraintof liveness. In orderto meetthedefi-
nition’s safetyconstraint,a computationmustbesurenot to
executeavisibleeventaftera failurethatcouldappearin no
legal sequencewith the computation’s pre-failure visible
events.Thelivenessconstraintfollows from theobservation
that the definition evaluatesthe consistency of recovery by
comparingtheoutputof a recoveredcomputationwith those
of completeexecutions.If a computationrecovers but is
unableto outputa completesequenceof visible events,its
recovery cannotbeconsistent.In otherwords,a singlefail-
ure cannot prevent a consistentlyrecovered computation
from executingto completion.Of course,continuousfail-

urescan always prevent a computationfrom executing to
completion.

Theequivalenceof outputsequencesis governedby an
equivalence function. This functiontakesasa parameterthe
sequenceof visible eventsgeneratedby anexecutionof the
computationandreturnstrue if they areequivalentto some
failure-freeexecution,and false if not. This function is an
application-specificencapsulationof constraintson recov-
ery.

For example,anapplicationmay requirethat thevisi-
ble eventsoutputby the computationbe exactly thoseexe-
cutedby a failure-freeexecutionof the computation.This
requirementcan be expressedas the identity equivalence
function.Or instead,theapplicationmay allow recovery to
causetheduplicationof just the lastvisible event—anokay
to duplicate last visible equivalencefunction(seeFigure2).
An applicationmayevenbehappy with anany permutation
equivalencefunctionthatacceptsavisibleeventsequenceif
it is some permutation of a legal sequence.

Consideran applicationthat outputsthe alphabetand
definesandusesthe identity equivalencefunction.Figure1
depicts the output from this applicationboth before and
aftera failureandsubsequentrecovery. Clearly thereexists
a failure-freeexecutionof the processthat would result in
the output seen,namely its normal execution in which it
outputsthe completealphabet.Sincethe output is equiva-
lent to this failure-freeexecution,the depictedrecovery is
consistent.

What would a computationhave to do to guarantee
consistentrecovery accordingto some equivalencefunc-
tion? Processescan execute commit events to aid later
recovery. By executinga commit event, a processguaran-
teesthatit canrecover thestateof theprocessat thetime of
thecommit.How thecommit is carriedout is not important
to ourdiscussion,althoughtypically committinga process’s
statewill involve taking a checkpoint1 or writing a commit
record to stable storage.

A wide variety of equivalencefunctionsarepossible.
Eachvariesin tractability, theconstraintsit placeson recov-
ery, and the usefulnessof its recoveredcomputations.For
example,the identity equivalencefunctionrequiresa proto-
col that commitsthe applicationatomicallywith eachvisi-
ble event. Since making the commit and visible events
atomicrequiresspecialpurposehardwarehowever, we con-
cludethat the identity equivalencefunction is not tractable
on mainstreamsystems.On the other hand, the okay to
duplicate last visible equivalencefunction is tractable,but
restrictive: it requiresa commit immediatelybeforeevery
visibleevent.Much lessrestrictivewouldbetheany permu-
tation equivalencefunction,althoughit is almostuselessin
practice:self-respectingapplicationsare typically not con-
tent with failures causing scrambled output.

1. Notethatweusetheterm“checkpoint”to referto saving a pro-
cess’s state.This usediffers from thedatabaseterm“checkpoint”,
which refers to the truncation of a redo log [Lomet98].

Figure 1: Recovery consistent assuming an identity
equivalence function.
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All discussionof consistentrecovery occurs either
implicitly or explicitly in the context of a specificequiva-
lencefunction. Although in generalequivalencefunctions
areapplicationspecific,we would like to fix anequivalence
function that provides a standardof recovery with which
most applicationswould be happy. With an equivalence
function established,we will be free to describein detail
how generalapplicationscan achieve consistentrecovery.
For therestof this paper, we will assumethata sequenceof
visible eventsV outputby a computationis equivalentto a
sequence outputby a failure-freeexecutionof thecom-
putationif eitherV and areidentical,or thoseeventsin V
that differ from events in are repeatsof earlier events
from V. Suchan equivalencefunction that allows duplicate
visible events gives a great deal of flexibility in how we
guaranteeconsistentrecovery and is closely relatedto the
oneimplicitly assumedby existingrecoveryprotocols.Most
importantly, it is a reasonableoneto usein practice:typical
userscanoverlook the duplicationof earliervisible events
while the system is recovering from a failure.

For a more detaileddiscussionof equivalencefunc-
tions, please see [Lowell99].

2.2. Assumptions for general application recovery
Providing failure transparency asan operatingsystem

abstractionimplies the ability to recover generalapplica-
tions without application-specificrecovery code.This sec-
tion describesthe recovery primitives that are available in
this domainandthenatureof faultsfrom which it is possi-
ble to recover using them.

Recovering generalapplicationsinvolves two primi-
tives:rollbackof a failedprocessto a prior committedstate,
and re-execution from that state.Two generalconstraints
arisefrom theseprimitives.First,eventsthatarerolled back
andnot re-executedmustbe undoable.Second,eventsthat
arere-executedmustbe redoablewithout causinginconsis-
tency.

Theconstraintof eventundoabilityfor rollbackrecov-
ery is not too challengingto meetsincemost application
eventsare changesto local statethat are easily undoable.
Other events,suchas visible events,can be hard to undo.
However, applicationsthat strive for consistentrecovery
will not have to undoa visible eventwithout re-executingit
as doing so would likely make recovery inconsistent.

The redoabilityconstraintof re-executionrecovery is
more challengingto meet,becauseit can take significant
work to make someeventsredoable.For example,for mes-
sagesendeventsto beredoable,thesystemmusteithertol-
erateor filter duplicatemessages.Similarly, for message
receive events to be redoable,received messagesmust be
savedeitherat thesenderor receiversothey canbere-deliv-
ered after a failure. Note that thesere-execution require-

ments are similar to the demandsmade of systemsthat
transmitmessageson unreliablechannels(e.g.UDP)—such
systemsmustalreadywork correctlyevenwith duplicateor
lost messages.For many recovery protocols,thesesystems’
normal filtering and retransmissionmechanismswill be
enoughto supportthe needsof re-executionrecovery. For
otherprotocols,messageswill have to be saved in a recov-
ery buffer at the senderor receiver so they canbe re-deliv-
ered should a receive event be re-executed.

Recovery involving re-executionalsorequiresthatvis-
ible events be redoable.As a result, generalrollback+re-
executerecovery requiresan equivalencefunction suchas
the one we have assumedthat toleratesduplicatevisible
events.

We next describethe natureof faultsfrom which it is
possibleto recover using theserecovery primitives.There
aretwo constraintson thetypesof faultsfrom which appli-
cationscanrecover: the fault mustobey thefail-stopmodel
[Schneider84], and the fault must be non-deterministic.

First, the fault mustbe fail-stop.Specifically, the sys-
temmustdetecttheerrorandstopbeforecommittingbuggy
state.If it fails to do so, recovery will start from a buggy
state.As with mostexisting work, we assumethatfaultsare
fail-stop.

Second,the fault must be non-deterministic(a so-
called Heisenbug [Gray86]). Otherwiserecovery will sim-
ply re-execute the buggy code and the program will re-fail.

This paperis relevantfor all faultsthatobey thesetwo
constraints,regardlessif the fault occursin the hardware,
operatingsystem,or application.For example,if the hard-
warefails, thefaultmustbetransient(non-deterministic),or
a backupsystemmustbeusedthatdoesnot suffer from the
samefault. If the operatingsystemcrashes,the crashmust
benon-deterministicandmustnot commitbuggyoperating
systemstate(or corruptandcommitapplicationstate).If the
applicationcrashes,the applicationandfault mustbe non-
deterministicandnot commit buggy applicationstate.For-
tunately, most faults (thoughnot all) arenon-deterministic
and obey the fail-stop model [Gray86, Chandra98].

Section3.2 unifiesthesetwo constraintsandexplores
the interactionof differentrecovery protocolswith the fail-
stop model.

2.3. Achieving consistent recovery
We next turn our attentionto theproblemof achieving

consistentrecovery. In this paperwe areconcernedwith the
actionsneededto ensureconsistentrecovery andthe effect
of those actions on failure-free performance.We do not
addresssecondary(though still important) issuessuch as
recovery time and stable storage space.

Wefirst definesometerminology. Wemodelprocesses
asstatemachines.Eachstatetransitionis calledanevent. A
non-deterministic event is a transitionfrom a statethat has
multiplenext statespossibleduringrecovery. Theotherpos-
sibleeventsoutof thatstatearecalledsibling events.Figure

Figure 2: Analysis of two recoveries of the alphabet
program.Thefirst recovery is consistentassuminganokay
to duplicate last visible equivalencefunction. The second
recovery is not consistent by this equivalence function.
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Figure 3: A portion of a state machine showing non-
deterministic evente and its siblings.
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3 depictsa portion of a process’s statemachinein which a
non-deterministicevente andits siblingsappear. In realsys-
tems,non-deterministiceventscorrespondto suchactsas
readinguserinput, receiving a message,taking a signal,or
executing certain system calls such asgettimeofday.

Eventscan relateto one anotherthrough“causeand
effect”. We say event causally precedes event  if:

 and  are executed in that order by a single
process,

or is thesendof amessageand is its correspond-
ing receive by another process,

or  causally precedese ande causally precedes .
We may also say event causally depends on .

This notion of causality correspondsto Lamport’s “hap-
pened before” relation [Lamport78]. Under our model,
computationproceedsasynchronously. That is, thereexist
no boundson eithertherelative speedsof processesor mes-
sagedelivery time. In an asynchronoussystem,the only
way to order events is through causal precedence
[Lamport78].

Computations recover from failures by restarting
failedprocessesfrom theirmostrecentlycommittedstate.If
processescommit judiciously, they can ensureconsistent
recovery no matter when crasheshappen.The following
theoremdefineswhenandhow computationsshouldcom-
mit to guarantee consistent recovery.

Theorem
Recovery of a computationis guaranteedto be
consistentif and only if eachprocessthat exe-
cutesa non-deterministiceventthatcausallypre-
cedesa visible or commitevente laterexecutesa
commit event that itself causally precedese.

The theoremstatesthat to guaranteeconsistentrecov-
ery, a computationmust meet threerequirements.First of
all, thecomputationmustensurethateachnon-deterministic
event that causallyprecedesa visible event is committed.
Second,thecommitpreservingthatnon-deterministicevent
mustcausallyprecedethevisible event in question.Finally,
the computation must ensure that no commit causally
dependson an uncommittednon-deterministicevent. We
call these requirements the theorem’s commit invariant.

Recall that our definition of consistentrecovery has
both safetyandlivenesscomponents.The theoremaswrit-
ten guaranteesboth safetyand liveness,althoughit canbe
decomposedinto separatetheoremsfor each.Whenevent e
in the theoremis a visible event, the theoremguarantees
only safety. Whene is a commitevent,thetheoremguaran-
tees only liveness.

For the purposesof this paper, we make two assump-
tions aboutthe behavior of generalcomputationsto assure
the necessity of the theorem.

Assumption 1
Each non-deterministicevent that causallypre-
cedesa visible event may have a sibling that
causallyprecedesadifferentvisibleevent , and
that and arenot bothcontainedin any fail-
ure-free execution.

Thisassumptionstatesthatif aprocessexecutesanon-
deterministicevent that leadsto a visible event,executinga

sibling of thatnon-deterministiceventduring recovery will
causeinconsistency. This assumptionis reasonablesincein
real systems,pathsof executionthroughnon-deterministic
eventsdo not usuallyjoin up with pathsthroughsiblingsof
those events.

Assumption 2
Onceacomputationexecutesacommitevente in
someexecution,every completionof thatexecu-
tion will execute a visible event that causally
depends one.

Let’s call a processwhoseeventscausallydependon
an abortednon-deterministicevent an orphan. Assumption
2 implies that orphanswill always causeproblems for
recovery by attemptingto executevisible eventsthat caus-
ally follow lost non-deterministic events.

The alternative to makingAssumptions1 and2 is to
exhaustively analyzewhich non-deterministicand commit
eventswill causallyprecedefuturevisibleevents,andwhich
will not. Although we can conceive of statemachinesin
which this analysisis not hard,mostrealstatemachinesare
far too complex to analyzecompletely. If onecanperform
thisanalysis,thenthetheoremis merelyasufficientguaran-
tor of consistentrecovery. Applications that uphold the
commit invariant are still guaranteedconsistentrecovery,
althoughthey maycommitmoreoftenthanis strictly neces-
sary. We explore the implications of not making these
assumptions more fully in [Lowell99].

This theoremhasacorollaryconcerningthepossibility
of recovery in the presenceof events that are both non-
deterministic and visible.

Corollary
Consistentrecovery is impossibleto guaranteeif
any processin a computationexecutesan event
that is bothnon-deterministicandvisible, unless
theeventcanbeexecutedatomicallywith acom-
mit.

This result follows naturallyfrom the theorem,asthe
theorem’s invariant is impossible to uphold for these events.

For the proof of the theorem, please see the Appendix.

2.4. Upholding the commit invariant
As mentionedabove, thecommit invariantcanbebro-

ken up into three separate requirements:
1. Every non-deterministicevent that causally pre-

cedesa visible evente is committedby somecom-
mit event .

2.  causally precedese.
3. No commit event causallydependson an uncom-

mitted non-deterministic event.
Thereare many ways an applicationcan uphold the

commit invariant in orderto guaranteeconsistentrecovery,
eachwith a differentsetof trade-offs betweencommit fre-
quency and implementation effort.

A protocolthat forcedeachprocessto executea com-
mit immediatelyafter every non-deterministicevent would
clearly upholdthe commit invariant.This protocoltrivially
satisfiesrequirement1 since it immediately commits all
non-deterministicevents, a set that includes those non-
deterministicevents that causally precedevisible events.
This protocol also satisfiesrequirement2: if a non-deter-

e1 e2
e1 e2
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ministic eventcausallyprecedesa visible event,thecommit
event immediatelyfollowing mustaswell (sincethevisible
eventcannotcomebetweenthenon-deterministiceventand
its commit).Finally, sinceno uncommittednon-determinis-
tic eventsexist underthis protocol,no commit candepend
onone,meetingrequirement3. Sincethisprotocolmeetsall
three of the commit invariant’s requirements,we can be
assuredit guaranteesconsistentrecovery. Wecall thisproto-
col commit after non-deterministic (CAND).

Since application non-determinismcan manifest in
many forms, identifying which eventsan applicationexe-
cutesarenon-deterministiccanbechallenging.Ratherthan
perform this identification, an application may instead
choose to uphold the commit invariant by committing
immediatelybeforeevery visible or sendevent.By commit-
ting immediatelybeforeeachvisible event,a processguar-
anteesa commit after any of its non-deterministicevents
that causallyprecedethe visible event. Eachprocessalso
commits immediately before every messagesend event,
ensuringa commit afterany of its non-deterministicevents
thatmaycausallyprecedeadownstreamvisibleevent.Thus,
this protocol upholdsrequirement1. Since, eachcommit
immediatelybefore a visible event causallyprecedesthat
visible event, andeachcommit immediatelybeforea send
event must also causallyprecedeany downstreamvisible
events,this protocolalsomeetsrequirement2. By commit-
ting immediatelybefore every messagesendevent, each
processensuresthat it will not passa dependency on an
uncommittednon-deterministiceventto themessagerecipi-
ent.Thus,every commitexecutedby themessagerecipient
will not dependon any of the sender’s uncommittednon-
deterministicevents.Furthermore,sincethe commit event
beforeeachvisible eventcommitsall of thatprocess’s non-
deterministicevents, this protocol upholdsrequirement3.
We call this protocol commit prior to visible or send
(CPVS).Onecanview CPVSastreatingsendseventsasif
they were visible events, since they can lead to visible
events on other processes.

If anapplicationis willing to identify bothvisible and
non-deterministicevents,it can usea protocol in which it
commitsbetweenevery non-deterministiceventandvisible
or send event. Under this protocol, a processcommits
immediatelybeforea visible or sendevent if that process
hasexecutedanon-deterministiceventsinceits lastcommit.
In so doing, this protocol ensuresa commit after a non-
deterministicevent if it causallyprecedesa visible eventon
the sameprocess.It also ensuresa commit after the non-
deterministiceventif it causallyprecedesa localsendevent,
in casethatsendleadsto theexecutionof a visible eventby
anotherprocess.Thusthis protocolmeetsrequirement1. It
also meets requirement2 since each commit executed
beforea visible event causallyprecedesthat visible event,
andeachcommitbeforea sendeventmustcausallyprecede
any downstreamvisible events.Finally, this protocolmeets
requirement3 following the samereasoningas in CPVS.
Wecall thisprotocolcommit between non-deterministic and
visible or send (CBNDVS). Notethat it will alwaysexecute
the same or fewer number of commits than CAND or
CPVS.

CAND, CPVS,andCBNDVS canleadto a largenum-
ber of commits,aswe will seein Section4.4. Sincecom-
mits can be slow, it may make sensefor performance
reasonsto reducecommitfrequency. Therearetwo orthogo-
nal classesof techniquesthat canhelp reducecommit fre-
quency: treatingas few eventsas possibleas visible, and

converting non-deterministic events into deterministic
events.

As mentionedabove,we canthink of theCPVSproto-
col astreatingsendeventsasvisible sincethey may leadto
visible eventson the receiving process.To reducecommit
frequency while still guaranteeingconsistent recovery,
applicationsmay seekto treatonly the truly visible events
asvisible.For example,applicationscanavoid treatingsend
eventsasvisible if theapplicationusesanagreementproto-
col to commit all processesatomically beforeany process
executesa visible event.Committingin this mannerensures
that all processes’non-deterministiceventsarecommitted,
including thosethat causallyprecedevisible events.Thus,
this protocolmeetsrequirement1 of the commit invariant.
Furthermore,the agreementprotocolwill addmessagesto
the computationto force eachvisible event to causallyfol-
low every commit it initiates, meeting requirement 2.
Finally, sinceall processescommit togetherunderthis pro-
tocol, no process’s commit can causally dependon an
uncommittednon-deterministicevent.Therefore,thisproto-
col also meetsrequirement3, and guaranteesconsistent
recovery. If visible eventsarelessfrequentthannon-deter-
ministic events or messagesends,such an approachcan
result in fewer commits than CAND, CPVS, or CBNDVS.

Applicationsmayalsoreducecommitfrequency under
the CAND or CBNDVS protocolsby endeavoring to con-
vert many non-deterministiceventsinto deterministicones.
Thereexist generaltechniquesfor performingthis conver-
sion, such as logging [Gray78]. In a logging system,the
resultof a non-deterministicevent is appendedto a persis-
tentlog. Thelog canthenbeusedduringrecovery to ensure
thattheeventhasthesameresultduringrecovery thatit had
pre-crash.The typical application of logging is to make
messagereceives deterministic,althoughlogging can also
be used for other events such as signals and interrupts
[Bressoud95,Slye96].Somerecoveryprotocolsendeavor to
upholdthecommit invariantby makingall non-determinis-
tic eventsdeterministic,avoiding all commits.We call such
protocolscomplete logging protocols.

Thecommit invariantnot only informsthequestionof
whenprocessesmustcommitto recover consistently. It also
addressesthequestion“how long cana processthat is con-
verting non-determinismleave an event non-deterministic
without forcing a commit?” The answer:up until the next
causallydependentvisible event.Hence,thecommit invari-
ant suggestsa kind of lazy logging in which the resultsof
non-deterministiceventsarequeuedin a volatile buffer, to
beflushedjust beforetheexecutionof a causallydependent
visibleevent[Elnozahy92]. For someworkloads,a lazypro-
tocol could reduceloggingoverheadsignificantlyby amor-
tizing the cost of writes to stablestorage,without making
any optimistic assumptions.Applications can also use a
simplerversionof lazy loggingthatdoesnot requiredepen-
dency tracking betweenprocesses.In this slightly more
eagerprotocol,processeswould simply flush their log tails
to stablestoragebeforesendinga messageor executinga
visible event.

Applicationscanachieve the lower boundon commit
frequency by implementingthecommitinvariantdirectly. In
thisscenario,processA wouldpiggybackinformationon its
outgoingmessagesto inform downstreamprocessesof their
dependenceon any non-deterministicevent executedby A.
When someprocessB later executesa visible or commit
event e, it first asksthe processesthat have executedcaus-
ally precedingnon-deterministicevents to commit their
state,upholdingrequirements1 and3 of thecommit invari-
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ant. It waits for confirmation of each process’s commit
beforeexecutinge to ensurethatall otherprocess’scommits
causally precedee, upholding requirement 2.

3. Applying the Theory
Thetheoryhasa numberof practicaluses.As we have

seen,it helpsmake evident new recovery protocols.To our
knowledge, CPVS and CBNDVS (and two protocols
describedin Section 4.2, CBNDVS-LOG, CBNDV-2PC)
haveneverbeenproposedor implemented.Wenext turnour
attentionto discusshow the theory can be usedto unify
existing recovery protocols,and explore interactionswith
the fail-stop model.

3.1. Unifying existing recovery protocols
All existing recovery protocolresearchcanbeenseen

asproviding differenttechniquesfor upholdingthecommit
invariant. Each varies in its approachto identifying non-
deterministicandvisible events,convertingevents,tracking
causaldependencies,and initiating commits. In order to
show how a numberof theseprotocolsfit into our theoryof
consistentrecovery, we will usethe theory to describethe
workings of several representative protocols.
3.1.1.  Pessimistic logging

Pessimistic logging protocols endeavor to greatly
reduceor eliminateapplicationnon-determinism,allowing
them to uphold the commit invariant without committing
beforemostvisible events.For theapplicationstraditionally
considered,mostof theseprotocolsfocuson makingmes-
sage receive events deterministic [Powell83, Borg89].

In Targon/32, messagedata and receive order are
loggedin the input queueof a backupprocessrunningon
anotherprocessor[Borg89].Sincethebackupprocessis the
one that will be usedfor recovery, its receive events are
guaranteedto executewith the sameresultduring recovery
asthey did for the primary processbeforeits failure.Thus
messagereceive eventsaremadedeterministic.After a fail-
ureby aprocess,thesystemrecoverstheprocessby activat-
ing its backupandletting it roll forwardthroughits queueof
received messages.Since Targon/32 endeavors to recover
general Unix applications, it also has to contend with
sourcesof non-determinismother than messagereceive
events,suchas signals.When a processreceives a signal,
thesystemensuresconsistentrecoveryby checkpointingthe
processto the memory of the backupprocessorafter the
delivery of the signal, as mandated by the commit invariant.

Bressoudand Schneider’s hypervisor-based system
extendsthe classof non-deterministiceventsthat aremade
deterministicfrom messagereceives to generalinterrupts
[Bressoud95].The hypervisormakesinterruptsdeterminis-
tic by delivering them at the end of fixed intervals called
epochsandloggingthemto a backupprocessor, which will
also deliver them at the end of the epoch.
3.1.2.  Sender-based logging

Sender-based logging (SBL) allows applications
whoseonly non-deterministiceventsare messagereceives
to survive the failure of a single processin the system
[Johnson87].It works by making all receive eventsdeter-
ministic to avoid ever having to commit.Receive eventsare
madedeterministicby logging messagesand the order in
which they were delivered in the volatile memory of the
sender. After a processfails, surviving processesresendthe
loggedmessagesand inform the recovering processof the
order in which to processthem,guaranteeingdeterministic
re-executionof receive eventsduringrecovery. Thus,appli-

cationswith no othersourcesof non-determinismneednot
commit before executing visible events.
3.1.3.  Causal logging

Like otherloggingprotocols,causalloggingprotocols
uphold the commit invariant by converting all non-deter-
ministic eventsinto deterministicones,avoiding ever hav-
ing to commit.

Considera messagem sentfrom processp to process
q. In Family-BasedLogging (FBL) and in Manetho,the
contents of m are logged at the sender [Alvisi93,
Elnozahy92]. However, theorderin which m is deliveredto
q (the truenon-determinismin themessagedelivery) is not
logged until the last possible moment.

For FBL, that momentcomesonceq next executesa
sendevent.SinceFBL triesto survive thefailureof any sin-
gle process,it suffices for q to piggyback the receive
sequencenumber(rsn) for m on its next send.Therecipient
of that messageis then responsiblefor adding the piggy-
backedrsn to its log beforeprocessingthemessage.Oncea
processhasreceivedconfirmationthatall its rsn’shavebeen
loggedby other processes(theseconfirmationsare piggy-
backedonotherapplicationmessages),it cansafelyexecute
a visible event.

The situationis a bit trickier for Manetho,becauseit
aimsto survive the simultaneousfailure of all processesin
the computation.Eachprocesskeepstrack of the relative
order of all non-deterministicevents on which its state
depends(acrossall processes)in an antecedence graph
(AG). Whena processsendsa messageto another, it piggy-
backs its AG on the messageto aid maintenanceof the
recipient’s AG. Beforeany processexecutesa visible event,
it must simply write its current AG to stable storageto
uphold the commit invariant.

Oncea processfails undereitherprotocol,thesurviv-
ing processesandstablestoragecanprovide the failedpro-
cesswith the messagesit received pre-crash,andthe order
in which to process them (either asAG’s orrsn’s).
3.1.4.  Optimistic logging

Optimistic logging upholdsthe commit invariant by
makingall an application’s non-deterministiceventsdeter-
ministic. Under this protocol,eachprocesswrites periodic
checkpointsand a messagelog asynchronouslyto stable
storage[Strom85]. Eachprocessmaintainsa vector clock
which summarizesthe stateof every process’s asynchro-
nousloggingefforts.Beforeexecutingavisibleevent,apro-
cesscaninspectits vectorclock to determineif thecommit
invariantis currentlyupheld.If not,theprocesssimplywaits
until it is.
3.1.5.  Coordinated checkpointing

Coordinatedcheckpointingprotocolsupholdthecom-
mit invariant by committing right beforeeachtrue visible
event in thesystem.They employ anagreementprotocolto
avoidingtreatingsendeventsasvisible,andto forcethecor-
rectcausalorderingof commitsandvisible events.Suchan
approachcan reducecommit frequency without requiring
processesto track their causaldependencies.When some
processwantsto executea visible event, it first coordinates
with theotherprocessesin theapplicationto ensurethatall
processescommit atomically [Koo87]. If any processcan-
not perform its commit, all processesare abortedback to
their last committed state.
3.1.6.  Process pairs

Processpair systems, such as Tandem NonStop,
upholdthecommitinvariantby committingbeforeeachvis-
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ible event [Bartlett81,Gray86].Processpairs(andprimary-
backupsystemsin general)areusuallydiscussedin thecon-
text of aclient-serversystem,in which themaintypeof vis-
ible events are a server’s responsemessagesto client
requests.In processpairs,the primary processcheckpoints
its state to a backup processbefore each visible event.
Multi-processservers can extend this checkpointto be a
coordinatedcheckpointfrom the primary processesto the
backup processes.
3.1.7.  Vistagrams

As mentionedin Section2.4, applicationscanuphold
the commit invariantby committingbeforeevery message
sendor visibleevent.Vistagramstakesasimilarapproachto
achieving consistentrecovery [Lowell98]. Ratherthancom-
mitting state before every send, however, Vistagrams
upholdsthecommit invariantby deferringsendeventsuntil
after the next naturally occurringcommit executedby the
application. Applications are responsiblefor committing
their current transaction before doing a visible event.
3.1.8.  Protocol space

Eachof theserecovery protocolsrepresentsa different
techniquefor upholdingthecommitinvariant.Eachto vary-
ing degreestradesoff programmereffort andsystemcom-
plexity for reduced commit frequency (and hopefully
overhead).

Someprotocolsfocus their efforts on the problemof
identifying andreducingnon-determinism.Otherswork to

defer commitsas late as possible.Still othersdo someof
each.Eachprotocolcanbeseenasrepresentinga point in a
two-dimensionalspaceof protocols.Oneaxis in the space
representseffort made to identify and possibly convert
application non-determinism.The other axis represents
effort madeto identify andpossiblyconvert visible events.
Figure 4 shows how the protocols of Section 3.1 might
appear in such a space.

Theorigin of thisplot representsaprotocolthatatomi-
cally commitsevery eventin anapplication.A protocolthat
falls closeto the origin on the horizontalaxis treatsalmost
all eventsasnon-deterministic,whetherthey areor not.Pro-
tocols that fall further and further out on this axis exert
increasingeffort to identify aprogressively largerportionof
the non-deterministicevents, eventually committing only
the events that truly are non-deterministic.Beyond this
point on the axis,protocolsbegin to exert effort to convert
non-deterministic events into deterministic ones.

Similarly, aprotocolthatfallscloseto theorigin onthe
verticalaxiscommitsalmostall eventsin casethey arevisi-
ble events.As protocolsfall further up the axis they exert
moreeffort to treat fewer eventsasvisible. At somepoint,
protocolstreat only sendeventsand true visible eventsas
visible. Beyond that point, protocols exert further effort
(suchasusinganagreementprotocol)to allow themnot to
treat send events as visible.

The distancefrom the origin in this planeis inversely
proportionalto commitfrequency. Thatis, thefarthera pro-
tocol is from the origin, the less frequentlymost applica-
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tions using that protocol will have to commit. Thus the
farthera protocol is from the origin, the moreit canmain-
tain good performance,even with a slow commit. Con-
versely, a fast commit allows a programmerto guarantee
consistentrecovery with lesseffort, i.e. usea protocol that
would fall closer to the origin in this plane.

Note that in Figure4 mostexisting protocolsfall very
close to the axes (Manethoand optimistic logging being
exceptions).This is mostlikely dueto thehistoricalsepara-
tion betweencheckpointingand logging-baseddistributed
recovery research.We believe thereis significantpotential
for efficient recovery protocolsin the middle of the plot,
however. We explore several of them in Section4.2, and
many more are possible.

3.2. Exploring interactions with the fail-stop model
Of centralconcernin examiningthefail-stopproperty

is thepoint of executionat which commitsoccurrelative to
when buggy codepathsare initiated. Commit eventshave
traditionallybeenviewedasaway to preserve thepastwork
of aprocessup to thepointof thecommit.Usingthetheory,
commit events can also be seenas committing all future
work executedupuntil thenext non-deterministicevent.We
call this view that commit eventspreserve later execution
forward commit. Unfortunately, forward commit increases
the chancesthat failuresarenot fail-stopby increasingthe
probability that buggystateis committed.In fact, for some
applications,recovery protocols,andfailure types,forward
commitcanrule out thepossibilityof applicationsever fail-
ing in a fail-stop manner.

Failuresof applicationswith no non-determinismwill
alwaysviolate fail stop.This observation follows naturally
from forward commit: in such applications,all statesare
always committed, including buggy ones.Thus recovery
protocols that eagerly make all of an application’s non-
deterministiceventsdeterministicalsoensurethatall appli-
cation failures will not be fail-stop. Similarly, a recovery
protocol that upholdsthe commit invariant by committing
after every non-deterministicevent (the CAND protocol
describedin Section2.4) is guaranteedto commit buggy
applicationstate,and all application failures will violate
fail-stop.Therefore,systemsthat useeager, completelog-
ging (e.g. Targon/32and sender-basedlogging) or CAND
cannotrecover from applicationfailures.Of course,applica-
tions canstill survive hardwareandoperatingsystemsfail-
ures using eager, completelogging or CAND as long as
thosefailuresarefail-stop(i.e. they don’t corruptcommitted
or logged application state).

There are two generalstrategies for increasingthe
likelihoodof failuresbeingfail-stop.Oneway is to enhance
the error-detectioncode (e.g. voting among independent
replicas [Schneider84])so that the faulty system stops
sooner. The secondway is to deferthe commit of possibly
buggy state; this deferral gives the error-detection code
moretime to catchtheerror. Thetheoryhelpswith this sec-
ond methodby showing how long it is possibleto defer
committing state or defer converting a non-deterministic
event into a deterministicone,while still guaranteeingcon-
sistent recovery. Committing or logging can only be
deferredup until the next causallydependentvisible event.
Protocolsthat defer thesewrites to stablestorage,suchas
CPVS, CBNDVS, lazy logging, and coordinatedcheck-
pointing,all increasethelikelihoodthatfailureswill befail-
stop.

4. Practice of Failur e Transparency
Thefirst threesectionsof this paperhave beenprima-

rily theoretical.We developed a definition of consistent
recovery, provedtheinvariantthata programmustmaintain
to perform consistentrecovery, and showed how existing
recovery protocols maintain the invariant.

This next sectionof the paperillustratesthe practical
applicationof thetheoryanddemonstratesthefeasibility of
providing failure transparency on a variety of challenging
applications. We design seven recovery protocols that main-
tain thecommit invariantin differentwaysandmeasurethe
performanceof theserecovery protocolson a varietyof real
applications.We have verified that all applicationsusedin
this section recover consistentlyfrom induced operating
system and application crashes using all seven protocols.

4.1. Discount Checking
We built a user-level checkpointingsystemcalledDis-

countCheckingthat cancommit andrecover processstate
as neededfor consistentrecovery. Discount Checking is
built on thereliablemainmemoryprovidedby theRio File
Cache[Chen96]and the fast transactionsprovided by the
Vista lightweight transactionlibrary [Lowell97]. In this
paper, we alsousea variantcalledDiscountChecking-disk
that doesnot assumethe presenceof Rio’s reliable main
memory.

While the design of Discount Checking is not the
focusof this paper, we do want to point out several unique
aspectsof Discount Checking (see [Lowell99] for more
details).

First, Discount Checking’s architecturediffers from
othercheckpointingsystemsbecauseit is optimizedfor reli-
ablemainmemoryandis layeredon topof fasttransactions.
Conventionalcheckpointingsystemsassumememoryis lost
duringoperatingsystemcrashesandmustcopy theprocess
stateto a separatestablestore[Plank95]. In contrast,Dis-
countCheckingloadstheprocessaddressspaceinto Vista’s
recoverablememoryandexecutestheprocessdirectly from
this space.DiscountCheckingusesVista’s atomictransac-
tions to transition the committedprocessstateatomically
from onecheckpointto the next. DiscountCheckingis, to
ourknowledge,thefirst systemto usereliablemainmemory
in this direct mannerand is the first checkpointingsystem
built on top of a general-purpose transaction system.

Second,Discount Checking saves a more complete
stateof theprocessthanmostothercheckpointingsystems.
Checkpointingsystemshave focusedtraditionallyon recov-
ering long-running,scientific computationsthat have little
kernelstateassociatedwith theprocess.In contrast,weseek
to provide failure transparency for interactive applications
(e.g.editors,spreadsheets,CAD tools,games)to hide fail-
ures from ordinary users.These interactive applications
have significantkernelstatethatmustbecommittedbefore
the crashandrecoveredafter the crash.DiscountChecking
saves the processaddressspaceby mappingit into Vista’s
memory, asdescribedabove. DiscountCheckingsaves the
processor’s register contentsby copying the registers(e.g.
stack pointer, programcounter, general-purposeregisters)
into Vista’s memoryat eachcheckpoint.Our basicstrategy
for saving kernelstateis to interceptsystemcalls thatmod-
ify kernelstate(by wrappinglibc calls),save theupdated
kernel statevaluesin Vista’s memory, and directly restore
thatkernelstateduringrecoveryby redoingthesystemcalls
as needed.

The following aresomeexamplesof the typesof ker-
nel statesaved andrecoveredby DiscountChecking:open
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files andfile positions,opensockets,boundandconnected
sockets,signalhandlers,timers,TCPprotocolstack,process
IDs, and user-level page protections(e.g. those used in
copy-on-write systems).Discount Checking also undoes
uncommittedfile modifications[Wang95].In general,sav-
ing all relevant kernelstaterequiresthat the checkpointing
systembe part of the kernel.However, we were surprised
that it waspossiblefor a user-level checkpointingsystemto
be madecompleteenoughto recover a large classof com-
plex, real applications.

DiscountChecking-diskusesthe samecodebaseas
DiscountCheckingbut is modifiedto write outa redolog to
diskateachcommit.This redodataincludesthenewestver-
sionof any applicationdatachangedduringthelast interval
andany additionallogs usedby the recovery protocol.We
useDiscountChecking-diskto measureapproximatelyhow
our recovery protocolsperformwithout reliablemainmem-
ory. Discount Checking-diskdoesnot yet have the code
neededto recover applicationsafter failures (unlike Dis-
count Checking,which successfullyrecovers all applica-
tions in this paper).

4.2. Recovery Protocols
Therearemany ways to maintainthe commit invari-

ant, asdescribedin Section2.4. We designseven different
recovery protocolsto illustrate the breadthof protocolsto
whichour theoremgivesrise,andto studywhichworkloads
perform bestwith which protocols.Eachprotocol guaran-
teesconsistentrecovery, but doessousinga differentnum-
berof commitsandwith varyingcomplexity andoverhead.
We implementeachprotocol as an option that can be set
when using Discount Checking.

As mentionedabove, DiscountCheckingtrapssystem
callsin orderto preservekernelstate.In thesamemanner, it
can also trap systemcalls correspondingto visible, non-
deterministic,or sendevents for specialhandling by the
recoveryprotocolin use.By trappingtheseevents,eachpro-
tocol canbe sureto upholdthe commit invarianton behalf
of the application.

Severalprotocolsneedto speciallyhandleanapplica-
tion’s non-deterministicevents,suchasreadinguserinput,
checkingthereal-timeclock, takinga signal,or receiving a
message.To support theseprotocols,Discount Checking
trapscalls to recv, recvfrom, recvmsg, read, gettim-
eofday, select, bind, and the application’s signal han-
dlers.For theprotocolsthatneedto handleanapplication’s
visible events,DiscountCheckingtrapsthe write system
call. Finally, someprotocolswant to speciallyhandlemes-
sagesendevents.For theseprotocols,DiscountChecking
traps calls tosend, sendmsg, sendto, andwrite.

The protocols are:
Commit prior to visible event or send(CPVS): Dis-

count Checkingforces eachprocessto take a checkpoint
immediatelybefore executing a visible or sendevent by
trappingthe appropriatesystemcalls.As describedin Sec-
tion 2.4,doingsoupholdsthecommit invariantandguaran-
tees consistent recovery.

Commit after non-deterministic event (CAND): As
describedin Section2.4, Discount Checkingforces each
processto checkpointimmediatelyafter executingone of
the above non-deterministic events.

Commit betweennon-deterministic event and visi-
ble event or send(CBNDVS): As describedin Section2.4,
eachprocesscommitsbetweenexecutinga non-determinis-
tic eventandexecutingavisibleeventor sendingamessage.
To implementthis protocol,DiscountCheckingsetsa flag

whena processexecutesoneof theabove non-deterministic
events.Whenthatprocesslaterattemptsto executea visible
or sendeventwhile theflag is set,it first takesa checkpoint
and clearsthe flag. This protocol will always executethe
same or fewer commits as CPVS or CAND.

Commit after non-deterministic event, with logging
(CAND-LOG) : This protocol is identical to CAND, with
loggingaddedto convertsomenon-deterministiceventsinto
deterministic ones in an attempt to reduce commit fre-
quency. Discount Checking implementsthis protocol by
writing the resultsof read, recv, recvfrom, recvmsg,
andselect to a log in orderto make messagereceive and
user input events deterministic.After the remainingnon-
deterministicevents(gettimeofday andsignals),this pro-
tocol simply forces a checkpoint.

Commit betweennon-deterministic event and visi-
ble event or send, with logging (CBNDVS-LOG): This
protocol is identical to CBNDVS, with the samelogging
logging used in CAND-LOG employed to convert some
non-deterministic events into deterministic events.

Commit prior to visible event with two-phasecom-
mit (CPV-2PC): Under this protocol, any time a process
wantsto executea visible event, it asksall theprocessesin
the computationto commit their stateusing a two-phase
commit protocol(2PC)[Gray78].Doing so ensuresa com-
mit after any non-deterministicevents that might causally
precede the visible event.

Commit betweennon-deterministic event and visi-
ble event (CBNDV-2PC): In this protocol, if a process
wantsto executea visible event thatdependson anuncom-
mitted non-deterministicevent, it first asksall processesto
commit using2PC.Ratherthan trackingcausaldependen-
cies on non-deterministicevents betweenprocesses,we
implement this protocol using the simple flag-setting
approachof CBNDVS by assumingall messagereceives
causea dependenceon a non-deterministicevent executed
by the sender.

Figure5 placestheserecovery protocolsin the proto-
col spacedevelopedin Section3.1.8.Note that we do not
combinelogging with two-phasecommit. Logging receive
events to make them deterministicassumesthe received
messagewill not be aborted.Hencethe receiving process
cannotparticipateproperlyin a subsequenttwo-phasecom-

Figure 5:Recovery protocols measured in Section 4.
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mit if thesenderasksit to aborttheloggedreceive event.A
protocol that loggedforms of non-determinismother than
messagereceive eventscould take advantageof two-phase
commit.

4.3. Applications
Recoveryhasfocusedtraditionallyonrecoveringlong-

running, scientific computations.For our study, we will
focus instead on recovering interactive applications.We
choosetheseapplicationsbecauserealusersaredemanding
andimportantcustomersof recovery, andbecauserecover-
ing theseapplicationsis particularlychallenging.Interactive
applications typically maintain large amountsof kernel
state,andthey executevisible andnon-deterministicevents
frequently. As a result, theseapplicationscan stressany
recovery protocol.

Weuseourcheckpointingsystemsandrecoveryproto-
cols to recover five applications:vi, oleo, magic, Tread-
Marks, andxpilot.

vi is oneof theearliertext editorsfor Unix (theversion
weuseis nvi); oleo is aspreadsheetprogram;andmagic is a
graphicalVLSI layouteditor. Wemake theexecutionof nvi,
oleo, andmagic repeatableby having themreaduserinput
from ascript.For nvi andoleo, wesimulateavery fasttypist
by delaying100 millisecondseachtime the programasks
for a character. For magic, we delay 1 secondbetween
mouse-generatedcommands.vi, oleo, and magic are all
local applications,i.e. thereareno messagesends(magic’s
messages to the X server are considered visible events).

TreadMarks is a distributed sharedmemory system
[Keleher94].We run an N-body simulationcalled Barnes-
Hut in the sharedmemory environment TreadMarks pro-
vides,with thesimulationconfiguredto run on four proces-
sors.We chooseBarnes-Hutbecauseit is the largestof the
example applications shipped withTreadMarks.

xpilot is a distributed,graphical,real-timegame.We
run xpilot with threeclientsanda gameserver (all on sepa-
ratecomputers)andplay thegamewith acontinuousstream
of input at all clients.

Applicationsneedonly two minormodificationsto use
Discount Checkingand becomefully recoverable(imple-
mentingrecovery in theoperatingsystemwould requireno
modificationsto the application).First, we insert a call to
dc_init at the beginning of eachprogram’s main() and
include dc.h in this file. Second,we link the application
with libdc.a, whichcontainstheDiscountCheckingcode,
includingcodeto interceptmany libc functions.Discount
Checkingtransparentlyinsertscheckpointsand logs non-
deterministiceventsasrequiredby eachrecovery protocol.
It also recovers a process when it is restarted after a crash.

4.4. Results
All experimentswere conductedon 400 MHz Pen-

tium-II computerseachwith 128MB of memory(100MHz
SDRAM). EachmachinerunsFreeBSD2.2.7with Rio and
is connectedto a 100 Mb/s switched Ethernet.Rio was
turnedoff whenusingDiscountChecking-disk.Eachcom-
puterhasa singleIBM UltrastarDCAS-34330Wultra-wide
SCSI disk. All points representthe averageof five runs.
Standarddeviation for eachapplicationwaslessthan1% of
the meanfor DiscountChecking,and lessthan 4% of the
mean for Discount Checking-disk.

Figures6 and7 displaythe resultsof runningthefive
applicationsusing both Discount Checkingand Discount
Checking-diskto implementall seven recovery protocols.
Sincewe usethe two-phasecommit protocol to coordinate
commits betweenprocessesin messagepassingapplica-

tions, we show the resultsfor CPV-2PCandCBNDV-2PC
only for applicationsthat sendmessages.For eachapplica-
tion we show a plot of the protocolsin the protocolspace
describedin Section3.1.8.At eachpoint on theplot, we list
thenameof theprotocolthatpoint represents,thenumberof
commitsexecutedin therun of theapplication,andtherun-
time ratiosfor DiscountCheckingandDiscountChecking-
disk. The run-timeratio is the runningtime of the recover-
ableversionof the applicationdivided by the runningtime
of the baseline,non-recoverableapplication.Baselinerun-
ning timesare798secondsfor nvi, 54 secondsfor oleo, 89
seconds for magic, and 15 seconds for TreadMarks.
Becausexpilot is a real-time,continuousprogram,wereport
its performanceasthe framerate it cansustainratherthan
run-timeexpansion.Higherframeratesindicatebetterinter-
activity, with full speedbeing15 framespersecond.Check-
points for xpilot are given as the largest number of
checkpointsper secondamongall clients and the server,
measured at 15 frames per second.

We can make a number of interestingobservations
aboutthe resultsin Figures6 and7. As expected,thenum-
ber of commitsgenerallydecreasesfor protocolsthat are
fartherfrom theorigin. As adesignerexpendsmoreeffort to
defer commits or convert non-deterministicevents into
deterministicones,heor sheusuallyis rewardedwith fewer
commitsandbetterperformance.Thesoleexceptionto this
rule is xpilot. In xpilot, using two-phasecommit increases
the numberof commits.This increaseis becauseall pro-
cessesmustcommit whenever any of themexecutesa visi-
ble event(i.e. sendingoutputto theX server).This increase
in commit frequency is greaterthanthedecreasein commit
frequency that resultsfrom not needingto commit before
sending a message.

Second,note that DiscountCheckingaddsnegligible
(< 1-2%) overheadto all the applicationsbut TreadMarks,
even for recovery protocols that generatemany commits
(suchas CAND and CPVS). BecauseDiscountChecking
takesadvantageof reliablemain memoryandfast transac-
tions, it is able to take checkpointsvery quickly: under2
millisecondsper checkpointfor theseapplications.While
DiscountChecking-diskcannotmatchthis level of perfor-
mance,it is nonethelessableto provide failuretransparency
with acceptableoverheadfor somerecovery protocols.For
example,DiscountChecking-diskexpandstherunningtime
of nvi by aslittle as12%,oleo by 39%,andmagic by 27%.
xpilot can sustaina rate of 9 framesper second,which is
40% lower thanthe full framerate.As expected,Discount
Checking-disk is much more sensitive than Discount
Checkingto thenumberof commitsgeneratedby arecovery
protocol,becauseit commitsstateby writing to disk rather
thanmemory. Overheadfor TreadMarks is higherthanother
applicationsbecauseTreadMarks has a large working set
and is compute-bound rather than user-bound.

Third, notethatdifferentrecoveryprotocolsbenefitthe
variousapplicationsin different ways. For nvi, logging is
the most effective way to reducecommit frequency. Log-
ging keyboard input is sufficient to eliminate most non-
determinism innvi.

For oleo and magic, however, logging doesnot help
appreciably, becausethereare other sourcesof non-deter-
minism that are not logged.gettimeofday is the major
source of non-determinismin oleo, and signals are the
majorsourceof non-determinismin magic. For theseappli-
cations,it is mosthelpful to upholdthecommit invariantby
treatingas few eventsas possibleas visible. By so doing,
theseapplicationscancommit beforeevery visible or send
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event, rather than after eachof the more numerousnon-
deterministic events.

Thebestrecovery protocolsfor TreadMarks arethose
that use two-phasecommit to defer commits beyond the
point of sendinga message.TreadMarks sendsmessages
and executesnon-deterministicevents (signals) very fre-
quently, which resultsin a high commit frequency for most
protocols.However, TreadMarks executesvery few visible
events(just a handfulof writesto thescreen),soonly a few
coordinated commits are needed.

Note that different applicationsachieve the lowest
overheadwith differentprotocols.Thusno oneprotocol is
appropriatefor all workloads.In general,protocolsthatboth
defer commits and identify and convert non-deterministic

events yield more robust performanceacrossa range of
applications.

5. Related Work
A few researchershave attemptedto provide a general

view of recovery research.
Elnozahy et al. provide a thoughtfuloverview of exist-

ing rollback recovery protocols for distributed systems
[Elnozahy96]. Their main contribution is to describeand
comparethegreatvarietyof protocolsin therecovery litera-
ture.

Alvisi et al. provide a theory of recovery specific to
causallogging protocols[Alvisi95]. Their theory is useful
primarily in elucidatingthe relationshipbetweendifferent
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Figure6: Performanceof differentrecoveryprotocolsfor localapplications.Thefirst line below eachprotocollabelgivesthe
numberof commits in the run. The secondline below eachprotocol label gives run-time ratios (running time of the
recoverableprogramdivided by runningtime of the baseline,non-recoverableapplication)for two checkpointingsystems:
Discount Checking and Discount Checking-disk.
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causalloggingprotocols;it is lessusefulfor otherrecovery
techniques.

A numberof researchershave pointedout components
of our theory. Our work builds on that of these other
researchersin a few importantways.First of all, classical
researchhasrelied on a setof separaterules for achieving
consistentrecovery:oneruledefinesconsistentglobalstates
[Chandy85],onerule defineswhenanapplicationmustpre-
servesuchaglobalstate[Strom85,Elnozahy92], andafinal
rule relates non-determinism to commits [Johnson88,
Elnozahy92]. In comparison,we provide a single invariant
that capturesthe exact relationshipbetweenthe non-deter-
ministic, commit, andvisible eventsat the heartof consis-
tent recovery. Althoughour singleinvariantis equivalentto
the confluenceof the existing rules, viewing recovery
through the lens of our invariant has several advantages.
First of all, we areableto analyzeall existing recovery pro-
tocols in light of this single invariant,unifying the various

approachesto achieving consistentrecovery, and elucidat-
ing the relationshipbetweenhistorically unrelatedproto-
cols. Second,we are able to expose the existenceof a
protocol spacein which all recovery protocolsfall. Third,
we make explicit a numberof assumptionslurking behind
all recovery protocolresearch,oursandothers’.For exam-
ple, other researchersall assumean equivalencefunction
like ours, and all must make assumptionsequivalent to
Assumptions1 and2, althoughtheseassumptionsareusu-
ally not stated.Fourth, we areable to explore the implica-
tionsof our invariantfor the fail-stopassumptionsmadeby
mostrecoverysystems.Finally, weareableto provethesuf-
ficiency andnecessityof our singleinvariantfor guarantee-
ing consistentrecovery, somethingthat, to our knowledge,
no researcher has ever done.

Several researchershave built systemsthat attemptto
provide someflavor of failure transparency. For example,
the TandemNonStop[Bartlett81], Publishing[Powell83],

Figure 7: Performanceof differentrecovery protocolsfor distributedapplications.The first line below eachprotocol label
givesthenumberof commitsin therun.Thesecondline below eachprotocollabelgivesrun-timeratios(runningtime of the
recoverableprogramdivided by runningtime of the baseline,non-recoverableapplication)for two checkpointingsystems:
Discount Checking and Discount Checking-disk.Becausexpilot is a real-time, continuous program, we report its
performanceas the framerate it cansustainin frames-per-second(fps) ratherthanrun-timeexpansion.Higher fps values
indicatea betterrateof interactivity, with full speedbeing15 fps. Checkpointsfor xpilot aregivenasthehighestnumberof
checkpoints per second (ckps) among all clients and the server, measured at 15 fps.
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Targon/32[Borg89], andHypervisor[Bressoud95]systems
all provide recovery servicesthatallow processesto survive
hardware failures.

Traditionalcheckpointingsystemsprovide a tool that
applicationscanuseto helpthemsurvivesoftwareandhard-
ware failures [Plank95]. Thesecheckpointingsystemsare
targetedfor scientific applicationswith little kernel state,
and that rarely execute visible events.

6. Contributions
This paper makes a number of contributions:

• Provides and proves a theory of consistentrecovery
that is relevant across all recovery protocols, and
shows that upholdinga simple invariant is necessary
and sufficient to guarantee consistent recovery.

• Unifies the variousapproachesto consistentrecovery
and clarifies how they uphold the invariant.

• Suggestsa numberof new recovery protocols(CPVS,
CBNDVS, CBNDVS-LOG, CBNDV-2PC) and
exposesthe potential for more protocols that both
defer commits and convert non-determinism.

• Arguesfor failure transparency as an OS abstraction
and demonstrates its feasibility.

7. Conclusion
Computerusersknow thatsystemandapplicationfail-

uresareall too common.With this paper, we arguethat if
we have to live with failures,the leastthe computercould
do is try to keep them a secret.

Providing failure transparency as a fundamental
abstractionof theoperatingsystemhasthepotentialto make
computersfarmorepleasantto use.Doingsoinvolvesguar-
anteeingconsistentrecovery on behalfof local anddistrib-
utedapplications,which canbetricky business,particularly
for complex, distributed applications.

With this paper, we have provided a framework for
reasoningaboutconsistentrecovery. Our theoryof consis-
tent recovery provides a simple invariant that all applica-
tionsmustupholdto maskfailuresfrom users.Exposingthe
commit invariantbehindrecovery protocolsenablessystem
designersto think moresystematicallyaboutwhat recovery
protocol to use for each application.

Our study hasshown that providing failure transpar-
ency is feasiblefor a difficult classof applicationswithout
modifying those applications and without significantly
degradingperformance.For someapplicationsandrecovery
protocols,it is evenpossibleto provide failuretransparency
usingdisk insteadof reliablemainmemory. This resultsug-
geststhe importanceof new researchinto providing disk-
based,full-process checkpointersthat are optimized for
small checkpoints, and that provide timeliness guarantees.

Ourhopeis thatthiswork will encouragenew research
into theproblemof providing failure transparency asa fun-
damentalabstractionof modernoperatingsystems.We also
hope it will direct recovery researchtoward interactive
applications.In this domain, recovery researchcan do a
greatdealto improve therelationshippeoplehavewith their
computers.

8. Acknowledgements
We arevery gratefulto Paul Resnickfor his help for-

mulating the proof of our theory. Thanksalso to George
Dunlap for addingsupportto the XFree86Server for our
user-level TCP transport.

9. Appendix
We presenthereaninformal proof of thetheorem.For

a more formal approach, please see [Lowell99].

Theorem
Recovery of a computationis guaranteedto be
consistentif and only if eachprocessthat exe-
cutesa non-deterministiceventthatcausallypre-
cedesa visible or commitevente laterexecutesa
commit event that itself causally precedese.

As mentionedin Section2, thedefinitionof consistent
recovery providesboth safetyand livenessconstraints.We
will split thetheoreminto two components:whenevente in
thetheoremis avisible eventthetheoremguaranteessafety,
whene is a commit event the theoremguaranteesliveness.
We will prove thenecessityandsufficiency of eachcompo-
nent separately.

Proof of sufficiency for Safetycomponent. We want
to prove that all partial executionsof a computationC will
beequivalentto a failure-freepartialexecutionof C despite
failures, if eachprocessthat executesa non-deterministic
eventthatcausallyprecedesavisibleevente laterexecutesa
commit event that itself causally precedese.

Considertheuniverseof possiblepartialexecutionsof
C, includingexecutionsin which it hasfailedandrecovered.
We canthink of eachmemberof theuniversebeinga setof
events partially ordered by causal precedence.We can
divide theuniverseinto two regions.Oneregioncontainsall
theexecutionsin which no processfails.We call this region
NoFail Theregion containstheexecutionsof C in which at
leastoneprocessfails.We call this region Fail. We canfur-
ther divide the Fail region into two parts.The first part we
call Redo. It containsthe execution in Fail in which all
failed processesexactly redo their pre-failure pathsduring
recovery. In otherwords,thefailedprocessesexecuteduring
recovery no siblings of pre-failures non-deterministic
events.The secondportion of Fail we call Deviate. It con-
tainstheexecutionsin Fail in which at leastonefailedpro-
cessdeviatesfrom its pre-failurepathby executingasibling
of a pre-failure non-deterministicevent. Finally, we can
divide Deviate into two sub-regions:Hidden andExposed.
Exposed containsthoseexecutionswherethenon-determin-
istic eventat thepoint of recovery’s deviation causallypre-
cedesa visible event. Hidden containsthosewhereit does
not. We show the relevant portionsof this partitioning in
Figure 8.

With the universe of partial executions thus parti-
tioned,we canmake a numberof observations.First of all,
each execution in Redo has an equivalent execution in
NoFail: theexecutionfrom Redo is thesameasanexecution
in NoFail except that the Redo execution re-executesthe

Universe of possible partial executions for C

NoFail

Redo

Hidden Exposed

Figure 8:Partitioned execution universe.
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eventsbetweenits lastcommitandfailurewhich is allowed
by our equivalencefunction. Thus all executionsin Redo
have consistent recovery.

Next, observe that eachexecutionE in Hidden hasan
equivalent execution in Redo. is the execution in
which thecomputationfailed immediatelybeforeexecuting
thedeviating non-deterministiceventin E, andexecutedthe
siblingof thateventduringrecovery. Sincetheexecutionsin
Redo have consistentrecovery, it follows the executionsin
Hidden do as well.

By processof elimination, it follows that all execu-
tions with inconsistentrecovery must fall in the Exposed
region of the universe.Note however that sinceC commits
accordingto our premise,no executionof C canfall in the
Exposed region. Thus,the sufficiency of the safetycompo-
nent of the theorem is proved.

Proof of necessityfor the Safety component. We
intendto provethereexistsapartialexecutionof acomputa-
tion C thatis notequivalentto any failure-freepartialexecu-
tion of C if someprocessexecutesanon-deterministicevent
that causallyprecedesa visible event e and doesnot later
execute a commit event that itself causally precedese.

We’ll call the non-deterministicevent that caus-
ally precedese. We know from Assumption1 that has
a sibling that causallyprecedesdifferenta visible event .
Fromourpremise,weknow thattheprocessp thatexecuted

did not executea commit event after it. Therefore,if
processp fails immediatelyafter the computationexecutes
e, it couldexecutethroughthesibling of duringrecov-
ery, causing to beexecuted.However, wealsoknow from
Assumption1 thate and arenot both in any legal execu-
tion of C. Thuswe have describedan inconsistentrecovery
that is possibleasa resultof C’s not committingcorrectly,
andthenecessityof thesafetycomponentof thetheoremis
proved.

Proof of sufficiencyfor the Li venesscomponent. We
want to prove thata singlefailurecannotpreventa process
from executinga visible event if eachprocessthatexecutes
a non-deterministicevent that causallyprecedesa commit
event e later executesa commit event that itself causally
precedese.

We needto show that whenever a processwants to
execute a visible event but determinesthe event would
dependon an abortednon-deterministicevent, it canabort
to its last commit andbe assuredthat all eventsit executes
from that point on will not causallydependon the aborted
non-deterministicevent. By our premise,we know that no
commitcausallydependsonanuncommittednon-determin-
istic event.Therefore,any processcanalwaysabortbackto
its last commit to aborta dependency on a lost non-deter-
ministic event (an event that could not have beencommit-
ted). To ensurethat it never regains its dependency on the
lost event, the abortingprocessmay have to askotherpro-
cessesto abortbackto their last commits.If sufficient pro-
cessesareaborted,all processeswill permanentlylosetheir
dependency on the lost non-deterministicevent, since no
process’s lastcommitcausallydependson it. Thuswe have
provedthesufficiency of thelivenesscomponentof thethe-
orem.

Proof of necessityfor the Li venesscomponent. We
intendto prove thata singlefailurecanprevent indefinitely
someprocessp from executinga visible event if somepro-
cessq that executesa non-deterministicevent that causally
precedescommit event (which is executedby p) never
executes a commit event that itself causally precedes.

Imagine processq fails immediatelyafter processp
executesevent . We know preservesa dependenceon
processq’s now lost non-deterministicevent.Whenprocess
p later attemptsto executea visible event (which it will do
by Assumption2), it will notbeableto dosowithoutviolat-
ing the safetycomponentof the theoremsincethe visible
event would causally follow the lost non-deterministic
event.Even worse,it will never be ableto abort its depen-
dency on thelost non-deterministiceventsinceits lastcom-
mit preserves the dependency. Thus we have proved the
necessity of the liveness component of our theorem.

Sincewe have proved thesufficiency andnecessityof
both the safetyand livenesscomponents,we have proved
that upholdingthe theoremis both necessaryandsufficient
to guaranteeconsistentrecovery underthe assumptionswe
have made.QED
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